Hydrogel ionotronics

Nature Reviews Materials 3, 125-142 DOI: 10.1038/s41578-018-0018-7

Citation Report

#	Article	IF	CITATIONS
1	Zwitterionic Skins with a Wide Scope of Customizable Functionalities. ACS Nano, 2018, 12, 12860-12868.	14.6	154
2	Adhesion between Hydrophobic Elastomer and Hydrogel through Hydrophilic Modification and Interfacial Segregation. ACS Applied Materials & Interfaces, 2018, 10, 43252-43261.	8.0	38
3	Highly Flexible and Transparent Polyionic‣kin Triboelectric Nanogenerator for Biomechanical Motion Harvesting. Advanced Energy Materials, 2019, 9, 1803183.	19.5	72
4	Hydrogel Interferometry for Ultrasensitive and Highly Selective Chemical Detection. Advanced Materials, 2018, 30, e1804916.	21.0	79
5	Stretchable Seal. ACS Applied Materials & amp; Interfaces, 2018, 10, 27333-27343.	8.0	40
6	A Linear Poroelastic Analysis of Time-Dependent Crack-Tip Fields in Polymer Gels. Journal of Applied Mechanics, Transactions ASME, 2018, 85, .	2.2	12
7	One-Step Preparation of a Highly Stretchable, Conductive, and Transparent Poly(vinyl alcohol)–Phytic Acid Hydrogel for Casual Writing Circuits. ACS Applied Materials & Interfaces, 2019, 11, 32441-32448.	8.0	106
8	Dielectric elastomer materials for large-strain actuation and energy harvesting: a comparison between styrenic rubber, natural rubber and acrylic elastomer. Smart Materials and Structures, 2019, 28, 114001.	3.5	51
9	INFORA: A Novel Inflatable Origami-based Actuator. , 2019, , .		2
10	Hydrogel Paint. Advanced Materials, 2019, 31, e1903062.	21.0	146
11	Biomimetic Extremeâ€Temperature―and Environmentâ€Adaptable Hydrogels. ChemPhysChem, 2019, 20, 2139-2154.	2.1	86
12	A biomimetic nanofluidic diode based on surface-modified polymeric carbon nitride nanotubes. Beilstein Journal of Nanotechnology, 2019, 10, 1316-1323.	2.8	16
13	Neural interfaces by hydrogels. Extreme Mechanics Letters, 2019, 30, 100510.	4.1	51
14	Toward Multifunctional and Wearable Smart Skins with Energyâ€Harvesting, Touchâ€Sensing, and Exteroceptionâ€Visualizing Capabilities by an Allâ€Polymer Design. Advanced Electronic Materials, 2019, 5, 1900553.	5.1	41
15	A highly transparent and ultra-stretchable conductor with stable conductivity during large deformation. Nature Communications, 2019, 10, 3429.	12.8	297
16	Molecular Staples for Tough and Stretchable Adhesion in Integrated Soft Materials. Advanced Healthcare Materials, 2019, 8, e1900810.	7.6	20
17	Stickâ€On Largeâ€Strain Sensors for Soft Robots. Advanced Materials Interfaces, 2019, 6, 1900985.	3.7	79
18	A Biomimetic Interface with High Adhesion, Tailorable Modulus for On-Skin Sensors, and Low-Power Actuators. Chemistry of Materials, 2019, 31, 8708-8716.	6.7	33

TATION REDO

#	Article	IF	CITATIONS
19	Characterisation of hydrogels: Linking the nano to the microscale. Advances in Colloid and Interface Science, 2019, 274, 102044.	14.7	75
20	Multiresponsive and Self-Healing Hydrogel via Formation of Polymer–Nanogel Interfacial Dynamic Benzoxaborole Esters at Physiological pH. ACS Applied Materials & Interfaces, 2019, 11, 44742-44750.	8.0	35
21	The Rise of Bioinspired Ionotronics. Advanced Intelligent Systems, 2019, 1, 1900073.	6.1	43
22	Gelatin-hydrogel based organic synaptic transistor. Organic Electronics, 2019, 75, 105409.	2.6	36
23	Fundamentals and Advances in the Adhesion of Polymer Surfaces and Thin Films. Langmuir, 2019, 35, 15914-15936.	3.5	66
24	A transparent, stretchable, stable, self-adhesive ionogel-based strain sensor for human motion monitoring. Journal of Materials Chemistry C, 2019, 7, 11244-11250.	5.5	90
25	A bioinspired hydrogen bond-triggered ultrasensitive ionic mechanoreceptor skin. Nature Communications, 2019, 10, 4019.	12.8	138
26	Smart Hydrogel Gratings for Sensitive, Facile, and Rapid Detection of Ethanol Concentration. Industrial & Engineering Chemistry Research, 2019, 58, 17833-17841.	3.7	19
27	The linear-dependence of adhesion strength and adhesion range on temperature in soft membranes. Journal of the Mechanics and Physics of Solids, 2019, 132, 103697.	4.8	17
28	Electroconductive PEDOT:PSS-based hydrogel prepared by freezing-thawing method. Heliyon, 2019, 5, e02498.	3.2	27
29	Hybrid conductive hydrogels for washable human motion energy harvester and self-powered temperature-stress dual sensor. Nano Energy, 2019, 66, 104080.	16.0	85
30	A multifunctional shape-morphing elastomer with liquid metal inclusions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21438-21444.	7.1	203
31	An intrinsically stretchable humidity sensor based on anti-drying, self-healing and transparent organohydrogels. Materials Horizons, 2019, 6, 595-603.	12.2	297
32	Magnetic double-network hydrogels for tissue hyperthermia and drug release. Journal of Materials Chemistry B, 2019, 7, 1311-1321.	5.8	67
33	Bio-Integrated Wearable Systems: A Comprehensive Review. Chemical Reviews, 2019, 119, 5461-5533.	47.7	822
34	Realizing the potential of dielectric elastomer artificial muscles. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2476-2481.	7.1	276
35	Anti-fatigue-fracture hydrogels. Science Advances, 2019, 5, eaau8528.	10.3	305
36	Electroactive Smart Polymers for Biomedical Applications. Materials, 2019, 12, 277.	2.9	141

#	Article	IF	CITATIONS
37	Hydrogel bioelectronics. Chemical Society Reviews, 2019, 48, 1642-1667.	38.1	1,267
38	Adaptable polyionic elastomers with multiple sensations and entropy-driven actuations for prosthetic skins and neuromuscular systems. Materials Horizons, 2019, 6, 538-545.	12.2	84
39	Skin-Inspired Surface-Microstructured Tough Hydrogel Electrolytes for Stretchable Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 21895-21903.	8.0	80
40	Localization of Ion Concentration Gradients for Logic Operation. Frontiers in Chemistry, 2019, 7, 419.	3.6	7
41	Ionogel-based, highly stretchable, transparent, durable triboelectric nanogenerators for energy harvesting and motion sensing over a wide temperature range. Nano Energy, 2019, 63, 103847.	16.0	188
42	Gas-Permeable, Irritation-Free, Transparent Hydrogel Contact Lens Devices with Metal-Coated Nanofiber Mesh for Eye Interfacing. ACS Nano, 2019, 13, 7920-7929.	14.6	59
43	Polyacrylamide hydrogels. I. Network imperfection. Journal of the Mechanics and Physics of Solids, 2019, 131, 43-55.	4.8	128
44	Covalent Topological Adhesion. ACS Macro Letters, 2019, 8, 754-758.	4.8	65
45	A review of electro-stimulated gels and their applications: Present state and future perspectives. Materials Science and Engineering C, 2019, 103, 109852.	7.3	30
46	Dual Crossâ€Linked Hydrogels with High Strength, Toughness, and Rapid Selfâ€Recovery Using Dynamic Metal–Ligand Interactions. Macromolecular Materials and Engineering, 2019, 304, 1900195.	3.6	16
47	Design Molecular Topology for Wet–Dry Adhesion. ACS Applied Materials & Interfaces, 2019, 11, 24802-24811.	8.0	76
48	Polyvinyl Alcohol/Silk Fibroin/Borax Hydrogel Ionotronics: A Highly Stretchable, Self-Healable, and Biocompatible Sensing Platform. ACS Applied Materials & Interfaces, 2019, 11, 23632-23638.	8.0	154
49	Hydrophobic Hydrogels with Fruit‣ike Structure and Functions. Advanced Materials, 2019, 31, e1900702.	21.0	64
50	Materials and structural designs of stretchable conductors. Chemical Society Reviews, 2019, 48, 2946-2966.	38.1	367
51	Optimized Association of Short Alkyl Side Chains Enables Stiff, Self-Recoverable, and Durable Shape-Memory Hydrogel. ACS Applied Materials & Interfaces, 2019, 11, 19554-19564.	8.0	24
52	Nanocomposite Hydrogels with Optic–Sonic Transparency and Hydroacoustic-Sensitive Conductivity for Potential Antiscouting Sonar. ACS Applied Materials & Interfaces, 2019, 11, 20386-20393.	8.0	17
53	Highly Stretchable and Compressible Cellulose Ionic Hydrogels for Flexible Strain Sensors. Biomacromolecules, 2019, 20, 2096-2104.	5.4	171
54	Strong and Degradable Adhesion of Hydrogels. ACS Applied Bio Materials, 2019, 2, 1781-1786.	4.6	43

#	Article	IF	CITATIONS
55	Mussel-Inspired Nanocomposite Hydrogel-Based Electrodes with Reusable and Injectable Properties for Human Electrophysiological Signals Detection. ACS Sustainable Chemistry and Engineering, 2019, 7, 7918-7925.	6.7	83
56	Hydrogel 3D printing with the capacitor edge effect. Science Advances, 2019, 5, eaau8769.	10.3	43
57	Shapeable Material Technologies for 3D Selfâ€Assembly of Mesoscale Electronics. Advanced Materials Technologies, 2019, 4, 1800692.	5.8	44
58	Stretchable materials of high toughness and low hysteresis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5967-5972.	7.1	253
59	Re-designing materials for biomedical applications: from biomimicry to nature-inspired chemical engineering. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180268.	3.4	51
60	Printing Hydrogels and Elastomers in Arbitrary Sequence with Strong Adhesion. Advanced Functional Materials, 2019, 29, 1901721.	14.9	101
61	Conjugated Polymers for Assessing and Controlling Biological Functions. Advanced Materials, 2019, 31, e1806712.	21.0	151
62	Integrated Soft Ionotronic Skin with Stretchable and Transparent Hydrogel–Elastomer Ionic Sensors for Hand-Motion Monitoring. Soft Robotics, 2019, 6, 368-376.	8.0	98
63	Stretchable sensors for environmental monitoring. Applied Physics Reviews, 2019, 6, .	11.3	83
64	Polymer-based flexible bioelectronics. Science Bulletin, 2019, 64, 634-640.	9.0	50
65	Ion-conductive self-healing hydrogels based on an interpenetrating polymer network for a multimodal sensor. Chemical Engineering Journal, 2019, 371, 452-460.	12.7	135
66	Interesting core–shell structure and "V-shape―shift: The property and formation mechanism of structural heterogeneity in cellulose hydrogel. Carbohydrate Polymers, 2019, 217, 110-115.	10.2	5
67	Aggregationâ€Induced Electrochemiluminescence by Metalâ€Binding Protein Responsive Hydrogel Scaffolds. Small, 2019, 15, e1901170.	10.0	45
68	Multiâ€Responsive Bilayer Hydrogel Actuators with Programmable and Precisely Tunable Motions. Macromolecular Chemistry and Physics, 2019, 220, 1800562.	2.2	37
69	Flawâ€Insensitive Hydrogels under Static and Cyclic Loads. Macromolecular Rapid Communications, 2019, 40, e1800883.	3.9	48
70	Selfâ€recovery and fatigue of doubleâ€network gels with permanent and reversible bonds. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 438-453.	2.1	8
71	Electrobiofabrication: electrically based fabrication with biologically derived materials. Biofabrication, 2019, 11, 032002.	7.1	43
72	Ultrastretchable and Stable Strain Sensors Based on Antifreezing and Self-Healing Ionic Organohydrogels for Human Motion Monitoring. ACS Applied Materials & Interfaces, 2019, 11,	8.0	285

#		IE	CITATIONS
#	Flexible, transparent ion-conducting membranes from two-dimensional nanoclays of intrinsic	IF	CHATIONS
73	conductivity. Journal of Materials Chemistry A, 2019, 7, 25657-25664.	10.3	14
74	An Active Temperature Sensor based on Encapsulated Flexible and Transparent Triboelectric Nanogenerator. , 2019, , .		9
75	Ionic–Covalent Hybrid Tough Hydrogels Enabled by the in Situ Release of Metal Ions from Insoluble Salts or Alkalis. ACS Applied Polymer Materials, 2019, 1, 3222-3226.	4.4	10
76	Recent Advances in Transparent Electronics with Stretchable Forms. Advanced Materials, 2019, 31, e1804690.	21.0	114
77	Extremely Deformable, Transparent, and High-Performance Gas Sensor Based on Ionic Conductive Hydrogel. ACS Applied Materials & Interfaces, 2019, 11, 2364-2373.	8.0	180
78	One-pot synthesis of potassium iron hexacyanoferrate/polyacrylamide nanohybrid hydrogel via gamma radiation and its adsorption property. Functional Materials Letters, 2019, 12, 1950031.	1.2	1
79	Porous scaffolds from droplet microfluidics for prevention of intrauterine adhesion. Acta Biomaterialia, 2019, 84, 222-230.	8.3	60
80	Photodetachable Adhesion. Advanced Materials, 2019, 31, e1806948.	21.0	181
81	General Principle for Fabricating Natural Globular Protein-Based Double-Network Hydrogels with Integrated Highly Mechanical Properties and Surface Adhesion on Solid Surfaces. Chemistry of Materials, 2019, 31, 179-189.	6.7	102
82	Hydrogel Adhesion: A Supramolecular Synergy of Chemistry, Topology, and Mechanics. Advanced Functional Materials, 2020, 30, 1901693.	14.9	507
83	Stretchable and fatigue-resistant materials. Materials Today, 2020, 34, 7-16.	14.2	146
84	Fatigue-Resistant elastomers. Journal of the Mechanics and Physics of Solids, 2020, 134, 103751.	4.8	65
85	Ionic Tactile Sensors for Emerging Humanâ€Interactive Technologies: A Review of Recent Progress. Advanced Functional Materials, 2020, 30, 1904532.	14.9	122
86	Smart Textileâ€Integrated Microelectronic Systems for Wearable Applications. Advanced Materials, 2020, 32, e1901958.	21.0	427
87	Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics in Healthcare, Energy, and Environment. Advanced Materials, 2020, 32, e1901924.	21.0	575
88	A bionic tactile plastic hydrogel-based electronic skin constructed by a nerve-like nanonetwork combining stretchable, compliant, and self-healing properties. Chemical Engineering Journal, 2020, 379, 122271.	12.7	171
89	Flexible Hybrid Sensors for Health Monitoring: Materials and Mechanisms to Render Wearability. Advanced Materials, 2020, 32, e1902133.	21.0	232
90	Artificial Sensory Memory. Advanced Materials, 2020, 32, e1902434.	21.0	200

#	Article	IF	CITATIONS
91	Spatially modulated stiffness on hydrogels for soft and stretchable integrated electronics. Materials Horizons, 2020, 7, 203-213.	12.2	70
92	An ambient-stable and stretchable ionic skin with multimodal sensation. Materials Horizons, 2020, 7, 477-488.	12.2	103
93	Electric field concentration in hydrogel–elastomer devices. Extreme Mechanics Letters, 2020, 34, 100597.	4.1	7
94	Ultrasoundâ€Triggered Enzymatic Gelation. Advanced Materials, 2020, 32, e1905914.	21.0	38
95	Autonomous Self-Healing, Antifreezing, and Transparent Conductive Elastomers. Chemistry of Materials, 2020, 32, 874-881.	6.7	138
96	Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper. Materials Horizons, 2020, 7, 919-927.	12.2	289
97	Transparent, mechanically robust, and ultrastable ionogels enabled by hydrogen bonding between elastomers and ionic liquids. Materials Horizons, 2020, 7, 912-918.	12.2	248
98	Heteronetwork organohydrogels with exceptional swelling-resistance and adaptive antifouling performance. Polymer Chemistry, 2020, 11, 68-74.	3.9	9
99	A review on recent advances in polymer and peptide hydrogels. Soft Matter, 2020, 16, 1404-1454.	2.7	267
100	Tough hydrogel module towards an implantable remote and controlled release device. Biomaterials Science, 2020, 8, 960-972.	5.4	19
101	Photo rosslinking Strategy Constructs Adhesive, Superabsorbent, and Tough PVAâ€Based Hydrogel through Controlling the Balance of Cohesion and Adhesion. Macromolecular Materials and Engineering, 2020, 305, 1900623.	3.6	27
102	Development of ZnO/PDMS nanocomposite with photocatalytic/hydrophobic multifunction. Chemical Physics Letters, 2020, 740, 137051.	2.6	15
103	Numerical fracture analysis for chemo-mechanical coupling problems in multilayered porous media. International Journal of Mechanical Sciences, 2020, 172, 105412.	6.7	5
104	A pseudo-elasticity theory to model the strain-softening behavior of tough hydrogels. Journal of the Mechanics and Physics of Solids, 2020, 137, 103832.	4.8	38
105	Waterâ€Processable, Stretchable, Selfâ€Healable, Thermally Stable, and Transparent Ionic Conductors for Actuators and Sensors. Advanced Materials, 2020, 32, e1906679.	21.0	119
106	Graphene Oxideâ€Templated Conductive and Redoxâ€Active Nanosheets Incorporated Hydrogels for Adhesive Bioelectronics. Advanced Functional Materials, 2020, 30, 1907678.	14.9	225
107	Traditional Dough in the Era of Internet of Things: Edible, Renewable, and Reconfigurable Skin‣ike Iontronics. Advanced Functional Materials, 2020, 30, 1908018.	14.9	45
108	A flexible, high-voltage and safe zwitterionic natural polymer hydrogel electrolyte for high-energy-density zinc-ion hybrid supercapacitor. Chemical Engineering Journal, 2020, 392, 123733.	12.7	212

#	Article	IF	CITATIONS
109	Superâ€Soft and Superâ€Elastic DNA Robot with Magnetically Driven Navigational Locomotion for Cell Delivery in Confined Space. Angewandte Chemie - International Edition, 2020, 59, 2490-2495.	13.8	104
110	Superâ€Soft and Superâ€Elastic DNA Robot with Magnetically Driven Navigational Locomotion for Cell Delivery in Confined Space. Angewandte Chemie, 2020, 132, 2511-2516.	2.0	15
111	A Dynamic Gel with Reversible and Tunable Topological Networks and Performances. Matter, 2020, 2, 390-403.	10.0	216
112	Emerging Soft Conductors for Bioelectronic Interfaces. Advanced Functional Materials, 2020, 30, 1907184.	14.9	70
113	Eco-friendly polymer nanocomposite hydrogel enhanced by cellulose nanocrystal and graphitic-like carbon nitride nanosheet. Chemical Engineering Journal, 2020, 386, 124021.	12.7	58
114	A mixed isogeometric analysis approach for the transient swelling of hydrogel. Computer Methods in Applied Mechanics and Engineering, 2020, 372, 113384.	6.6	8
115	lonotronic Luminescent Fibers, Fabrics, and Other Configurations. Advanced Materials, 2020, 32, e2005545.	21.0	63
116	Enhanced Solarâ€Drivenâ€Heating and Tough Hydrogel Electrolyte by Photothermal Effect and Hofmeister Effect. Small, 2020, 16, e2004091.	10.0	21
117	Selfâ€Healing of Electrical Damage in Polymers. Advanced Science, 2020, 7, 2002131.	11.2	46
118	Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles. Nano Energy, 2020, 78, 105389.	16.0	186
119	Bioinspired Anisotropic Chitosan Hybrid Hydrogel. ACS Applied Bio Materials, 2020, 3, 6959-6966.	4.6	19
120	Visible-light-assisted multimechanism design for one-step engineering tough hydrogels in seconds. Nature Communications, 2020, 11, 4694.	12.8	56
121	Shape-adaptable biodevices for wearable and implantable applications. Lab on A Chip, 2020, 20, 4321-4341.	6.0	27
122	Recent advances in bioelectronics chemistry. Chemical Society Reviews, 2020, 49, 7978-8035.	38.1	54
123	Ionic spiderwebs. Science Robotics, 2020, 5, .	17.6	38
124	Pristine Titanium Carbide MXene Hydrogel Matrix. ACS Nano, 2020, 14, 10471-10479.	14.6	87
125	Flexible Pressure Sensors for Biomedical Applications: From Ex Vivo to In Vivo. Advanced Materials Interfaces, 2020, 7, 2000743.	3.7	57
126	A Universal Strategy for Tough Adhesion of Wet Soft Material. Advanced Functional Materials, 2020, 30, 2003207.	14.9	113

#	Article	IF	CITATIONS
127	Cellulose Nanofibrils Enhanced, Strong, Stretchable, Freezingâ€Tolerant Ionic Conductive Organohydrogel for Multiâ€Functional Sensors. Advanced Functional Materials, 2020, 30, 2003430.	14.9	477
128	The combination of multi-functional ingredients-loaded hydrogels and three-dimensional printed porous titanium alloys for infective bone defect treatment. Journal of Tissue Engineering, 2020, 11, 204173142096579.	5.5	39
129	Electron Transfer as a Liquid Droplet Contacting a Polymer Surface. ACS Nano, 2020, 14, 17565-17573.	14.6	141
130	Emerging flexible sensors based on nanomaterials: recent status and applications. Journal of Materials Chemistry A, 2020, 8, 25499-25527.	10.3	106
131	Toward Biodegradable Electronics: Ionic Diodes Based on a Cellulose Nanocrystal–Agarose Hydrogel. ACS Applied Materials & Interfaces, 2020, 12, 52182-52191.	8.0	28
132	A Compliant Ionic Adhesive Electrode with Ultralow Bioelectronic Impedance. Advanced Materials, 2020, 32, e2003723.	21.0	86
133	Hydrogel soft robotics. Materials Today Physics, 2020, 15, 100258.	6.0	216
134	Selfâ€healing Polyol/Borax Hydrogels: Fabrications, Properties and Applications. Chemical Record, 2020, 20, 1142-1162.	5.8	35
135	Inkâ€Based Additive Nanomanufacturing of Functional Materials for Humanâ€Integrated Smart Wearables. Advanced Intelligent Systems, 2020, 2, 2000117.	6.1	17
136	Devising Materials Manufacturing Toward Labâ€ŧoâ€Fab Translation of Flexible Electronics. Advanced Materials, 2020, 32, e2001903.	21.0	60
137	An L012@PAni-PAAm hydrogel composite based-electrochemiluminescence biosensor for in situ detection of H2O2 released from cardiomyocytes. Electrochimica Acta, 2020, 354, 136763.	5.2	28
138	Topological adhesion II. Stretchable adhesion. Extreme Mechanics Letters, 2020, 40, 100891.	4.1	25
139	Highly Elastic Hydrated Cellulosic Materials with Durable Compressibility and Tunable Conductivity. ACS Nano, 2020, 14, 16723-16734.	14.6	98
140	An adaptive ionic skin with multiple stimulus responses and moist-electric generation ability. Journal of Materials Chemistry A, 2020, 8, 17498-17506.	10.3	53
141	Highly biodegradable, thermostable eutectogels prepared by gelation of natural deep eutectic solvents using xanthan gum: preparation and characterization. RSC Advances, 2020, 10, 28376-28382.	3.6	24
142	A metalloprotein-inspired thermo-gene for thermogels. Inorganic Chemistry Frontiers, 2020, 7, 4086-4091.	6.0	4
143	Nanoscale Ion Regulation in Woodâ€Based Structures and Their Device Applications. Advanced Materials, 2021, 33, e2002890.	21.0	75
144	Modeling the response characteristics of photo-sensitive hydrogel electrolytes in Hofmeister salt solution for the development of smart energy storage devices. Sustainable Energy and Fuels, 2020, 4, 6112-6124.	4.9	1

ARTICLE IF CITATIONS # Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale. Science 145 10.3 99 Advances, 2020, 6, . Single-Layer Triboelectric Nanogenerators Based on Ion-Doped Natural Nanofibrils. ACS Applied 146 8.0 Materials & amp; Interfaces, 2020, 12, 42859-42867. Highly stretchable, self-adhesive, biocompatible, conductive hydrogels as fully polymeric strain 147 10.3 147 sensors. Journal of Materials Chemistry A, 2020, 8, 20474-20485. An Implantable Ionic Wireless Power Transfer System Facilitating Electrosynthesis. ACS Nano, 2020, 14, 148 14.6 11743-11752. Intelligent Polymerâ€Based Bioinspired Actuators: From Monofunction to Multifunction. Advanced 149 6.1 33 Intelligent Systems, 2020, 2, 2000138. Functional Conductive Hydrogels for Bioelectronics., 2020, 2, 1287-1301. A comprehensive review of the structures and properties of ionic polymeric materials. Polymer 151 3.9 46 Chemistry, 2020, 11, 5914-5936. Stretchable, Phaseâ€Transformable lonogels with Reversible lonic Conductor–Insulator Transition. 14.9 37 Advanced Functional Materials, 2020, 30, 2005079. Aromatic nonpolar organogels for efficient and stable perovskite green emitters. Nature 153 12.8 28 Communications, 2020, 11, 4638. 154 MXene hydrogels: fundamentals and applications. Chemical Society Reviews, 2020, 49, 7229-7251. 38.1 Highly compressible hydrogel sensors with synergistic long-lasting moisture, extreme temperature 155 22 5.9 tolerance and strain-sensitivity properties. Materials Chemistry Frontiers, 2020, 4, 3319-3327. An artificial sensory neuron with visual-haptic fusion. Nature Communications, 2020, 11, 4602. 156 12.8 166 Spatiotemporal regulation of dynamic cell microenvironment signals based on an azobenzene 157 5.8 8 photoswitch. Journal of Materials Chemistry B, 2020, 8, 9212-9226. Stimuli-responsive functional materials for soft robotics. Journal of Materials Chemistry B, 2020, 8, 5.8 118 8972-8991 Plant-Inspired Multifunctional Fluorescent Hydrogel: A Highly Stretchable and Recoverable Self-Healing Platform with Water-Controlled Adhesiveness for Highly Effective Antibacterial 159 8.0 14 Application and Data Encryption–Decryption. ACS Applied Materials & amp; Interfaces, 2020, 12, 57686-57694 A Hydrogel-Based Ultrasonic Backscattering Wireless Biochemical Sensing. Frontiers in Bioengineering and Biotechnology, 2020, 8, 596370. Stretchable, Healable, and Degradable Soft Ionic Microdevices Based on Multifunctional Soaking-Toughened Dual-Dynamic-Network Organohydrogel Electrolytes. ACS Applied Materials & amp; 161 8.0 47 Interfaces, 2020, 12, 56393-56402. Stretchable, Stable, and Room-Temperature Gas Sensors Based on Self-Healing and Transparent Organohydrogels. ACS Applied Materials & amp; Interfaces, 2020, 12, 52070-52081.

#	Article	IF	CITATIONS
163	Rapidly Visible-Light-Mediated Photogelations for One-Step Engineering Multifunctional Tough Hydrogel Tubes. ACS Macro Letters, 2020, 9, 1681-1686.	4.8	18
164	Thermal Selfâ€Protection of Zincâ€ion Batteries Enabled by Smart Hygroscopic Hydrogel Electrolytes. Advanced Energy Materials, 2020, 10, 2002898.	19.5	102
165	Highly Sensitive Pressure and Strain Sensors Based on Stretchable and Recoverable Ion-Conductive Physically Cross-Linked Double-Network Hydrogels. ACS Applied Materials & Interfaces, 2020, 12, 51969-51977.	8.0	79
166	Reversibly Transforming a Highly Swollen Polyelectrolyte Hydrogel to an Extremely Tough One and its Application as a Tubular Grasper. Advanced Materials, 2020, 32, e2005171.	21.0	136
167	Enhancing the Performance of a Stretchable and Transparent Triboelectric Nanogenerator by Optimizing the Hydrogel Ionic Electrode Property. ACS Applied Materials & Interfaces, 2020, 12, 23474-23483.	8.0	76
168	Dual-primer adhesion of polymer networks of dissimilar chemistries. Extreme Mechanics Letters, 2020, 38, 100756.	4.1	14
169	Locally coupled electromechanical interfaces based on cytoadhesion-inspired hybrids to identify muscular excitation-contraction signatures. Nature Communications, 2020, 11, 2183.	12.8	47
170	Mussel-inspired hydrogels: from design principles to promising applications. Chemical Society Reviews, 2020, 49, 3605-3637.	38.1	346
171	One-step preparation of a highly transparent, stretchable and conductive ionic nanocomposite hydrogel. Chemical Physics Letters, 2020, 754, 137667.	2.6	8
172	Synergy of noncovalent interlink and covalent toughener for tough hydrogel adhesion. Extreme Mechanics Letters, 2020, 39, 100797.	4.1	10
173	Adaptive Deformation of Ionic Domains in Hydrogel Enforcing Dielectric Coupling for Sensitive Response to Mechanical Stretching. Advanced Intelligent Systems, 2020, 2, 2000016.	6.1	0
174	Inkjetâ€Printed Iontronics for Transparent, Elastic, and Strainâ€Insensitive Touch Sensing Matrix. Advanced Intelligent Systems, 2020, 2, 2000088.	6.1	15
175	Cellulose Nanofiber-Reinforced Ionic Conductors for Multifunctional Sensors and Devices. ACS Applied Materials & Interfaces, 2020, 12, 27545-27554.	8.0	54
176	Flame-Retardant and Sustainable Silk Ionotronic Skin for Fire Alarm Systems. , 2020, 2, 712-720.		61
177	Functionalizing Double-Network Hydrogels for Applications in Remote Actuation and in Low-Temperature Strain Sensing. ACS Applied Materials & Interfaces, 2020, 12, 30247-30258.	8.0	93
178	Microribbons composed of directionally self-assembled nanoflakes as highly stretchable ionic neural electrodes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14667-14675.	7.1	48
179	Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nature Materials, 2020, 19, 1102-1109.	27.5	278
180	Chemically Coupled Interfacial Adhesion in Multimaterial Printing of Hydrogels and Elastomers. ACS Applied Materials & amp; Interfaces, 2020, 12, 31002-31009.	8.0	22

#	Article	IF	CITATIONS
181	Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics. Nature Nanotechnology, 2020, 15, 683-689.	31.5	66
182	Bioinspired Ionic Sensory Systems: The Successor of Electronics. Advanced Materials, 2020, 32, e2000218.	21.0	99
183	Dynamic Hydrophobic Domains Enable the Fabrication of Mechanically Robust and Highly Elastic Poly(vinyl alcohol)-Based Hydrogels with Excellent Self-Healing Ability. , 2020, 2, 764-770.		59
184	Topological adhesion. I. Rapid and strong topohesives. Extreme Mechanics Letters, 2020, 39, 100803.	4.1	43
185	Skin-Interfaced Sensors in Digital Medicine: from Materials to Applications. Matter, 2020, 2, 1414-1445.	10.0	134
186	Spatiotemporally Controlled Photoresponsive Hydrogels: Design and Predictive Modeling from Processing through Application. Advanced Functional Materials, 2020, 30, 2000639.	14.9	51
187	Hydrogen bonding sewing interface. RSC Advances, 2020, 10, 17438-17443.	3.6	3
188	Fatigue-resistant adhesion I. Long-chain polymers as elastic dissipaters. Extreme Mechanics Letters, 2020, 39, 100813.	4.1	29
189	Intelligent Silk Fibroin Ionotronic Skin for Temperature Sensing. Advanced Materials Technologies, 2020, 5, 2000430.	5.8	45
190	A bendable solid-state supercapacitor based on alkaline polyvinyl alcohol. IOP Conference Series: Earth and Environmental Science, 2020, 440, 022064.	0.3	0
191	Multiple Stimuli Responsive and Identifiable Zwitterionic Ionic Conductive Hydrogel for Bionic Electronic Skin. Advanced Electronic Materials, 2020, 6, 2000239.	5.1	116
192	Hofmeisterâ€Effectâ€Guided Ionohydrogel Design as Printable Bioelectronic Devices. Advanced Materials, 2020, 32, e2000189.	21.0	31
193	Highly Transparent, Self-Healable, and Adhesive Organogels for Bio-Inspired Intelligent Ionic Skins. ACS Applied Materials & Interfaces, 2020, 12, 15657-15666.	8.0	95
194	A both microscopically and macroscopically intrinsic self-healing long lifespan yarn battery. Energy Storage Materials, 2020, 28, 334-341.	18.0	35
195	Naturally occurring biological macromolecules-based hydrogels: Potential biomaterials for peripheral nerve regeneration. International Journal of Biological Macromolecules, 2020, 154, 795-817.	7.5	79
196	Ionogel Microphones Detect Underwater Sound with Directivity and Exceptional Stability. ACS Applied Electronic Materials, 2020, 2, 1295-1303.	4.3	6
197	Stretchable Cephalopodâ€Inspired Multimodal Camouflage Systems. Advanced Materials, 2020, 32, e1905717.	21.0	62
199	Highly transparent, self-healing conductive elastomers enabled by synergistic hydrogen bonding interactions. Chemical Engineering Journal, 2020, 393, 124685.	12.7	98

#	Article	IF	CITATIONS
200	Highly stretchable, self-healing, and 3D printing prefabricatable hydrophobic association hydrogels with the assistance of electrostatic interaction. Polymer Chemistry, 2020, 11, 4741-4748.	3.9	34
201	The Potential of Electrospinning/Electrospraying Technology in the Rational Design of Hydrogel Structures. Macromolecular Materials and Engineering, 2020, 305, 2000285.	3.6	29
202	3D Printable Strain Sensors from Deep Eutectic Solvents and Cellulose Nanocrystals. ACS Applied Materials & Interfaces, 2020, 12, 34235-34244.	8.0	105
203	Advances in Materials for Soft Stretchable Conductors and Their Behavior under Mechanical Deformation. Polymers, 2020, 12, 1454.	4.5	11
204	Multifunctional soft machines based on stimuli-responsive hydrogels: from freestanding hydrogels to smart integrated systems. Materials Today Advances, 2020, 8, 100088.	5.2	67
205	Toward bioimplantable and biocompatible flexible energy harvesters using piezoelectric ceramic materials. MRS Communications, 2020, 10, 365-378.	1.8	25
206	A Reductive Supramolecular Hydrogel: A Platform for Facile Fabrication of Diverse Metalâ€Nanoparticleâ€Decorated Conductive Networks with Spatiotemporal Control. ChemPlusChem, 2020, 85, 1704-1709.	2.8	2
207	Modified Ti3C2TX (MXene) nanosheet-catalyzed self-assembled, anti-aggregated, ultra-stretchable, conductive hydrogels for wearable bioelectronics. Chemical Engineering Journal, 2020, 401, 126129.	12.7	92
208	Cellulose Hydrogels by Reversible Ionâ€Exchange as Flexible Pressure Sensors. Advanced Materials Technologies, 2020, 5, 2000358.	5.8	25
209	Advances in Rational Design and Materials of Highâ€Performance Stretchable Electromechanical Sensors. Small, 2020, 16, e1905707.	10.0	46
210	Redoxâ€Active Ironâ€Citrate Complex Regulated Robust Coatingâ€Free Hydrogel Microfiber Net with High Environmental Tolerance and Sensitivity. Advanced Functional Materials, 2020, 30, 1910387.	14.9	72
211	3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Materials Science and Engineering Reports, 2020, 140, 100543.	31.8	494
212	Stretchable, Transparent, and Thermally Stable Triboelectric Nanogenerators Based on Solventâ€Free Ionâ€Conducting Elastomer Electrodes. Advanced Functional Materials, 2020, 30, 1909252.	14.9	114
213	Ultrasound-Driven Two-Dimensional Ti ₃ C ₂ T _{<i>x</i>} MXene Hydrogel Generator. ACS Nano, 2020, 14, 3199-3207.	14.6	91
214	High-order NURBS elements based isogeometric formulation for swellable soft materials. Computer Methods in Applied Mechanics and Engineering, 2020, 363, 112901.	6.6	11
215	Highly Stretchable and Self-Healing Strain Sensor Based on Gellan Gum Hybrid Hydrogel for Human Motion Monitoring. ACS Applied Polymer Materials, 2020, 2, 1325-1334.	4.4	47
216	Recent Advances in Mechano-Responsive Hydrogels for Biomedical Applications. ACS Applied Polymer Materials, 2020, 2, 1092-1107.	4.4	59
217	Ionoelastomer junctions between polymer networks of fixed anions and cations. Science, 2020, 367, 773-776.	12.6	188

#	Article	IF	Citations
218	Rectifying ionic current with ionoelastomers. Science, 2020, 367, 735-736.	12.6	15
219	From design to applications of stimuli-responsive hydrogel strain sensors. Journal of Materials Chemistry B, 2020, 8, 3171-3191.	5.8	131
220	Self-Healable Hydrogel–Liquid Metal Composite Platform Enabled by a 3D Printed Stamp for a Multimodular Sensor System. ACS Applied Materials & Interfaces, 2020, 12, 9824-9832.	8.0	56
221	Hydrogel machines. Materials Today, 2020, 36, 102-124.	14.2	625
222	Topological prime. Science China Technological Sciences, 2020, 63, 1314-1322.	4.0	9
223	Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. Journal of Materials Chemistry B, 2020, 8, 3437-3459.	5.8	372
224	Recent advances of wearable and flexible piezoresistivity pressure sensor devices and its future prospects. Journal of Materiomics, 2020, 6, 86-101.	5.7	102
225	A transparent, ultrastretchable and fully recyclable gelatin organohydrogel based electronic sensor with broad operating temperature. Journal of Materials Chemistry A, 2020, 8, 4447-4456.	10.3	152
226	Soft and Ion onducting Materials in Bioelectronics: From Conducting Polymers to Hydrogels. Advanced Healthcare Materials, 2020, 9, e1901372.	7.6	71
227	A Highly Accurate, Stretchable Touchpad for Robust, Linear, and Stable Tactile Feedback. Advanced Materials Technologies, 2020, 5, 1900864.	5.8	8
228	Cyber–Physiochemical Interfaces. Advanced Materials, 2020, 32, e1905522.	21.0	64
229	Mechanically Interlocked Hydrogel–Elastomer Hybrids for Onâ€5kin Electronics. Advanced Functional Materials, 2020, 30, 1909540.	14.9	120
230	Dynamic and Programmable Cellular-Scale Granules Enable Tissue-like Materials. Matter, 2020, 2, 948-964.	10.0	30
231	Stretchable, self-healing and tissue-adhesive zwitterionic hydrogels as strain sensors for wireless monitoring of organ motions. Materials Horizons, 2020, 7, 1872-1882.	12.2	273
232	Physically Cross-Linked Silk Fibroin-Based Tough Hydrogel Electrolyte with Exceptional Water Retention and Freezing Tolerance. ACS Applied Materials & Interfaces, 2020, 12, 25353-25362.	8.0	73
233	Recent advances in designing conductive hydrogels for flexible electronics. InformaÄnÃ-Materiály, 2020, 2, 843-865.	17.3	150
234	Fracture of tough and stiff metallosupramolecular hydrogels. Materials Today Physics, 2020, 13, 100202.	6.0	18
235	Ultrasensitive and Stretchable Temperature Sensors Based on Thermally Stable and Self-Healing Organohydrogels. ACS Applied Materials & Interfaces, 2020, 12, 19069-19079.	8.0	145

		CITATION REPORT		
#	Article		IF	Citations
236	Soft–Hard Composites for Bioelectric Interfaces. Trends in Chemistry, 2020, 2, 519-534.		8.5	21
237	Musselâ€Inspired Hydrogels for Selfâ€Adhesive Bioelectronics. Advanced Functional Materials, 202 1909954.	0, 30,	14.9	285
238	Super-stretchable, elastic and recoverable ionic conductive hydrogel for wireless wearable, stretchable sensor. Journal of Materials Chemistry A, 2020, 8, 10291-10300.		10.3	130
239	Materials engineering, processing, and device application of hydrogel nanocomposites. Nanoscale, 2020, 12, 10456-10473.		5.6	52
240	Computational wrapping: A universal method to wrap 3D-curved surfaces with nonstretchable materials for conformal devices. Science Advances, 2020, 6, eaax6212.		10.3	39
241	Conductive and adhesive gluten ionic skin for eco-friendly strain sensor. Journal of Materials Science, 2021, 56, 3970-3980.		3.7	10
242	Recent Progress in Natural Biopolymers Conductive Hydrogels for Flexible Wearable Sensors and Energy Devices: Materials, Structures, and Performance. ACS Applied Bio Materials, 2021, 4, 85-121	L.	4.6	169
243	Functional hydrogel coatings. National Science Review, 2021, 8, nwaa254.		9.5	191
244	Euryhaline Hydrogel with Constant Swelling and Salinityâ€Enhanced Mechanical Strength in a Wide Salinity Range. Advanced Functional Materials, 2021, 31, 2007664.	2	14.9	23
245	Recent advances in three-dimensional microelectrode array technologies for in vitro and in vivo cardiac and neuronal interfaces. Biosensors and Bioelectronics, 2021, 171, 112687.		10.1	62
246	Multifunctional conductive hydrogel-based flexible wearable sensors. TrAC - Trends in Analytical Chemistry, 2021, 134, 116130.		11.4	207
247	Operando Tailoring of Defects and Strains in Corrugated βâ€Ni(OH) ₂ Nanosheets for and Highâ€Rate Energy Storage. Advanced Materials, 2021, 33, e2006147.	Stable	21.0	44
248	The Fracture of Highly Deformable Soft Materials: A Tale of Two Length Scales. Annual Review of Condensed Matter Physics, 2021, 12, 71-94.		14.5	103
249	Self-healing, anti-freezing, adhesive and remoldable hydrogel sensor with ion-liquid metal dual conductivity for biomimetic skin. Composites Science and Technology, 2021, 203, 108608.		7.8	130
250	3D Interfacing between Soft Electronic Tools and Complex Biological Tissues. Advanced Materials, 2021, 33, e2004425.		21.0	48
251	Facile preparation and high performance of wearable strain sensors based on ionically cross-linked composite hydrogels. Science China Materials, 2021, 64, 942-952.		6.3	105
252	Extremely stretchable and healable ionic conductive hydrogels fabricated by surface competitive coordination for human-motion detection. Chemical Engineering Journal, 2021, 420, 127637.		12.7	47
253	Hydrogel facilitated bioelectronic integration. Biomaterials Science, 2021, 9, 23-37.		5.4	17

#	Article	IF	Citations
254	Liquid metal-created macroporous composite hydrogels with self-healing ability and multiple sensations as artificial flexible sensors. Journal of Materials Chemistry A, 2021, 9, 875-883.	10.3	119
255	Ultra‧tretchable, Selfâ€Healing, Conductive, and Transparent PAA/DES Ionic Gel. Macromolecular Rapid Communications, 2021, 42, e2000445.	3.9	31
256	Bioâ€Inspired Ionic Skin for Theranostics. Advanced Functional Materials, 2021, 31, 2008020.	14.9	99
257	Fruit-battery-inspired self-powered stretchable hydrogel-based ionic skin that works effectively in extreme environments. Journal of Materials Chemistry A, 2021, 9, 3968-3975.	10.3	42
258	Strong electron-ion coupling in gradient halide perovskite heterojunction. Nano Research, 2021, 14, 1012-1017.	10.4	3
259	Dual-Cross-Linked Network Hydrogels with Multiresponsive, Self-Healing, and Shear Strengthening Properties. Biomacromolecules, 2021, 22, 800-810.	5.4	29
260	Progress and Roadmap for Intelligent Selfâ€Healing Materials in Autonomous Robotics. Advanced Materials, 2021, 33, e2002800.	21.0	75
261	First Decade of Interfacial Iontronic Sensing: From Droplet Sensors to Artificial Skins. Advanced Materials, 2021, 33, e2003464.	21.0	155
262	Biomimetic Hydrophilic Islands for Integrating Elastomers and Hydrogels of Regulable Curved Profiles. ACS Applied Electronic Materials, 2021, 3, 668-675.	4.3	9
263	3D Printing of Strong and Tough Double Network Granular Hydrogels. Advanced Functional Materials, 2021, 31, 2005929.	14.9	85
264	Transparency Change Mechanochromism Based on a Robust PDMSâ€Hydrogel Bilayer Structure. Macromolecular Rapid Communications, 2021, 42, e2000446.	3.9	21
265	Synaptic Iontronic Devices for Brain-Mimicking Functions: Fundamentals and Applications. ACS Applied Bio Materials, 2021, 4, 71-84.	4.6	25
266	Quantifying the equilibrium swelling responses and swelling-induced snap-through of heterogeneous spherical hydrogels. Journal of Intelligent Material Systems and Structures, 2021, 32, 113-123.	2.5	3
267	Electrochemical breakdown in hydrogel ionotronic devices. Soft Matter, 2021, 17, 834-839.	2.7	7
268	Freezing-tolerant, widely detectable and ultra-sensitive composite organohydrogel for multiple sensing applications. Journal of Materials Chemistry C, 2021, 9, 10127-10137.	5.5	46
269	Hydrogel-derived luminescent scaffolds for biomedical applications. Materials Chemistry Frontiers, 2021, 5, 3524-3548.	5.9	12
270	Hydrogel: Diversity of Structures and Applications in Food Science. Food Reviews International, 2021, 37, 313-372.	8.4	81
271	Conductive Hydrogel- and Organohydrogel-Based Stretchable Sensors. ACS Applied Materials & Interfaces, 2021, 13, 2128-2144.	8.0	214

#	Article	IF	CITATIONS
272	Natural Biopolymer-Based Biocompatible Conductors for Stretchable Bioelectronics. Chemical Reviews, 2021, 121, 2109-2146.	47.7	199
273	Pectin-based self-healing hydrogel with NaHCO3 degradability for drug loading and release. Journal of Polymer Research, 2021, 28, 1.	2.4	11
274	A fully hydrophobic ionogel enables highly efficient wearable underwater sensors and communicators. Materials Horizons, 2021, 8, 2761-2770.	12.2	138
275	Functionalized Elastomers for Intrinsically Soft and Biointegrated Electronics. Advanced Healthcare Materials, 2021, 10, e2002105.	7.6	36
276	A Sub-1-V, Microwatt Power-Consumption Iontronic Pressure Sensor Based on Organic Electrochemical Transistors. IEEE Electron Device Letters, 2021, 42, 46-49.	3.9	27
277	Energy Harvesting and Storage with Soft and Stretchable Materials. Advanced Materials, 2021, 33, e2004832.	21.0	91
278	Tissue adhesive hydrogel bioelectronics. Journal of Materials Chemistry B, 2021, 9, 4423-4443.	5.8	129
279	A review on the recent advances in hybrid supercapacitors. Journal of Materials Chemistry A, 2021, 9, 15880-15918.	10.3	484
280	The Machine Learning Embedded Method of Parameters Determination in the Constitutive Models and Potential Applications for Hydrogels. International Journal of Applied Mechanics, 2021, 13, 2150001.	2.2	27
281	Controllable Fibrillization Reinforces Genetically Engineered Rubberlike Protein Hydrogels. Biomacromolecules, 2021, 22, 961-970.	5.4	7
282	Extremely stretchable and tough hybrid hydrogels based on gelatin, κ-carrageenan and polyacrylamide. Soft Matter, 2021, 17, 9708-9715.	2.7	11
283	Mussel-inspired hydrogels as tough, self-adhesive and conductive bioelectronics: a review. Soft Matter, 2021, 17, 8786-8804.	2.7	17
284	A flexible hydrogel tactile sensor with low compressive modulus and dynamic piezoresistive response regulated by lignocellulose/graphene aerogels. Journal of Materials Chemistry C, 2021, 9, 12895-12903.	5.5	11
285	Load-bearing hydrogels ionically reinforced through competitive ligand exchanges. Biomaterials Science, 2021, 9, 6753-6762.	5.4	4
286	Hierarchical Network-Augmented Hydroglasses for Broadband Light Management. Research, 2021, 2021, 4515164.	5.7	11
287	Small molecule-based supramolecular-polymer double-network hydrogel electrolytes for ultra-stretchable and waterproof Zn–air batteries working from â^'50 to 100 °C. Energy and Environmental Science, 0, , .	30.8	100
288	Recent advances of hydrogel electrolytes in flexible energy storage devices. Journal of Materials Chemistry A, 2021, 9, 2043-2069.	10.3	111
289	Adhesion enhancement via the synergistic effect of metal–ligand coordination and supramolecular host–guest interactions in luminescent hydrogels. Inorganic Chemistry Frontiers, 2021, 8, 1482-1488.	6.0	7

#	Article	IF	CITATIONS
290	Ice Inhibition for Cryopreservation: Materials, Strategies, and Challenges. Advanced Science, 2021, 8, 2002425.	11.2	141
291	Cationic Cellulose Nanocrystals-Based Nanocomposite Hydrogels: Achieving 3D Printable Capacitive Sensors with High Transparency and Mechanical Strength. Polymers, 2021, 13, 688.	4.5	31
292	Highly Stretchable, Transparent, and Self-Adhesive Ionic Conductor for High-Performance Flexible Sensors. ACS Applied Polymer Materials, 2021, 3, 1610-1617.	4.4	38
293	Elastic, Conductive, and Mechanically Strong Hydrogels from Dual-Cross-Linked Aramid Nanofiber Composites. ACS Applied Materials & Interfaces, 2021, 13, 7539-7545.	8.0	25
294	Rapid and scalable fabrication of ultraâ€stretchable, antiâ€freezing conductive gels by cononsolvency effect. EcoMat, 2021, 3, e12085.	11.9	26
295	Ultraâ€Conformable Ionic Skin with Multiâ€Modal Sensing, Broadâ€Spectrum Antimicrobial and Regenerative Capabilities for Smart and Expedited Wound Care. Advanced Science, 2021, 8, 2004627.	11.2	52
296	Highâ€Throughput Screening of Selfâ€Healable Polysulfobetaine Hydrogels and their Applications in Flexible Electronics. Advanced Functional Materials, 2021, 31, 2100489.	14.9	26
297	Selfâ€Healing Soft Sensors: From Material Design to Implementation. Advanced Materials, 2021, 33, e2004190.	21.0	106
298	Fatigue-resistant adhesion II: Swell tolerance. Extreme Mechanics Letters, 2021, 43, 101182.	4.1	8
299	A Mechanically Robust and Versatile Liquidâ€Free Ionic Conductive Elastomer. Advanced Materials, 2021, 33, e2006111.	21.0	188
300	Cephalopod-Inspired Chromotropic Ionic Skin with Rapid Visual Sensing Capabilities to Multiple Stimuli. ACS Nano, 2021, 15, 3509-3521.	14.6	99
301	Switchable adhesion between hydrogels by wrinkling. Extreme Mechanics Letters, 2021, 43, 101193.	4.1	31
302	Printable and Recyclable Conductive Ink Based on a Liquid Metal with Excellent Surface Wettability for Flexible Electronics. ACS Applied Materials & amp; Interfaces, 2021, 13, 7443-7452.	8.0	67
303	3D Printing Method for Tough Multifunctional Particle-Based Double-Network Hydrogels. ACS Applied Materials & Interfaces, 2021, 13, 13714-13723.	8.0	50
304	The rectification mechanism in polyelectrolyte gel diodes. Physics of Fluids, 2021, 33, .	4.0	15
305	An electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics. Nature Electronics, 2021, 4, 185-192.	26.0	269
306	Fabrication of Wearable Hydrogel Sensors With Simple Ionic-Digital Conversion and Inherent Water Retention. IEEE Sensors Journal, 2021, 21, 6802-6810.	4.7	8
307	Polymer–Water Interaction Enabled Intelligent Moisture Regulation in Hydrogels. Journal of Physical Chemistry Letters, 2021, 12, 2587-2592.	4.6	25

#	Article	IF	CITATIONS
308	pH Responsive Strong Polyion Complex Shape Memory Hydrogel with Spontaneous Shape Changing and Information Encryption. Macromolecular Rapid Communications, 2021, 42, e2000747.	3.9	26
309	Highly Stretchable Flame-Retardant Skin for Soft Robotics with Hydrogel–Montmorillonite-Based Translucent Matrix. Soft Robotics, 2022, 9, 98-118.	8.0	9
310	A Morphable Ionic Electrode Based on Thermogel for Nonâ€Invasive Hairy Plant Electrophysiology. Advanced Materials, 2021, 33, e2007848.	21.0	51
311	Influence of hydrated protons on temperature and humidity responsiveness of silk fibroin hydrogel ionotronics. Giant, 2021, 5, 100044.	5.1	17
312	Stretchable and self-healing polyvinyl alcohol/cellulose nanofiber nanocomposite hydrogels for strain sensors with high sensitivity and linearity. Composites Communications, 2021, 24, 100677.	6.3	46
313	Fast water transport reversible CNT/PVA hybrid hydrogels with highly environmental tolerance for multifunctional sport headband. Composites Part B: Engineering, 2021, 211, 108661.	12.0	21
314	Enhanced Electro-actuation in Dielectric Elastomers: The Nonlinear Effect of Free Ions. ACS Macro Letters, 2021, 10, 498-502.	4.8	3
315	Highly Stretchable and Reconfigurable Ionogels with Unprecedented Thermoplasticity and Ultrafast Self-Healability Enabled by Gradient-Responsive Networks. Macromolecules, 2021, 54, 3832-3844.	4.8	45
316	Healable soft materials based on ionic liquids and block copolymer self-assembly. Polymer Journal, 2021, 53, 789-798.	2.7	4
317	Leaf-inspired homeostatic cellulose biosensors. Science Advances, 2021, 7, .	10.3	29
318	Ion Conductive Phytic Acidâ€G Quadruplex Hydrogel as Electrolyte for Flexible Electrochromic Device. ChemNanoMat, 2021, 7, 613-619.	2.8	6
319	Vat Photopolymerization 3D Printing of Advanced Soft Sensors and Actuators: From Architecture to Function. Advanced Materials Technologies, 2021, 6, 2001218.	5.8	57
320	Rational design of injectable conducting polymer-based hydrogels for tissue engineering. Acta Biomaterialia, 2022, 139, 4-21.	8.3	33
321	Engineering Hydrogel Adhesion for Biomedical Applications via Chemical Design of the Junction. ACS Biomaterials Science and Engineering, 2021, 7, 4048-4076.	5.2	89
322	Fatigue Damage–Resistant Physical Hydrogel Adhesion. Frontiers in Robotics and AI, 2021, 8, 666343.	3.2	5
323	A benchmark for gel structures: bond percolation enables the fabrication of extremely homogeneous gels. Polymer Journal, 2021, 53, 765-777.	2.7	5
324	Toughening Mechanism of Unidirectional Stretchable Composite. Frontiers in Robotics and Al, 2021, 8, 673307.	3.2	5
325	Electrical and Capacitive Response of Hydrogel Solid-Like Electrolytes for Supercapacitors. Polymers, 2021, 13, 1337.	4.5	17

#	Article	IF	CITATIONS
326	Ultrasensitive, Stretchable, and Fast-Response Temperature Sensors Based on Hydrogel Films for Wearable Applications. ACS Applied Materials & Interfaces, 2021, 13, 21854-21864.	8.0	113
327	Self-Recoverable, Stretchable, and Sensitive Wearable Sensors Based on Ternary Semi-interpenetrating Ionic Hydrogels. ACS Applied Polymer Materials, 2021, 3, 2732-2741.	4.4	27
328	Ionic Elastomers for Electric Actuators and Sensors. Engineering, 2021, 7, 581-602.	6.7	44
329	Direct-ink-write printing of hydrogels using dilute inks. IScience, 2021, 24, 102319.	4.1	16
330	Conductive Hydrogelâ€Based Electrodes and Electrolytes for Stretchable and Selfâ€Healable Supercapacitors. Advanced Functional Materials, 2021, 31, 2101303.	14.9	178
331	Orthogonal photochemistry-assisted printing of 3D tough and stretchable conductive hydrogels. Nature Communications, 2021, 12, 2082.	12.8	96
332	Swell induced stress in a hydrogel coating. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 797-802.	3.4	4
333	A highly elastic, Room-temperature repairable and recyclable conductive hydrogel for stretchable electronics. Journal of Colloid and Interface Science, 2021, 588, 295-304.	9.4	36
334	Triboelectric Nanogenerators for Therapeutic Electrical Stimulation. Advanced Materials, 2021, 33, e2007502.	21.0	92
335	Soft Electronic Materials with Combinatorial Properties Generated <i>via</i> Mussel-Inspired Chemistry and Halloysite Nanotube Reinforcement. ACS Nano, 2021, 15, 9531-9549.	14.6	46
336	Flexible Wearable Sensors for Cardiovascular Health Monitoring. Advanced Healthcare Materials, 2021, 10, e2100116.	7.6	170
337	A Highly Versatile Polymer Network Based on Liquid Crystalline Dendrimers. International Journal of Molecular Sciences, 2021, 22, 5740.	4.1	2
338	Silica Aerogels with Self-Reinforced Microstructure for Bioinspired Hydrogels. Langmuir, 2021, 37, 5923-5931.	3.5	10
339	Hydrolyzed Hydrogels with Super Stretchability, High Strength, and Fast Self-Recovery for Flexible Sensors. ACS Applied Materials & amp; Interfaces, 2021, 13, 22774-22784.	8.0	40
340	Chargeâ€Gradient Hydrogels Enable Direct Zero Liquid Discharge for Hypersaline Wastewater Management. Advanced Materials, 2021, 33, e2100141.	21.0	37
341	Molecular simulation-guided and physics-informed mechanistic modeling of multifunctional polymers. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 725-745.	3.4	6
342	Solid ion channels gel battery driven by triboelectric effect and its integrated self-powered foreign matter intrusion detecting system. Nano Energy, 2021, 83, 105791.	16.0	5
343	Soft Wearable Healthcare Materials and Devices. Advanced Healthcare Materials, 2021, 10, e2100577.	7.6	71

#	Article	IF	CITATIONS
344	Environmentally Compatible Wearable Electronics Based on Ionically Conductive Organohydrogels for Health Monitoring with Thermal Compatibility, Antiâ€Dehydration, and Underwater Adhesion. Small, 2021, 17, e2101151.	10.0	70
345	Sustainable Cellulose-Nanofiber-Based Hydrogels. ACS Nano, 2021, 15, 7889-7898.	14.6	84
346	Anomalous Loss of Stiffness with Increasing Reinforcement in a Photoâ€Activated Nanocomposite. Macromolecular Rapid Communications, 2021, 42, 2100147.	3.9	0
347	Biomedical and Tissue Engineering Strategies to Control Foreign Body Reaction to Invasive Neural Electrodes. Frontiers in Bioengineering and Biotechnology, 2021, 9, 659033.	4.1	19
348	Hydrogen-bonded network enables semi-interpenetrating ionic conductive hydrogels with high stretchability and excellent fatigue resistance for capacitive/resistive bimodal sensors. Chemical Engineering Journal, 2021, 411, 128506.	12.7	88
349	Black Phosphorus in Biological Applications: Evolutionary Journey from Monoelemental Materials to Composite Materials. Accounts of Materials Research, 2021, 2, 489-500.	11.7	57
350	Bioinspired organohydrogels with heterostructures: Fabrications, performances, and applications. Advances in Colloid and Interface Science, 2021, 292, 102408.	14.7	22
351	Imperfection sensitivity of mechanical properties in soft network materials with horseshoe microstructures. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 1050-1062.	3.4	5
352	Highly Transparent, Stretchable, and Conducting Ionoelastomers Based on Poly(ionic liquid)s. ACS Applied Materials & Interfaces, 2021, 13, 31102-31110.	8.0	39
353	Fluidic Infiltrative Assembly of 3D Hydrogel with Heterogeneous Composition and Function. Advanced Functional Materials, 2021, 31, 2103288.	14.9	9
354	Photoinitiator-grafted polymer chains for integrating hydrogels with various materials. Cell Reports Physical Science, 2021, 2, 100463.	5.6	14
355	Lignin and cellulose derivatives-induced hydrogel with asymmetrical adhesion, strength, and electriferous properties for wearable bioelectrodes and self-powered sensors. Chemical Engineering Journal, 2021, 414, 128903.	12.7	80
356	A bio-adhesive ion-conducting organohydrogel as a high-performance non-invasive interface for bioelectronics. Chemical Engineering Journal, 2022, 427, 130886.	12.7	29
357	Tough hydrogels with rapid self-reinforcement. Science, 2021, 372, 1078-1081.	12.6	343
358	Advanced Flexible Skin-Like Pressure and Strain Sensors for Human Health Monitoring. Micromachines, 2021, 12, 695.	2.9	53
359	Self-Healable Soft Ionotronic Skin for Gesture Recognition. , 2021, , .		1
360	Wearable lignin-based hydrogel electronics: A mini-review. International Journal of Biological Macromolecules, 2021, 181, 45-50.	7.5	58
361	Ambiently and Mechanically Stable Ionogels for Soft Ionotronics. Advanced Functional Materials, 2021, 31, 2102773.	14.9	95

#	Article	IF	Citations
362	Enhanced Mechanical Properties by Ionomeric Complexation in Interpenetrating Network Hydrogels of Hydrolyzed Poly (N-vinyl Formamide) and Polyacrylamide. Gels, 2021, 7, 80.	4.5	9
363	Highly Transparent, Stretchable, and Self-Healable Ionogel for Multifunctional Sensors, Triboelectric Nanogenerator, and Wearable Fibrous Electronics. Advanced Fiber Materials, 2022, 4, 98-107.	16.1	83
364	Anisotropically Fatigueâ€Resistant Hydrogels. Advanced Materials, 2021, 33, e2102011.	21.0	114
365	Preparation of Carbon Fiber-Polyacrylamide Composite Hydrogel Based on Surface Electric-Initiated Polymerization. Journal of Nanoelectronics and Optoelectronics, 2021, 16, 861-868.	0.5	2
366	Dynamically Crosslinked Dry Ion onducting Elastomers for Soft Iontronics. Advanced Materials, 2021, 33, e2101396.	21.0	128
367	Understanding Carbon Nanotubeâ€Based Ionic Diodes: Design and Mechanism. Small, 2021, 17, e2100383.	10.0	15
368	Highly stretchable self-sensing actuator based on conductive photothermally-responsive hydrogel. Materials Today, 2021, 50, 35-43.	14.2	105
369	Poly(vinyl alcohol) Hydrogels with Integrated Toughness, Conductivity, and Freezing Tolerance Based on lonic Liquid/Water Binary Solvent Systems. ACS Applied Materials & Interfaces, 2021, 13, 29008-29020.	8.0	82
370	Fabricating hydrogels to mimic biological tissues of complex shapes and high fatigue resistance. Matter, 2021, 4, 1935-1946.	10.0	78
371	Spatially and Reversibly Actuating Soft Gel Structure by Harnessing Multimode Elastic Instabilities. ACS Applied Materials & Interfaces, 2021, 13, 36361-36369.	8.0	8
372	Soft Actuator Materials for Electrically Driven Haptic Interfaces. Advanced Intelligent Systems, 2022, 4, 2100061.	6.1	29
373	Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nature Materials, 2021, 20, 1559-1570.	27.5	114
374	Ionotronic Tough Adhesives with Intrinsic Multifunctionality. ACS Applied Materials & Interfaces, 2021, 13, 37849-37861.	8.0	16
375	Review of Dielectric Elastomer Actuators and Their Applications in Soft Robots. Advanced Intelligent Systems, 2021, 3, 2000282.	6.1	111
376	Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network. Nature Communications, 2021, 12, 4082.	12.8	229
377	Fatigue behaviors of physical hydrogels based on hydrogen bonds. Extreme Mechanics Letters, 2021, 46, 101320.	4.1	13
378	Dopamine-Initiated Photopolymerization for a Versatile Catechol-Functionalized Hydrogel. ACS Applied Bio Materials, 2021, 4, 6268-6279.	4.6	8
379	3D printed super-anti-freezing self-adhesive human-machine interface. Materials Today Physics, 2021, 19, 100404.	6.0	37

#	Article	IF	CITATIONS
380	Programmable shape transformation of 3D printed magnetic hydrogel composite for hyperthermia cancer therapy. Extreme Mechanics Letters, 2021, 46, 101305.	4.1	44
381	Mechanomaterials: A Rational Deployment of Forces and Geometries in Programming Functional Materials. Advanced Materials, 2021, 33, e2007977.	21.0	34
382	Polyacrylamide/Chitosan-Based Conductive Double Network Hydrogels with Outstanding Electrical and Mechanical Performance at Low Temperatures. ACS Applied Materials & Interfaces, 2021, 13, 34942-34953.	8.0	63
383	Regulating the Selfâ€Discharge of Flexible Allâ€Solidâ€State Supercapacitors by a Heterogeneous Polymer Electrolyte. Small, 2021, 17, e2102054.	10.0	21
384	Hydrogel Ionic Diodes toward Harvesting Ultralowâ€Frequency Mechanical Energy. Advanced Materials, 2021, 33, e2103056.	21.0	48
385	Robust and rapid responsive organic-inorganic hybrid bilayer hydrogel actuators with silicon nanoparticles as the cross-linker. Polymer, 2021, 228, 123863.	3.8	9
387	Engineering "JiaoJiao―(maltose syrup) with chopsticks: From traditional Chinese sweet food to skin-like iontronics. Science China Materials, 2021, 64, 3059-3068.	6.3	3
388	An Antiâ€Freezing, Ambient‧table and Highly Stretchable Ionic Skin with Strong Surface Adhesion for Wearable Sensing and Soft Robotics. Advanced Functional Materials, 2021, 31, 2104665.	14.9	140
389	Peel of elastomers of various thicknesses and widths. Extreme Mechanics Letters, 2021, 46, 101325.	4.1	6
390	Curvature tunes wrinkling in shells. International Journal of Engineering Science, 2021, 164, 103490.	5.0	10
391	A Simple Way to Synthesize a Protective "Skin―around Any Hydrogel. ACS Applied Materials & Interfaces, 2021, 13, 37645-37654.	8.0	18
392	The Manufacture of Unbreakable Bionics via Multifunctional and Selfâ€Healing Silk–Graphene Hydrogels. Advanced Materials, 2021, 33, e2100047.	21.0	87
393	A Topological Stitching Strategy for Biocompatible Wet Adhesion Using Musselâ€Inspired Polyurethane. Advanced Materials Interfaces, 2021, 8, 2100657.	3.7	8
394	Stimuli-Responsive Toughening of Hydrogels. Chemistry of Materials, 2021, 33, 7633-7656.	6.7	68
395	Ultra‣ensitive and Ultra‣tretchable Strain Sensors Based on Emulsion Gels with Broad Operating Temperature. Chemistry - A European Journal, 2021, 27, 13161-13171.	3.3	5
396	Selection of hydrogel electrolytes for flexible zinc–air batteries. Materials Today Chemistry, 2021, 21, 100538.	3.5	30
397	A soft neuroprosthetic hand providing simultaneous myoelectric control and tactile feedback. Nature Biomedical Engineering, 2023, 7, 589-598.	22.5	169
398	Cutaneous Ionogel Mechanoreceptors for Soft Machines, Physiological Sensing, and Amputee Prostheses. Advanced Materials, 2021, 33, e2102069.	21.0	142

#	Article	IF	Citations
399	A stretchable and adhesive ionic conductor based on polyacrylic acid and deep eutectic solvents. Npj Flexible Electronics, 2021, 5, .	10.7	52
400	Cohesive Behaviors of Hydrogel Under Large-Scale Bridging. Journal of Applied Mechanics, Transactions ASME, 2021, 88, .	2.2	2
401	Stretchable and self-healable hydrogel artificial skin. National Science Review, 2022, 9, .	9.5	40
402	Wearable Biofuel Cells: Advances from Fabrication to Application. Advanced Functional Materials, 2021, 31, 2103976.	14.9	38
403	Flaw-sensitivity of a tough hydrogel under monotonic and cyclic loads. Journal of the Mechanics and Physics of Solids, 2021, 153, 104483.	4.8	20
404	Strong, Ultrastretchable Hydrogelâ€Based Multilayered Soft Actuator Composites Enhancing Biologically Inspired Pumping Systems. Advanced Engineering Materials, 2021, 23, 2100121.	3.5	9
405	Kinetic photovoltage along semiconductor-water interfaces. Nature Communications, 2021, 12, 4998.	12.8	14
406	Large deformation near a crack tip in a fiber-reinforced neo-Hookean sheet with discrete and continuous distributions of fiber orientations. Theoretical and Applied Fracture Mechanics, 2021, 114, 103020.	4.7	3
407	All-Solid-State Self-Healing Ionic Conductors Enabled by Ion–Dipole Interactions within Fluorinated Poly(Ionic Liquid) Copolymers. ACS Applied Materials & Interfaces, 2021, 13, 41140-41148.	8.0	42
408	A Multimodal Hydrogel Soft-Robotic Sensor for Multi-Functional Perception. Frontiers in Robotics and Al, 2021, 8, 692754.	3.2	5
409	Tendon-inspired anti-freezing tough gels. IScience, 2021, 24, 102989.	4.1	15
410	From ultrastiff to soft materials: Exploiting dynamic metal–ligand cross-links to access polymer hydrogels combining customized mechanical performance and tailorable functions by controlling hydrogel mechanics. Chemical Engineering Journal, 2021, 419, 129528.	12.7	22
411	Transparent, flexible, and multifunctional starch-based double-network hydrogels as high-performance wearable electronics. Carbohydrate Polymers, 2021, 267, 118198.	10.2	73
412	Skin-like hydrogel devices for wearable sensing, soft robotics and beyond. IScience, 2021, 24, 103174.	4.1	103
413	Skin-like Transparent Polymer-Hydrogel Hybrid Pressure Sensor with Pyramid Microstructures. Polymers, 2021, 13, 3272.	4.5	12
414	Self-healing strain-responsive electrochromic display based on a multiple crosslinked network hydrogel. Chemical Engineering Journal, 2022, 430, 132685.	12.7	37
415	Zwitterionic dual-network strategy for highly stretchable and transparent ionic conductor. Polymer, 2021, 231, 124111.	3.8	26
416	Reconstituting electrical conduction in soft tissue: the path to replace the ablationist. Europace, 2021, 23, 1892-1902.	1.7	0

#	ARTICLE	IF	Citations
417	Nanoporous carbon architectures for iontronics: ion-based computing, logic circuits and biointerfacing. Chemical Engineering Journal, 2021, 420, 130431.	12.7	8
418	Rational engineering and applications of functional bioadhesives in biomedical engineering. Biotechnology Journal, 2021, 16, e2100231.	3.5	9
419	Self-Powered Smart Arm Training Band Sensor Based on Extremely Stretchable Hydrogel Conductors. ACS Applied Materials & Interfaces, 2021, 13, 44868-44877.	8.0	49
420	A Highly Robust Ionotronic Fiber with Unprecedented Mechanomodulation of Ionic Conduction. Advanced Materials, 2021, 33, e2103755.	21.0	55
421	3D Printing of Hydrogels for Stretchable Ionotronic Devices. Advanced Functional Materials, 2021, 31, 2107437.	14.9	70
422	Computing wrinkling and restabilization of stretched sheets based on a consistent finite-strain plate theory. Computer Methods in Applied Mechanics and Engineering, 2021, 384, 113986.	6.6	7
423	Biomaterials-based bioengineering strategies for bioelectronic medicine. Materials Science and Engineering Reports, 2021, 146, 100630.	31.8	18
424	Enhance the debonding resistance of hydrogel by large-scale bridging. Journal of the Mechanics and Physics of Solids, 2021, 155, 104570.	4.8	18
425	A printed highly stretchable supercapacitor by a combination of carbon ink and polymer network. Extreme Mechanics Letters, 2021, 49, 101459.	4.1	6
426	Essential work of fracture of soft elastomers. Journal of the Mechanics and Physics of Solids, 2021, 156, 104616.	4.8	7
427	Flexible artificial synapse with relearning function based on ion gel-graphene FET. Nano Energy, 2021, 90, 106526.	16.0	16
428	Double-network hydrogel adsorbents for environmental applications. Chemical Engineering Journal, 2021, 426, 131900.	12.7	88
429	Anti-bacterial silk-based hydrogels for multifunctional electrical skin with mechanical-thermal dual sensitive integration. Chemical Engineering Journal, 2021, 426, 130722.	12.7	23
430	High-strength, highly conductive and woven organic hydrogel fibers for flexible electronics. Chemical Engineering Journal, 2022, 428, 131172.	12.7	40
431	Hydrogels obtained from aniline and piperazine: Synthesis, characterization and their application in hybrid supercapacitors. Journal of Molecular Structure, 2022, 1248, 131445.	3.6	15
432	Spinning continuous high-strength bacterial cellulose hydrogel fibers for multifunctional bioelectronic interfaces. Journal of Materials Chemistry A, 2021, 9, 12574-12583.	10.3	22
433	Lignin promoted the fast formation of a robust and highly conductive deep eutectic solvent ionic gel at room temperature for a flexible quasi-solid-state supercapacitor and strain sensors. Green Chemistry, 2021, 23, 5120-5128.	9.0	47
434	A highly stretchable and anti-freezing silk-based conductive hydrogel for application as a self-adhesive and transparent ionotronic skin. Journal of Materials Chemistry C, 0, , .	5.5	38

#	Article	IF	CITATIONS
435	Stretchable multifunctional hydrogels for sensing electronics with effective EMI shielding properties. Soft Matter, 2021, 17, 9057-9065.	2.7	13
436	Investigating the Electrochemical Performance of Smart Selfâ€Powered Bionic Skin Fragment Based on Bioelectricity Generation. Advanced Materials Technologies, 2021, 6, 2000848.	5.8	5
437	Polypyrrole/PU hybrid hydrogels: electrically conductive and fast self-healing for potential applications in body-monitor sensors. New Journal of Chemistry, 2021, 45, 7321-7331.	2.8	13
438	Anisotropic bacterial cellulose hydrogels with tunable high mechanical performances, non-swelling and bionic nanofluidic ion transmission behavior. Nanoscale, 2021, 13, 8126-8136.	5.6	23
439	Adaptable ionic liquid-containing supramolecular hydrogel with multiple sensations at subzero temperatures. Journal of Materials Chemistry C, 2021, 9, 1044-1050.	5.5	17
440	Effect of pH, temperature, and electrolytes on swelling and release behaviors of PVA/AAm/GO based hydrogel composites. AIP Conference Proceedings, 2021, , .	0.4	2
441	High toughness multifunctional organic hydrogels for flexible strain and temperature sensor. Journal of Materials Chemistry A, 2021, 9, 23243-23255.	10.3	80
442	Super-stretchable and extreme temperature-tolerant supramolecular-polymer double-network eutectogels with ultrafast <i>in situ</i> adhesion and flexible electrochromic behaviour. Materials Horizons, 2021, 8, 2520-2532.	12.2	60
443	Dopamine-Triggered Hydrogels with High Transparency, Self-Adhesion, and Thermoresponse as Skinlike Sensors. ACS Nano, 2021, 15, 1785-1794.	14.6	190
444	Highly synergistic, electromechanical and mechanochromic dual-sensing ionic skin with multiple monitoring, antibacterial, self-healing, and anti-freezing functions. Journal of Materials Chemistry A, 2021, 9, 23916-23928.	10.3	32
445	Micro- and nanotechnology for neural electrode-tissue interfaces. Biosensors and Bioelectronics, 2020, 170, 112645.	10.1	42
446	Biocompatible and self-healing ionic gel skin as shape-adaptable and skin-adhering sensor of human motions. Chemical Engineering Journal, 2020, 398, 125540.	12.7	46
447	Observation of Unusual Thermoresponsive Volume Phase Transition Behavior of Cubic Poly(<i>N</i> -isopropylacrylamide) Microgels. ACS Macro Letters, 2020, 9, 266-271.	4.8	9
448	A dual-trigger-mode ionic hydrogel sensor for contact or contactless motion recognition. Materials Horizons, 2020, 7, 2673-2682.	12.2	30
449	Design and fabrication of conductive polymer hydrogels and their applications in flexible supercapacitors. Journal of Materials Chemistry A, 2020, 8, 23059-23095.	10.3	151
450	The Stiffness-Threshold Conflict in Polymer Networks and a Resolution. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	2.2	32
451	Poroelastic Effects on the Time- and Rate-Dependent Fracture of Polymer Gels. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	2.2	12
452	Inside-Out 3D Reversible Ion-Triggered Shape-Morphing Hydrogels. Research, 2019, 2019, 1-12.	5.7	16

#	Article	IF	CITATIONS
453	Inside-Out 3D Reversible Ion-Triggered Shape-Morphing Hydrogels. Research, 2019, 2019, 6398296.	5.7	65
454	3D Printed Ultrastretchable, Hyper-Antifreezing Conductive Hydrogel for Sensitive Motion and Electrophysiological Signal Monitoring. Research, 2020, 2020, 1426078.	5.7	34
455	Highly Stretchable and Transparent Ionic Conductor with Novel Hydrophobicity and Extreme-Temperature Tolerance. Research, 2020, 2020, 2505619.	5.7	44
456	The synthesis of degradable sulfur-containing polymers: precise control of structure and stereochemistry. Polymer Chemistry, 2021, 12, 6650-6666.	3.9	32
457	Co-doping optimized hydrogel-elastomer micro-actuators for versatile biomimetic motions. Nanoscale, 2021, 13, 18967-18976.	5.6	13
458	A very mechanically strong and stretchable liquid-free double-network ionic conductor. Journal of Materials Chemistry A, 2021, 9, 23714-23721.	10.3	32
459	Hydrogel-based flexible materials for diabetes diagnosis, treatment, and management. Npj Flexible Electronics, 2021, 5, .	10.7	30
460	Multifunctional flexible polyvinyl alcohol nanocomposite hydrogel for stress and strain sensor. Journal of Nanoparticle Research, 2021, 23, 1.	1.9	12
461	Ionâ€Conductive Hydrogelâ€Based Stretchable, Selfâ€Healing, and Transparent NO ₂ Sensor with High Sensitivity and Selectivity at Room Temperature. Small, 2021, 17, e2104997.	10.0	55
462	A tough hydrogel with fast self-healing and adhesive performance for wearable sensors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632, 127793.	4.7	11
463	An Insight into Skeletal Networks Analysis for Smart Hydrogels. Advanced Functional Materials, 2022, 32, 2108489.	14.9	10
464	An intelligent light-managing ionic skin for UV-protection, IR stealth, and optical camouflaged Morse codes. Science China Materials, 2022, 65, 2281-2288.	6.3	5
465	Allâ€Soft and Stretchable Thermogalvanic Gel Fabric for Antideformity Body Heat Harvesting Wearable. Advanced Energy Materials, 2021, 11, 2102219.	19.5	52
466	Solvent-free adhesive ionic elastomer for multifunctional stretchable electronics. Nano Energy, 2022, 91, 106611.	16.0	54
467	Development of Conductive Hydrogels for Fabricating Flexible Strain Sensors. Small, 2022, 18, e2101518.	10.0	188
468	Muscle Fatigue Sensor Based on Ti ₃ C ₂ T <i>_x</i> MXene Hydrogel. Small Methods, 2021, 5, e2100819.	8.6	49
469	Ion onducting Hydrogels and Their Applications in Bioelectronics. Advanced Sustainable Systems, 2022, 6, 2100173.	5.3	41
470	Effects of network structures on the fracture of hydrogel. Extreme Mechanics Letters, 2021, 49, 101495.	4.1	15

TATION R

#	Article	IF	CITATIONS
471	A highly sensitive epidermal sensor based on triple-bonded hydrogels for strain/pressure sensing. Composites Communications, 2021, 28, 100951.	6.3	36
472	Anti-freezing organohydrogel triboelectric nanogenerator toward highly efficient and flexible human-machine interaction at â~'Â30°C. Nano Energy, 2021, 90, 106614.	16.0	74
474	Functional Hydrogel Interface Materials for Advanced Bioelectronic Devices. Accounts of Materials Research, 2021, 2, 1010-1023.	11.7	39
475	Adhesion strategies for heterogeneous soft materials $\hat{a} \in \hat{A}$ A review. Engineering Research Express, 0, , .	1.6	1
476	4D Printing of Liquid Crystals: What's Right for Me?. Advanced Materials, 2022, 34, e2104390.	21.0	75
477	Bioinspired Quasi-Solid Ionic Conductors: Materials, Processing, and Applications. Accounts of Materials Research, 2021, 2, 1203-1214.	11.7	34
478	3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients. Nature Communications, 2021, 12, 6260.	12.8	19
479	Permeable Conductors for Wearable and Onâ€Skin Electronics. Small Structures, 2022, 3, 2100135.	12.0	46
480	Theory of soft solid electrolytes: Overall properties of composite electrolytes, effect of deformation and microstructural design for enhanced ionic conductivity. Journal of the Mechanics and Physics of Solids, 2022, 158, 104621.	4.8	9
481	Rolling circle amplification (RCA)-based DNA hydrogel. Nature Protocols, 2021, 16, 5460-5483.	12.0	67
482	Fabrication of a Double-Network Hydrogel Based on Carboxymethylated Curdlan/Polyacrylamide with Highly Mechanical Performance for Cartilage Repair. ACS Applied Polymer Materials, 2021, 3, 5857-5869.	4.4	14
483	Soft and Stretchable Electronics Design. , 2023, , 258-286.		2
484	Sensing mechanisms and applications of flexible pressure sensors. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 178102.	0.5	13
485	Dissecting Biological and Synthetic Soft–Hard Interfaces for Tissue-Like Systems. Chemical Reviews, 2022, 122, 5233-5276.	47.7	32
486	Materials Chemistry of Neural Interface Technologies and Recent Advances in Three-Dimensional Systems. Chemical Reviews, 2022, 122, 5277-5316.	47.7	31
487	Highly Stretchable Starch Hydrogel Wearable Patch for Electrooculographic Signal Detection and Human–Machine Interaction. Small Structures, 2021, 2, 2100105.	12.0	16
488	Significance of Flexible Substrates for Wearable and Implantable Devices: Recent Advances and Perspectives. Advanced Materials Technologies, 2022, 7, .	5.8	81
489	Editorial: Synthesis of Novel Hydrogels With Unique Mechanical Properties. Frontiers in Chemistry, 2020, 8, 595392.	3.6	2

		CITATION REPORT		
#	Article		IF	CITATIONS
490	Flexoelectricity in non-oriented liquids. Journal Physics D: Applied Physics, 2021, 54, 06LT)1.	2.8	3
492	Simulation of the peel of hydrogels with stiff backing. Soft Matter, 2022, 18, 272-281.		2.7	5
493	Dual-network sodium alginate/polyacrylamide/laponite nanocomposite hydrogels with hig toughness and cyclic mechano-responsiveness. Colloids and Surfaces A: Physicochemical Engineering Aspects, 2022, 633, 127867.	h and	4.7	13
494	3D printing of dual cross-linked hydrogel for fingerprint-like iontronic pressure sensor. Sm Materials and Structures, 2022, 31, 015019.	art	3.5	12
495	A comparative review of artificial muscles for microsystem applications. Microsystems and Nanoengineering, 2021, 7, 95.	1	7.0	21
496	Urushiol-Induced Hydrogels with Long-Term Durability and Long Service Lifespan in Mechanosensation. Industrial & Engineering Chemistry Research, 2021, 60, 17534-1	7544.	3.7	3
497	A highly resilient and <scp>ultraâ€sensitive</scp> hydrogel for wearable sensors. Journal Polymer Science, 2022, 139, 51925.	of Applied	2.6	11
498	Hydrogel Ionotronics with Ultraâ€Low Impedance and High Signal Fidelity across Broad Fr Temperature Ranges. Advanced Functional Materials, 2022, 32, 2109506.	equency and	14.9	34
499	Natural Polymer in Soft Electronics: Opportunities, Challenges, and Future Prospects. Adv Materials, 2022, 34, e2105020.	anced	21.0	49
500	How chain dynamics affects crack initiation in double-network gels. Proceedings of the Na Academy of Sciences of the United States of America, 2021, 118, .	itional	7.1	12
501	Electron-Ion Coupling Mechanism to Construct Stable Output Performance Nanogenerate 2021, 2021, 9817062.	or. Research,	5.7	8
502	Soft artificial electroreceptors for noncontact spatial perception. Science Advances, 2021 eabg9203.	,7,	10.3	16
503	Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine. Ad Materials, 2022, 34, e2106787.	vanced	21.0	44
504	Mechanics of Strain-limiting wrinkled kirigami for flexible devices: High flexibility, stretcha compressibility. International Journal of Solids and Structures, 2022, 238, 111382.	oility and	2.7	4
505	Design and performance of an ultra-sensitive and super-stretchable hydrogel for artificial s Journal of Materials Chemistry C, 2021, 9, 17042-17049.	kin.	5.5	16
506	Mechanical sensors based on two-dimensional materials: Sensing mechanisms, structural wearable applications. IScience, 2022, 25, 103728.	designs and	4.1	11
507	Recent Advances in Zwitterionic Hydrogels: Preparation, Property, and Biomedical Applica 2022, 8, 46.	tion. Gels,	4.5	45
508	Polysaccharide-based electroconductive hydrogels: Structure, properties and biomedical applications. Carbohydrate Polymers, 2022, 278, 118998.		10.2	22

#	Article	IF	CITATIONS
509	Supramolecular Adhesive Hydrogels for Tissue Engineering Applications. Chemical Reviews, 2022, 122, 5604-5640.	47.7	238
510	Strategies for interface issues and challenges of neural electrodes. Nanoscale, 2022, 14, 3346-3366.	5.6	18
511	Correlating Ionic Conductivity and Microstructure in Polyelectrolyte Hydrogels for Bioelectronic Devices. Macromolecular Rapid Communications, 2022, 43, e2100687.	3.9	13
512	Linear shrinkage of hydrogel coatings exposed to flow: interplay between dissolution of water and advective transport. Soft Matter, 2022, 18, 365-371.	2.7	0
513	Soft yet Tough: a Mechanically and Functionally Tissue-like Organohydrogel for Sensitive Soft Electronics. Chemistry of Materials, 2022, 34, 1392-1402.	6.7	50
514	A Shift from Efficiency to Adaptability: Recent Progress in Biomimetic Interactive Soft Robotics in Wet Environments. Advanced Science, 2022, 9, e2104347.	11.2	29
515	Conductive and anti-freezing hydrogels constructed by pseudo-slide-ring networks. Chemical Communications, 2021, 58, 250-253.	4.1	14
516	Untangling the mechanics of entanglements in slide-ring gels towards both super-deformability and toughness. Soft Matter, 2022, 18, 1302-1309.	2.7	9
517	Operando Characterization of Organic Mixed Ionic/Electronic Conducting Materials. Chemical Reviews, 2022, 122, 4493-4551.	47.7	43
518	Recent Advances in Intelligent Wearable Medical Devices Integrating Biosensing and Drug Delivery. Advanced Materials, 2022, 34, e2108491.	21.0	64
519	A stretchable and self-healing ionic artificial muscle modified by conductive substances. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	6
520	Multifunctional Injectable Hydrogel for <i>In Vivo</i> Diagnostic and Therapeutic Applications. ACS Nano, 2022, 16, 554-567.	14.6	49
521	Environment tolerant, adaptable and stretchable organohydrogels: preparation, optimization, and applications. Materials Horizons, 2022, 9, 1356-1386.	12.2	75
522	Smart bioelectronics and biomedical devices. Bio-Design and Manufacturing, 2022, 5, 1-5.	7.7	4
523	Adhesive Ionohydrogels Based on Ionic Liquid/Water Binary Solvents with Freezing Tolerance for Flexible Ionotronic Devices. Chemistry of Materials, 2022, 34, 1065-1077.	6.7	66
525	Ionic Flexible Sensors: Mechanisms, Materials, Structures, and Applications. Advanced Functional Materials, 2022, 32, .	14.9	79
526	Ultraâ€Stretchable and Fast Selfâ€Healing Ionic Hydrogel in Cryogenic Environments for Artificial Nerve Fiber. Advanced Materials, 2022, 34, e2105416.	21.0	110
527	Polyphenol-based hydrogels: Pyramid evolution from crosslinked structures to biomedical applications and the reverse design. Bioactive Materials, 2022, 17, 49-70.	15.6	64

#	Article	IF	CITATIONS
528	Ratiometric Flapping Force Probe That Works in Polymer Gels. Journal of the American Chemical Society, 2022, 144, 2804-2815.	13.7	48
529	Polyethylene glycol grafted chitin nanocrystals enhanced, stretchable, freezing-tolerant ionic conductive organohydrogel for strain sensors. Composites Part A: Applied Science and Manufacturing, 2022, 155, 106813.	7.6	18
530	Enhanced stretchability and robustness towards flexible ionotronics via double-network structure and ion-dipole interactions. Chemical Engineering Journal, 2022, 434, 134752.	12.7	29
531	Hydrogel-based triboelectric devices for energy-harvesting and wearable sensing applications. Nano Energy, 2022, 95, 106988.	16.0	29
532	Zwitterionic Hydrogel Electrolyte with Tunable Mechanical and Electrochemical Properties for a Wearable Motion and Thermal Sensor. ACS Applied Materials & Interfaces, 2022, 14, 9608-9617.	8.0	27
533	A review of etching methods of MXene and applications of MXene conductive hydrogels. European Polymer Journal, 2022, 167, 111063.	5.4	79
534	Reversible Regulating the Substrate Specificity of Enzymes in Microgels by a Phase Transition in Polymer Networks. ACS Macro Letters, 2022, 11, 26-32.	4.8	6
535	An Experimental and Numerical Study of Polyelectrolyte Hydrogel Ionic Diodes: Towards Electrical Detection of Charged Biomolecules. Sensors, 2021, 21, 8279.	3.8	2
536	3D Printing of Conductive Hydrogel–Elastomer Hybrids for Stretchable Electronics. ACS Applied Materials & Interfaces, 2021, 13, 59243-59251.	8.0	37
537	Stretchable solvent-free ionic conductor with self-wrinkling microstructures for ultrasensitive strain sensor. Materials Horizons, 2022, 9, 1679-1689.	12.2	34
538	Ion transport through layered hydrogels for low-frequency energy harvesting toward self-powered chemical systems. Journal of Materials Chemistry A, 2022, 10, 11881-11892.	10.3	1
539	An Ionically Conductive, Self-Powered and Stable Organogel for Pressure Sensing. Nanomaterials, 2022, 12, 714.	4.1	5
540	Self-healing ionic gelatin/glycerol hydrogels for strain sensing applications. NPG Asia Materials, 2022, 14, .	7.9	59
541	Design of untethered soft material micromachine for life-like locomotion. Materials Today, 2022, 53, 197-216.	14.2	38
542	Self-Powered Multifunction Ionic Skins Based on Gradient Polyelectrolyte Hydrogels. ACS Nano, 2022, 16, 4714-4725.	14.6	55
543	Toughness and elasticity from phase separation. Nature Materials, 2022, 21, 266-268.	27.5	2
544	Hydrogels as Soft Ionic Conductors in Flexible and Wearable Triboelectric Nanogenerators. Advanced Science, 2022, 9, e2106008.	11.2	48
545	Biodegradable Elastomers and Gels for Elastic Electronics. Advanced Science, 2022, 9, e2105146.	11.2	45

#	Article	IF	CITATIONS
546	A versatile hydrogel network–repairing strategy achieved by the covalent-like hydrogen bond interaction. Science Advances, 2022, 8, eabl5066.	10.3	96
547	Spinal cord bioelectronic interfaces: opportunities in neural recording and clinical challenges. Journal of Neural Engineering, 2022, 19, 021003.	3.5	2
548	Triboresistive Touch Sensing: Gridâ€Free Touchâ€Point Recognition Based on Monolayered Ionic Power Generators. Advanced Materials, 2022, 34, e2108586.	21.0	24
549	A Structural Gel Composite Enabled Robust Underwater Mechanosensing Strategy with High Sensitivity. Advanced Functional Materials, 2022, 32, .	14.9	66
550	Highly Flexible and Broad-Range Mechanically Tunable All-Wood Hydrogels with Nanoscale Channels via the Hofmeister Effect for Human Motion Monitoring. Nano-Micro Letters, 2022, 14, 84.	27.0	31
551	An Electroluminodynamic Flexible Device for Highly Efficient Eradication of Drugâ€Resistant Bacteria. Advanced Materials, 2022, 34, e2200334.	21.0	25
552	Ultradurable Noncovalent Cross-Linked Hydrogels with Low Hysteresis and Robust Elasticity for Flexible Electronics. Chemistry of Materials, 2022, 34, 3311-3322.	6.7	46
553	3D Printable Silicone Rubber for Long-Lasting and Weather-Resistant Wearable Devices. ACS Applied Polymer Materials, 2022, 4, 2384-2392.	4.4	7
554	Polyelectrolyte Bilayer-Based Transparent and Flexible Memristor for Emulating Synapses. ACS Applied Materials & Interfaces, 2022, 14, 14541-14549.	8.0	13
555	An Ionic Hydrogel-Based Antifreezing Triboelectric Nanogenerator. ACS Applied Electronic Materials, 2022, 4, 1930-1938.	4.3	21
556	Highly Stretchable Hydrogels as Wearable and Implantable Sensors for Recording Physiological and Brain Neural Signals. Advanced Science, 2022, 9, e2201059.	11.2	64
557	Research Progress on Hydrogel–Elastomer Adhesion. Materials, 2022, 15, 2548.	2.9	6
558	Reversibly Stretchable Organohydrogel-Based Soft Electronics with Robust and Redox-Active Interfaces Enabled by Polyphenol-Incorporated Double Networks. ACS Applied Materials & Interfaces, 2022, 14, 12583-12595.	8.0	14
559	Ionic Thermoelectric Effect Inducing Cationâ€Enriched Surface of Hydrogel to Enhance Output Performance of Triboelectric Nanogenerator. Energy Technology, 2022, 10, .	3.8	10
560	Tough and Highly Efficient Underwater Selfâ€Repairing Hydrogels for Soft Electronics. Small Methods, 2022, 6, e2101513.	8.6	26
561	AÂ2D material–based transparent hydrogel with engineerable interference colours. Nature Communications, 2022, 13, 1212.	12.8	37
562	Effect of water content on physical adhesion of polyacrylamide hydrogels. Polymer, 2022, 246, 124730.	3.8	27
563	Monolithic Inâ€Plane Integration of Gateâ€Modulated Switchable Supercapacitors. Energy Technology, 2022, 10, .	3.8	3

#	Article	IF	Citations
564	Tough and anti-fatigue double network gelatin/polyacrylamide/DMSO/Na2SO4 ionic conductive organohydrogel for flexible strain sensor. European Polymer Journal, 2022, 168, 111099.	5.4	10
565	Fatigue of amorphous hydrogels with dynamic covalent bonds. Extreme Mechanics Letters, 2022, 53, 101679.	4.1	7
566	Liquid metal droplets enabled soft robots. Applied Materials Today, 2022, 27, 101423.	4.3	31
567	Ultra-stretchable and anti-freezing conductive organohydrogel reinforced with ionic clusters for wearable strain sensors. Sensors and Actuators B: Chemical, 2022, 362, 131796.	7.8	11
568	A scaling law of particle transport in inkjet-printed particle-laden polymeric drops. International Journal of Heat and Mass Transfer, 2022, 191, 122840.	4.8	3
569	Tough Hydrogel Bioadhesives for Sutureless Wound Sealing, Hemostasis and Biointerfaces. Advanced Functional Materials, 2022, 32, .	14.9	67
570	Reversing Hydrogel Adhesion Property via Firmly Anchoring Thin Adhesive Coatings. Advanced Functional Materials, 2022, 32, .	14.9	36
571	Patterning coexisted micro-/nanostructures for consequential camouflage via mechanical constraint harnessed surface instability. Applied Physics Letters, 2021, 119, .	3.3	3
572	Polyacrylamide/carboxymethyl chitosan doubleâ€network hydrogels with high conductivity and mechanical toughness for flexible sensors. Journal of Applied Polymer Science, 2022, 139, .	2.6	13
573	Biocompatible Conductive Hydrogels: Applications in the Field of Biomedicine. International Journal of Molecular Sciences, 2022, 23, 4578.	4.1	28
574	Waterâ€resistant conductive organogels with sensation and actuation functions for artificial neuroâ€sensory muscular systems. SmartMat, 2022, 3, 632-643.	10.7	12
575	A stretchable and self-healable all-in-one iontronic elastomer for luminescent caution and multiple perceptions. Polymer, 2022, 249, 124837.	3.8	7
576	Artificial intelligent optoelectronic skin with anisotropic electrical and optical responses for multi-dimensional sensing. Applied Physics Reviews, 2022, 9, .	11.3	44
577	Hierarchically Anisotropic Networks to Decouple Mechanical and Ionic Properties for High-Performance Quasi-Solid Thermocells. ACS Nano, 2022, 16, 8347-8357.	14.6	29
578	Parallel transmission in a synthetic nerve. Nature Chemistry, 2022, 14, 650-657.	13.6	20
579	Hydrogel- and organohydrogel-based stretchable, ultrasensitive, transparent, room-temperature and real-time NO ₂ sensors and the mechanism. Materials Horizons, 2022, 9, 1921-1934.	12.2	47
580	Feedback-controlled topological reconfiguration of molecular assemblies for programming supramolecular structures. Soft Matter, 2022, 18, 3856-3866.	2.7	4
581	Ultrastretchable, self-healable and adhesive composite organohydrogels with a fast response for human–machine interface applications. Journal of Materials Chemistry C, 2022, 10, 8266-8277.	5.5	36

#	Article	IF	CITATIONS
582	Next Steps in Epidermal Computing: Opportunities and Challenges for Soft On-Skin Devices. , 2022, , .		9
583	Chemically triggered life control of "smart―hydrogels through click and declick reactions. Frontiers of Chemical Science and Engineering, 0, , .	4.4	2
584	Environment-Resistant Organohydrogel-Based Sensor Enables Highly Sensitive Strain, Temperature, and Humidity Responses. ACS Applied Materials & Interfaces, 2022, 14, 23692-23700.	8.0	27
585	Mechanically robust and conductive poly(acrylamide) nanocomposite hydrogel by the synergistic effect of vinyl hybrid silica nanoparticle and polypyrrole for human motion sensing. Advanced Composites and Hybrid Materials, 2022, 5, 2834-2846.	21.1	46
586	A Repeatable Self-Adhesive Liquid-Free Double-Network Ionic Conductor with Tunable Multifunctionality. ACS Applied Materials & Interfaces, 2022, 14, 22418-22425.	8.0	12
587	Healable, Recyclable, and Multifunctional Soft Electronics Based on Biopolymer Hydrogel and Patterned Liquid Metal. Small, 2022, 18, e2201643.	10.0	40
588	Solidâ€State Iontronic Devices: Mechanisms and Applications. Advanced Materials Technologies, 2022, 7,	5.8	17
589	A multifunctional MXene-assembled anhydrous gel electronics. Journal of Colloid and Interface Science, 2022, 623, 1151-1159.	9.4	9
590	Tough and Ultrastretchable Liquidâ€Free Ion Conductor Strengthened by Deep Eutectic Solvent Hydrolyzed Cellulose Microfibers. Advanced Functional Materials, 2022, 32, .	14.9	48
591	Torsion of hydrogel cylinder with a chemo-mechanical coupled nonlinear elastic theory. International Journal of Solids and Structures, 2022, 248, 111670.	2.7	1
592	Chest-scale self-compensated epidermal electronics for standard 6-precordial-lead ECG. Npj Flexible Electronics, 2022, 6, .	10.7	5
593	Highly stretchable, durable, and transient conductive hydrogel for multi-functional sensor and signal transmission applications. Nano Energy, 2022, 99, 107374.	16.0	53
594	Patterning meets gels: Advances in engineering functional gels at micro/nanoscales for soft devices. Journal of Polymer Science, 2022, 60, 2679-2700.	3.8	4
595	Ultrasensitive, stretchable, and transparent humidity sensor based on ion-conductive double-network hydrogel thin films. Science China Materials, 2022, 65, 2540-2552.	6.3	13
596	Oxidized alginate linked tough conjoined-network hydrogel with self-healing and conductive properties for strain sensing. New Journal of Chemistry, 0, , .	2.8	4
597	Strong and Tough Conductive Organoâ€Hydrogels via Freeze asting Assisted Solution Substitution. Advanced Functional Materials, 2022, 32, .	14.9	57
598	Flexible and Stretchable Electrically Conductive Polymer Materials for Physical Sensing Applications. Polymer Reviews, 2023, 63, 67-126.	10.9	31
599	Smart bioadhesives for wound healing and closure. Bioactive Materials, 2023, 19, 360-375.	15.6	74

#	Article	IF	CITATIONS
600	3D Printing of Metal–Organic Framework-Based Ionogels: Wearable Sensors with Colorimetric and Mechanical Responses. ACS Applied Materials & Interfaces, 2022, 14, 28247-28257.	8.0	28
601	Tough Engineering Hydrogels Based on Swelling–Freeze–Thaw Method for Artificial Cartilage. ACS Applied Materials & Interfaces, 2022, 14, 25093-25103.	8.0	18
602	Antiâ€Freezing Selfâ€Adhesive Selfâ€Healing Degradable Touch Panel with Ultraâ€Stretchable Performance Based on Transparent Triboelectric Nanogenerators. Advanced Functional Materials, 2022, 32, .	14.9	39
603	A "Special Sandwich―Structured Hydrogel-Based Sensor with Excellent Environmental Stability and Controllable Sensitivity. SSRN Electronic Journal, 0, , .	0.4	0
604	Organic ionic fluid-based wearable sensors for healthcare. Sensors & Diagnostics, 2022, 1, 598-613.	3.8	4
605	A multiscale biomimetic strategy to design strong, tough hydrogels by tuning the self-assembly behavior of cellulose. Journal of Materials Chemistry A, 2022, 10, 13685-13696.	10.3	46
606	Construction of high-performance polymer hydrogel composite materials for artificial bionic organs. Journal of Experimental Nanoscience, 2022, 17, 339-350.	2.4	3
607	Temperature-Responsive Aldehyde Hydrogels with Injectable, Self-Healing, and Tunable Mechanical Properties. Biomacromolecules, 2022, 23, 2552-2561.	5.4	7
608	Ionofibers: Ionically Conductive Textile Fibers for Conformal iâ€īextiles. Advanced Materials Technologies, 2022, 7, .	5.8	6
609	Ionic diode-based self-powered ionic skins with multiple sensory capabilities. Materials Today Physics, 2022, 26, 100744.	6.0	5
610	Polyelectrolyte Complex-Covalent Interpenetrating Polymer Network Hydrogels. Macromolecules, 2022, 55, 4481-4491.	4.8	10
611	Bio-inspired, super-stretchable and self-adhesive hybrid hydrogel with SC-PDA/GO-Ca2+/PAM framework for high precision wearable sensors. Chemical Engineering Journal, 2022, 447, 137259.	12.7	35
612	Ultra-stretchable yet tough, healable, and biodegradable triboelectric devices with microstructured and ionically crosslinked biogel. Nano Energy, 2022, 100, 107438.	16.0	16
613	Molecular Mechanism Underpinning Stable Mechanical Performance and Enhanced Conductivity of Air-Aged Ionic Conductive Elastomers. Macromolecules, 2022, 55, 4665-4674.	4.8	4
614	Environment-adaptable PAM/PVA Semi-IPN hydrogels reinforced by GO for high electromagnetic shielding performance. Polymer, 2022, 253, 125028.	3.8	13
615	2022 roadmap on neuromorphic devices and applications research in China. Neuromorphic Computing and Engineering, 2022, 2, 042501.	5.9	4
616	Highly stretchable, strain-stiffening, self-healing ionic conductors for wearable sensors. Chemical Engineering Journal, 2022, 449, 137633.	12.7	15
617	Body Temperature Enhanced Adhesive, Antibacterial, and Recyclable Ionic Hydrogel for Epidermal Electrophysiological Monitoring. Advanced Healthcare Materials, 2022, 11, .	7.6	29

#	Article	IF	CITATIONS
618	Multistimuli-responsive hydrogels with both anisotropic mechanical performance and anisotropic luminescent behavior. Chemical Engineering Journal, 2022, 449, 137718.	12.7	26
619	Nanoionics from Biological to Artificial Systems: An Alternative Beyond Nanoelectronics. Advanced Science, 2022, 9, .	11.2	13
620	Hierarchical Arete Architectureâ€Enabled Iontronic Pressure Sensor with High Linearity and Sensitivity. Advanced Materials Technologies, 2022, 7, .	5.8	2
621	A skin-inspired biomimetic strategy to fabricate cellulose enhanced antibacterial hydrogels as strain sensors. Carbohydrate Polymers, 2022, 294, 119760.	10.2	23
622	Recyclable, Adhesive and Fast Self-Healable Ionic Conducting Elastomer Based on Poly-Zwitterionic Liquid for Soft Iontronics. SSRN Electronic Journal, 0, , .	0.4	0
623	Harnessing osmotic swelling stress for robust hydrogel actuators. Soft Matter, 2022, 18, 5177-5184.	2.7	8
624	Macromolecule conformational shaping for extreme mechanical programming of polymorphic hydrogel fibers. Nature Communications, 2022, 13, .	12.8	29
625	Transparent neural implantable devices: a comprehensive review of challenges and progress. Npj Flexible Electronics, 2022, 6, .	10.7	25
626	A Subâ€Squareâ€Millimeter Microbattery with Milliampereâ€Hour‣evel Footprint Capacity. Advanced Energy Materials, 2022, 12, .	19.5	30
627	Significant Interfacial Dielectric Relaxation of Covalently Bonded Ice-Hydrogels. Gels, 2022, 8, 409.	4.5	1
628	High-strength, stretchable, and self-recoverable copolymer-supported deep eutectic solvent gels based on dense and dynamic hydrogen bonding for high-voltage and safe flexible supercapacitors. Polymer Bulletin, 2023, 80, 5587-5605.	3.3	3
629	Strong Interfaces Enable Efficient Load Transfer for Strong, Tough, and Impact-Resistant Hydrogel Composites. ACS Applied Materials & Interfaces, 2022, 14, 33797-33805.	8.0	10
630	Robust Hydrogel Adhesion by Harnessing Bioinspired Interfacial Mineralization. Small, 2022, 18, .	10.0	19
631	Effect of Fiber Geometry on Fracture and Fatigue of Composite Hydrogels. Journal of Applied Mechanics, Transactions ASME, 2022, 89, .	2.2	4
632	Rapid preparation of conductive and self-healing ionic gels with tunable mechanical properties via frontal polymerization of deep eutectic monomers. Colloid and Polymer Science, 2022, 300, 989-998.	2.1	6
633	Rate-dependent fracture of hydrogels due to water migration. Journal of the Mechanics and Physics of Solids, 2022, 167, 105007.	4.8	12
634	Tough, aorta-inspired soft composites. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	12
635	Polymerization-Induced Self-Assembly Toward Micelle-Crosslinked Tough and Ultrastretchable Hydrogels. Chemistry of Materials, 2022, 34, 6408-6419.	6.7	19

#	Article	IF	CITATIONS
636	One-Step Generation of Alginate-Based Hydrogel Foams Using CO2 for Simultaneous Foaming and Gelation. Gels, 2022, 8, 444.	4.5	4
637	Stability of hydrogel adhesion enabled by siloxane bonds. Engineering Fracture Mechanics, 2022, 271, 108662.	4.3	3
638	In situ synthesis of highly stretchable, freeze-tolerant silk-polyelectrolyte double-network hydrogels for multifunctional flexible sensing. Chemical Engineering Journal, 2022, 446, 137405.	12.7	35
639	Environmentally adaptive and durable hydrogels toward multi-sensory application. Chemical Engineering Journal, 2022, 449, 137907.	12.7	25
640	Self-consistent fractal geometry in polyampholyte hydrogels undergoing exchange and correlation charge-density. Journal Physics D: Applied Physics, 0, , .	2.8	1
641	Fundamentals of Hydrogelâ€Based Valves and Chemofluidic Transistors for Labâ€onâ€aâ€Chip Technology: A Tutorial Review. Advanced Materials Technologies, 2023, 8, .	5.8	10
642	Stretchable Ionic Conductors for Soft Electronics. Macromolecular Rapid Communications, 2022, 43, .	3.9	16
643	High current hydrogels: Biocompatible electromechanical energy sources. Cell, 2022, 185, 2653-2654.	28.9	2
644	Ultra stretchable, tough, elastic and transparent hydrogel skins integrated with intelligent sensing functions enabled by machine learning algorithms. Chemical Engineering Journal, 2022, 450, 138212.	12.7	46
645	Highly conductive thermoresponsive silver nanowire PNIPAM nanocomposite for reversible electrical switchâ€. Soft Matter, 0, , .	2.7	0
646	Study of Conductive Hydrogels Based on Xanthan and PEDOT PSS Using Raman Spectroscopy. Nanobiotechnology Reports, 2022, 17, 380-388.	0.6	3
647	Ultraâ€Lightweight, Highly Permeable, and Waterproof Fibrous Organic Electrochemical Transistors for Onâ€Skin Bioelectronics. Advanced Materials Technologies, 2023, 8, .	5.8	12
648	Modeling coupled electrochemical and mechanical behavior of soft ionic materials and ionotronic devices. Journal of the Mechanics and Physics of Solids, 2022, 168, 105014.	4.8	4
649	Strong Tough Conductive Hydrogels via the Synergy of Ionâ€Induced Crossâ€Linking and Saltingâ€Out. Advanced Functional Materials, 2022, 32, .	14.9	89
650	Breathable Kirigami-Shaped Ionotronic e-Textile with Touch/Strain Sensing for Friendly Epidermal Electronics. Advanced Fiber Materials, 2022, 4, 1525-1534.	16.1	27
651	Strengthening poly(2-hydroxyethyl methacrylate) hydrogels using biochars and hydrophobic aggregations. International Journal of Smart and Nano Materials, 2022, 13, 561-574.	4.2	4
652	Multifunctional Double-Network Self-Healable Hydrogel and Its Application to Highly Reliable Strain Sensors. ACS Applied Polymer Materials, 0, , .	4.4	0
653	Tough Adhesive, Antifreezing, and Antidrying Natural Globulin-Based Organohydrogels for Strain Sensors. ACS Applied Materials & Interfaces, 2022, 14, 39299-39310.	8.0	19

			1
#	Article	IF	CITATIONS
654	Emerging Iontronic Sensing: Materials, Mechanisms, and Applications. Research, 2022, 2022, .	5.7	23
655	Orthogonal Growth for Fabricating Hydrogel Sensors and Circuit Boards with In Situ Postâ€Tunable Performance. Advanced Functional Materials, 2022, 32, .	14.9	18
656	Advances and challenges in conductive hydrogels: From properties to applications. European Polymer Journal, 2022, 177, 111454.	5.4	34
657	Tough, anti-freezing and conductive ionic hydrogels. NPG Asia Materials, 2022, 14, .	7.9	22
658	The rise of AI optoelectronic sensors: From nanomaterial synthesis, device design to practical application. Materials Today Physics, 2022, 27, 100812.	6.0	12
659	Co ²⁺ -Mediated Hydrogels with Enhanced Mechanical Properties for Flexible Sensing. ACS Applied Polymer Materials, 2022, 4, 6403-6413.	4.4	3
660	Hydrogelâ€Based Realâ€Time Wireless Liquid Level Monitoring System for Sizeâ€Independent Infusion Bags. Advanced Electronic Materials, 2022, 8, .	5.1	1
661	Polyelectrolyte Hydrogels for Tissue Engineering and Regenerative Medicine. Chemistry - an Asian Journal, 2022, 17, .	3.3	10
662	Phase-locked constructing dynamic supramolecular ionic conductive elastomers with superior toughness, autonomous self-healing and recyclability. Nature Communications, 2022, 13, .	12.8	86
663	Polyelectrolyte hydrogel: A versatile platform for mechanical-electric conversion and self-powered sensing. Nano Energy, 2022, 103, 107718.	16.0	20
664	Strong and Tough Physical Eutectogels Regulated by the Spatiotemporal Expression of Non ovalent Interactions. Advanced Functional Materials, 2022, 32, .	14.9	45
665	A temperature responsive adhesive hydrogel for fabrication of flexible electronic sensors. Npj Flexible Electronics, 2022, 6, .	10.7	35
666	Supramolecular Adhesive Materials with Antimicrobial Activity for Emerging Biomedical Applications. Pharmaceutics, 2022, 14, 1616.	4.5	3
667	Unbreakable Hydrogels with Selfâ€Recoverable 10â€ ⁻ 200% Stretchability. Advanced Materials, 2022, 34, .	21.0	22
668	From carbon nanotubes to ultra-sensitive, extremely-stretchable and self-healable hydrogels. European Polymer Journal, 2022, 178, 111485.	5.4	12
669	Highly stretchable, shape memory and antioxidant ionic conductive degradable elastomers for strain sensing with high sensitivity and stability. Materials and Design, 2022, 222, 111041.	7.0	9
670	A zwitterionic cellulose-based skin sensor for the real-time monitoring and antibacterial sensing wound dressing. Carbohydrate Polymers, 2022, 297, 119974.	10.2	11
671	Multiple hydrogen bonds reinforced conductive hydrogels with robust elasticity and ultra-durability as multifunctional ionic skins. Chemical Engineering Journal, 2023, 451, 138525.	12.7	33

ITATION P

# 672	ARTICLE Temperature tolerant all-solid-state touch panel with high stretchablity, transparency and self-healing ability. Chemical Engineering Journal, 2023, 451, 138672.	IF 12.7	CITATIONS
673	Highly resilient antibacterial composite polyvinyl alcohol hydrogels reinforced with CNT-NZnO by forming a network of hydrogen and coordination bonding. Journal of Polymer Research, 2022, 29, .	2.4	7
675	Smart plasmonic hydrogels based on gold and silver nanoparticles for biosensing application. Current Opinion in Biomedical Engineering, 2022, 24, 100413.	3.4	19
676	Hydrogel based materials: A progressive approach towards advancement in biomedical applications. Materials Today Communications, 2022, 33, 104369.	1.9	8
677	Ultrathin photonic crystal film with supersensitive thermochromism in air. Chemical Engineering Journal, 2023, 451, 139075.	12.7	16
678	Plasma-bioresource-derived multifunctional porous NGQD/AuNP nanocomposites for water monitoring and purification. Chemical Engineering Journal, 2023, 451, 139083.	12.7	10
679	d-gluconic acetal gelator-based supramolecular – Polymer dual network eutectogels for high performance temperature, strain, and pressure sensors. Chemical Engineering Journal, 2023, 451, 139051.	12.7	15
680	A multifunctional sustainable ionohydrogel with excellent low-hysteresis-driven mechanical performance, environmental tolerance, multimodal stimuli-responsiveness, and power generation ability for wearable electronics. Journal of Materials Chemistry A, 2022, 10, 17464-17476.	10.3	25
681	Direct ink writing of tough, stretchable silicone composites. Soft Matter, 2022, 18, 7341-7347.	2.7	1
682	Ultrathin Photonic Crystal Elastomer with Supersensitive Thermochromism in the Air. SSRN Electronic Journal, 0, , .	0.4	0
683	Recent advances in soft electronic materials for intrinsically stretchable optoelectronic systems. Opto-Electronic Advances, 2022, 5, 210131-210131.	13.3	14
684	Bioinspired ionic hydrogel materials with excellent antifouling properties and high conductivity in dry and cold environments. Polymer Chemistry, 2022, 13, 4711-4716.	3.9	1
685	Fatigue of hydrogels. , 2022, , 119-138.		1
686	Materials development in stretchable iontronics. Soft Matter, 2022, 18, 6487-6510.	2.7	8
687	Constitutive modeling for hydrogel with chain entanglements and application to adaptive hydrogel composite structures. Mechanics of Advanced Materials and Structures, 2023, 30, 5122-5136.	2.6	4
688	Hydrogelâ€Based Flexible Electronics. Advanced Materials, 2023, 35, .	21.0	116
689	Enhancing the interfacial binding strength between modular stretchable electronic components. National Science Review, 2023, 10, .	9.5	12
690	Recent Advances in Mechanical Reinforcement of Zwitterionic Hydrogels. Gels, 2022, 8, 580.	4.5	2

#	Article	IF	CITATIONS
691	Iontronics: Aqueous ion-based engineering for bioinspired functionalities and applications. Chemical Physics Reviews, 2022, 3, .	5.7	6
692	Highly Conductive and Underwater Stable Ionic Skin for Allâ€Day Epidermal Biopotential Monitoring. Advanced Functional Materials, 2022, 32, .	14.9	25
693	Intrinsically Electron Conductive, Antibacterial, and Antiâ€swelling Hydrogels as Implantable SensorsÂfor Bioelectronics. Advanced Functional Materials, 2022, 32, .	14.9	34
694	Carbon Dotsâ€Based Ultrastretchable and Conductive Hydrogels for Highâ€Performance Tactile Sensors and Selfâ€Powered Electronic Skin. Small, 2023, 19, .	10.0	37
695	Protein Crystallization-Mediated Self-Strengthening of High-Performance Printable Conducting Organohydrogels. ACS Nano, 2022, 16, 17998-18008.	14.6	15
696	4D printing: A detailed review of materials, techniques, and applications. Microelectronic Engineering, 2022, 265, 111874.	2.4	15
697	Stretchable and Self-Powered Temperature–Pressure Dual Sensing Ionic Skins Based on Thermogalvanic Hydrogels. ACS Applied Materials & Interfaces, 2022, 14, 44792-44798.	8.0	19
698	Machine Learning for Bioelectronics on Wearable and Implantable Devices: Challenges and Potential. Tissue Engineering - Part A, 2023, 29, 20-46.	3.1	15
700	Intrinsically Freezing-Tolerant, Conductive, and Adhesive Proton Donor–Acceptor Hydrogel for Multifunctional Applications. ACS Applied Polymer Materials, 2022, 4, 7710-7722.	4.4	5
701	Touch-Responsive Hydrogel for Biomimetic Flytrap-Like Soft Actuator. Nano-Micro Letters, 2022, 14, .	27.0	25
702	Flexible Acceleratedâ€Woundâ€Healing Antibacterial MXeneâ€Based Epidermic Sensor for Intelligent Wearable Humanâ€Machine Interaction. Advanced Functional Materials, 2022, 32, .	14.9	82
703	Recent progress in fabrications and applications of functional hydrogel films. Journal of Polymer Science, 2023, 61, 1026-1039.	3.8	6
704	Ion slippage through Li ⁺ -centered G-quadruplex. Science Advances, 2022, 8, .	10.3	1
705	Ultrastrong, highly conductive and capacitive hydrogel electrode for electron-ion transduction. Matter, 2022, 5, 4407-4424.	10.0	23
706	Poly(vinyl Alcohol) (PVA)-Based Hydrogel Scaffold with Isotropic Ultratoughness Enabled by Dynamic Amine–Catechol Interactions. Chemistry of Materials, 2022, 34, 8613-8628.	6.7	14
707	Gradient Adhesive Hydrogel Decorated Superhydrophilic Membranes for Ultraâ€Stable Oil/Water Separation. Advanced Functional Materials, 2022, 32, .	14.9	58
708	Hydrogels Enable Future Smart Batteries. ACS Nano, 2022, 16, 15528-15536.	14.6	39
709	Construction and Ion Transport-Related Applications of the Hydrogel-Based Membrane with 3D Nanochannels. Polymers, 2022, 14, 4037.	4.5	7

#	Article	IF	CITATIONS
710	Versatile Copolymer for Stretchable and Self-healable Liquid-free Ionic Conductive Elastomers. ACS Applied Materials & Interfaces, 2022, 14, 42578-42585.	8.0	9
711	Morphing-to-Adhesion Polysaccharide Hydrogel for Adaptive Biointerfaces. ACS Applied Materials & Interfaces, 2022, 14, 42420-42429.	8.0	15
712	Development of conductive hydrogels: from design mechanisms to frontier applications. Bio-Design and Manufacturing, 2022, 5, 729-756.	7.7	13
713	Stretchable Heterogeneous Polymer Networks of High Adhesion and Low Hysteresis. ACS Applied Materials & Interfaces, 2022, 14, 49264-49273.	8.0	4
714	From grape seed extracts to extremely stable strain sensors with freezing tolerance, drying resistance and anti-oxidation properties. Materials Today Communications, 2022, 33, 104551.	1.9	2
715	Fracture tolerance induced by dynamic bonds in hydrogels. Journal of the Mechanics and Physics of Solids, 2022, 169, 105083.	4.8	6
716	Characterization of fracture toughness and damage zone of double network hydrogels. Journal of the Mechanics and Physics of Solids, 2022, 169, 105090.	4.8	25
717	A recyclable, adhesive and fast self-healable ionic conducting elastomer based on a poly-zwitterionic liquid for soft iontronics. Journal of Materials Chemistry A, 2022, 10, 24581-24589.	10.3	6
718	Cytoskeleton-inspired hydrogel ionotronics for tactile perception and electroluminescent display in complex mechanical environments. Materials Horizons, 2023, 10, 136-148.	12.2	20
719	Supramolecular polyelectrolyte hydrogel based on conjoined double-networks for multifunctional applications. Journal of Materials Chemistry A, 2022, 10, 23649-23665.	10.3	19
720	Highly stretchable, self-healing elastomer hydrogel with universal adhesion driven by reversible cross-links and protein enhancement. Journal of Materials Chemistry B, 2022, 10, 9188-9201.	5.8	7
721	Wearable, fast-healing, and self-adhesive multifunctional photoactive hydrogel for strain and temperature sensing. Journal of Materials Chemistry A, 2022, 10, 23366-23374.	10.3	21
722	Mechanically Interlocked Hydrogel–Elastomer Strain Sensor with Robust Interface and Enhanced Water—Retention Capacity. Gels, 2022, 8, 625.	4.5	1
723	Bioinspired Strategies for Stretchable Conductors. Chemical Research in Chinese Universities, 2023, 39, 30-41.	2.6	3
724	3D Printed Ultrasensitive Graphene Hydrogel Self-Adhesive Wearable Devices. ACS Applied Electronic Materials, 2022, 4, 5199-5207.	4.3	16
725	Tough, Self-Healing, and Conductive Elastomer ─Ionic PEGgel. ACS Applied Materials & Interfaces, 2022, 14, 50152-50162.	8.0	5
726	Highly stretchable and self-healable polymer gels from physical entanglements of ultrahigh–molecular weight polymers. Science Advances, 2022, 8, .	10.3	26
727	Bioactive Ionâ€based switchable supercapacitors. Angewandte Chemie, 0, , .	2.0	0

		CITATION REPORT		
#	Article		IF	CITATIONS
728	Hydrogel interfaces for merging humans and machines. Nature Reviews Materials, 202	2, 7, 935-952.	48.7	153
729	MXene-Enabled Self-Adaptive Hydrogel Interface for Active Electroencephalogram Inter Nano, 2022, 16, 19373-19384.	ractions. ACS	14.6	25
730	Electrically Induced Bursting of Aqueous Capsules Made from Biopolymers: â€~Switchin of Payloads. Advanced Functional Materials, 2022, 32, .	າg On' the Release	14.9	2
731	Engineering the Comfortâ€ofâ€Wear for Next Generation Wearables. Advanced Electro 9, .	onic Materials, 2023,	5.1	14
732	Versatile Light-Mediated Synthesis of Dry Ion-Conducting Dynamic Bottlebrush Netwo Elasticity, Interfacial Adhesiveness, and Flame Retardancy. Macromolecules, 2022, 55,	rks with High 9715-9725.	4.8	10
733	Flexible Aggregation-Induced Emission-Active Hydrogel for On-Site Monitoring of Pesti Degradation. ACS Nano, 2022, 16, 18421-18429.	cide	14.6	24
734	Bioactive Ionâ€Based Switchable Supercapacitors. Angewandte Chemie - International	Edition, 2022, 61, .	13.8	10
735	Ultrathin Hydrogel Films toward Breathable Skinâ€Integrated Electronics. Advanced M ∙	aterials, 2023, 35,	21.0	66
736	A Hydrogel-Based Self-Sensing Underwater Actuator. Micromachines, 2022, 13, 1779.		2.9	0
737	A Variable-Order Fractional Constitutive Model to Characterize the Rate-Dependent Me Behavior of Soft Materials. Fractal and Fractional, 2022, 6, 590.	echanical	3.3	5
738	Highly Stretchable and Sensitive Ti ₃ C ₂ T _{<i>x</i>Alginate/Acrylamide Hydrogel for Flexible Electronic Sensors. ACS Applied Polymer Mat 8216-8226.}	> MXene/Sodium erials, 2022, 4,	4.4	3
739	Tissueâ€Mimetic Supramolecular Polymer Networks for Bioelectronics. Advanced Mate	erials, 2023, 35, .	21.0	15
740	Stretchable Transparent Polyelectrolyte Elastomers for Allâ€Solid Tunable Lenses of Ex Based on Electro–Mechano–Optical Coupling. Advanced Materials Technologies, 2	cellent Stability 2023, 8, .	5.8	5
741	Molecular Design and Preparation of Protein-Based Soft Ionic Conductors with Tunable ACS Applied Materials & amp; Interfaces, 2022, 14, 48061-48071.	Properties.	8.0	0
742	Electronically powered drug delivery devices: considerations and challenges. Expert Op Delivery, 2022, 19, 1636-1649.	inion on Drug	5.0	4
743	A flexible, stretchable and triboelectric smart sensor based on graphene oxide and poly hydrogel for high precision gait recognition in Parkinsonian and hemiplegic patients. N 2022, 104, 107978.	acrylamide ano Energy,	16.0	32
744	Ultrastretchable Ionogel with Extreme Environmental Resilience through Controlled Hy Interactions. Advanced Functional Materials, 2023, 33, .	dration	14.9	54
745	Gelatin/polyacrylamide ionic conductive hydrogel with skin temperature-triggered adhe human motion sensing and body heat harvesting. Nano Energy, 2022, 104, 107977.	esion for	16.0	43

#	Article	IF	CITATIONS
746	Anion-cation heterostructured hydrogels for all-weather responsive electricity and water harvesting from atmospheric air. Nano Energy, 2022, 104, 107892.	16.0	24
747	Intrinsically stretchable ionoelastomer junction logic gate synchronously deformable with liquid metal. Applied Physics Reviews, 2022, 9, .	11.3	6
748	Temperature-triggered smart milk-derived hydrogel with programmable adhesion for versatile skin-attached iontronics. Nano Energy, 2022, 104, 107962.	16.0	19
749	Controlling mechanical properties of ultrahigh molecular weight ion gels by chemical structure of ionic liquids and monomers. Soft Matter, 2022, 18, 8582-8590.	2.7	4
750	Stretchable strain sensor of composite hydrogels with high fatigue resistance and low hysteresis. Journal of Materials Chemistry A, 2022, 10, 25564-25574.	10.3	21
751	A flexible and ultrasensitive interfacial iontronic multisensory sensor with an array of unique "cup-shaped―microcolumns for detecting pressure and temperature. Nano Energy, 2023, 105, 108012.	16.0	39
752	A three-dimensional fractional visco-hyperelastic model for soft materials. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 137, 105564.	3.1	8
753	Facile preparation of stretchable and multifunctional ionic gels via frontal polymerization of polymerizable ternary deep eutectic monomers with a long pot life. Colloid and Polymer Science, 0, , .	2.1	3
754	Strong and Ultraâ€Tough Supramolecular Hydrogel Enabled by Strainâ€Induced Microphase Separation. Advanced Functional Materials, 2023, 33, .	14.9	26
755	Bioinspired Gradient Stretchable Aerogels for Ultrabroadâ€Rangeâ€Response Pressureâ€Sensitive Wearable Electronics and Highâ€Efficient Separators. Angewandte Chemie - International Edition, 2023, 62, .	13.8	20
756	Extremely Soft, Stretchable, and Self-Adhesive Silicone Conductive Elastomer Composites Enabled by a Molecular Lubricating Effect. Nano Letters, 2022, 22, 8966-8974.	9.1	9
757	Thermally Induced Gelation of Cellulose Nanocrystals in Deep Eutectic Solvents for 3D Printable and Self-Healable Ionogels. ACS Applied Polymer Materials, 2022, 4, 9221-9230.	4.4	10
758	Bioinspired Gradient Poly(ionic liquid) Ionogels for Ionic Skins with an Ultrawide Pressure Detection Range. , 2022, 4, 2459-2468.		12
759	3Dâ€Printed Stacked Ionic Assemblies for Iontronic Touch Sensors. Advanced Functional Materials, 2023, 33, .	14.9	11
760	Bioinspired Gradient Stretchable Aerogels for Ultrabroadâ€Rangeâ€Response Pressureâ€Sensitive Wearable Electronics and Highâ€Efficient Separators. Angewandte Chemie, 2023, 135, .	2.0	3
761	Rapid Gelation of Tough and Antiâ€Swelling Hydrogels under Mild Conditions for Underwater Communication. Advanced Functional Materials, 2023, 33, .	14.9	60
762	Understanding the mechanical "shakedown―of hydrogel ionotronics for realizing their highly functional stability. Polymer, 2022, 262, 125498.	3.8	3
763	Semi-IPN ionogel based on poly (ionic liquids)/xanthan gum for highly sensitive pressure sensor. International Journal of Biological Macromolecules, 2022, 223, 327-334.	7.5	9

#	Article	IF	CITATIONS
764	Recent Progresses in <scp>Liquidâ€Free</scp> Soft Ionic Conductive Elastomers ^{â€} . Chinese Journal of Chemistry, 2023, 41, 835-860.	4.9	11
765	From grape seed extract to highly sensitive sensors with adhesive, self-healable and biocompatible properties. European Polymer Journal, 2023, 183, 111751.	5.4	5
766	Anisotropic hydrogels with high-sensitivity and self-adhesion for wearable sensors. Journal of Materials Chemistry C, 2022, 11, 196-203.	5.5	13
767	Achieving highly strength and stretchable deep eutectic iontronic elastomer by directly photopolymerizing HEA with ChCl. Polymer, 2023, 265, 125600.	3.8	1
768	Graphene-polymer nanocomposites electrode with ionic nanofibrous membrane for highly sensitive supercapacitive pressure sensor. Nano Today, 2023, 48, 101698.	11.9	11
769	Polysaccharide hydrogel electrolytes with robust interfacial contact to electrodes for quasi-solid state flexible aqueous zinc ion batteries with efficient suppressing of dendrite growth. Journal of Colloid and Interface Science, 2023, 633, 142-154.	9.4	16
770	Perspective Chapter: Tissue-Electronics Interfaces. , 0, , .		5
771	Skin-like hydrogel-elastomer based electrochemical device for comfortable wearable biofluid monitoring. Chemical Engineering Journal, 2023, 455, 140609.	12.7	14
772	Rigidity-dependent formation process of DNA supramolecular hydrogels. NPG Asia Materials, 2022, 14, .	7.9	5
773	Functional Tough Hydrogels: Design, Processing, and Biomedical Applications. Accounts of Materials Research, 2023, 4, 101-114.	11.7	23
774	A general strategy to achieve high-fidelity electron-ion transduction. Matter, 2022, 5, 4107-4109.	10.0	0
775	Balanced Coexistence of Reversible and Irreversible Covalent Bonds in a Conductive Triple Polymeric Network Enables Stretchable Hydrogels with High Toughness and Adhesiveness. ACS Applied Materials & Interfaces, 2022, 14, 56395-56406.	8.0	4
776	Simultaneously Enhancing the Mechanical Strength and Ionic Conductivity of Stretchable Ionogels Enabled by Polymerization-Induced Phase Separation. Macromolecules, 2022, 55, 10950-10959.	4.8	11
777	Programming material properties by tuning intermolecular bonding. Journal of Applied Physics, 2022, 132, .	2.5	5
778	Frequency dependent sensitivity of hydrogel iontronic sensor. Smart Materials and Structures, 2023, 32, 015010.	3.5	1
779	Short-term plasticity, multimodal memory, and logical responses mimicked in stretchable hydrogels. Matter, 2023, 6, 429-444.	10.0	12
780	Multimaterial Three-Dimensional Printing of Ultraviolet-Curable Ionic Conductive Elastomers with Diverse Polymers for Multifunctional Flexible Electronics. ACS Applied Materials & Interfaces, 2023, 15, 3455-3466.	8.0	10
781	Programmable Thermoâ€Responsive Actuation of Hydrogels via Lightâ€Guided Surface Growth of Active Layers on Shape Memory Substrates. Macromolecular Rapid Communications, 0, , 2200705.	3.9	1

#	Article	IF	CITATIONS
782	Highly Stretchable, Transparent and Adhesive Ionogel Based on Chitosan-Poly(acrylic acid) Double Networks for Flexible Strain Sensors. Gels, 2022, 8, 797.	4.5	6
783	Humanoid Ionotronic Skin for Smart Object Recognition and Sorting. , 2023, 5, 189-201.		13
784	Environmentally Stable, Stretchable, Adhesive, and Conductive Organohydrogels with Multiple Dynamic Interactions as High-Performance Strain and Temperature Sensors. ACS Applied Materials & Interfaces, 2022, 14, 55075-55087.	8.0	10
785	Multiple pathways to stretchable electronics. Science, 2022, 378, 1174-1175.	12.6	5
786	Healable Ionoelastomer Designed from Polymeric Ionic Liquid and Vitrimer Chemistry. ACS Applied Polymer Materials, 2023, 5, 529-541.	4.4	5
787	Reconfigurable Touch Panel Based on a Conductive Thixotropic Supramolecular Hydrogel. ACS Applied Materials & Interfaces, 2023, 15, 4458-4468.	8.0	6
788	Applications of Flexible Electronics. , 2022, , 381-412.		2
789	High-Performance Zwitterionic Organohydrogel Fiber in Bioelectronics for Monitoring Bioinformation. Biosensors, 2023, 13, 115.	4.7	0
790	Chitosan-Based Hydrogels for Bioelectronic Sensing: Recent Advances and Applications in Biomedicine and Food Safety. Biosensors, 2023, 13, 93.	4.7	12
791	A multistimuli-responsive fluorescent hydrogel based on a fluorescence response to macromolecular segmental motion. Nano Research, 2023, 16, 12098-12105.	10.4	2
792	Self- and Cross-Fusing of Furan-Based Polyurea Gels Dynamically Cross-Linked with Maleimides. Polymers, 2023, 15, 341.	4.5	1
793	Surface modification and adhesive-free adhesion of polytetrafluoroethylene (PTFE) and silicone gel containing oleophilic SiO ₂ powder by plasma treatment. RSC Advances, 2023, 13, 1834-1841.	3.6	1
794	Force-induced ion generation in zwitterionic hydrogels for a sensitive silent-speech sensor. Nature Communications, 2023, 14, .	12.8	22
795	Transparent, anti-freezing and highly stretchable solid-state ionic conductors. Polymer Chemistry, 0, ,	3.9	0
796	Solid state ionics enabled ultra-sensitive detection of thermal trace with 0.001K resolution in deep sea. Nature Communications, 2023, 14, .	12.8	6
797	Highly sensitive, durable, environmentally tolerant and multimodal composite ionogel-based sensor with an ultrawide response range. Science China Materials, 0, , .	6.3	5
798	A Strong Acidâ€Induced DNA Hydrogel Based on pHâ€Reconfigurable Aâ€Motif Duplex. Small, 2023, 19, .	10.0	4
799	Osmotic instability in soft materials under well-controlled triaxial stress. Journal of the Mechanics and Physics of Solids, 2023, 172, 105195.	4.8	1

#	Article	IF	CITATIONS
800	An electro-chemo-mechanical theory for hydrogel ionotronics: Application to modeling a capacitive strain sensor and a dynamic large strain actuator. Journal of the Mechanics and Physics of Solids, 2023, 173, 105196.	4.8	5
801	Hydrogel as an advanced energy material for flexible batteries. Polymer-Plastics Technology and Materials, 2023, 62, 359-383.	1.3	0
802	Recent Advances and Progress of Conducting Polymer-Based Hydrogels in Strain Sensor Applications. Gels, 2023, 9, 12.	4.5	6
803	The Synergy of Hydrogen Bond and Entanglement of Elastomer Captures Unprecedented Flaw Insensitivity Rate. Small, 2023, 19, .	10.0	8
804	Multifunctional Iontronic Sensor Based on Liquid Metal-Filled Ho llow Ionogel Fibers in Detecting Pressure, Temperature, and Proximity. ACS Applied Materials & Interfaces, 2023, 15, 7485-7495.	8.0	24
805	Smart Skinâ€Adhesive Patches: From Design to Biomedical Applications. Advanced Functional Materials, 2023, 33, .	14.9	16
806	Tough and fatigue-resistant polymer networks by crack tip softening. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	7
807	Bioinspired, biomimetic hydrogels. , 2023, , 325-354.		0
808	Structural plasticityâ€based hydrogel optical Willshaw model for oneâ€shot onâ€theâ€fly edge learning. InformaÄnĂ-Materiály, 2023, 5, .	17.3	1
809	Evaluating charge-type of polyelectrolyte as dielectric layer in memristor and synapse emulation. Nanoscale Horizons, 2023, 8, 509-515.	8.0	3
810	Mussel-Based Biomimetic Strategies in Musculoskeletal Disorder Treatment: From Synthesis Principles to Diverse Applications. International Journal of Nanomedicine, 0, Volume 18, 455-472.	6.7	3
811	Mechanically Robust and Transparent Organohydrogelâ€Based Eâ€5kin Nanoengineered from Natural Skin. Advanced Functional Materials, 2023, 33, .	14.9	45
812	Insights into Hierarchical Structure–Property–Application Relationships of Advanced Bacterial Cellulose Materials. Advanced Functional Materials, 2023, 33, .	14.9	19
813	A liquid metal/carbon nanotubes complex enabling ultra-fast polymerization of super-robust, stretchable adhesive hydrogels for highly sensitive sensor. Journal of Colloid and Interface Science, 2023, 638, 313-323.	9.4	22
814	Encapsulating eutectogels for stretchable humidity-resistant strain sensors. Soft Matter, 2023, 19, 2570-2578.	2.7	2
815	An implantable ionic therapeutic platform for photodynamic therapy with wireless capacitive power transfer. Materials Horizons, 2023, 10, 2215-2225.	12.2	1
816	Selfâ€Healing Stress Sensors: Coupling Stress‣ensing Performance with Dynamic Chemistry. , 2023, 2, .		2
817	Biomimetic Spun Silk Ionotronic Fibers for Intelligent Discrimination of Motions and Tactile Stimuli. Advanced Materials, 2023, 35, .	21.0	8

#	Article	IF	CITATIONS
818	Learning from the Brain: Bioinspired Nanofluidics. Journal of Physical Chemistry Letters, 2023, 14, 2891-2900.	4.6	13
819	Large deformation and crack propagation analyses of hydrogel by peridynamics. Engineering Fracture Mechanics, 2023, 284, 109261.	4.3	Ο
820	Integration of high strength, resilience and stretchability into the nanocomposite hydrogel sensor for a wide working range detection and underwater sensing. Journal of Materials Research and Technology, 2023, 24, 3524-3533.	5.8	1
821	Ionic Flexible Mechanical Sensors: Mechanisms, Structural Engineering, Applications, and Challenges. , 2023, 2, .		0
822	Stretchable Ultraviolet Curable Ionic Conductive Elastomers for Digital Light Processing Based 3D Printing. Advanced Materials Technologies, 2023, 8, .	5.8	3
823	An Artificial Motion and Tactile Receptor Constructed by Hyperelastic Double Physically Cross‣inked Silk Fibroin Ionoelastomer. Advanced Functional Materials, 2023, 33, .	14.9	6
824	Highly Elastic, Self-Healing, Recyclable Interlocking Double-Network Liquid-Free Ionic Conductive Elastomers via Facile Fabrication for Wearable Strain Sensors. ACS Applied Materials & Interfaces, 2023, 15, 19447-19458.	8.0	14
825	Smart wound dressing for advanced wound management: Real-time monitoring and on-demand treatment. Materials and Design, 2023, 229, 111917.	7.0	20
826	Nature-inspired strategies for the synthesis of hydrogel actuators and their applications. Progress in Polymer Science, 2023, 140, 101665.	24.7	23
827	Bioinspired swelling enhanced hydrogels for underwater sensing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 664, 131197.	4.7	4
828	Anti-swelling conductive polyampholyte hydrogels via ionic complexations for underwater motion sensors and dynamic information storage. Chemical Engineering Journal, 2023, 463, 142439.	12.7	5
829	Anti-fatigue ionic gels for long-term multimodal respiratory abnormality monitoring. Journal of Materials Science and Technology, 2023, 151, 99-108.	10.7	3
830	Robust cellulose-based hydrogel marbles with excellent stability for gas sensing. Carbohydrate Polymers, 2023, 306, 120617.	10.2	12
831	Bioinspired hydrogel actuator for soft robotics: Opportunity and challenges. Nano Today, 2023, 49, 101764.	11.9	28
832	Multiâ€Hydration Induced Zwitterionic Hydrogel with Open Environment Stability for Chemical Sensing. , 2023, 2, .		0
833	Pillararene-Based Supramolecular Polymers for Cancer Therapy. Molecules, 2023, 28, 1470.	3.8	10
834	Tough, Healable, and Sensitive Strain Sensor Based on Multiphysically Cross-Linked Hydrogel for Ionic Skin. Biomacromolecules, 2023, 24, 1287-1298.	5.4	17
835	Slideâ€Ring Supramolecular Mechanoresponsive Elastomer with Reversible Luminescence Behavior. Advanced Optical Materials, 2023, 11, .	7.3	8

#	Article	IF	Citations
836	Hybrid assembly of polymeric nanofiber network for robust and electronically conductive hydrogels. Nature Communications, 2023, 14, .	12.8	45
837	Perspectives on the fundamental principles and manufacturing of stretchable ionotronics. Applied Physics Letters, 2023, 122, .	3.3	4
838	Bioâ€inspired ionic skins for smart medicine. , 2023, 2, .		3
839	Metal-based porous hydrogels for highly conductive biomaterial scaffolds. Oxford Open Materials Science, 2023, 3, .	1.8	3
840	Optically modulated ionic conductivity in a hydrogel for emulating synaptic functions. Science Advances, 2023, 9, .	10.3	11
841	3D Printable Self-Adhesive and Self-Healing Ionotronic Hydrogels for Wearable Healthcare Devices. ACS Applied Materials & Interfaces, 2023, 15, 11042-11052.	8.0	17
842	Dual Physically Crosslinked Silk Fibroin Ionoelastomer with Ultrahigh Stretchability and Low Hysteresis. Chemistry of Materials, 2023, 35, 1752-1761.	6.7	3
843	Anisotropic and super-strong conductive hydrogels enabled by mechanical stretching combined with the Hofmeister effect. Journal of Materials Chemistry A, 2023, 11, 8038-8047.	10.3	15
844	Enhanced Rupture Force in a Cut-Dispersed Double-Network Hydrogel. Gels, 2023, 9, 158.	4.5	1
845	Intrinsically Nonswellable Multifunctional Hydrogel with Dynamic Nanoconfinement Networks for Robust Tissueâ€Adaptable Bioelectronics. Advanced Science, 2023, 10, .	11.2	12
846	Super stable, highly ion-conductive and transparent eutecto-/hydro-gel promotes wearable electronic and visual strain sensing. Chemical Engineering Journal, 2023, 461, 141965.	12.7	5
847	Tough Transient Ionic Junctions Printed with Ionic Microgels. Advanced Functional Materials, 2023, 33, .	14.9	5
848	An Autofluorescent Hydrogel with Waterâ€Dependent Emission for Dehydrationâ€Visualizable Smart Wearable Electronics. Advanced Functional Materials, 2023, 33, .	14.9	12
849	Choice of Materials for Triboelectric Nanogenerators. , 2023, , 1-50.		0
850	Flexible Antiswelling Photothermalâ€Therapy MXene Hydrogelâ€Based Epidermal Sensor for Intelligent Human–Machine Interfacing. Advanced Functional Materials, 2023, 33, .	14.9	23
851	Wearable technology in healthcare engineering. , 2023, , 227-248.		1
852	Vitrimer ionogels towards sustainable solid-state electrolytes. RSC Advances, 2023, 13, 6656-6667.	3.6	7
853	Ionic skin: from imitating natural skin to beyond. , 2023, 1, 224-239.		10

#	Article	IF	CITATIONS
854	A Controlled Biodegradable Triboelectric Nanogenerator Based on PEGDA/Laponite Hydrogels. ACS Applied Materials & Interfaces, 2023, 15, 12787-12796.	8.0	17
855	Highly Stretchable and Ionically Conductive Membranes with Semiâ€Interpenetrating Network Architecture for Truly Allâ€Solidâ€State Microactuators and Microsensors. Advanced Materials Interfaces, 2023, 10, .	3.7	1
856	Musselâ€Inspired, Underwater Selfâ€Healing Ionoelastomers Based on αâ€Lipoic Acid for Iontronics. Small, 2023, 19, .	10.0	8
857	Self-Powered Wireless Flexible Ionogel Wearable Devices. ACS Applied Materials & Interfaces, 0, , .	8.0	5
858	Structural Strategies for Supramolecular Hydrogels and Their Applications. Polymers, 2023, 15, 1365.	4.5	4
859	Technology Roadmap for Flexible Sensors. ACS Nano, 2023, 17, 5211-5295.	14.6	238
860	A finite strain visco-hyperelastic damage model for rubber-like materials: theory and numerical implementation. Acta Mechanica Sinica/Lixue Xuebao, 2023, 39, .	3.4	2
861	Multi-functional and multi-responsive layered double hydroxide-reinforced polyacrylic acid composite hydrogels as ionic skin sensors. Advanced Composites and Hybrid Materials, 2023, 6, .	21.1	6
862	A Biocompatible Supercapacitor Diode with Enhanced Rectification Capability toward Ion/Electronâ€Coupling Logic Operations. Advanced Materials, 2023, 35, .	21.0	8
863	Highly Stretchable, Selfâ€Healable and Selfâ€Adhesive Doubleâ€Network Eutectogel Based on Gellan Gum and Polymerizable Deep Eutectic Solvent for Strain Sensing. ChemistrySelect, 2023, 8, .	1.5	4
864	Nanofluidic membrane for confined ion transport: From uniform to composite strategy. Materials Today, 2023, 65, 189-206.	14.2	3
865	Recent Development of Self-Powered Tactile Sensors Based on Ionic Hydrogels. Gels, 2023, 9, 257.	4.5	7
866	Granular Ionogel Particle Inks for 3D Printed Tough and Stretchable Ionotronics. Research, 2023, 6, .	5.7	3
867	Compressible Cellulose Wood Prepared with Deep Eutectic Solvents and Its Improved Technology. Polymers, 2023, 15, 1593.	4.5	3
868	Integration of hydrogels in microfabrication processes for bioelectronic medicine: Progress and outlook. Frontiers in Bioengineering and Biotechnology, 0, 11, .	4.1	1
869	Self-powered ionic tactile sensors. Journal of Materials Chemistry C, 2023, 11, 7920-7936.	5.5	5
870	Double-Network Chitosan-Based Hydrogels with Improved Mechanical, Conductive, Antimicrobial, and Antibiofouling Properties. Gels, 2023, 9, 278.	4.5	8
871	Mechanistic formulation of inorganic membranes at the air–liquid interface. Nature, 2023, 616, 293-299.	27.8	9

#	Article	IF	CITATIONS
872	A Universal Interfacial Strategy Enabling Ultraâ€Robust Gel Hybrids for Extreme Epidermal Bioâ€Monitoring. Advanced Functional Materials, 2023, 33, .	14.9	11
873	Naturally sourced hydrogels: emerging fundamental materials for next-generation healthcare sensing. Chemical Society Reviews, 2023, 52, 2992-3034.	38.1	41
874	In situ forming pH/ROS-responsive niche-like hydrogel for ultrasound-mediated multiple therapy in synergy with potentiating anti-tumor immunity. Materials Today, 2023, 65, 62-77.	14.2	16
875	A supramolecular gel-elastomer system for soft iontronic adhesives. Nature Communications, 2023, 14, .	12.8	12
876	Ionic Conduction and Dielectric Response of Nanoparticle-Coupled Hydrogel Network Polymer Electrolytes. Macromolecules, 2023, 56, 3393-3405.	4.8	4
877	Ionic Conductive, Antidrying, and Flexible Organohydrogels Suitable for Pressure Sensors and Gas Sensors. ACS Applied Electronic Materials, 2023, 5, 2758-2768.	4.3	6
878	Electronic tissue technologies for seamless biointerfaces. Journal of Polymer Science, 2023, 61, 1707-1712.	3.8	1
879	Photoexcited Anhydrous Proton Conductivity in Coordination Polymer Glass. Journal of the American Chemical Society, 2023, 145, 9808-9814.	13.7	4
880	Natural small molecule-induced polymer hydrogels with inherent antioxidative ability and conductivity for neurogenesis and functional recovery after spinal cord injury. Chemical Engineering Journal, 2023, 466, 143071.	12.7	6
881	Designing Ionic Conductive Elastomers Using Hydrophobic Networks and Hydrophilic Salt Hydrates with Improved Stability in Air. Advanced Electronic Materials, 0, , .	5.1	0
882	A Quenched Doubleâ€Hydrophilic Coating for the Enhancement of Water Retention of Hydrogels. Advanced Functional Materials, 2023, 33, .	14.9	3
883	A mechanically soft-tissue-like organohydrogel with multi-functionalities for sensitive soft ionotronics. Chemical Engineering Journal, 2023, 466, 143087.	12.7	10
884	Interfacial fatigue fracture of elastomer bilayers under cyclic large deformation. Engineering Fracture Mechanics, 2023, 285, 109295.	4.3	0
885	Bionic iontronics based on nano-confined structures. Nano Research, 2023, 16, 11718-11730.	10.4	11
886	Radio frequency cantilever-free scanning probe microscopy. Journal of Applied Physics, 2023, 133, .	2.5	0
887	A Flexible Sensor with Excellent Environmental Stability Using Well-Designed Encapsulation Structure. Polymers, 2023, 15, 2308.	4.5	3
888	Strongly adhesive zwitterionic composite hydrogel paints for surgical sutures and blood-contacting devices. Acta Biomaterialia, 2023, 166, 201-211.	8.3	4
889	Interface Barrier Layers to Suppress Side Redox Reactions of Highâ€Voltage Hydrogel Iontronics. Advanced Materials Technologies, 0, , .	5.8	Ο

#	Article	IF	CITATIONS
890	Embedding ionic hydrogel in 3D printed human-centric devices for mechanical sensing. Journal of Manufacturing Processes, 2023, 100, 1-10.	5.9	0
891	A conductive multifunctional hydrogel dressing with the synergistic effect of ROS-scavenging and electroactivity for the treatment and sensing of chronic diabetic wounds. Acta Biomaterialia, 2023, 167, 348-360.	8.3	4
892	Integrated opposite charge grafting induced ionic-junction fiber. Nature Communications, 2023, 14, .	12.8	5
893	Bioinspired Conductive Enhanced Polyurethane Ionic Skin as Reliable Multifunctional Sensors. Advanced Science, 2023, 10, .	11.2	9
894	A volatile microemulsion method of preparing water-soluble photo-absorbers for 3D printing of high-resolution, high-water-content hydrogel structures. Soft Matter, 2023, 19, 3700-3710.	2.7	7
895	Functional conductive hydrogels: from performance to flexible sensor applications. Materials Chemistry Frontiers, 2023, 7, 2925-2957.	5.9	15
896	Hydrogel fibers for wearable sensors and soft actuators. IScience, 2023, 26, 106796.	4.1	9
897	Enhancing Prosthetic Control through Highâ€Fidelity Myoelectric Mapping with Molecular Anchoring Technology. Advanced Materials, 2023, 35, .	21.0	2
898	Biodegradable materials and devices for neuroelectronics. MRS Bulletin, 0, , .	3.5	1
899	Multifunctional small biomolecules as key building blocks in the development of hydrogel-based strain sensors. Journal of Materials Chemistry A, 2023, 11, 13844-13875.	10.3	5
900	Soft Robotics Enables Neuroprosthetic Hand Design. ACS Nano, 2023, 17, 9661-9672.	14.6	9
901	Biological Tissue-Inspired Ultrasoft, Ultrathin, and Mechanically Enhanced Microfiber Composite Hydrogel for Flexible Bioelectronics. Nano-Micro Letters, 2023, 15, .	27.0	18
902	Rapid cure composites used in spray and paints industry. , 2023, , 225-245.		0
903	Tough, rapid self-recovery and responsive organogel-based ionotronic for intelligent continuous passive motion system. Npj Flexible Electronics, 2023, 7, .	10.7	5
904	Scalable Quasi-Solid-State Supercapacitor for Wide-Temperature Wearable Devices. ACS Applied Materials & Interfaces, 2023, 15, 29023-29031.	8.0	0
905	Electrodeposited Superhydrophilic‣uperhydrophobic Composites for Untethered Multi‣timuliâ€Responsive Soft Millirobots. Advanced Science, 2023, 10, .	11.2	8
906	An Antiâ€Fracture and Super Deformable Soft Hydrogel Network Insensitive to Extremely Harsh Environments. Advanced Science, 2023, 10, .	11.2	2
907	A Strong and Doubleâ€sided Selfâ€Adhesive Hydrogel Sensor. Macromolecular Rapid Communications, 2023, 44, .	3.9	2

#	Article	IF	CITATIONS
908	Super‧tretchable, Antiâ€Freezing, Antiâ€Drying Organogel Ionic Conductor for Multiâ€Mode Flexible Electronics. Advanced Functional Materials, 2023, 33, .	14.9	11
909	Environmentally Adaptive Polymer Hydrogels: Maintaining Wetâ€Soft Features in Extreme Conditions. Advanced Functional Materials, 2023, 33, .	14.9	11
910	3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces. Nature Materials, 2023, 22, 895-902.	27.5	68
911	Inhibition of Heterogeneous Nucleation in Water by Hydrogel Coating. Research, 2023, 6, .	5.7	1
912	Mechanochromic and Conductive Chiral Nematic Nanostructured Film for Bioinspired Ionic Skins. ACS Nano, 2023, 17, 12829-12841.	14.6	11
913	甔于ä¼ﷺäį®åऎŠ"æ—二次æŸä¼ऎŠ"äįæ°´å∓æ'•æ—ç²⁻附水å‡èƒ¶. Science China Materials, 2023, 66, 3337	-33346.	5
914	A stretchable, biocompatible, and self-powered hydrogel multichannel wireless sensor system based on piezoelectric barium titanate nanoparticles for health monitoring. Nano Energy, 2023, 114, 108617.	16.0	8
915	Piezoionic SnSe Nanosheetsâ€Double Network Hydrogel for Selfâ€Powered Strain Sensing and Energy Harvesting. Advanced Functional Materials, 2023, 33, .	14.9	7
916	Thermally trainable dual network hydrogels. Nature Communications, 2023, 14, .	12.8	11
917	Conductive hydrogels for bioenergy harvesting and self-powered application. Progress in Materials Science, 2023, 138, 101156.	32.8	15
918	Solventâ€Free and Skinâ€Like Supramolecular Ionâ€Conductive Elastomers with Versatile Processability for Multifunctional Ionic Tattoos and Onâ€Skin Bioelectronics. Advanced Materials, 2023, 35, .	21.0	16
919	Sweat-resistant bioelectronic skin sensor. , 2023, 1, 100006.		3
920	Injectable, Tough, and Thermoplastic Supramolecular Hydrogel Coatings with Controllable Adhesion for Touch Sensing. ACS Applied Materials & amp; Interfaces, 2023, 15, 32945-32956.	8.0	4
921	Conductive polymer based hydrogels and their application in wearable sensors: a review. Materials Horizons, 2023, 10, 2800-2823.	12.2	23
922	Transparent ionic conductive elastomers with high mechanical strength and strong tensile properties for strain sensors. Soft Matter, 2023, 19, 3925-3932.	2.7	1
923	Hydrogels for Flexible Electronics. ACS Nano, 2023, 17, 9681-9693.	14.6	24
924	An Amphiphilic Entangled Network Design Toward Ultratough Hydrogels. Advanced Materials, 2023, 35, .	21.0	4
925	High-Speed and High-Resolution 3D Printing of Self-Healing and Ion-Conductive Hydrogels via μCLIP. , 2023, 5, 1727-1737.		4

# 926	ARTICLE Deformation of corrugated hydrogel panel subject to chemo-mechanical coupled loading. International Journal of Solids and Structures, 2023, 276, 112326.	IF 2.7	Citations
927	Minimallyâ€Invasive and Inâ€Vivo Hydrogel Patterning Method for In Situ Fabrication of Implantable Hydrogel Devices. Small Methods, 2023, 7, .	8.6	3
928	Highly stable and reliable capacitive strain sensor for wearable electronics based on anti-dry hydrogel electrode. Materials Today Physics, 2023, 35, 101123.	6.0	2
929	Hofmeister effect-inspired Ti3C2Tx MXene-based robust, multifunctional hydrogels. Composites Part A: Applied Science and Manufacturing, 2023, 172, 107626.	7.6	3
930	IntelliSense Bio-Ionotronics Battery for Early Warning of Geological Seepage. ACS Sensors, 2023, 8, 2731-2739.	7.8	1
931	Anisotropic, ultra-sensitive, self-adhesive, biocompatible, and conductive hydrogels prepared for wearable sensors. European Polymer Journal, 2023, 196, 112277.	5.4	11
932	Hydrogel-Based Bioelectronics and Their Applications in Health Monitoring. Biosensors, 2023, 13, 696.	4.7	3
933	Recent advances in ultrathin materials and their applications in eâ€skin. InformaÄnÃ-Materiály, 2023, 5, .	17.3	6
934	Shape reprogramming of 3D printed ionogels by solvent exchange with deep eutectic solvents. Polymer Journal, 0, , .	2.7	0
935	Cellulose-Based Ionic Conductor: An Emerging Material toward Sustainable Devices. Chemical Reviews, 2023, 123, 9204-9264.	47.7	30
937	Highly Sensitive Temperature Detection Based on a Frost- and Dehydration-Resistive Ion-Doped Hydrogel-MXene Composite. ACS Applied Materials & Interfaces, 2023, 15, 35525-35533.	8.0	5
938	Electrochemically Controlled Hydrogels with Electrotunable Permeability and Uniaxial Actuation. Advanced Materials, 2023, 35, .	21.0	2
939	A Mechanically Robust, Selfâ€Healing, and Adhesive Biomimetic Camouflage Ionic Conductor for Aquatic Environments. Advanced Functional Materials, 2023, 33, .	14.9	7
940	Conductive hydrogels for bioelectronics: molecular structures, design principles, and operation mechanisms. Journal of Materials Chemistry C, 2023, 11, 10785-10808.	5.5	1
942	Self-powered hydrogel sensors. , 2023, 1, 100007.		7
943	Conductive Hydrogels with a Bilayer Structure to Realize Multifunctions in Extreme Environments. ACS Applied Polymer Materials, 2023, 5, 6346-6353.	4.4	2
944	Tough Hydrophobic Hydrogels for Monitoring Human Moderate Motions in Both Air and Underwater Environments. Chemistry of Materials, 2023, 35, 5953-5962.	6.7	4
945	Ultrastrong Ionotronic Films Showing Electrochemical Osmotic Actuation. Advanced Materials, 2023, 35, .	21.0	3

#	Article	IF	CITATIONS
946	Locking Water Molecules Loss of PAA Hydrogel for Flexible Zincâ€Air Battery with NaCl Doping. Advanced Functional Materials, 2023, 33, .	14.9	4
947	Materials, Structures, and Strategies for Foldable Electroluminescent Devices. Advanced Optical Materials, 2023, 11, .	7.3	2
948	Partial wetting of the soft elastic graded substrate due to elastocapillary deformation. Applied Mathematics and Mechanics (English Edition), 2023, 44, 1409-1422.	3.6	0
949	Road Narrowâ€Inspired Strain Concentration to Wideâ€Rangeâ€Tunable Gauge Factor of Ionic Hydrogel Strain Sensor. Advanced Science, 2023, 10, .	11.2	3
950	A Fully Selfâ€Healing and Highly Stretchable Liquidâ€Free Ionic Conductive Elastomer for Soft Ionotronics. Advanced Functional Materials, 2023, 33, .	14.9	7
951	Swelling-induced deformation electronic signal of MXene hydrogel for cancer detection. Sensors and Actuators B: Chemical, 2023, 394, 134363.	7.8	2
953	Perspectives on recent advancements in energy harvesting, sensing and bio-medical applications of piezoelectric gels. Chemical Society Reviews, 2023, 52, 6191-6220.	38.1	12
955	Reinforced double-threaded slide-ring networks for accelerated hydrogel discovery and 3D printing. CheM, 2023, 9, 3515-3531.	11.7	2
956	Choice of Materials for Triboelectric Nanogenerators. , 2023, , 455-504.		0
957	Flexible ionic conductors based on polymerized deep eutectic solvent reinforced by hydroxyethyl cellulose. Polymer, 2023, , 126304.	3.8	0
958	Materializing Autonomy in Soft Robots across Scales. Advanced Intelligent Systems, 2024, 6, .	6.1	0
959	A microscale soft ionic power source modulates neuronal network activity. Nature, 2023, 620, 1001-1006.	27.8	8
960	Recent Advances in Wearable Sensors for the Monitoring of Sweat: A Comprehensive Tendency Summary. Chemosensors, 2023, 11, 470.	3.6	1
961	Stretchable Gold Nanomembrane Electrode with Ionic Hydrogel Skin-Adhesive Properties. Polymers, 2023, 15, 3852.	4.5	1
962	Hydrogel Bioelectronics for Health Monitoring. Biosensors, 2023, 13, 815.	4.7	0
963	Utilizing cellulose-based conducting hydrogels in iontronics. , 2023, 1, 1369-1385.		2
964	An aquatic biomimetic butterfly soft robot driven by deformable photo-responsive hydrogel. Soft Matter, 2023, 19, 7370-7378.	2.7	0
965	Nature's Blueprint in Bioinspired Materials for Robotics. Advanced Functional Materials, 0, , .	14.9	3

#	Article	IF	CITATIONS
966	Aloe Inspired Special Structure Hydrogel Pressure Sensor for Realâ€Time Humanâ€Computer Interaction and Muscle Rehabilitation System. Advanced Functional Materials, 2023, 33, .	14.9	11
967	Hydrogel muscles powering reconfigurable micro-metastructures with wide-spectrum programmability. Nature Materials, 2023, 22, 1243-1252.	27.5	8
968	3D printable, anti-freezing, and rapid self-healing violet phosphorene incorporated hydrogel-based sensors for human motion detection. Composites Part A: Applied Science and Manufacturing, 2023, 175, 107814.	7.6	2
969	Recent Progress in Mechanically Robust and Conductiveâ€Hydrogelâ€Based Sensors. Advanced Intelligent Systems, 2023, 5, .	6.1	1
970	Characteristics of Portable Air Floating-Electrode Dielectric-Barrier-Discharge Plasmas Used for Biomedicine. Plasma Chemistry and Plasma Processing, 0, , .	2.4	1
971	Stretchable Multiâ€Channel Ionotronic Electrodes for In Situ Dualâ€Modal Monitoring of Muscle–Vascular Activity. Advanced Functional Materials, 2024, 34, .	14.9	0
972	Hydrogel Electrolyte Enabled Highâ€Performance Flexible Aqueous Zinc Ion Energy Storage Systems toward Wearable Electronics. Small, 2023, 19, .	10.0	7
973	3D printed mechanical robust cellulose derived liquid-free ionic conductive elastomer for multifunctional electronic devices. Carbohydrate Polymers, 2024, 324, 121496.	10.2	3
974	HE@PCL/PCE Gel-Nanofiber Dressing with Robust Self-Adhesion toward High Wound-Healing Rate via Microfluidic Electrospinning Technology. ACS Applied Materials & Interfaces, 2023, 15, 46322-46332.	8.0	2
975	Transparent and Environmentally Adaptive Semi-interpenetrating Network Hydrogels for Electromagnetic Interference Shielding. ACS Applied Polymer Materials, 2023, 5, 8406-8414.	4.4	2
976	Fabrication of <scp>PEG</scp> â€anthracene/alginate doubleâ€network hydrogels and their application in photolithography. Journal of Applied Polymer Science, 0, , .	2.6	0
977	Bioâ€Inspired Farâ€Fromâ€Equilibrium Hydrogels: Design Principles and Applications. ChemPlusChem, 2023, 88, .	2.8	0
978	Ionoelastomers at Electrified Interfaces: Differential Electric Double-Layer Capacitances of Cross-Linked Polymeric Ions and Mobile Counterions. Macromolecules, 2023, 56, 7827-7836.	4.8	0
979	Rapid and Controllable Preparation of Multifunctional Lignin-Based Eutectogels for the Design of High-Performance Flexible Sensors. ACS Applied Materials & Interfaces, 2023, 15, 45526-45535.	8.0	1
980	Multi-functional hydrogel electrodes for emerging electronic and robotic applications. Korean Journal of Chemical Engineering, 2023, 40, 3106-3129.	2.7	0
981	Finite deformation analysis of the rotating cylindrical hollow disk composed of functionally-graded incompressible hyper-elastic material. Applied Mathematics and Mechanics (English Edition), 2023, 44, 1367-1384.	3.6	0
983	Polyelectrolyte elastomer-based ionotronic sensors with multi-mode sensing capabilities via multi-material 3D printing. Nature Communications, 2023, 14, .	12.8	8
984	Transparent dual ionic (Zn2+-Al3+) hydrogel with high conductivity for self-chargeable Zn//WO3-x electrochromic devices. Materials Today Chemistry, 2023, 33, 101658.	3.5	1

	Сітаті	Citation Report	
#	Article	IF	Citations
985	Opto-iontronic coupling in triboelectric nanogenerator. Nano Energy, 2023, 116, 108796.	16.0	4
986	Direct construction of strong, tough, conductive, and adhesive hydrogel bioelectronics enabled by salt-dissolved cellulose. Materials Today Communications, 2023, 37, 107002.	1.9	1
987	3D-printed conducting polymer hydrogel-based DC generator for self-powered electromechanical sensing. Nano Energy, 2023, 117, 108857.	16.0	4
988	Biomimetic Ion Channel Regulation for Temperatureâ€Pressure Decoupled Tactile Perception. Small, 2024, 20, .	10.0	1
990	Highâ€Performance Pressure Sensors Based on Shaped Gel Droplet Arrays. Small, 2024, 20, .	10.0	1
991	Conductive Hydrogel for Flexible Bioelectronic Device: Current Progress and Future Perspective. Advanced Functional Materials, 2024, 34, .	14.9	4
992	Hydrogel-based intelligent greenhouse films for simultaneous fogging prevention and indoor environmental monitoring. Chemical Engineering Journal, 2023, 475, 146204.	12.7	0
993	3D Printable Hydrogel Bioelectronic Interfaces for Various Organs. , 2023, , .		0
994	Electrochemistry-Triggered Microscopic Wrinkle Patterns That Improve the Sensitivity of Hydrogel Sensors. , 2023, 5, 2906-2912.		3
995	Independent characterization of the elastic and the mixing parts of hydrogel osmotic pressure. Extreme Mechanics Letters, 2023, 64, 102085.	4.1	0
996	Preparation and application of electro-conductive hydrogels in biomedical engineering. , 0, , .		0
997	Healable Ionic Conductors with Extremely Lowâ€Hysteresis and High Mechanical Strength Enabled by Hydrophobic Domain‣ocked Reversible Interactions. Advanced Materials, 2023, 35, .	21.0	3
998	Supramolecular Ionic Gels with High Elasticity and Self-Healing Based on Polymeric Deep Eutectic Solvent for 3D-Printable Soft Sensors. ACS Applied Polymer Materials, 2023, 5, 9650-9658.	4.4	1
999	Cartilage-Inspired Rapid In-Situ Fabrication of Seamless Interlocked Electrolyte-Electrode Interface for High-Performance Flexible Supercapacitors. Journal of Materials Chemistry A, 0, , .	10.3	0
1000	Mechanochromic and ionic conductive cholesteric liquid crystal elastomers for biomechanical monitoring and human–machine interaction. Materials Horizons, 2024, 11, 217-226.	12.2	5
1001	Strength and toughness of tissue adhesives depend on thickness. Giant, 2023, , 100200.	5.1	1
1002	Uniform, Strainâ€Free, Largeâ€Scale Graphene and hâ€BN Monolayers Enabled by Hydrogel Substrates. Sr 2024, 20, .	nall, 10.0	0
1003	Advancements in Microwave Absorption Motivated by Interdisciplinary Research. Advanced Materials, 2024, 36, .	21.0	2

#	Article	IF	CITATIONS
1004	SEMPro: A Data-Driven Pipeline To Learn Structure–Property Insights from Scanning Electron Microscopy Images. , 0, , 3117-3125.		0
1005	Transparent, Mechanically Robust, Adhesive, Temperature-Tolerant, and 3D Printable Nanocomposite Ionogels for Flexible Sensors. ACS Applied Materials & Interfaces, 0, , .	8.0	0
1006	Selfâ€Powered Integrated Tactile Sensing System Based on Ultrastretchable, Selfâ€Healing and 3D Printable Ionic Conductive Hydrogel. Advanced Functional Materials, 2024, 34, .	14.9	3
1007	Lignosulfonate sodium assisted PEDOT-based all-gel supercapacitors with enhanced supercapacitance and wide temperature tolerance. International Journal of Biological Macromolecules, 2024, 254, 127852.	7.5	9
1008	High speed underwater hydrogel robots with programmable motions powered by light. Nature Communications, 2023, 14, .	12.8	0
1009	Inorganic nanoparticle-enhanced double-network hydrogel electrolytes for supercapacitor with superior low-temperature adaptability. Chemical Engineering Journal, 2024, 479, 147741.	12.7	0
1010	Flexible Pressure Sensors in Human–Machine Interface Applications. Small, 0, , .	10.0	0
1011	High-Saline-Enabled Hydrophobic Homogeneous Cross-Linking for Extremely Soft, Tough, and Stretchable Conductive Hydrogels as High-Sensitive Strain Sensors. ACS Nano, 2023, 17, 23194-23206.	14.6	3
1012	Electric-Eel-Type Bi-Ionic Gradient Battery. ACS Applied Materials & amp; Interfaces, 0, , .	8.0	0
1013	Itaconic acid-enhanced robust ionic conductive elastomers for strain/pressure sensors. Journal of Materials Chemistry C, 2023, 11, 16545-16553.	5.5	0
1014	Synergistic strengthening of PVA ionic conductive hydrogels using aramid nanofibers and tannic acid for mechanically robust, antifreezing, water-retaining and antibacterial flexible sensors. Journal of Colloid and Interface Science, 2024, 654, 1260-1271.	9.4	6
1015	Polysaccharide-based hydrogels for medical devices, implants and tissue engineering: A review. International Journal of Biological Macromolecules, 2024, 256, 128488.	7.5	0
1016	Green and Lowâ€Cost Alkaliâ€Polyphenol Synergetic Selfâ€Catalysis System Access to Fast Gelation of Selfâ€Healable and Selfâ€Adhesive Conductive Hydrogels for Selfâ€Powered Triboelectric Nanogenerators. Small, 0, , .	10.0	1
1017	Robust conductive nanocomposite hydrogels with an interpenetrating network based on polyaniline for flexible supercapacitors. Polymer Engineering and Science, 2024, 64, 749-760.	3.1	0
1019	Sodium Alginate/Zwitterionic Polymer Gel Electrolyte for Integrated Allâ€5olidâ€5tate Supercapacitors. ChemNanoMat, 2024, 10, .	2.8	0
1020	Investigation into the gel substrate fabrication of a novel ammonium amine explosive and its generic properties exploration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 682, 132918.	4.7	0
1021	Continuous Stereolithography 3D Printing of Multi-Network Hydrogels in Triply Periodic Minimal Structures With Tunable Mechanical Strength for Energy Absorption. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2024, 146, .	2.2	0
1022	Hydrophobic Crossâ€Linked Chains Regulate High Wet Tissue Adhesion Hydrogel with Toughness, Antiâ€hydration for Dynamic Tissue Repair. Advanced Materials, 2024, 36, .	21.0	0

#	Article	IF	CITATIONS
1023	Investigation on the Dynamic Rheological Behavior of the Highly Elastic Organohydrogel. Industrial & Engineering Chemistry Research, 0, , .	3.7	0
1024	Fullâ€Color Generation via Phototunable Mono Ink for Fast and Elaborate Printings. Advanced Materials, 0, , .	21.0	0
1025	Selfâ€Healing Hydrogel Bioelectronics. Advanced Materials, 0, , .	21.0	0
1026	Microphaseâ€ S eparated Elastic and Ultrastretchable Ionogel for Reliable Ionic Skin with Multimodal Sensation. Advanced Materials, 0, , .	21.0	0
1027	Skin-inspired gradient ionogels induced by electric field for ultrasensitive and ultrafast-responsive multifunctional ionotronics. Journal of Materials Chemistry A, O, , .	10.3	0
1028	Muscle-inspired anisotropic hydrogel strain sensors with ultra-strong mechanical properties and improved sensing capabilities for human motion detection and Morse code transmission. European Polymer Journal, 2024, 202, 112642.	5.4	1
1029	Pendent Sulfonylimide Ionic Liquid Monomers and Ionoelastomers via SuFEx Click Chemistry. Chemistry of Materials, 2023, 35, 10030-10040.	6.7	2
1030	Use of Field Concentration for Electroluminescent Devices. Advanced Materials Technologies, 0, , .	5.8	0
1031	Multifunctional Conductive Elastomers Based on Tannic Acid and Polymerizable 1-Butyl-3-methylimidazolium Chloride/Acrylic Acid Deep Eutectic Solvent. ACS Applied Polymer Materials, 0, , .	4.4	0
1032	Insights into Polyacrylamide Hydrogels Used for Oil and Gas Exploration: Gelation Time, Gel Strength, and Adhesion Strength. Energy & Fuels, 0, , .	5.1	0
1033	Supramolecular Ionogels for Use in Locating Damage to Underwater Infrastructure. Small, 0, , .	10.0	1
1034	Micro- and nanofabrication of dynamic hydrogels with multichannel information. Nature Communications, 2023, 14, .	12.8	2
1035	Low-water-content polyelectrolyte hydrogels inspired by human epidermal stratum corneum. Cell Reports Physical Science, 2023, 4, 101741.	5.6	0
1036	Solid-state, liquid-free ion-conducting elastomers: rising-star platforms for flexible intelligent devices. Materials Horizons, 2024, 11, 1152-1176.	12.2	0
1037	Extremely Tough and Stretchable Hydrophobic Deep Eutectic Solvent-Based Gels with Strong Adhesion and Moisture Resistance for Wearable Strain Sensors. ACS Applied Polymer Materials, 2023, 5, 10469-10483.	4.4	0
1038	Water-responsive supercontractile polymer films for bioelectronic interfaces. Nature, 2023, 624, 295-302.	27.8	8
1039	Organic iontronic memristors for artificial synapses and bionic neuromorphic computing. Nanoscale, 2024, 16, 1471-1489.	5.6	0
1040	Microstructured Polyelectrolyte Elastomerâ€Based Ionotronic Sensors with High Sensitivities and Excellent Stability for Artificial Skins. Advanced Materials, 0, , .	21.0	1

#	Article	IF	CITATIONS
1041	Enhancing the crack initiation resistance of hydrogels through crosswise cutting. Journal of the Mechanics and Physics of Solids, 2024, 183, 105516.	4.8	0
1042	Design of the monolithic planar isotropic auxetic piezo-resistive sensor glove to detect human hand motion. Journal of Materials Science, 0, , .	3.7	1
1043	Continuous Melt Spinning of Adaptable Covalently Cross‣inked Selfâ€Healing Ionogel Fibers for Multiâ€Functional Ionotronics. Advanced Materials, 0, , .	21.0	0
1044	Emerging applications of tough ionogels. NPG Asia Materials, 2023, 15, .	7.9	0
1045	Highly Strong, Tough, and Cryogenically Adaptive Hydrogel Ionic Conductors via Coordination Interactions. Research, 2024, 7, .	5.7	1
1046	Functionalization of Natural-Derived Biogels for Soft Bioelectronics. Accounts of Materials Research, 0, , .	11.7	0
1047	Wearable, epidermal devices for assessment of swallowing function. Npj Flexible Electronics, 2023, 7, .	10.7	0
1048	3D spatiotemporally scalable in vivo neural probes based on fluorinated elastomers. Nature Nanotechnology, 0, , .	31.5	2
1049	Hydrogel sensors for biomedical electronics. Chemical Engineering Journal, 2024, 481, 148317.	12.7	0
1050	Tough and Biocompatible Hydrogel Tissue Adhesives Entirely Based on Naturally Derived Ingredients. ACS Applied Polymer Materials, 0, , .	4.4	0
1051	Electromechanical Responses of an Ionic Double Layer at the Interface of an Ionoelastomer Heterojunction. Accounts of Materials Research, 0, , .	11.7	0
1052	Recent Trends of Functional Composites and Structures for Electromechanical Sensors: A Review. Advanced Intelligent Systems, 0, , .	6.1	0
1053	Multifunctional organohydrogel via the synergy of dialdehyde starch and glycerol for motion monitoring and sign language recognition. International Journal of Biological Macromolecules, 2023, , 129068.	7.5	0
1054	Fatigue-resistant Hydrogels. Chemical Research in Chinese Universities, 0, , .	2.6	0
1055	Surface hydrophobization of hydrogels via interface dynamics-induced network reconfiguration. Nature Communications, 2024, 15, .	12.8	1
1056	Network of cyano-p-aramid nanofibres creates ultrastiff and water-rich hydrospongels. Nature Materials, 2024, 23, 414-423.	27.5	2
1057	Organohydrogel-based transparent terahertz absorber via ionic conduction loss. Nature Communications, 2024, 15, .	12.8	0
1058	Controlling the Supramolecular Architecture Enables High Lithium Cationic Conductivity and High Electrochemical Stability for Solid Polymer Electrolytes. Advanced Functional Materials, 2024, 34, .	14.9	0

#	Article	IF	CITATIONS
1059	A Microphaseâ€Separated Design toward an Allâ€Round Ionic Hydrogel with Discriminable and Antiâ€Disturbance Multisensory Functions. Advanced Materials, 2024, 36, .	21.0	1
1060	A 10-micrometer-thick nanomesh-reinforced gas-permeable hydrogel skin sensor for long-term electrophysiological monitoring. Science Advances, 2024, 10, .	10.3	2
1061	Hydrogels for bioinspired soft robots. Progress in Polymer Science, 2024, 150, 101791.	24.7	0
1062	Photo- and pH-dually responsive hydrogel containing spirooxazine groups. Journal of Polymer Research, 2024, 31, .	2.4	0
1063	Hierarchically Structured Hydrogel Composites with Ultraâ€High Conductivity for Soft Electronics. Advanced Functional Materials, 2024, 34, .	14.9	1
1065	One-step Fabrication of Physical Eutectogel with Recyclability: Crystalline Domain Regulation Induced by Microgels. Journal of Colloid and Interface Science, 2024, 659, 495-502.	9.4	0
1066	Glioblastoma treatment: an overview on the comprehensive application of RT, thermotherapy, immunotherapy, exosome, hydrogel and microneedle in vivo and in vitro. , 2024, , .		0
1067	A Transparent Hydrogel-Ionic Conductor with High Water Retention and Self-Healing Ability. Materials, 2024, 17, 288.	2.9	0
1068	Effect of Predamage on the Fracture Energy of Double-Network Hydrogels. ACS Macro Letters, 0, , 130-137.	4.8	0
1069	Highly Stretchable and Self-Adhesive Wearable Biosensor Based on Nanozyme-Catalyzed Conductive Hydrogels. ACS Applied Polymer Materials, 2024, 6, 2188-2200.	4.4	1
1070	Tough, Antifreezing, and Piezoelectric Organohydrogel as a Flexible Wearable Sensor for Human–Machine Interaction. ACS Nano, 2024, 18, 3720-3732.	14.6	1
1071	Seamless Integration of Conducting Hydrogels in Daily Life: From Preparation to Wearable Application. Advanced Science, 2024, 11, .	11.2	1
1072	Soft modularized robotic arm for safe human–robot interaction based on visual and proprioceptive feedback. International Journal of Robotics Research, 0, , .	8.5	0
1073	Novel pH-sensitive of organic composite (kc-g-poly(AAc-co-AAm)/bentonite), synthesis and characterization candidate as a carrier for controlled release system in vitro to some drugs. Carbon Letters, 2024, 34, 505-517.	5.9	0
1074	Self-healing and self-adhesive hydrogen gas sensing tape for robust applications. Chemical Engineering Journal, 2024, 482, 148911.	12.7	1
1075	Self-encapsulated ionic fibers based on stress-induced adaptive phase transition for non-contact depth-of-field camouflage sensing. Nature Communications, 2024, 15, .	12.8	0
1076	Dynamic responses of Ca-alginate/polyacrylamide hydrogels at high strain rates. International Journal of Mechanical Sciences, 2024, 269, 109052.	6.7	0
1077	Accurate measurement of mechanical properties of soft materials by introducing transition layers into test samples. Engineering Fracture Mechanics, 2024, 297, 109896.	4.3	0

#	Article	IF	CITATIONS
1078	Piezoionic Elastomers by Phase and Interface Engineering for Highâ€Performance Energyâ€Harvesting Ionotronics. Advanced Materials, 2024, 36, .	21.0	0
1079	Ionic Transistors. ACS Nano, 2024, 18, 4624-4650.	14.6	0
1080	Self-compliant ionic skin by leveraging hierarchical hydrogen bond association. Nature Communications, 2024, 15, .	12.8	0
1081	Stable Flexible Electronic Devices under Harsh Conditions Enabled by Double-Network Hydrogels Containing Binary Cations. ACS Applied Materials & Interfaces, 2024, 16, 7768-7779.	8.0	0
1082	Light-responsive MXenegel via interfacial host-guest supramolecular bridging. Nature Communications, 2024, 15, .	12.8	0
1083	A Guide to Printed Stretchable Conductors. Chemical Reviews, 2024, 124, 860-888.	47.7	1
1084	Multimodal Soft Robotic Actuation and Locomotion. Advanced Materials, 2024, 36, .	21.0	0
1085	Advanced wearable strain sensors: Ionic double network hydrogels with exceptional stretchability, adhesion, anti-freezing properties, and sensitivity. Materials Research Bulletin, 2024, 174, 112723.	5.2	0
1086	An ultra-soft conductive elastomer for multifunctional tactile sensors with high range and sensitivity. Materials Horizons, 2024, 11, 1975-1988.	12.2	0
1087	Iontronic Dynamic Sensor with Broad Bandwidth and Flat Frequency Response Using Controlled Preloading Strategy. ACS Nano, 0, , .	14.6	0
1088	3D microprinting of QR-code integrated hydrogel tactile sensor for real-time E-healthcare. Chemical Engineering Journal, 2024, 484, 149375.	12.7	0
1089	An interfacial robust and entire self-healing ionogel-elastomer hybrid for elastic electronics enables discretionary assembly and reconfiguration. Science China Chemistry, 2024, 67, 1316-1323.	8.2	0
1090	Cascade heterointerface-gated iontronics. Matter, 2024, 7, 299-301.	10.0	0
1091	Buckling behavior of soft spherical shells with patterned surface under indentation. International Journal of Mechanical Sciences, 2024, 270, 109113.	6.7	0
1092	Digital Light Processing of Soft Robotic Gripper with High Toughness and Selfâ€Healing Capability Achieved by Deep Eutectic Solvents. Advanced Functional Materials, 0, , .	14.9	0
1093	Precisely writing/printing hydrogel patterns on polymer surfaces. Chemical Engineering Journal, 2024, 485, 149851.	12.7	0
1094	A high-current hydrogel generator with engineered mechanoionic asymmetry. Nature Communications, 2024, 15, .	12.8	0
1095	Wearable Sensor Based on a Tough Conductive Gel for Real-Time and Remote Human Motion Monitoring. ACS Applied Materials & Interfaces, 2024, 16, 11957-11972.	8.0	0

#	Article	IF	CITATIONS
1096	Shaping high-performance wearable robots for human motor and sensory reconstruction and enhancement. Nature Communications, 2024, 15, .	12.8	0
1097	Exploring the Potentials of Chitin and Chitosanâ€Based Bioinks for 3Dâ€Printing of Flexible Electronics: The Future of Sustainable Bioelectronics. Small Methods, 0, , .	8.6	0
1098	Ultrastretchable and Tough Poly(ionic liquid) Elastomer with Strain-Stiffening Ability Enabled by Strong/Weak Ionic Interactions. Macromolecules, 2024, 57, 2339-2350.	4.8	0
1099	Mussel-inspired self-healing adhesive MXene hydrogel for epidermal electronics. , 2024, 2, 100253.		0
1100	Robust and ultra-tough lignocellulosic organogel with zipper-like sliding noncovalent nanostructural design: Towards next-generation bio-derived flexible electronics. Chemical Engineering Journal, 2024, 485, 150105.	12.7	0
1101	Allâ€Nanofiber Iontronic Sensor with Multiple Sensory Capabilities for Wearable Electronics. Advanced Materials Technologies, 2024, 9, .	5.8	0
1102	Mechanically adaptive supercontractile polymer for soft bioelectronics. Matter, 2024, 7, 745-749.	10.0	0
1104	Reconfiguring hydrogel assemblies using a photocontrolled metallopolymer adhesive for multiple customized functions. Nature Chemistry, 0, , .	13.6	0
1105	Cross-Linked Polyacrylic-Based Hydrogel Polymer Electrolytes for Flexible Supercapacitors. Polymers, 2024, 16, 800.	4.5	0
1106	Neural interfaces: Bridging the brain to the world beyond healthcare. Exploration, 0, , .	11.0	0
1107	Gel-based electrochemical DNA synthesis for quasi-solid-state data storage. Chemical Engineering Journal, 2024, 487, 150485.	12.7	0
1108	Small functional hydrogels with big engineering applications. Materials Today Physics, 2024, 43, 101397.	6.0	0
1109	Low-impedance tissue-device interface using homogeneously conductive hydrogels chemically bonded to stretchable bioelectronics. Science Advances, 2024, 10, .	10.3	0
1110	Disulfide-Cross-Linked Tetra-PEG Gels. Macromolecules, 2024, 57, 3058-3065.	4.8	Ο
1111	Mechanical Tester Driven by Surface Tension. Nano Letters, 2024, 24, 4012-4019.	9.1	0
1112	E-Tattoos: Toward Functional but Imperceptible Interfacing with Human Skin. Chemical Reviews, 2024, 124, 3220-3283.	47.7	0
1113	Opto-electrochemical variation with gel polymer electrolytes in transparent electrochemical capacitors for ionotronics. Applied Physics Letters, 2024, 124, .	3.3	0
	Anno and ante mattering disconting and the stanta alting for more during and call addressing an differentiated		

_			_		
C1	ΤΔΤ	ION	IVF	PO	D T

#	Article	IF	CITATIONS
1115	Hydrogel-Gated FETs in Neuromorphic Computing to Mimic Biological Signal: A Review. Biosensors, 2024, 14, 150.	4.7	0
1116	Creep-free polyelectrolyte elastomer for drift-free iontronic sensing. Nature Materials, 0, , .	27.5	0
1117	Elastomers Fail from the Edge. Physical Review X, 2024, 14, .	8.9	0
1118	Rational Design Strategy for High-Temperature-Tolerant Stretchable Hydrogels for Building Fire Protection. ACS Applied Polymer Materials, 2024, 6, 3042-3048.	4.4	0
1119	Multifunctional Polyoxometalatesâ€Based Ionohydrogels toward Flexible Electronics. Advanced Materials, 0, , .	21.0	0