A bioinspired flexible organic artificial afferent nerve

Science 360, 998-1003 DOI: 10.1126/science.aao0098

Citation Report

#	Article	IF	CITATIONS
1	Stretchable organic optoelectronic sensorimotor synapse. Science Advances, 2018, 4, eaat7387.	4.7	359
2	Narrowband Perovskite Photodetector-Based Image Array for Potential Application in Artificial Vision. Nano Letters, 2018, 18, 7628-7634.	4.5	180
3	Nanomaterials in Skin-Inspired Electronics: Toward Soft and Robust Skin-like Electronic Nanosystems. ACS Nano, 2018, 12, 11731-11739.	7.3	142
4	Moving skin beyond the biological. Nature, 2018, 563, S96-S98.	13.7	4
5	Recent Advances in Smart Wearable Sensing Systems. Advanced Materials Technologies, 2018, 3, 1800444.	3.0	128
6	Overview of finger friction and tactile perception. Biosurface and Biotribology, 2018, 4, 99-111.	0.6	10
7	Bioinspired and bristled microparticles for ultrasensitive pressure and strain sensors. Nature Communications, 2018, 9, 5161.	5.8	138
8	Recent Advances in Largeâ€Scale Tactile Sensor Arrays Based on a Transistor Matrix. Advanced Materials Interfaces, 2018, 5, 1801061.	1.9	48
9	Facile Nanogold–Perovskite Enabling Ultrasensitive Flexible Broadband Photodetector with pW Scale Detection Limit. Advanced Optical Materials, 2018, 6, 1800996.	3.6	14
10	Restickable Oxide Neuromorphic Transistors with Spikeâ€Timingâ€Dependent Plasticity and Pavlovian Associative Learning Activities. Advanced Functional Materials, 2018, 28, 1804025.	7.8	139
11	Mechanosensation-Active Matrix Based on Direct-Contact Tribotronic Planar Graphene Transistor Array. ACS Nano, 2018, 12, 9381-9389.	7.3	64
12	A flexible and multifunctional electronic nose using polyaniline/cotton fibrous membrane with a hierarchical structure. Materials Letters, 2018, 233, 324-327.	1.3	12
13	A bioinspired flexible organic artificial afferent nerve. Science, 2018, 360, 998-1003.	6.0	982
14	Neuromorphic circuits impart a sense of touch. Science, 2018, 360, 966-967.	6.0	13
15	Organic Electronics for Artificial Touch. Trends in Neurosciences, 2018, 41, 568-570.	4.2	3
16	Organic electronics for neuromorphic computing. Nature Electronics, 2018, 1, 386-397.	13.1	672
17	Recent progress in flexible pressure sensor arrays: from design to applications. Journal of Materials Chemistry C, 2018, 6, 11878-11892.	2.7	194
18	Recent Advances in Transistorâ€Based Artificial Synapses. Advanced Functional Materials, 2019, 29, 1903700.	7.8	396

ATION RED

#	Article	IF	CITATIONS
19	Recent Advances in Electric-Double-Layer Transistors for Bio-Chemical Sensing Applications. Sensors, 2019, 19, 3425.	2.1	44
20	Fully photon modulated heterostructure for neuromorphic computing. Nano Energy, 2019, 65, 104000.	8.2	110
21	Graphitic carbon nitride nanosheets for solution processed non-volatile memory devices. Journal of Materials Chemistry C, 2019, 7, 10203-10210.	2.7	24
22	Dynamically Reconfigurable Shortâ€Term Synapse with Millivolt Stimulus Resolution Based on Organic Electrochemical Transistors. Advanced Materials Technologies, 2019, 4, 1900471.	3.0	57
23	Compact modelling and SPICE simulation for three-dimensional, inkjet-printed organic transistors, inverters and ring oscillators. Journal Physics D: Applied Physics, 2019, 52, 444005.	1.3	17
24	Hierarchically Structured Vertical Gold Nanowire Array-Based Wearable Pressure Sensors for Wireless Health Monitoring. ACS Applied Materials & Interfaces, 2019, 11, 29014-29021.	4.0	148
25	Optoelectronic resistive random access memory for neuromorphic vision sensors. Nature Nanotechnology, 2019, 14, 776-782.	15.6	783
26	Flexible Tactile Electronic Skin Sensor with 3D Force Detection Based on Porous CNTs/PDMS Nanocomposites. Nano-Micro Letters, 2019, 11, 57.	14.4	126
27	Skinâ€Inspired Electronics and Its Applications in Advanced Intelligent Systems. Advanced Intelligent Systems, 2019, 1, 1900063.	3.3	15
28	Assembling a Natural Small Molecule into a Supramolecular Network with High Structural Order and Dynamic Functions. Journal of the American Chemical Society, 2019, 141, 12804-12814.	6.6	190
29	Towards organic neuromorphic devices for adaptive sensing and novel computing paradigms in bioelectronics. Journal of Materials Chemistry C, 2019, 7, 12754-12760.	2.7	56
30	Highâ€Transconductance Stretchable Transistors Achieved by Controlled Gold Microcrack Morphology. Advanced Electronic Materials, 2019, 5, 1900347.	2.6	70
31	Electronic Skin: Recent Progress and Future Prospects for Skinâ€Attachable Devices for Health Monitoring, Robotics, and Prosthetics. Advanced Materials, 2019, 31, e1904765.	11.1	936
32	Mimicking Sensory Adaptation with Dielectric Engineered Organic Transistors. Advanced Materials, 2019, 31, e1905018.	11.1	26
33	Solar-stimulated optoelectronic synapse based on organic heterojunction with linearly potentiated synaptic weight for neuromorphic computing. Nano Energy, 2019, 66, 104095.	8.2	100
34	Flexible tactile sensor array for distributed tactile sensing and slip detection in robotic hand grasping. Sensors and Actuators A: Physical, 2019, 297, 111512.	2.0	78
35	Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems. Science Advances, 2019, 5, eaax4961.	4.7	191
36	A Biomimetic Interface with High Adhesion, Tailorable Modulus for On-Skin Sensors, and Low-Power Actuators. Chemistry of Materials, 2019, 31, 8708-8716.	3.2	33

#	Article	IF	CITATIONS
37	E-Skins: Biomimetic Sensing and Encoding for Upper Limb Prostheses. Proceedings of the IEEE, 2019, 107, 2052-2064.	16.4	28
38	Multifunctional polyurethanes synthesized from different triarylamine units with electrochromic, photogeneration, memory storage and sensing properties. New Journal of Chemistry, 2019, 43, 1177-1185.	1.4	8
39	Environmentâ€Adaptable Artificial Visual Perception Behaviors Using a Lightâ€Adjustable Optoelectronic Neuromorphic Device Array. Advanced Materials, 2019, 31, e1906433.	11.1	207
40	Paper-like Foldable Nanowave Circuit with Ultralarge Curvature and Ultrahigh Stability. ACS Applied Materials & Interfaces, 2019, 11, 43368-43375.	4.0	18
41	Fingerprintâ€Enhanced Capacitiveâ€Piezoelectric Flexible Sensing Skin to Discriminate Static and Dynamic Tactile Stimuli. Advanced Intelligent Systems, 2019, 1, 1900051.	3.3	108
42	The Rise of Bioinspired Ionotronics. Advanced Intelligent Systems, 2019, 1, 1900073.	3.3	43
43	Ultra-Thin, Ultra-Lightweight, and Multifunctional Skin for Highly Deformable Structures. , 2019, , .		2
44	Local Crackâ€Programmed Gold Nanowire Electronic Skin Tattoos for Inâ€Plane Multisensor Integration. Advanced Materials, 2019, 31, e1903789.	11.1	161
45	Tactile Sensors for Advanced Intelligent Systems. Advanced Intelligent Systems, 2019, 1, 1900090.	3.3	80
46	Versatile neuromorphic electronics by modulating synaptic decay of single organic synaptic transistor: From artificial neural networks to neuro-prosthetics. Nano Energy, 2019, 65, 104035.	8.2	115
47	A highly stretchable and transparent silver nanowire/thermoplastic polyurethane film strain sensor for human motion monitoring. Inorganic Chemistry Frontiers, 2019, 6, 3119-3124.	3.0	55
48	Flexible Multimodal Sensors for Electronic Skin: Principle, Materials, Device, Array Architecture, and Data Acquisition Method. Proceedings of the IEEE, 2019, 107, 2065-2083.	16.4	59
49	Flexible Ultralow-Power Sensor Interfaces for E-Skin. Proceedings of the IEEE, 2019, 107, 2084-2105.	16.4	41
50	A bimodal soft electronic skin for tactile and touchless interaction in real time. Nature Communications, 2019, 10, 4405.	5.8	188
51	Recent progress on electrohydrodynamic nanowire printing. Science China Materials, 2019, 62, 1709-1726.	3.5	11
52	Emerging synaptic devices: from two-terminal memristors to multiterminal neuromorphic transistors. Materials Today Nano, 2019, 8, 100059.	2.3	56
53	A bio-inspired electronic synapse using solution processable organic small molecule. Journal of Materials Chemistry C, 2019, 7, 1491-1501.	2.7	59
54	Sequential Solution Polymerization of Poly(3,4-ethylenedioxythiophene) Using V2O5 as Oxidant for Flexible Touch Sensors. IScience, 2019, 12, 66-75.	1.9	61

#	Article	IF	CITATIONS
55	Emerging Technologies of Flexible Pressure Sensors: Materials, Modeling, Devices, and Manufacturing. Advanced Functional Materials, 2019, 29, 1808509.	7.8	316
56	An integrated transparent, UV-filtering organohydrogel sensor <i>via</i> molecular-level ion conductive channels. Journal of Materials Chemistry A, 2019, 7, 4525-4535.	5.2	143
57	A Flexible Magnetic Field Sensor Based on AgNWs & MNs-PDMS. Nanoscale Research Letters, 2019, 14, 27.	3.1	7
58	Tunable synaptic behavior realized in C3N composite based memristor. Nano Energy, 2019, 58, 293-303.	8.2	123
59	Piezothermic Transduction of Functional Composite Materials. ACS Applied Materials & Interfaces, 2019, 11, 4588-4596.	4.0	13
60	Advanced electronic skin devices for healthcare applications. Journal of Materials Chemistry B, 2019, 7, 173-197.	2.9	193
61	Organic semiconductors for biological sensing. Journal of Materials Chemistry C, 2019, 7, 1111-1130.	2.7	84
62	Significant Difference in Semiconducting Properties of Isomeric Allâ€Acceptor Polymers Synthesized via Direct Arylation Polycondensation. Angewandte Chemie - International Edition, 2019, 58, 11893-11902.	7.2	68
63	Inkjet-printed stretchable and low voltage synaptic transistor array. Nature Communications, 2019, 10, 2676.	5.8	194
64	Bilayered Oxideâ€Based Cognitive Memristor with Brainâ€Inspired Learning Activities. Advanced Electronic Materials, 2019, 5, 1900439.	2.6	43
65	Significant Difference in Semiconducting Properties of Isomeric Allâ€Acceptor Polymers Synthesized via Direct Arylation Polycondensation. Angewandte Chemie, 2019, 131, 12019-12028.	1.6	7
66	Memristors with organicâ€inorganic halide perovskites. InformaÄnÃ-Materiály, 2019, 1, 183-210.	8.5	111
67	Thermochromic and Piezocapacitive Flexible Sensor Array by Combining Composite Elastomer Dielectrics and Transparent Ionic Hydrogel Electrodes. Advanced Materials Technologies, 2019, 4, 1900327.	3.0	44
68	Prediction of Intramolecular Reorganization Energy Using Machine Learning. Journal of Physical Chemistry A, 2019, 123, 7855-7863.	1.1	36
69	Hybrid Silicon Nanowire Devices and Their Functional Diversity. Advanced Science, 2019, 6, 1900522.	5.6	54
70	Towards ultra-wide operation range and high sensitivity: Graphene film based pressure sensors for fingertips. Biosensors and Bioelectronics, 2019, 139, 111296.	5.3	26
71	Mimicking Neuroplasticity in a Hybrid Biopolymer Transistor by Dual Modes Modulation. Advanced Functional Materials, 2019, 29, 1902374.	7.8	149
72	Materials and structural designs of stretchable conductors. Chemical Society Reviews, 2019, 48, 2946-2966.	18.7	367

#	Article	IF	CITATIONS
73	An ultrafast self-healing polydimethylsiloxane elastomer with persistent sealing performance. Materials Chemistry Frontiers, 2019, 3, 1411-1421.	3.2	38
74	Soft Electronic Skin for Multi‧ite Damage Detection and Localization. Advanced Functional Materials, 2019, 29, 1900160.	7.8	57
75	Dimethyl Ketone Treatment of Cross-linked Poly(4-vinylphenol) Insulators for Pentacene Thin-film Transistors. Journal of the Korean Physical Society, 2019, 74, 280-285.	0.3	4
76	Functional Connectivity of Organic Neuromorphic Devices by Global Voltage Oscillations. Advanced Intelligent Systems, 2019, 1, 1900013.	3.3	24
77	Flexible Pyrene/Phenanthro[9,10â€ <i>d</i>]imidazoleâ€Based Memristive Devices for Mimicking Synaptic Plasticity. Advanced Intelligent Systems, 2019, 1, 1900008.	3.3	30
78	Flow field perception based on the fish lateral line system. Bioinspiration and Biomimetics, 2019, 14, 041001.	1.5	56
79	Materials and Design Strategies of Stretchable Electrodes for Electronic Skin and its Applications. Proceedings of the IEEE, 2019, 107, 2185-2197.	16.4	55
80	Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing. Langmuir, 2019, 35, 7659-7671.	1.6	21
81	Organic Synapses for Neuromorphic Electronics: From Brain-Inspired Computing to Sensorimotor Nervetronics. Accounts of Chemical Research, 2019, 52, 964-974.	7.6	213
82	Enabling Multifunctional Organic Transistors with Fine-Tuned Charge Transport. Accounts of Chemical Research, 2019, 52, 1113-1124.	7.6	41
83	Synergy of Singleâ€ion Conductive and Thermoâ€responsive Copolymer Hydrogels Achieving Antiâ€Arrhenius Ionic Conductivity. Chemistry - an Asian Journal, 2019, 14, 1404-1408.	1.7	9
84	Recent Progress in Inkjetâ€Printed Thinâ€Film Transistors. Advanced Science, 2019, 6, 1801445.	5.6	187
85	pH-dependent plasticity regulation in proton/electron hybrid oxide-based synaptic transistors. Applied Surface Science, 2019, 481, 1412-1417.	3.1	18
86	Piezotronic Graphene Artificial Sensory Synapse. Advanced Functional Materials, 2019, 29, 1900959.	7.8	147
87	Dimensionality Dependent Plasticity in Halide Perovskite Artificial Synapses for Neuromorphic Computing. Advanced Electronic Materials, 2019, 5, 1900008.	2.6	109
88	The construction of supramolecular systems. Science, 2019, 363, 1396-1397.	6.0	150
89	Self-powered artificial synapses actuated by triboelectric nanogenerator. Nano Energy, 2019, 60, 377-384.	8.2	125
90	Conjugated Polymers for Assessing and Controlling Biological Functions. Advanced Materials, 2019, 31, e1806712.	11.1	151

#	Article	IF	CITATIONS
91	Spatiotemporal Information Processing Emulated by Multiterminal Neuroâ€Transistor Networks. Advanced Materials, 2019, 31, e1900903.	11.1	151
92	Apply rich psychological terms in AI with care. Nature Machine Intelligence, 2019, 1, 165-167.	8.3	20
93	Intrinsically stretchable conductors and interconnects for electronic applications. Materials Chemistry Frontiers, 2019, 3, 1032-1051.	3.2	21
94	Recent Progress in Threeâ€Terminal Artificial Synapses: From Device to System. Small, 2019, 15, e1900695.	5.2	206
95	Healthcare electronic skin devices. Journal of Semiconductors, 2019, 40, 030401.	2.0	1
96	Mixed-halide perovskite for ultrasensitive two-terminal artificial synaptic devices. Materials Chemistry Frontiers, 2019, 3, 941-947.	3.2	54
97	Toward a new generation of smart skins. Nature Biotechnology, 2019, 37, 382-388.	9.4	323
98	Polymeric foams for flexible and highly sensitive low-pressure capacitive sensors. Npj Flexible Electronics, 2019, 3, .	5.1	124
99	Review of Printed Electrodes for Flexible Devices. Frontiers in Materials, 2019, 5, .	1.2	85
100	2D–Organic Hybrid Heterostructures for Optoelectronic Applications. Advanced Materials, 2019, 31, e1803831.	11.1	86
101	Ionotronic Neuromorphic Devices for Bionic Neural Network Applications. Physica Status Solidi - Rapid Research Letters, 2019, 13, .	1.2	16
102	Lightâ€Stimulated Synaptic Transistors Fabricated by a Facile Solution Process Based on Inorganic Perovskite Quantum Dots and Organic Semiconductors. Small, 2019, 15, e1900010.	5.2	184
103	Liquid metal-based electrical interconnects and interfaces with excellent stability and reliability for flexible electronics. Nanoscale, 2019, 11, 5441-5449.	2.8	32
104	Unconventional Inorganicâ€Based Memristive Devices for Advanced Intelligent Systems. Advanced Materials Technologies, 2019, 4, 1900080.	3.0	14
105	Route towards sustainable smart sensors: ferroelectric polyvinylidene fluoride-based materials and their integration in flexible electronics. Chemical Society Reviews, 2019, 48, 1787-1825.	18.7	226
106	Bioinspired Self-Healing Liquid Films for Ultradurable Electronics. ACS Nano, 2019, 13, 3225-3231.	7.3	36
107	Bioinspired Artificial Sensory Nerve Based on Nafion Memristor. Advanced Functional Materials, 2019, 29, 1808783.	7.8	206
108	Highly stretchable and autonomously healable epidermal sensor based on multi-functional hydrogel frameworks. Journal of Materials Chemistry A, 2019, 7, 5949-5956.	5.2	187

#	Article	IF	CITATIONS
109	Printed subthreshold organic transistors operating at high gain and ultralow power. Science, 2019, 363, 719-723.	6.0	208
110	Multifunctional Carbon Nanotubes Enhanced Structural Composites with Improved Toughness and Damage Monitoring. Journal of Composites Science, 2019, 3, 109.	1.4	10
111	Large-area, Fast responding Flexible UV Photodetector realized by a Facile Method. , 2019, , .		1
112	Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature, 2019, 575, 473-479.	13.7	610
113	Screen-printed soft triboelectric nanogenerator with porous PDMS and stretchable PEDOT:PSS electrode. Journal of Semiconductors, 2019, 40, 112601.	2.0	17
114	Biomimetics for high-performance flexible tactile sensors and advanced artificial sensory systems. Journal of Materials Chemistry C, 2019, 7, 14816-14844.	2.7	65
115	An integrated self-healable and robust conductive hydrogel for dynamically self-adhesive and highly conformable electronic skin. Journal of Materials Chemistry C, 2019, 7, 15208-15218.	2.7	67
116	Dielectric ceramics/TiO ₂ /single-crystalline silicon nanomembrane heterostructure for high performance flexible thin-film transistors on plastic substrates. RSC Advances, 2019, 9, 35289-35296.	1.7	3
117	A stretchable, conformable, and biocompatible graphene strain sensor based on a structured hydrogel for clinical application. Journal of Materials Chemistry A, 2019, 7, 27099-27109.	5.2	61
118	Triboiontronic Transistor of MoS ₂ . Advanced Materials, 2019, 31, e1806905.	11.1	93
119	Recent Advances in Transparent Electronics with Stretchable Forms. Advanced Materials, 2019, 31, e1804690.	11.1	114
120	Irregular Hexagonal Cellular Substrate for Stretchable Electronics. Journal of Applied Mechanics, Transactions ASME, 2019, 86, .	1.1	39
121	A Robust Artificial Synapse Based on Organic Ferroelectric Polymer. Advanced Electronic Materials, 2019, 5, 1800600.	2.6	129
122	Stretchable triboelectric multimodal tactile interface simultaneously recognizing various dynamic body motions. Nano Energy, 2019, 56, 347-356.	8.2	32
123	Flexible Electronics: Stretchable Electrodes and Their Future. Advanced Functional Materials, 2019, 29, 1805924.	7.8	510
124	Elastomers with Microislands as Strain Isolating Substrates for Stretchable Electronics. Advanced Materials Technologies, 2019, 4, 1800365.	3.0	13
125	Direct-printed nanoscale metal-oxide-wire electronics. Nano Energy, 2019, 58, 437-446.	8.2	36
126	Materials, Structures, and Functions for Flexible and Stretchable Biomimetic Sensors. Accounts of Chemical Research, 2019, 52, 288-296.	7.6	157

		CITATION RE	PORT	
#	ARTICLE		IF	Citations
127	An overview of biomimetic robots with animal behaviors. Neurocomputing, 2019, 332, 339	-350.	3.5	72
128	Ion Electron–Coupled Functionality in Materials and Devices Based on Conjugated Polym Advanced Materials, 2019, 31, e1805813.	ers.	11.1	118
129	Bioinspired Electronics for Artificial Sensory Systems. Advanced Materials, 2019, 31, e1803	637.	11.1	195
130	High-performance stretchable conductive nanocomposites: materials, processes, and devic applications. Chemical Society Reviews, 2019, 48, 1566-1595.	e	18.7	400
131	Photonic Organolead Halide Perovskite Artificial Synapse Capable of Accelerated Learning a Power Inspired by Dopamineâ€Facilitated Synaptic Activity. Advanced Functional Materials 1806646.	וּד Low , 2019, 29,	7.8	154
132	Geckoâ€Inspired Paper Artificial Skin for Intimate Skin Contact and Multisensing. Advanced Technologies, 2019, 4, 1800392.	l Materials	3.0	30
133	An improved theoretical model of the resistive network for woven structured electronic tex Journal of the Textile Institute, 2020, 111, 235-248.	tile.	1.0	6
134	When Flexible Organic Fieldâ€Effect Transistors Meet Biomimetics: A Prospective View of t Things. Advanced Materials, 2020, 32, e1901493.	he Internet of	11.1	136
135	Microfluidics for Biosynthesizing: from Droplets and Vesicles to Artificial Cells. Small, 2020, e1903940.	16,	5.2	101
136	Mimicking Human and Biological Skins for Multifunctional Skin Electronics. Advanced Func Materials, 2020, 30, 1904523.	tional	7.8	247
137	Smart Textileâ€Integrated Microelectronic Systems for Wearable Applications. Advanced № 2020, 32, e1901958.	laterials,	11.1	427
138	A bionic tactile plastic hydrogel-based electronic skin constructed by a nerve-like nanonetw combining stretchable, compliant, and self-healing properties. Chemical Engineering Journa 122271.	ork I, 2020, 379,	6.6	171
139	Artificial Sensory Memory. Advanced Materials, 2020, 32, e1902434.		11.1	200
140	Advanced materials of printed wearables for physiological parameter monitoring. Materials 2020, 32, 147-177.	Today,	8.3	110
141	Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics. Ad Materials, 2020, 32, e1903558.	vanced	11.1	289
142	A linear-to-rotary hybrid nanogenerator for high-performance wearable biomechanical energy harvesting. Nano Energy, 2020, 67, 104235.	gy	8.2	172
143	Artificial Perception Built on Memristive System: Visual, Auditory, and Tactile Sensations. A Intelligent Systems, 2020, 2, 1900118.	dvanced	3.3	53
144	An artificial spiking afferent nerve based on Mott memristors for neurorobotics. Nature Communications, 2020, 11, 51.		5.8	217

#	Article	IF	CITATIONS
145	A UV damage-sensing nociceptive device for bionic applications. Nanoscale, 2020, 12, 1484-1494.	2.8	22
146	Bioinspired by cell membranes: functional polymeric materials for biomedical applications. Materials Chemistry Frontiers, 2020, 4, 750-774.	3.2	45
147	Active-powering pressure-sensing fabric devices. Journal of Materials Chemistry A, 2020, 8, 358-368.	5.2	21
148	A fiber-shaped light-emitting pressure sensor for visualized dynamic monitoring. Journal of Materials Chemistry C, 2020, 8, 935-942.	2.7	16
149	Voltage control of domain walls in magnetic nanowires for energy-efficient neuromorphic devices. Nanotechnology, 2020, 31, 145201.	1.3	9
150	Ferroic tunnel junctions and their application in neuromorphic networks. Applied Physics Reviews, 2020, 7, .	5.5	91
151	Flexible Femtojoule Energy-Consumption In-Ga-Zn-O Synaptic Transistors With Extensively Tunable Memory Time. IEEE Transactions on Electron Devices, 2020, 67, 105-112.	1.6	25
152	Parallel Signal Processing of a Wireless Pressureâ€Sensing Platform Combined with Machineâ€Learningâ€Based Cognition, Inspired by the Human Somatosensory System. Advanced Materials, 2020, 32, e1906269.	11.1	43
153	Physical sensors for skinâ€inspired electronics. InformaÄnÃ-Materiály, 2020, 2, 184-211.	8.5	159
154	Muscle-Inspired Self-Healing Hydrogels for Strain and Temperature Sensor. ACS Nano, 2020, 14, 218-228.	7.3	476
155	A Subâ€10 nm Vertical Organic/Inorganic Hybrid Transistor for Painâ€Perceptual and Sensitizationâ€Regulated Nociceptor Emulation. Advanced Materials, 2020, 32, e1906171.	11.1	135
156	Recent Progress in Photonic Synapses for Neuromorphic Systems. Advanced Intelligent Systems, 2020, 2, 1900136.	3.3	132
157	An Artificial Somatic Reflex Arc. Advanced Materials, 2020, 32, e1905399.	11.1	126
158	Self-Powered Tactile Sensor with Learning and Memory. ACS Nano, 2020, 14, 1390-1398.	7.3	107
159	Emerging Devices for Biologically Accurate Neuron. ACS Applied Electronic Materials, 2020, 2, 389-397.	2.0	7
160	A Dynamic Gel with Reversible and Tunable Topological Networks and Performances. Matter, 2020, 2, 390-403.	5.0	216
161	Sensing and Control for Prosthetic Hands in Clinical and Research Applications. , 2020, , 445-468.		12
162	Lightâ€Stimulated Artificial Synapses Based on 2D Organic Fieldâ€Effect Transistors. Advanced Electronic Materials, 2020, 6, 1901217.	2.6	63

#	ARTICLE Soft eSkin: distributed touch sensing with harmonized energy and computing. Philosophical	IF	CITATIONS
163	Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190156. Albumen based protein gated bioinspired neuromorphic transistors with learning abilities. Organic	1.6	10
165	Ultra-sensitive mechanoluminescent ceramic sensor based on air-plasma-sprayed SrAl2O4:Eu2+, Dy3+ coating. Sensors and Actuators A: Physical, 2020, 315, 112246.	2.0	13
166	Flexible Integrated Circuits Based on Carbon Nanotubes. Accounts of Materials Research, 2020, 1, 88-99.	5.9	18
167	Mechanical durability enhancement of gold-nanosheet stretchable electrodes for wearable human bio-signal detection. Materials and Design, 2020, 196, 109178.	3.3	16
168	Ionâ€Gated Transistor: An Enabler for Sensing and Computing Integration. Advanced Intelligent Systems, 2020, 2, 2000156.	3.3	27
169	Oxideâ€Based Electrolyteâ€Gated Transistors for Spatiotemporal Information Processing. Advanced Materials, 2020, 32, e2003018.	11.1	104
170	Flexible GaN microwire-based piezotronic sensory memory device. Nano Energy, 2020, 78, 105312.	8.2	13
171	Iridium-based polymer for memristive devices with integrated logic and arithmetic applications. Journal of Materials Chemistry C, 2020, 8, 16845-16857.	2.7	8
172	A Habituation Sensory Nervous System with Memristors. Advanced Materials, 2020, 32, e2004398.	11.1	78
173	Spike Encoding with Optic Sensory Neurons Enable a Pulse Coupled Neural Network for Ultraviolet Image Segmentation. Nano Letters, 2020, 20, 8015-8023.	4.5	59
174	All-printed ultra-flexible organic nanowire artificial synapses. Journal of Materials Chemistry C, 2020, 8, 11138-11144.	2.7	15
175	Recent advances in bioelectronics chemistry. Chemical Society Reviews, 2020, 49, 7978-8035.	18.7	54
176	A Fast and Cost-Effective Transfer Printing of Liquid Metal Inks for Three-Dimensional Wiring in Flexible Electronics. ACS Applied Materials & Interfaces, 2020, 12, 36723-36730.	4.0	53
177	Flexible Carbon Nanotube Synaptic Transistor for Neurological Electronic Skin Applications. ACS Nano, 2020, 14, 10402-10412.	7.3	86
178	Flexible Pressure Sensors for Biomedical Applications: From Ex Vivo to In Vivo. Advanced Materials Interfaces, 2020, 7, 2000743.	1.9	57
179	Pâ€80: Lightâ€Adjustable Optoelectronic Neuromorphic Device for Artificial Visual Display System. Digest of Technical Papers SID International Symposium, 2020, 51, 1656-1659.	0.1	0
180	Near-sensor and in-sensor computing. Nature Electronics, 2020, 3, 664-671.	13.1	385

	CITATION	Report	
#	Article	IF	CITATIONS
181	Self-Powered Memory Systems. , 2020, 2, 1669-1690.		15
182	Artificially innervated self-healing foams as synthetic piezo-impedance sensor skins. Nature Communications, 2020, 11, 5747.	5.8	118
183	Restoration of sensory information via bionic hands. Nature Biomedical Engineering, 2023, 7, 443-455.	11.6	111
184	Proton-enabled activation of peptide materials for biological bimodal memory. Nature Communications, 2020, 11, 5896.	5.8	36
185	How to improve robotic touch. Science, 2020, 370, 768-769.	6.0	37
186	Artificial visual systems enabled by quasi–two-dimensional electron gases in oxide superlattice nanowires. Science Advances, 2020, 6, .	4.7	51
187	Recent advances in optical and optoelectronic data storage based on luminescent nanomaterials. Nanoscale, 2020, 12, 23391-23423.	2.8	47
188	Optoelectronic Inâ€Gaâ€Znâ€O Memtransistors for Artificial Vision System. Advanced Functional Materials, 2020, 30, 2002325.	7.8	57
189	Neuromorphic Engineering for Hardware Computational Acceleration and Biomimetic Perception Motion Integration. Advanced Intelligent Systems, 2020, 2, 2000124.	3.3	17
190	Biaxial stretchable liquid crystal light scattering display based on uniform energy dissipation in non-oriented assembly of gel networks. Journal of Materials Chemistry C, 2020, 8, 13349-13356.	2.7	5
191	Organic materials and devices for brain-inspired computing: From artificial implementation to biophysical realism. MRS Bulletin, 2020, 45, 631-640.	1.7	29
192	Synaptic plasticity of TiO2 nanowire transistor. Microelectronics International, 2020, 37, 125-130.	0.4	4
193	Inkâ€Based Additive Nanomanufacturing of Functional Materials for Humanâ€Integrated Smart Wearables. Advanced Intelligent Systems, 2020, 2, 2000117.	3.3	17
194	Stimuliâ€Enabled Artificial Synapses for Neuromorphic Perception: Progress and Perspectives. Small, 2020, 16, e2001504.	5.2	55
195	Recent Advances in Flexible Fieldâ€Effect Transistors toward Wearable Sensors. Advanced Intelligent Systems, 2020, 2, 2000113.	3.3	46
196	Electromechanical coupling effects for data storage and synaptic devices. Nano Energy, 2020, 77, 105156.	8.2	16
197	Programmable electronic synapse and nonvolatile resistive switches using MoS2 quantum dots. Scientific Reports, 2020, 10, 12450.	1.6	22
198	An adaptive ionic skin with multiple stimulus responses and moist-electric generation ability. Journal of Materials Chemistry A, 2020, 8, 17498-17506.	5.2	53

	CITATIO	DN REPORT	
			0
Ŧ	ARTICLE	IF	CHATIONS
199	Organic neuromorphic devices: Past, present, and future challenges. MRS Bulletin, 2020, 45, 619-630.	1.7	59
200	Self healable neuromorphic memtransistor elements for decentralized sensory signal processing in robotics. Nature Communications, 2020, 11, 4030.	5.8	63
201	Hardware implementation of photoelectrically modulated dendritic arithmetic and spike-timing-dependent plasticity enabled by an ion-coupling gate-tunable vertical 0D-perovskite/2D-MoS ₂ hybrid-dimensional van der Waals heterostructure. Nanoscale, 2020, 12, 21798-21811.	2.8	51
202	Designing artificial sodium ion reservoirs to emulate biological synapses. NPG Asia Materials, 2020, 12,	3.8	17
203	A spiking and adapting tactile sensor for neuromorphic applications. Scientific Reports, 2020, 10, 17260.	1.6	23
204	Robust Design of Large Area Flexible Electronics via Compressed Sensing. , 2020, , .		5
205	Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale. Science Advances, 2020, 6, .	4.7	99
206	Artificially Intelligent Tactile Ferroelectric Skin. Advanced Science, 2020, 7, 2001662.	5.6	45
207	Flexible and Stretchable Photonics: The Next Stretch of Opportunities. ACS Photonics, 2020, 7, 2618-2635.	3.2	49
208	Technologies toward next generation human machine interfaces: From machine learning enhanced tactile sensing to neuromorphic sensory systems. Applied Physics Reviews, 2020, 7, .	5.5	194
209	Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces. Nature Biomedical Engineering, 2020, 4, 1010-1022.	11.6	78
210	Recent Technological Advances in Fabrication and Application of Organic Electrochemical Transistors. Advanced Materials Technologies, 2020, 5, 2000523.	3.0	46
211	Highly stretchable and transparent triboelectric nanogenerator based on multilayer structured stable electrode for self-powered wearable sensor. Nano Energy, 2020, 78, 105385.	8.2	49
212	Self-powered artificial auditory pathway for intelligent neuromorphic computing and sound detection. Nano Energy, 2020, 78, 105403.	8.2	75
213	Achieving Microstructure ontrolled Synaptic Plasticity and Longâ€Term Retention in Ionâ€Gelâ€Gated Organic Synaptic Transistors. Advanced Intelligent Systems, 2020, 2, 2000012.	3.3	51
214	The Evolution of Flexible Electronics: From Nature, Beyond Nature, and To Nature. Advanced Science, 2020, 7, 2001116.	5.6	185
215	Dual Cross-Linked Ion-Based Temperature-Responsive Conductive Hydrogels with Multiple Sensors and Steady Electrocardiogram Monitoring. Chemistry of Materials, 2020, 32, 7670-7678.	3.2	54
216	Flexible Colorâ€Tunable Electroluminescent Devices by Designing Dielectricâ€Distinguishing Doubleâ€Stacked Emissive Layers. Advanced Functional Materials, 2020, 30, 2005200.	7.8	32

#	Article	IF	CITATIONS
217	Recent Progress in Nanomaterial Enabled Chemical Sensors for Wearable Environmental Monitoring Applications. Advanced Functional Materials, 2020, 30, 2005703.	7.8	85
218	An artificial sensory neuron with visual-haptic fusion. Nature Communications, 2020, 11, 4602.	5.8	166
219	Ultraflexible, Degradable Organic Synaptic Transistors Based on Natural Polysaccharides for Neuromorphic Applications. Advanced Functional Materials, 2020, 30, 2006271.	7.8	45
220	Robust Flexible Pressure Sensors Made from Conductive Micropyramids for Manipulation Tasks. ACS Nano, 2020, 14, 12866-12876.	7.3	106
221	Printable and Flexible Planar Silver Electrodes-Based Resistive Switching Sensory Array. Frontiers in Sensors, 2020, 1, .	1.7	3
222	A tactile sensor system with sensory neurons and a perceptual synaptic network based on semivolatile carbon nanotube transistors. NPG Asia Materials, 2020, 12, .	3.8	12
223	Nanocluster-Based Ultralow-Temperature Driven Oxide Gate Dielectrics for High-Performance Organic Electronic Devices. Materials, 2020, 13, 5571.	1.3	1
224	Reciprocating Weissenberg effect for transporting high-viscosity solutions in 3D printing. Journal Physics D: Applied Physics, 2020, 53, 365401.	1.3	2
225	Biohybrid Conjugated Polymer Materials for Augmenting Energy Conversion of Bioelectrochemical Systems. Chemistry - A European Journal, 2020, 26, 15065-15073.	1.7	9
226	Artificial Tactile Perceptual Neuron with Nociceptive and Pressure Decoding Abilities. ACS Applied Materials & Interfaces, 2020, 12, 26258-26266.	4.0	55
227	A Conjugated Polymer Containing Arylazopyrazole Units in the Side Chains for Fieldâ€Effect Transistors Optically Tunable by Near Infraâ€Red Light. Angewandte Chemie - International Edition, 2020, 59, 13844-13851.	7.2	21
228	Mesoâ€Reconstruction of Wool Keratin 3D "Molecular Springs―for Tunable Ultraâ€Sensitive and Highly Recovery Strain Sensors. Small, 2020, 16, e2000128.	5.2	33
229	An Optically Modulated Organic Schottkyâ€Barrier Planarâ€Diodeâ€Based Artificial Synapse. Advanced Optical Materials, 2020, 8, 2000153.	3.6	52
230	Flexible and Highly Sensitive Pressure Sensors with Surface Discrete Microdomes Made from Selfâ€Assembled Polymer Microspheres Array. Macromolecular Chemistry and Physics, 2020, 221, 2000073.	1.1	30
231	Optimizing Electrochemically Active Surfaces of Carbonaceous Electrodes for Ionogel Based Supercapacitors. Advanced Functional Materials, 2020, 30, 2002053.	7.8	35
232	Heterosynaptic Plasticity Emulated by Liquid Crystal–Carbon Nanotube Composites with Modulatory Interneurons. ACS Applied Materials & Interfaces, 2020, 12, 27467-27475.	4.0	12
233	Recent Advances in Flexible and Stretchable Sensing Systems: From the Perspective of System Integration. ACS Nano, 2020, 14, 6449-6469.	7.3	82
234	Energy scavenging artificial nervous system for detecting rotational movement. Nano Energy, 2020, 74, 104912.	8.2	29

#	Article	IF	Citations
235	Neuromorphic Organic Devices that Specifically Discriminate Dopamine from Its Metabolites by Nonspecific Interactions. Advanced Functional Materials, 2020, 30, 2002141.	7.8	21
236	Artificial synaptic transistors based on Schottky barrier height modulation using reduced graphene oxides. Carbon, 2020, 165, 455-460.	5.4	15
237	Depletion Effect-mediated Association of Carbon Nanotube–Polymer Composites and Their Application as Inexpensive Electrode Support Materials. Nano Letters, 2020, 20, 5353-5358.	4.5	3
238	Wearable Triboelectric–Human–Machine Interface (THMI) Using Robust Nanophotonic Readout. ACS Nano, 2020, 14, 8915-8930.	7.3	121
239	Organic small molecule-based RRAM for data storage and neuromorphic computing. Journal of Materials Chemistry C, 2020, 8, 12714-12738.	2.7	76
240	A flexible artificial intrinsic-synaptic tactile sensory organ. Nature Communications, 2020, 11, 2753.	5.8	115
241	Bioinspired Ionic Sensory Systems: The Successor of Electronics. Advanced Materials, 2020, 32, e2000218.	11.1	99
242	A Conjugated Polymer Containing Arylazopyrazole Units in the Side Chains for Fieldâ€Effect Transistors Optically Tunable by Near Infraâ€Red Light. Angewandte Chemie, 2020, 132, 13948-13955.	1.6	6
243	Multifunctional smart electronic skin fabricated from two-dimensional like polymer film. Nano Energy, 2020, 75, 105044.	8.2	27
244	Wearable Triboelectric/Aluminum Nitride Nanoâ€Energyâ€Nanoâ€System with Selfâ€Sustainable Photonic Modulation and Continuous Force Sensing. Advanced Science, 2020, 7, 1903636.	5.6	66
245	Microstructured flexible capacitive sensor with high sensitivity based on carbon fiber-filled conductive silicon rubber. Sensors and Actuators A: Physical, 2020, 312, 112147.	2.0	40
246	Recent progress in optoelectronic neuromorphic devices*. Chinese Physics B, 2020, 29, 078502.	0.7	21
247	Sensors in heart-on-a-chip: A review on recent progress. Talanta, 2020, 219, 121269.	2.9	34
248	Global modulatory heterosynaptic mechanisms in bio-polymer electrolyte gated oxide neuron transistors. Journal Physics D: Applied Physics, 2020, 53, 435105.	1.3	12
249	Enhancement-mode ion-based transistor as a comprehensive interface and real-time processing unit for in vivo electrophysiology. Nature Materials, 2020, 19, 679-686.	13.3	182
250	Thermostable Ion Gels for High-Temperature Operation of Electrolyte-Gated Transistors. ACS Applied Materials & Amp; Interfaces, 2020, 12, 15464-15471.	4.0	13
251	Wearable skin-like optoelectronic systems with suppression of motion artifacts for cuff-less continuous blood pressure monitor. National Science Review, 2020, 7, 849-862.	4.6	82
252	Semiconductor Quantum Dots for Memories and Neuromorphic Computing Systems. Chemical Reviews, 2020, 120, 3941-4006.	23.0	203

#	Article	IF	CITATIONS
253	Flexible Poly(Vinyl Alcohol)–Graphene Oxide Hybrid Nanocomposite Based Cognitive Memristor with Pavlovianâ€Conditioned Reflex Activities. Advanced Electronic Materials, 2020, 6, 1901402.	2.6	31
254	Tactile sensory coding and learning with bio-inspired optoelectronic spiking afferent nerves. Nature Communications, 2020, 11, 1369.	5.8	141
255	Nanomaterial Patterning in 3D Printing. Advanced Materials, 2020, 32, e1907142.	11.1	144
256	Motion Detection Using Tactile Sensors Based on Pressure-Sensitive Transistor Arrays. Sensors, 2020, 20, 3624.	2.1	33
257	Ionic synergetically coupled electrolyte-gated transistors for neuromorphic engineering applications. , 2020, , 145-177.		1
258	Highly stretchable and self-healing strain sensors for motion detection in wireless human-machine interface. Nano Energy, 2020, 76, 105064.	8.2	118
259	Solution-Processable Anion-doped Conjugated Polymer for Nonvolatile Organic Transistor Memory with Synaptic Behaviors. ACS Applied Materials & amp; Interfaces, 2020, 12, 33968-33978.	4.0	37
260	lonic Liquid Gate-Induced Modifications of Step Edges at SrCoO _{2.5} Surfaces. ACS Nano, 2020, 14, 8562-8569.	7.3	4
261	Mechanoplastic Tribotronic Floatingâ€Gate Neuromorphic Transistor. Advanced Functional Materials, 2020, 30, 2002506.	7.8	103
262	Temperature Sensor with a Water-Dissolvable Ionic Gel for Ionic Skin. ACS Applied Materials & Interfaces, 2020, 12, 36449-36457.	4.0	59
263	Oxygenâ€Đetecting Synaptic Device for Realization of Artificial Autonomic Nervous System for Maintaining Oxygen Homeostasis. Advanced Materials, 2020, 32, e2002653.	11.1	37
264	Flexible triboelectric 3D touch pad with unit subdivision structure for effective XY positioning and pressure sensing. Nano Energy, 2020, 76, 105047.	8.2	69
265	Brain-inspired biodegradable pectin based proton conductor gated electronic synapse. Organic Electronics, 2020, 82, 105782.	1.4	11
266	Threshold switching synaptic device with tactile memory function. Nano Energy, 2020, 76, 105109.	8.2	22
267	A flexible chip with embedded intelligence. Nature Electronics, 2020, 3, 358-359.	13.1	19
268	Biometric-based tactile chemomechanical transduction: An adaptable strategy for portable bioassay. Nano Energy, 2020, 71, 104580.	8.2	45
269	Nanoscale triboelectrification gated transistor. Nature Communications, 2020, 11, 1054.	5.8	15
270	Neuromorphic nanoelectronic materials. Nature Nanotechnology, 2020, 15, 517-528.	15.6	464

#	Article	IF	CITATIONS
271	Tailoring synaptic plasticity in a perovskite QD-based asymmetric memristor. Journal of Materials Chemistry C, 2020, 8, 2985-2992.	2.7	41
272	A highly sensitive, stable, scalable pressure sensor based on a facile baking-inspired foaming process for a human–computer interface. Journal of Materials Chemistry C, 2020, 8, 4271-4278.	2.7	24
273	A comprehensive review on emerging artificial neuromorphic devices. Applied Physics Reviews, 2020, 7,	5.5	417
274	WSe ₂ 2D pâ€type semiconductorâ€based electronic devices for information technology: Design, preparation, and applications. InformaÄnÃ-Materiály, 2020, 2, 656-697.	8.5	115
275	Oxide Synaptic Transistors Coupled With Triboelectric Nanogenerators for Bio-Inspired Tactile Sensing Application. IEEE Electron Device Letters, 2020, 41, 617-620.	2.2	51
276	Bioinspired, Microstructured Silk Fibroin Adhesives for Flexible Skin Sensors. ACS Applied Materials & Interfaces, 2020, 12, 5601-5609.	4.0	83
277	Threshold-Tunable, Spike-Rate-Dependent Plasticity Originating from Interfacial Proton Gating for Pattern Learning and Memory. ACS Applied Materials & Interfaces, 2020, 12, 7833-7839.	4.0	41
278	Retinaâ€Inspired Carbon Nitrideâ€Based Photonic Synapses for Selective Detection of UV Light. Advanced Materials, 2020, 32, e1906899.	11.1	222
279	Electrolyte-gated transistors for synaptic electronics, neuromorphic computing, and adaptable biointerfacing. Applied Physics Reviews, 2020, 7, .	5.5	166
280	Tunable Synaptic Plasticity in Crystallized Conjugated Polymer Nanowire Artificial Synapses. Advanced Intelligent Systems, 2020, 2, 1900176.	3.3	36
281	Bio-polysaccharide electrolyte gated photoelectric synergic coupled oxide neuromorphic transistor with Pavlovian activities. Journal of Materials Chemistry C, 2020, 8, 2780-2789.	2.7	30
282	Ultra-stretchable triboelectric nanogenerator as high-sensitive and self-powered electronic skins for energy harvesting and tactile sensing. Nano Energy, 2020, 70, 104546.	8.2	171
283	Ultraflexible and transparent electroluminescent skin for real-time and super-resolution imaging of pressure distribution. Nature Communications, 2020, 11, 663.	5.8	104
284	Morphological Neural Computation Restores Discrimination of Naturalistic Textures in Trans-radial Amputees. Scientific Reports, 2020, 10, 527.	1.6	30
285	A Flexible Carbon Nanotube Senâ€Memory Device. Advanced Materials, 2020, 32, e1907288.	11.1	48
286	A bioinspired analogous nerve towards artificial intelligence. Nature Communications, 2020, 11, 268.	5.8	80
287	Cyber–Physiochemical Interfaces. Advanced Materials, 2020, 32, e1905522.	11.1	64
288	Flourishing Selfâ€Healing Surface Materials: Recent Progresses and Challenges. Advanced Materials Interfaces, 2020, 7, 1901959.	1.9	30

#	Article	IF	CITATIONS
289	Rational Band Engineering of an Organic Double Heterojunction for Artificial Synaptic Devices with Enhanced State Retention and Linear Update of Synaptic Weight. ACS Applied Materials & Interfaces, 2020, 12, 10737-10745.	4.0	14
290	Neuromorphic Processing of Pressure Signal Using Integrated Sensor-Synaptic Device Capable of Selective and Reversible Short- and Long-Term Plasticity Operation. ACS Applied Materials & Interfaces, 2020, 12, 23207-23216.	4.0	37
291	High-performance zero-standby-power-consumption-under-bending pressure sensors for artificial reflex arc. Nano Energy, 2020, 73, 104743.	8.2	40
292	A Bioinspired Wireless Epidermal Photoreceptor for Artificial Skin Vision. Advanced Functional Materials, 2020, 30, 2000381.	7.8	24
293	Multifunctional polydimethylsiloxane foam with multi-walled carbon nanotube and thermo-expandable microsphere for temperature sensing, microwave shielding and piezoresistive sensor. Chemical Engineering Journal, 2020, 393, 124805.	6.6	151
294	An artificial piezotronic synapse for tactile perception. Nano Energy, 2020, 73, 104756.	8.2	36
295	Piezotronic Synapse Based on a Single GaN Microwire for Artificial Sensory Systems. Nano Letters, 2020, 20, 3761-3768.	4.5	26
296	Flexible Liquidâ€Filled Fiber Adapter Enabled Wearable Optical Sensors. Advanced Materials Technologies, 2020, 5, 2000079.	3.0	18
297	Bioinspired bio-voltage memristors. Nature Communications, 2020, 11, 1861.	5.8	144
298	Electronic skins and machine learning for intelligent soft robots. Science Robotics, 2020, 5, .	9.9	339
299	Recent Process of Flexible Transistorâ€Structured Memory. Small, 2021, 17, e1905332.	5.2	69
300	Evolution of Bioâ€Inspired Artificial Synapses: Materials, Structures, and Mechanisms. Small, 2021, 17, e2000041.	5.2	55
301	Biomimicking Antibacterial Optoâ€Electro Sensing Sutures Made of Regenerated Silk Proteins. Advanced Materials, 2021, 33, e2004733.	11.1	28
302	Neuromorphic computing systems based on flexible organic electronics. , 2021, , 531-574.		6
303	Shooting flexible electronics. Frontiers of Physics, 2021, 16, 1.	2.4	33
304	Flexible and Stretchable Fiberâ€5haped Triboelectric Nanogenerators for Biomechanical Monitoring and Humanâ€Interactive Sensing. Advanced Functional Materials, 2021, 31, 2006679.	7.8	145
305	Bio-inspired smart electronic-skin based on inorganic perovskite nanoplates for application in photomemories and mechanoreceptors. Nanoscale, 2021, 13, 253-260.	2.8	14
306	Electronic Skins for Healthcare Monitoring and Smart Prostheses. Annual Review of Control, Robotics, and Autonomous Systems, 2021, 4, 629-650.	7.5	12

ARTICLE IF CITATIONS # Linking Glassâ€Transition Behavior to Photophysical and Charge Transport Properties of Highâ€Mobility 307 7.8 26 Conjugated Polymers. Advanced Functional Materials, 2021, 31, 2007359. How is flexible electronics advancing neuroscience research?. Biomaterials, 2021, 268, 120559. 308 5.7 Topological comparison of unipolar and complementary digital inverter circuits. Organic 309 1.4 8 Electronics, 2021, 89, 106034. Aqueous solution processed mesoporous silica-gated photo-perception neuromorphic transistor. Journal of Material's Science, 2021, 56, 4316-4327. Design, manufacturing and applications of wearable triboelectric nanogenerators. Nano Energy, 2021, 311 8.2 86 81, 105627. Artificial synapses that exploit ionic modulation for perception and integration. Materials Today Physics, 2021, 18, 100329. Artificial tactile peripheral nervous system supported by self-powered transducers. Nano Energy, 2021, 313 8.2 34 82, 105680. The frequency-response behaviour of flexible piezoelectric devices for detecting the magnitude and 314 2.7 34 loading rate of stimuli. Journal of Materials Chemistry C, 2021, 9, 584-594. 315 Strain Engineering in 2D Materialâ€Based Flexible Optoelectronics. Small Methods, 2021, 5, e2000919. 4.6 80 Highly Sensitive Artificial Visual Array Using Transistors Based on Porphyrins and Semiconductors. 5.2 49 Small, 2021, 17, e2005491. Large-Scale Vision-Based Tactile Sensing for Robot Links: Design, Modeling, and Evaluation. IEEE 317 7.337 Transactions on Robotics, 2021, 37, 390-403. Freestanding Dual-Gate Oxide-Based Neuromorphic Transistors for Flexible Artificial Nociceptors. IEEE 1.6 Transactions on Electron Devices, 2021, 68, 415-420. Flexible electro-optical neuromorphic transistors with tunable synaptic plasticity and nociceptive 319 8.2 73 behavior. Nano Energy, 2021, 81, 105648. A highly stretchable and deformation-insensitive bionic electronic exteroceptive neural sensor for 8.2 human-machine interfaces. Nano Energy, 2021, 80, 105548. 321Solution-processed electronics for artificial synapses. Materials Horizons, 2021, 8, 447-470. 6.4 74 Microâ€Schottky Junctionâ€Boosted Efficient Charge Transducing for Ultrasensitive NO₂ Sensing. Advanced Materials Technologies, 2021, 6, . 323 Artificial Skin Perception. Advanced Materials, 2021, 33, e2003014. 11.1 203 Memory Devices for Flexible and Neuromorphic Device Applications. Advanced Intelligent Systems, 324 3.3 2021, 3, 2000206.

#	Article	IF	CITATIONS
325	Transition from noise-induced to self-sustained current spiking generated by a NbOx thin film threshold switch. Applied Physics Letters, 2021, 118, .	1.5	6
326	Fully integrated pressure-controlled electrochromic E-skins. Journal of Materials Chemistry A, 2021, 9, 9134-9144.	5.2	18
327	An optoelectronic synaptic transistor with efficient dual modulation by light illumination. Journal of Materials Chemistry C, 2021, 9, 3412-3420.	2.7	40
328	Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Advances, 2021, 11, 5659-5697.	1.7	517
329	Insights into the device structure, processing and material design for an organic thin-film transistor towards functional circuit integration. Materials Chemistry Frontiers, 2021, 5, 6760-6778.	3.2	12
330	A high endurance, temperature-resilient, and robust organic electrochemical transistor for neuromorphic circuits. Journal of Materials Chemistry C, 2021, 9, 11801-11808.	2.7	12
331	Janus-like Jagged Structure with Nanocrystals for Self-Sorting Wearable Tactile Sensor. ACS Applied Materials & Interfaces, 2021, 13, 6394-6403.	4.0	14
332	Intrinsically stretchable polymer semiconductors: molecular design, processing and device applications. Journal of Materials Chemistry C, 2021, 9, 2660-2684.	2.7	41
333	Flexible Artificial Sensory Systems Based on Neuromorphic Devices. ACS Nano, 2021, 15, 3875-3899.	7.3	135
334	Ultralow-power flexible transparent carbon nanotube synaptic transistors for emotional memory. Nanoscale, 2021, 13, 11360-11369.	2.8	22
335	Machine Learning in FET-based Chemical and Biological Sensors: A Mini Review. Journal of Sensor Science and Technology, 2021, 30, 1-9.	0.1	2
336	Neuromorphic vision sensors: Principle, progress and perspectives. Journal of Semiconductors, 2021, 42, 013105.	2.0	70
337	Electrolyte-gated transistors for neuromorphic applications. Journal of Semiconductors, 2021, 42, 013103.	2.0	23
338	Synaptic transistors and neuromorphic systems based on carbon nano-materials. Nanoscale, 2021, 13, 7498-7522.	2.8	28
339	Thin-film transistors for emerging neuromorphic electronics: fundamentals, materials, and pattern recognition. Journal of Materials Chemistry C, 2021, 9, 11464-11483.	2.7	31
340	Object Identification With Smart Glove Assembled by Pressure Sensors. , 2021, 5, 1-4.		4
341	Green revolution in electronic displays expected to ease energy and health crises. Light: Science and Applications, 2021, 10, 33.	7.7	25
342	Augmented Reality Interfaces Using Virtual Customization of Microstructured Electronic Skin Sensor Sensitivity Performances. Advanced Functional Materials, 2021, 31, 2008650.	7.8	31

#	Article	IF	CITATIONS
343	Tuning the synaptic behaviors of biocompatible synaptic transistor through ion-doping. Organic Electronics, 2021, 89, 106019.	1.4	27
344	Degradable Photonic Synaptic Transistors Based on Natural Biomaterials and Carbon Nanotubes. Small, 2021, 17, e2007241.	5.2	58
345	Photonic Synapses with Ultra‣ow Energy Consumption Based on Vertical Organic Fieldâ€Effect Transistors. Advanced Optical Materials, 2021, 9, 2002030.	3.6	50
346	Biologically Plausible Artificial Synaptic Array: Replicating Ebbinghaus' Memory Curve with Selective Attention. Advanced Materials, 2021, 33, e2007782.	11.1	32
347	Bioinspired multisensory neural network with crossmodal integration and recognition. Nature Communications, 2021, 12, 1120.	5.8	94
348	Mimicking efferent nerves using a graphdiyne-based artificial synapse with multiple ion diffusion dynamics. Nature Communications, 2021, 12, 1068.	5.8	115
349	Verticalâ€organicâ€nanocrystalâ€arrays for crossbar memristors with tuning switching dynamics toward neuromorphic computing. SmartMat, 2021, 2, 99-108.	6.4	73
350	High-Performance Organic Synaptic Transistors with an Ultrathin Active Layer for Neuromorphic Computing. ACS Applied Materials & Interfaces, 2021, 13, 8672-8681.	4.0	37
351	Realization of tunable artificial synapse through ambipolar charge trapping in organic transistor with pentacene/poly(α-methylstyrene) architecture. Journal of Applied Physics, 2021, 129, .	1.1	4
352	Programmable Stimulation and Actuation in Flexible and Stretchable Electronics. Advanced Intelligent Systems, 2021, 3, 2000228.	3.3	11
353	MXeneâ€ZnO Memristor for Multimodal In‣ensor Computing. Advanced Functional Materials, 2021, 31, 2100144.	7.8	101
354	Flexible pressure sensors with microstructures. Nano Select, 2021, 2, 1874-1901.	1.9	16
355	Multiterminal Ionic Synaptic Transistor With Artificial Blink Reflex Function. IEEE Electron Device Letters, 2021, 42, 351-354.	2.2	19
356	Flexible printed single-walled carbon nanotubes olfactory synaptic transistors with crosslinked poly(4-vinylphenol) as dielectrics. Flexible and Printed Electronics, 2021, 6, 034001.	1.5	16
357	Bioâ€Inspired Multiâ€Mode Painâ€Perceptual System (MMPPS) with Noxious Stimuli Warning, Damage Localization, and Enhanced Damage Protection. Advanced Science, 2021, 8, 2004208.	5.6	17
358	A Hippocampusâ€Inspired Dualâ€Gated Organic Artificial Synapse for Simultaneous Sensing of a Neurotransmitter and Light. Advanced Materials, 2021, 33, e2100119.	11.1	59
359	Copper (II) Phthalocyanine (CuPc) Based Optoelectronic Memory Device with Multilevel Resistive Switching for Neuromorphic Application. Advanced Electronic Materials, 2021, 7, 2001079.	2.6	14
360	Bioinspired mechano-photonic artificial synapse based on graphene/MoS ₂ heterostructure. Science Advances, 2021, 7, .	4.7	184

		REPORT	
#	Article	IF	CITATIONS
361	Flexible Electronics and Healthcare Applications. Frontiers in Nanotechnology, 2021, 3, .	2.4	16
362	Surface Potential-Controlled Oscillation in FET-Based Biosensors. Sensors, 2021, 21, 1939.	2.1	3
363	An Iontronic Multiplexer Based on Spatiotemporal Dynamics of Multiterminal Organic Electrochemical Transistors. Advanced Functional Materials, 2021, 31, 2011013.	7.8	21
364	Diffusive and Drift Halide Perovskite Memristive Barristors as Nociceptive and Synaptic Emulators for Neuromorphic Computing. Advanced Materials, 2021, 33, 2007851.	11.1	83
365	Memristive Artificial Synapses for Neuromorphic Computing. Nano-Micro Letters, 2021, 13, 85.	14.4	108
366	A Biomimetic Evolvable Organic Electrochemical Transistor. Advanced Electronic Materials, 2021, 7, 2001126.	2.6	26
367	Evaluating the use of graphene electrodes in sub-micrometric, high-frequency n-type organic transistors. Synthetic Metals, 2021, 273, 116683.	2.1	6
368	Phaseâ€Transitionâ€Induced VO ₂ Thin Film IR Photodetector and Threshold Switching Selector for Optical Neural Network Applications. Advanced Electronic Materials, 2021, 7, 2001254.	2.6	27
369	Cellulose nanocrystal reinforced conductive nanocomposite hydrogel with fast self-healing and self-adhesive properties for human motion sensing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126076.	2.3	35
370	MXenes for memristive and tactile sensory systems. Applied Physics Reviews, 2021, 8, .	5.5	25
371	Contact-electrification-activated artificial afferents at femtojoule energy. Nature Communications, 2021, 12, 1581.	5.8	117
372	A hybrid flexible gas sensory system with perceptual learning. Nano Research, 2022, 15, 423-428.	5.8	9
373	A Flexible LIF Neuron Based on NbOx Memristors for Neural Interface Applications. , 2021, , .		5
374	Recent Progress in Flexible Tactile Sensors for Humanâ€Interactive Systems: From Sensors to Advanced Applications. Advanced Materials, 2021, 33, e2005902.	11.1	216
375	Solutionâ€Processed Stretchable Ag ₂ S Semiconductor Thin Films for Wearable Selfâ€Powered Nonvolatile Memory. Advanced Materials, 2021, 33, e2100066.	11.1	30
376	Seamless Monolithic Design for Foam Based, Flexible, Parallel Plate Capacitive Sensors. Advanced Materials Technologies, 2021, 6, 2001168.	3.0	26
377	Organic electronic synapses with low energy consumption. Joule, 2021, 5, 794-810.	11.7	79
378	Stimuliâ€Responsive Memristive Materials for Artificial Synapses and Neuromorphic Computing. Advanced Materials, 2021, 33, e2006469.	11.1	88

#	Article		CITATIONS
379	Mimicking associative learning using an ion-trapping non-volatile synaptic organic electrochemical transistor. Nature Communications, 2021, 12, 2480.		128
380	Self-healing flexible/stretchable energy storage devices. Materials Today, 2021, 44, 78-104.	8.3	85
381	Printable wet-resistive textile strain sensors using bead-blended composite ink for robustly integrative wearable electronics. Composites Part B: Engineering, 2021, 210, 108674.	5.9	29
382	Organic synaptic transistors for flexible and stretchable artificial sensory nerves. MRS Bulletin, 2021, 46, 321-329.	1.7	21
383	Indium oxide nanomesh-based electrolyte-gated synaptic transistors. Journal of Information Display, 2021, 22, 179-185.	2.1	5
384	Organic Synaptic Transistors: The Evolutionary Path from Memory Cells to the Application of Artificial Neural Networks. Advanced Functional Materials, 2021, 31, 2101951.	7.8	73
385	A 3D integrated neuromorphic chemical sensing system. Sensors and Actuators B: Chemical, 2021, 332, 129527.	4.0	13
386	Artificial stimulus-response system capable of conscious response. Science Advances, 2021, 7, .	4.7	44
387	Biomimetic Hairy Whiskers for Robotic Skin Tactility. Advanced Materials, 2021, 33, e2101891.	11.1	72
388	Beyond Color: The New Carbon Ink. Advanced Materials, 2021, 33, e2005890.	11.1	17
389	2D Materials for Skinâ€Mountable Electronic Devices. Advanced Materials, 2021, 33, e2005858.	11.1	51
390	Current Solutions and Future Trends for Robotic Prosthetic Hands. Annual Review of Control, Robotics, and Autonomous Systems, 2021, 4, 595-627.	7.5	46
391	Natural biopolymers as proton conductors in bioelectronics. Biopolymers, 2021, 112, e23433.	1.2	26
392	Low cost exoskeleton manipulator using bidirectional triboelectric sensors enhanced multiple degree of freedom sensory system. Nature Communications, 2021, 12, 2692.	5.8	107
393	All in One, Selfâ€Powered Bionic Artificial Nerve Based on a Triboelectric Nanogenerator. Advanced Science, 2021, 8, 2004727.	5.6	26
394	Recent Applications of Different Microstructure Designs in High Performance Tactile Sensors: A Review. IEEE Sensors Journal, 2021, 21, 10291-10303.	2.4	27
395	Stretchable and Selfâ€Healable Organohydrogel as Electronic Skin with Lowâ€Temperature Tolerance and Multiple Stimuli Responsiveness. Advanced Materials Technologies, 2021, 6, 2001234.	3.0	10
396	Design and implementation of memristive neuron leakage integrator, and learning feedback. , 2021, , .		0

ARTICLE IF CITATIONS # Synaptic devices based neuromorphic computing applications in artificial intelligence. Materials Today 397 2.9 110 Physics, 2021, 18, 100393. Flexible Polydopamine Bioelectronics. Advanced Functional Materials, 2021, 31, 2103391. In-sensor reservoir computing for language learning via two-dimensional memristors. Science 399 4.7 175 Advances, 2021, 7, . Artificial mechanoreceptor based on van der Waals stacking structure. Matter, 2021, 4, 1598-1610. 400 5.0 Autonomous Flying With Neuromorphic Sensing. Frontiers in Neuroscience, 2021, 15, 672161. 401 1.4 3 Emerging Materials and Technologies with Applications in Flexible Neural Implants: A Comprehensive 11.1 Review of Current Issues with Neural Devices. Advanced Materials, 2021, 33, e2005786. Toughâ€Hydrogel Reinforced Lowâ€Tortuosity Conductive Networks for Stretchable and 403 11.1 63 Highâ€Performance Supercapacitors. Advanced Materials, 2021, 33, e2100983. Realization and training of an inverter-based printed neuromorphic computing system. Scientific 404 1.6 Reports, 2021, 11, 9554. Nanoscale engineering of conducting polymers for emerging applications in soft electronics. Nano 405 5.8 12 Research, 2021, 14, 3112-3125. Stretchable and Soft Organic–Ionic Devices for Bodyâ€Integrated Electronic Systems. Advanced Materials Technologies, 2022, 7, 2001273. Recent Progress in Development of Wearable Pressure Sensors Derived from Biological Materials. 407 3.9 30 Advanced Healthcare Materials, 2021, 10, e2100460. Self-Packaged, Flexible, Bendable MEMS Sensors and Energy Harvesters. IEEE Sensors Journal, 2021, 21, 408 2.4 12606-12617. Twoâ€Dimensional Metalâ€Organic Framework Film for Realizing Optoelectronic Synaptic Plasticity. 409 7.2 49 Angewandte Chemie - International Edition, 2021, 60, 17440-17445. Twoâ€Dimensional Metalâ€Organic Framework Film for Realizing Optoelectronic Synaptic Plasticity. Angewandte Chemie, 2021, 133, 17580-17585. 1.6 Conception of a Smart Artificial Retina Based on a Dualâ€Mode Organic Sensing Inverter. Advanced 411 5.6 27 Science, 2021, 8, e2100742. Triboelectric nanogenerator based self-powered sensor for artificial intelligence. Nano Energy, 2021, 168 84, 105887. 413 Self-sustained green neuromorphic interfaces. Nature Communications, 2021, 12, 3351. 5.8 42 414 Recent advanced applications of ion-gel in ionic-gated transistor. Npj Flexible Electronics, 2021, 5, . 5.1 54

#	Article	IF	CITATIONS
415	Inorganic Perovskite Quantum Dot-Based Strain Sensors for Data Storage and In-Sensor Computing. ACS Applied Materials & Interfaces, 2021, 13, 30861-30873.	4.0	23
416	Advanced Flexible Skin-Like Pressure and Strain Sensors for Human Health Monitoring. Micromachines, 2021, 12, 695.	1.4	53
417	Enhancement of Synaptic Characteristics Achieved by the Optimization of Proton–Electron Coupling Effect in a Solidâ€State Electrolyteâ€Gated Transistor. Small, 2021, 17, e2100242.	5.2	13
419	An artificial neural tactile sensing system. Nature Electronics, 2021, 4, 429-438.	13.1	161
420	Ionâ€Gating Engineering of Organic Semiconductors toward Multifunctional Devices. Advanced Functional Materials, 2021, 31, 2102149.	7.8	13
421	Neuromorphic Devices for Bionic Sensing and Perception. Frontiers in Neuroscience, 2021, 15, 690950.	1.4	20
422	Flexible and Stretchable Capacitive Sensors with Different Microstructures. Advanced Materials, 2021, 33, e2008267.	11.1	196
423	Artificial multisensory integration nervous system with haptic and iconic perception behaviors. Nano Energy, 2021, 85, 106000.	8.2	83
424	Organic Memory and Memristors: From Mechanisms, Materials to Devices. Advanced Electronic Materials, 2021, 7, 2100432.	2.6	81
425	Green Materials and Technologies for Sustainable Organic Transistors. Advanced Materials Technologies, 2022, 7, 2100445.	3.0	31
426	Recent progress for silver nanowires conducting film for flexible electronics. Journal of Nanostructure in Chemistry, 2021, 11, 323-341.	5.3	88
427	Highly sensitive flexible tactile perceptual interactive platform with functions of Braille code recognition. Journal Physics D: Applied Physics, 2021, 54, 375102.	1.3	4
428	Recent Advances in Carbon Materialâ€Based Multifunctional Sensors and Their Applications in Electronic Skin Systems. Advanced Functional Materials, 2021, 31, 2104288.	7.8	116
429	Light-Emitting Memristors for Optoelectronic Artificial Efferent Nerve. Nano Letters, 2021, 21, 6087-6094.	4.5	42
430	Modulated flexible artificial synaptic transistor based on graphene and ionic gel. , 2021, , .		0
431	Engineered Mechanosensors Inspired by Biological Mechanosensilla. Advanced Materials Technologies, 2021, 6, 2100352.	3.0	14
432	Enwrapping Polydopamine on Doxorubicin-Loaded Lamellar Hydroxyapatite/Poly(lactic- <i>co</i> -glycolic acid) Composite Fibers for Inhibiting Bone Tumor Recurrence and Enhancing Bone Regeneration. ACS Applied Bio Materials, 2021, 4, 6036-6045.	2.3	13
433	A Marr's Threeâ€Level Analytical Framework for Neuromorphic Electronic Systems. Advanced Intelligent Systems, 2021, 3, 2100054.	3.3	3

#	Article		CITATIONS
434	Recent Advances in Flexible Organic Synaptic Transistors. Advanced Electronic Materials, 2021, 7, 2100336.		43
435	High ionic conductivity Li _{0.33} La _{0.557} TiO ₃ nanofiber/polymer composite solid electrolyte for flexible transparent InZnO synaptic transistors. Nanotechnology, 2021, 32, 405207.		3
436	Materials Strategies for Organic Neuromorphic Devices. Annual Review of Materials Research, 2021, 51, 47-71.	4.3	33
437	A Perspective on Cephalopods Mimicry and Bioinspired Technologies toward Proprioceptive Autonomous Soft Robots. Advanced Materials Technologies, 2021, 6, 2100437.	3.0	18
438	Fully rubbery synaptic transistors made out of all-organic materials for elastic neurological electronic skin. Nano Research, 2022, 15, 758-764.	5.8	26
439	Systemâ€Engineered Miniaturized Robots: From Structure to Intelligence. Advanced Intelligent Systems, 2021, 3, 2000284.	3.3	18
440	Recent progress in organic fieldâ€effect transistorâ€based integrated circuits. Journal of Polymer Science, 2022, 60, 311-327.	2.0	46
441	Copolymer composition tailored carbon nanotube network breakdown and piezoresistivity of ethylene-vinyl acetate electroconductive composites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 270, 115194.	1.7	1
442	Nearâ€Infrared Artificial Synapses for Artificial Sensory Neuron System. Small, 2021, 17, e2103837.		36
443	Development of flexible tactile sensor for the envelop of curved robotic hand finger in grasping force sensing. Measurement: Journal of the International Measurement Confederation, 2021, 180, 109524.	2.5	25
444	Ambulatory Cardiovascular Monitoring Via a Machineâ€Learningâ€Assisted Textile Triboelectric Sensor. Advanced Materials, 2021, 33, e2104178.	11.1	167
445	Recent advances in solid electrolytes for synaptic transistors. Organic Electronics, 2021, 95, 106196.	1.4	13
446	A high-performance flexible aqueous silver–zinc rechargeable battery based on AgNP/CNT-graphite paper and ZnNF-graphite paper. Composites Communications, 2021, 26, 100728.	3.3	13
447	Artificial Reflex Arc: An Environment-Adaptive Neuromorphic Camouflage Device. IEEE Electron Device Letters, 2021, 42, 1224-1227.	2.2	9
448	Carbon nanotube-based van der Waals heterojunction electrodes for high-performance intrinsically stretchable organic photoelectric transistors. Giant, 2021, 7, 100060.	2.5	7
449	The capabilities of nanoelectronic 2-D materials for bio-inspired computing and drug delivery indicate their significance in modern drug design. Life Sciences, 2021, 279, 119272.	2.0	11
450	Lowâ€Cost Paperâ€Based Conducting Polymerâ€Hydrogel Flexible Bioâ€Radar Sensor for Detecting Biological Objects. Macromolecular Materials and Engineering, 0, , 2100447.	1.7	3
451	All-weather, natural silent speech recognition via machine-learning-assisted tattoo-like electronics. Npj Flexible Electronics, 2021, 5, .	5.1	36

		CITATION REPORT		
#	Article		IF	CITATIONS
452	Non-volatile artificial synapse based on a vortex nano-oscillator. Scientific Reports, 2021	., 11, 16094.	1.6	11
453	Retinaâ€Inspired Structurally Tunable Synaptic Perovskite Nanocones. Advanced Functio 2021, 31, 2105596.	onal Materials,	7.8	42
454	Battery-free, wireless soft sensors for continuous multi-site measurements of pressure a temperature from patients at risk for pressure injuries. Nature Communications, 2021, 2	ınd 12, 5008.	5.8	83
455	New Opportunities for Highâ€Performance Sourceâ€Gated Transistors Using Unconven Advanced Science, 2021, 8, e2101473.	tional Materials.	5.6	24
456	Self-healable and recyclable polyurethane-polyaniline hydrogel toward flexible strain sen Composites Part B: Engineering, 2021, 219, 108965.	sor.	5.9	86
457	Analytical Model of Micropyramidal Capacitive Pressure Sensors and Machine‣earning Advanced Materials Technologies, 0, , 2100634.	gâ€Assisted Design.	3.0	7
458	Nanomaterials and their applications on bio-inspired wearable electronics. Nanotechnolo 472002.	ogy, 2021, 32,	1.3	19
459	Materials Chemistry, Device Engineering, and Promising Applications of Polymer Transis Chemistry of Materials, 2021, 33, 7572-7594.	tors.	3.2	10
460	Bioinspired Multifunctional Photonicâ€Electronic Smart Skin for Ultrasensitive Health Monitoring, for Visual and Selfâ€Powered Sensing. Advanced Materials, 2021, 33, e2102332.		11.1	107
461	Ubiquitous conformable systems for imperceptible computing. Foresight, 2022, 24, 75-	98.	1.2	7
462	Quantum Artificial Synapses. Advanced Quantum Technologies, 2021, 4, 2100072.		1.8	8
463	Inâ€Materio Reservoir Computing in a Sulfonated Polyaniline Network. Advanced Mater e2102688.	ials, 2021, 33,	11.1	53
464	A Bioinspired Stretchable Sensoryâ€Neuromorphic System. Advanced Materials, 2021, 3	33, e2104690.	11.1	67
465	Intelligent, biomimetic, color-tunable, light-emitting artificial skin with memory function Energy, 2021, 90, 106569.	. Nano	8.2	10
466	Multimodal Artificial Neurological Sensory–Memory System Based on Flexible Carbon Synaptic Transistor. ACS Nano, 2021, 15, 14587-14597.	Nanotube	7.3	42
467	60Ânm Pixel-size pressure piezo-memory system as ultrahigh-resolution neuromorphic t for in-chip computing. Nano Energy, 2021, 87, 106190.	actile sensor	8.2	21
468	Biology and bioinspiration of soft robotics: Actuation, sensing, and system integration. I 24, 103075.	Science, 2021,	1.9	34
469	Largeâ€Area Pixelized Optoelectronic Neuromorphic Devices with Multispectral Lightâ€ Bidirectional Synaptic Circuits. Advanced Materials, 2021, 33, e2105017.	Modulated	11.1	45

	Сітатіог	n Report	
#	Article	IF	Citations
470	Short-Term Facilitation-Then-Depression Enables Adaptive Processing of Sensory Inputs by Ion Channels in Biomolecular Synapses. ACS Applied Electronic Materials, 2021, 3, 4448-4458.	2.0	5
471	Robust, self-adhesive, reinforced polymeric nanofilms enabling gas-permeable dry electrodes for long-term application. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	57
472	Visualizing Thermally Activated Memristive Switching in Percolating Networks of Solutionâ€Processed 2D Semiconductors. Advanced Functional Materials, 2021, 31, 2107385.	7.8	17
473	Advance on flexible pressure sensors based on metal and carbonaceous nanomaterial. Nano Energy, 2021, 87, 106181.	8.2	86
474	Flexible artificial synapse based on single-crystalline BiFeO3 thin film. Nano Research, 2022, 15, 2682-2688.	5.8	37
475	Recent advances in emerging neuromorphic computing and perception devices. Journal Physics D: Applied Physics, 2022, 55, 053002.	1.3	25
476	A flexible, stretchable system for simultaneous acoustic energy transfer and communication. Science Advances, 2021, 7, eabg2507.	4.7	68
477	Bioinspired kinesthetic system for human-machine interaction. Nano Energy, 2021, 88, 106283.	8.2	45
478	A Skin-Inspired Artificial Mechanoreceptor for Tactile Enhancement and Integration. ACS Nano, 2021, 15, 16422-16431.	7.3	66
479	Approaches to deformable physical sensors: Electronic versus iontronic. Materials Science and Engineering Reports, 2021, 146, 100640.	14.8	29
480	Wearable NO2 sensing and wireless application based on ZnS nanoparticles/nitrogen-doped reduced graphene oxide. Sensors and Actuators B: Chemical, 2021, 345, 130423.	4.0	44
481	Recent progress on two-dimensional neuromorphic devices and artificial neural network. Current Applied Physics, 2021, 31, 182-198.	1.1	26
482	A ZnO micro/nanowire-based photonic synapse with piezo-phototronic modulation. Nano Energy, 2021, 89, 106282.	8.2	26
483	Organic and perovskite memristors for neuromorphic computing. Organic Electronics, 2021, 98, 106301.	1.4	54
484	Flexible artificial synapse with relearning function based on ion gel-graphene FET. Nano Energy, 2021, 90, 106526.	8.2	16
485	Towards engineering in memristors for emerging memory and neuromorphic computing: A review. Journal of Semiconductors, 2021, 42, 013101.	2.0	56
486	Magnetic Array Assisted Triboelectric Nanogenerator Sensor for Real-Time Gesture Interaction. Nano-Micro Letters, 2021, 13, 51.	14.4	82
487	Research on Operation Intention Based on Flexible Tactile Sensing Handle. IEEE Access, 2021, 9, 12362-12373.	2.6	4

#	Article	IF	CITATIONS
488	Tactile sensors based on organic field-effect transistors. , 2021, , 53-66.		1
489	Advances in materials and devices for mimicking sensory adaptation. Materials Horizons, 2022, 9, 147-163.	6.4	14
490	Recent Advanced on the MXene–Organic Hybrids: Design, Synthesis, and Their Applications. Nanomaterials, 2021, 11, 166.	1.9	38
491	Development of solid electrolytes in Zn–air and Al–air batteries: from material selection to performance improvement strategies. Journal of Materials Chemistry A, 2021, 9, 4415-4453.	5.2	67
492	Recent progress in artificial synaptic devices: materials, processing and applications. Journal of Materials Chemistry C, 2021, 9, 8372-8394.	2.7	41
493	Wearable Sensorsâ€Enabled Human–Machine Interaction Systems: From Design to Application. Advanced Functional Materials, 2021, 31, 2008936.	7.8	322
494	Bioinspired Prosthetic Interfaces. Advanced Materials Technologies, 2020, 5, 1900856.	3.0	42
495	Hardware Implementation of Neuromorphic Computing Using Largeâ€5cale Memristor Crossbar Arrays. Advanced Intelligent Systems, 2021, 3, 2000137.	3.3	96
496	Floating-gate photosensitive synaptic transistors with tunable functions for neuromorphic computing. Science China Materials, 2021, 64, 1219-1229.	3.5	11
497	Self-powered high-sensitivity sensory memory actuated by triboelectric sensory receptor for real-time neuromorphic computing. Nano Energy, 2020, 75, 104930.	8.2	64
499	Biomimetic Tactile Sensors Based on Nanomaterials. ACS Nano, 2020, 14, 1220-1226.	7.3	53
500	In-sensor computing for machine vision. Nature, 2020, 579, 32-33.	13.7	138
501	Origin of Hysteresis in Perovskite Solar Cells. , 2020, , 1-1-1-42.		19
502	New perspectives and designs into nature-inspired flexible electronics: status and applications. Materials Technology, 2022, 37, 1989-2000.	1.5	10
503	Organic electronics Axon-Hillock neuromorphic circuit: towards biologically compatible, and physically flexible, integrate-and-fire spiking neural networks. Journal Physics D: Applied Physics, 2021, 54, 104004.	1.3	16
504	Design and applications of graphene-based flexible and wearable physical sensing devices. 2D Materials, 2021, 8, 022001.	2.0	16
505	A Nonlinear Mechanics Model of Zigzag Cellular Substrates for Stretchable Electronics. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	11
506	Soft-matter damage detection systems for electronics and structures. , 2019, , .		1

		CITATION RE	PORT	
#	Article		IF	CITATIONS
507	A skin-inspired tactile sensor for smart prosthetics. Science Robotics, 2018, 3, .		9.9	195
508	2D Materials Based Optoelectronic Memory: Convergence of Electronic Memory and C Research, 2019, 2019, 9490413.	Optical Sensor.	2.8	85
509	Unveiling the Effects of Interchain Hydrogen Bonds on Solution Gelation and Mechanic of Diarylfluorene-Based Semiconductor Polymers. Research, 2020, 2020, 3405826.	cal Properties	2.8	29
510	Digitally aligned ZnO nanowire array based synaptic transistors with intrinsically contriplasticity for short-term computation and long-term memory. Nanoscale, 2021, 13, 19	olled 190-19199.	2.8	8
511	Tactile glove-decode and classify the human grasping process. , 2021, , .			4
512	An artificial synaptic thin-film transistor based on 2D MXeneâ \in "TiO2. , 2021, , .			0
513	Triboelectric potential tuned dual-gate IGZO transistor for versatile sensory device. Na 2021, 90, 106617.	no Energy,	8.2	25
514	Electrolyte-gated transistors for enhanced performance bioelectronics. Nature Reviews Primers, 2021, 1, .	s Methods	11.8	172
515	Memristor-based biomimetic compound eye for real-time collision detection. Nature Co 2021, 12, 5979.	ommunications,	5.8	82
516	Multifunctional Optoelectronic Synapse Based on Ferroelectric Van der Waals Heteros Emulating the Entire Human Visual System. Advanced Functional Materials, 2022, 32,	tructure for ,	7.8	66
517	Anisotropic Printed Resistor with Linear Sensitivity Based on Nano–Microfillerâ€Fille Composite. Advanced Electronic Materials, 2021, 7, 2100581.	d Polymer	2.6	2
518	A low-dimensional hybrid p-i-n heterojunction neuromorphic transistor with ultra-high and immediate switchable plasticity. Applied Materials Today, 2021, 25, 101223.	UV sensitivity	2.3	23
519	Synthetic nerve flexes a cockroach's muscle. Nature, 2018, 558, 8-8.		13.7	0
520	An Artificial Nerve Capable of UVâ€Perception, NIR–Vis Switchable Plasticity Modula State Monitoring. Advanced Science, 2022, 9, e2102036.	tion, and Motion	5.6	45
521	Rational ion transport management mediated through membrane structures. Explorati 20210101.	on, 2021, 1,	5.4	29
522	Touch-modulated van der Waals heterostructure with self-writing power switch for syr simulation. Nano Energy, 2022, 91, 106659.	aptic	8.2	13
523	The self-powered artificial synapse mechanotactile sensing system by integrating tribo and gas-ionic-gated graphene transistor. Nano Energy, 2022, 91, 106660.	electric plasma	8.2	41
524	Flexible artificial Si-In-Zn-O/ion gel synapse and its application to sensory-neuromorphic sign language translation. Science Advances, 2021, 7, eabg9450.	c system for	4.7	41

#	Article	IF	CITATIONS
525	Low Temperature and Ion-Cut Based Monolithic 3D Process Integration Platform Incorporated with CMOS, RRAM and Photo-Sensor Circuits. , 2020, , .		6
526	Dissecting Biological and Synthetic Soft–Hard Interfaces for Tissue-Like Systems. Chemical Reviews, 2022, 122, 5233-5276.	23.0	32
528	Neuromorphic Computation. , 2021, , 187-213.		0
529	Electrolyte-gated neuromorphic transistors for brain-like dynamic computing. Journal of Applied Physics, 2021, 130, .	1.1	30
530	A Multifunctional Biomimetic Flexible Sensor Based Novel Artificial Tactile Neuron with Perceptual Memory. Advanced Materials Interfaces, 2021, 8, 2101068.	1.9	10
531	Ag Nanowire-Based Stretchable Electrodes and Wearable Sensor Arrays. ACS Applied Nano Materials, 2021, 4, 12726-12736.	2.4	10
532	Enabling the aqueous solution sensing of skin-conformable organic field-effect transistor using an amphiphilic molecule. Applied Materials Today, 2022, 26, 101275.	2.3	5
533	Topochemical Synthesis of Copper Phosphide Nanoribbons for Flexible Optoelectronic Memristors. Advanced Functional Materials, 0, , 2110900.	7.8	11
534	Polymerâ€Based Composites for Engineering Organic Memristive Devices. Advanced Electronic Materials, 0, , 2101192.	2.6	2
535	Challenges and emerging opportunities in transistor-based ultrathin electronics: design and fabrication for healthcare applications. Journal of Materials Chemistry C, 2022, 10, 2450-2474.	2.7	6
536	Intrinsically stretchable carbon nanotube synaptic transistors with associative learning ability and mechanical deformation response. Carbon, 2022, 189, 386-394.	5.4	6
537	Enabling Adaptive Robot-Environment Interaction and Context-Aware Artificial Somatosensory Reflexes through Sensor-Embedded Fibers. , 2020, , .		3
538	Highly Sensitive and Flexible Capacitive Pressure Sensor Based on a Dual-Structured Nanofiber Membrane as the Dielectric for Attachable Wearable Electronics. ACS Applied Electronic Materials, 2022, 4, 469-477.	2.0	32
539	2022 roadmap on neuromorphic computing and engineering. Neuromorphic Computing and Engineering, 2022, 2, 022501.	2.8	217
540	Emerging Internet of Things driven carbon nanotubes-based devices. Nano Research, 2022, 15, 4613-4637.	5.8	23
541	Selfâ€Powered Artificial Mechanoreceptor Based on Triboelectrification for a Neuromorphic Tactile System. Advanced Science, 2022, 9, e2105076.	5.6	26
542	Design and Experiments of a Novel Halbach-Cylinder-Based Magnetic Skin: A Preliminary Study. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-11.	2.4	13
543	Advanced artificial synaptic thin-film transistor based on doped potassium ions for neuromorphic computing <i>via</i> third-generation neural network. Journal of Materials Chemistry C, 2022, 10, 3196-3206.	2.7	12

#	Article	IF	CITATIONS
544	Electrostatic Jet Engineering of Flexible Composite Pressure Sensors for Physical Applications. ACS Applied Polymer Materials, 2022, 4, 868-878.	2.0	8
545	A biopolymer-gated ionotronic junctionless oxide transistor array for spatiotemporal pain-perception emulation in nociceptor network. Nanoscale, 2022, 14, 2316-2326.	2.8	52
546	Stretchable Neuromorphic Transistor That Combines Multisensing and Information Processing for Epidermal Gesture Recognition. ACS Nano, 2022, 16, 2282-2291.	7.3	63
547	Low energy consumption fiber-type memristor array with integrated sensing-memory. Nanoscale Advances, 2022, 4, 1098-1104.	2.2	2
548	Retinaâ€Inspired Selfâ€Powered Artificial Optoelectronic Synapses with Selective Detection in Organic Asymmetric Heterojunctions. Advanced Science, 2022, 9, e2103494.	5.6	40
549	Soft bioelectronics for cardiac interfaces. Biophysics Reviews, 2022, 3, .	1.0	8
550	Vertically-Aligned Carbon Nanotubes-Embedded PDMS Microstructures For Flexible Tactile Sensor Array with High Sensitivity and Durability. , 2022, , .		0
551	An Artificial Reflex Arc That Perceives Afferent Visual and Tactile Information and Controls Efferent Muscular Actions. Research, 2022, 2022, 9851843.	2.8	30
552	Organic neuromorphic electronics for sensorimotor integration and learning in robotics. Science Advances, 2021, 7, eabl5068.	4.7	54
553	Proton gated oxide neuromorphic transistors with bionic vision enhancement and information decoding. Journal of Materials Chemistry C, 2022, 10, 7241-7250.	2.7	11
554	Voltage-Controlled Programmable Polymer Memory Enabled by Interface Nanoengineering for Thermal Recognition Recording. SSRN Electronic Journal, 0, , .	0.4	0
555	Multimode modulated memristors for in-sensor computing system. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 148502.	0.2	2
556	Flexible neuromorphic transistors for bio-inspired perception application. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
557	An Artificial Spiking Afferent Neuron System Achieved by 1M1S for Neuromorphic Computing. IEEE Transactions on Electron Devices, 2022, 69, 2346-2352.	1.6	7
558	Organic electrochemical neurons and synapses with ion mediated spiking. Nature Communications, 2022, 13, 901.	5.8	110
559	Bioâ€Inspired 3D Artificial Neuromorphic Circuits. Advanced Functional Materials, 2022, 32, .	7.8	45
560	Flexible Metal Electrodes by Femtosecond Laser-Activated Deposition for Human–Machine Interfaces. ACS Applied Materials & Interfaces, 2022, 14, 11971-11980.	4.0	12
561	Control Strategies for Soft Robot Systems. Advanced Intelligent Systems, 2022, 4, .	3.3	64

		CITATION R	EPORT	
#	Article		IF	Citations
562	Dynamic tactility by position-encoded spike spectrum. Science Robotics, 2022, 7, eabl	5761.	9.9	25
563	Flexible Electronics and Devices as Human–Machine Interfaces for Medical Robotics. Materials, 2022, 34, e2107902.	Advanced	11.1	211
564	Allâ€Flexible Artificial Reflex Arc Based on Thresholdâ€Switching Memristor. Advanced Materials, 2022, 32, .	Functional	7.8	30
565	Artificial fast-adapting mechanoreceptor based on carbon nanotube percolating netwo Reports, 2022, 12, 2818.	rk. Scientific	1.6	1
566	A Photoelectric Spiking Neuron for Visual Depth Perception. Advanced Materials, 2022	., 34, e2201895.	11.1	50
567	Challenges in Materials and Devices of Electronic Skin. , 2022, 4, 577-599.			20
568	A high-accuracy, real-time, intelligent material perception system with a machine-learni pressure-sensitive electronic skin. Matter, 2022, 5, 1481-1501.	ng-motivated	5.0	104
569	A Wearable Allâ€Gel Multimodal Cutaneous Sensor Enabling Simultaneous Singleâ€Sit Cardiacâ€Related Biophysical Signals. Advanced Materials, 2022, 34, e2110082.	e Monitoring of	11.1	31
570	Bioinspired, Omnidirectional, and Hypersensitive Flexible Strain Sensors. Advanced Mate 2200823.	terials, 2022, 34,	11.1	73
571	A hybrid ambipolar synaptic transistor emulating multiplexed neurotransmission for mo control and experience-dependent learning. Chinese Chemical Letters, 2023, 34, 1072	ptivation 92.	4.8	12
572	High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature, 202	2, 603, 624-630.	13.7	170
573	Manipulating Strain in Transistors: From Mechanically Sensitive to Insensitive. Advance Materials, 2022, 8, .	d Electronic	2.6	3
574	Optical Microfibers for Sensing Proximity and Contact in Human–Machine Interfaces Materials & Interfaces, 2022, 14, 14447-14454.	. ACS Applied	4.0	16
575	Bioinspired sensor system for health care and humanâ€machine interaction. EcoMat, 2	022, 4, .	6.8	54
576	Natural Material Inspired Organic Thin-Film Transistors for Biosensing: Properties and A 2022, 4, 918-937.	pplications. ,		17
577	The Current State of Optical Sensors in Medical Wearables. Biosensors, 2022, 12, 217.		2.3	35
578	Nanolignin filled conductive hydrogel with improved mechanical, anti-freezing, UV-shie transparent properties for strain sensing application. International Journal of Biological Macromolecules, 2022, 205, 442-451.	lding and	3.6	43
579	A 3D-printed neuromorphic humanoid hand for grasping unknown objects. IScience, 20	022, 25, 104119.	1.9	15

#	Article	IF	CITATIONS
580	Cogel Strategy for the Preparation of a "Thorn―Like Porous Halloysite/Gelatin Composite Aerogel with Excellent Mechanical Properties and Thermal Insulation. ACS Applied Materials & Interfaces, 2022, 14, 17763-17773.	4.0	15
581	Flexible electronics and optoelectronics of 2D van der Waals materials. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 671-690.	2.4	10
582	Skin-inspired electrochemical tactility and luminescence. Electrochimica Acta, 2022, 415, 140259.	2.6	5
583	Wearable triboelectric devices for haptic perception and VR/AR applications. Nano Energy, 2022, 96, 107112.	8.2	39
584	Plasmonic Optoelectronic Memristor Enabling Fully Lightâ€Modulated Synaptic Plasticity for Neuromorphic Vision. Advanced Science, 2022, 9, e2104632.	5.6	81
585	Tactile tribotronic reconfigurable p-n junctions for artificial synapses. Science Bulletin, 2022, 67, 803-812.	4.3	26
586	Deterministic Multimodal Perturbation Enables Neuromorphic-Compatible Signal Multiplexing. , 2022, 4, 102-110.		3
588	Integrated In-Sensor Computing Optoelectronic Device for Environment-Adaptable Artificial Retina Perception Application. Nano Letters, 2022, 22, 81-89.	4.5	104
589	Recent Development of Flexible Tactile Sensors and Their Applications. Sensors, 2022, 22, 50.	2.1	39
590	Artificial Sense Technology: Emulating and Extending Biological Senses. ACS Nano, 2021, 15, 18671-18678.	7.3	64
592	Ultralow Lightâ€Power Consuming Photonic Synapses Based on Ultrasensitive Perovskite/Indiumâ€Galliumâ€Zincâ€Oxide Heterojunction Phototransistors. Advanced Electronic Materials, 2022, 8, .	2.6	18
594	Bioinspired Materials for Energy Storage. Small Methods, 2022, 6, e2101076.	4.6	25
595	Organic Synaptic Transistors for Bioâ€Hybrid Neuromorphic Electronics. Advanced Electronic Materials, 2022, 8, .	2.6	31
596	Bio-inspired Sensory Systems with Integrated Capabilities of Sensing, Data Storage and Processing. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
597	Bioinspired Centimeter-scale Sensor Free Obstacle-passing Robots with a Wireless Control System. Journal of Bionic Engineering, 0, , 1.	2.7	0
598	An Artificial Tactile Neuron Enabling Spiking Representation of Stiffness and Disease Diagnosis. Advanced Materials, 2022, 34, e2201608.	11.1	20
599	Stiffness Engineering of Ti ₃ C ₂ T <i>_X</i> MXeneâ€Based Skinâ€Inspired Pressure Sensor with Broadâ€Range Ultrasensitivity, Low Detection Limit, and Gas Permeability. Advanced Materials Interfaces, 2022, 9, .	1.9	15
600	A Heterogeneously Integrated Spiking Neuron Array for Multimodeâ€Fused Perception and Object Classification. Advanced Materials, 2022, 34, e2200481.	11.1	48

#	Article	IF	CITATIONS
601	Organic electrochemical transistors toward synaptic electronics. Journal Physics D: Applied Physics, 2022, 55, 304006.	1.3	10
602	Parallel transmission in a synthetic nerve. Nature Chemistry, 2022, 14, 650-657.	6.6	20
605	Thin-film electronics on active substrates: review of materials, technologies and applications. Journal Physics D: Applied Physics, 2022, 55, 323002.	1.3	33
606	An all-C–H-activation strategy to rapidly synthesize high-mobility well-balanced ambipolar semiconducting polymers. Matter, 2022, 5, 1953-1968.	5.0	27
607	A neuromorphic device mimicking synaptic plasticity under different body fluid K+ homeostasis for artificial reflex path construction and pattern recognition. Fundamental Research, 2022, , .	1.6	1
608	Self-Powered Multifunctional Electronic Skin Based on Carbon Nanotubes/Poly(dimethylsiloxane) for Health Monitoring. ACS Applied Materials & Interfaces, 2022, 14, 21406-21417.	4.0	20
609	Vertically stacked, low-voltage organic ternary logic circuits including nonvolatile floating-gate memory transistors. Nature Communications, 2022, 13, 2305.	5.8	23
610	Mechanically resilient integrated electronics realized using interconnected 2D gold-nanosheet elastomeric electrodes. NPG Asia Materials, 2022, 14, .	3.8	1
611	Advances in perception-functionalized organic field-effect transistors. Scientia Sinica Chimica, 2022, 52, 1896-1912.	0.2	2
612	A bioinspired flexible artificial mechanoreceptor based on VO2 insulator-metal transition memristor. Journal of Alloys and Compounds, 2022, 911, 165096.	2.8	4
613	MoS2-based multiterminal ionic transistor with orientation-dependent STDP learning rules. Solid-State Electronics, 2022, 194, 108386.	0.8	6
614	Bioinspired and multiscale hierarchical design of a pressure sensor with high sensitivity and wide linearity range for high-throughput biodetection. Nano Energy, 2022, 99, 107376.	8.2	19
615	Artificial Neural Pathway Based on a Memristor Synapse for Optically Mediated Motion Learning. ACS Nano, 2022, 16, 9691-9700.	7.3	47
616	From Skin Mechanics to Tactile Neural Coding: Predicting Afferent Neural Dynamics During Active Touch and Perception. IEEE Transactions on Biomedical Engineering, 2022, 69, 3748-3759.	2.5	4
617	Highly Elastic, Sensitive, Stretchable, and Skin-Inspired Conductive Sodium Alginate/Polyacrylamide/Gallium Composite Hydrogel with Toughness as a Flexible Strain Sensor. Biomacromolecules, 2022, 23, 2603-2613.	2.6	25
618	Multifunctional neurosynaptic devices for human perception systems. Journal of Semiconductors, 2022, 43, 051201.	2.0	6
619	Integrating MXene waste materials into value-added products for smart wearable self-powered healthcare monitoring. Cell Reports Physical Science, 2022, 3, 100908.	2.8	8
620	Ferroelectric polymers for neuromorphic computing. Applied Physics Reviews, 2022, 9, .	5.5	31

#	Article	IF	CITATIONS
621	Nanomaterials and printing techniques for 2D and 3D soft electronics. Nano Futures, 0, , .	1.0	1
622	Micro/nanoarrays and their applications in flexible sensors: A review. Materials Today Nano, 2022, 19, 100224.	2.3	9
623	Flexible Artificial Synapses Based on Field Effect Transistors: From Materials, Mechanics towards Applications. Advanced Intelligent Systems, 2022, 4, .	3.3	12
624	Artificial Neurons on Flexible Substrates: A Fully Printed Approach for Neuromorphic Sensing. Sensors, 2022, 22, 4000.	2.1	2
625	Polarityâ€Differentiated Dielectric Materials in Monolayer Graphene Chargeâ€Regulated Fieldâ€Effect Transistors for an Artificial Reflex Arc and Painâ€Modulation System of the Spinal Cord. Advanced Materials, 2022, 34, .	11.1	9
626	Spikeâ€Based Spatiotemporal Processing Enabled by Oscillation Neuron for Energyâ€Efficient Artificial Sensory Systems. Advanced Intelligent Systems, 2022, 4, .	3.3	9
627	A waterproof and breathable Cotton/rGO/CNT composite for constructing a layer-by-layer structured multifunctional flexible sensor. Nano Research, 2022, 15, 9341-9351.	5.8	26
628	Artificial neuromorphic cognitive skins based on distributed biaxially stretchable elastomeric synaptic transistors. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	25
629	Printed synaptic transistor–based electronic skin for robots to feel and learn. Science Robotics, 2022, 7, .	9.9	51
630	Organic Synaptic Transistors Based on a Hybrid Trapping Layer for Neuromorphic Computing. IEEE Electron Device Letters, 2022, 43, 1255-1258.	2.2	4
631	In-sensor Computing Devices for Bio-inspired Vision Sensors. , 2022, , .		0
632	Fabrication and Functionality Integration Technologies for Smallâ€ S cale Soft Robots. Advanced Materials, 2022, 34, .	11.1	13
633	2022 roadmap on neuromorphic devices and applications research in China. Neuromorphic Computing and Engineering, 2022, 2, 042501.	2.8	4
634	Ultrathin Al–air batteries by reducing the thickness of solid electrolyte using aerosol jet printing. Scientific Reports, 2022, 12, .	1.6	11
635	Bioinspired tactile perception platform with information encryption function. Chinese Physics B, 2022, 31, 098506.	0.7	4
636	A Review of Artificial Spiking Neuron Devices for Neural Processing and Sensing. Advanced Functional Materials, 2022, 32, .	7.8	47
637	Humidityâ€Enabled Organic Artificial Synaptic Devices with Ultrahigh Moisture Resistivity. Advanced Electronic Materials, 2022, 8, .	2.6	6
638	An All-In-One Multifunctional Touch Sensor with Carbon-Based Gradient Resistance Elements. Nano-Micro Letters, 2022, 14,	14.4	27

#	Article	IF	CITATIONS
639	Characterization and Modelling of Flexible VO ₂ Mott Memristor for the Artificial Spiking Warm Receptor. Advanced Materials Interfaces, 2022, 9, .	1.9	11
640	Jellyfish Tentacle-Inspired Hydrogel Microfibers Implanted with Discrete Structural Color Microsphere Tactile Sensing Units. Advanced Fiber Materials, 2022, 4, 1209-1218.	7.9	14
641	A Flexible Artificial Sensory Nerve Enabled by Nanoparticleâ€Assembled Synaptic Devices for Neuromorphic Tactile Recognition. Advanced Science, 2022, 9, .	5.6	24
642	Advances in Biodegradable Electronic Skin: Material Progress and Recent Applications in Sensing, Robotics, and Human–Machine Interfaces. Advanced Materials, 2023, 35, .	11.1	82
643	Highâ€Stretchability, Ultralowâ€Hysteresis ConductingPolymer Hydrogel Strain Sensors for Soft Machines. Advanced Materials, 2022, 34, .	11.1	209
644	A biomimetic afferent nervous system based on the flexible artificial synapse. Nano Energy, 2022, 100, 107486.	8.2	17
645	A flexible biohybrid reflex arc mimicking neurotransmitter transmission. Cell Reports Physical Science, 2022, 3, 100962.	2.8	6
646	A Visâ€SWIR Photonic Synapse with Low Power Consumption Based on WSe ₂ /In ₂ Se ₃ Ferroelectric Heterostructure. Advanced Electronic Materials, 2022, 8, .	2.6	12
647	Neuro-inspired electronic skin for robots. Science Robotics, 2022, 7, .	9.9	80
648	An OFETâ€Based Involutive Logic Circuit with Wideâ€Range Threshold Shift Compensability. Advanced Electronic Materials, 2022, 8, .	2.6	2
649	Progress, Challenges, and Prospects of Soft Robotics for Space Applications. Advanced Intelligent Systems, 2023, 5, .	3.3	31
650	Neuromorphic Skin Based on Emerging Artificial Synapses. Advanced Materials Technologies, 2022, 7, .	3.0	11
651	Inâ€Sensor Computing: Materials, Devices, and Integration Technologies. Advanced Materials, 2023, 35, .	11.1	63
652	High sensitivity and broad linearity range pressure sensor based on hierarchical in-situ filling porous structure. Npj Flexible Electronics, 2022, 6, .	5.1	23
653	A calibratable sensory neuron based on epitaxial VO2 for spike-based neuromorphic multisensory system. Nature Communications, 2022, 13, .	5.8	67
654	Full Soft Capacitive Omnidirectional Tactile Sensor Based on Micro-Spines Electrode and Hemispheric Dielectric Structure. Biosensors, 2022, 12, 506.	2.3	5
655	High current hydrogels: Biocompatible electromechanical energy sources. Cell, 2022, 185, 2653-2654.	13.5	2
656	Piezoresistive design for electronic skin: from fundamental to emerging applications. Opto-Electronic Advances, 2022, 5, 210029-210029.	6.4	17

#	Article	IF	CITATIONS
657	Teaching robots to touch. Nature, 0, , .	13.7	0
658	Review of human—robot coordination control for rehabilitation based on motor function evaluation. Frontiers of Mechanical Engineering, 2022, 17, .	2.5	3
659	Direct and remote induced actuation in artificial muscles based on electrospun fiber networks. Scientific Reports, 2022, 12, .	1.6	2
660	Mechanoreceptor Inspired Electronic Skin for Multiâ€Modal Tactile Information Decoding. Advanced Materials Technologies, 2023, 8, .	3.0	5
661	Excitatory postsynaptic current model for synaptic thin-film transistors. Journal of Applied Physics, 2022, 132, .	1.1	2
662	Bioinspired laminated bioceramics with high toughness for bone tissue engineering. International Journal of Energy Production and Management, 2022, 9, .	1.9	3
663	A Subâ€⊋0Ânm Organic/Inorganic Hybrid Dielectric for Ultralowâ€Power Organic Thinâ€Film Transistor (OTFT) With Enhanced Operational Stability. Small, 2022, 18, .	5.2	10
664	Highly sensitive stretchable sensor combined with low-power memristor for demonstration of artificial mechanoreceptor properties. Flexible and Printed Electronics, 2022, 7, 035024.	1.5	1
665	Organic Neuroelectronics: From Neural Interfaces to Neuroprosthetics. Advanced Materials, 2022, 34,	11.1	28
666	Intrinsically stretchable neuromorphic devices for on-body processing of health data with artificial intelligence. Matter, 2022, 5, 3375-3390.	5.0	29
667	An artificial neuromorphic somatosensory system with spatio-temporal tactile perception and feedback functions. Npj Flexible Electronics, 2022, 6, .	5.1	18
668	Polymer-based electronics that can learn to drive: That's smart. Matter, 2022, 5, 2439-2442.	5.0	0
669	A chemically mediated artificial neuron. Nature Electronics, 2022, 5, 586-595.	13.1	48
670	A low-power stretchable neuromorphic nerve with proprioceptive feedback. Nature Biomedical Engineering, 2023, 7, 511-519.	11.6	59
671	A dual-functional two-terminal memristor based on Cs4PbBr6 perovskite for high density data storage and synaptic plasticity. Ceramics International, 2022, 48, 33949-33956.	2.3	4
672	Flexible and Compatible Synaptic Transistor Based on Electrospun In ₂ O ₃ Nanofibers. IEEE Transactions on Electron Devices, 2022, 69, 5363-5367.	1.6	9
673	A skin-beyond tactile sensor as interfaces between the prosthetics and biological systems. Nano Energy, 2022, 102, 107665.	8.2	21
674	Reversible electrical percolation in a stretchable and self-healable silver-gradient nanocomposite bilayer. Nature Communications, 2022, 13, .	5.8	12

#	Article	IF	CITATIONS
675	Soft self-healing resistive-based sensors inspired by sensory transduction in biological systems. Applied Materials Today, 2022, 29, 101638.	2.3	6
676	Polymer-based hybrid materials and their application in personal health. Nano Research, 2023, 16, 3956-3975.	5.8	3
677	Unraveling the Atomic Redox Process in Quantum Conductance and Synaptic Events for Neuromorphic Computing. Advanced Electronic Materials, 2022, 8, .	2.6	1
678	Wearable bioelectronic masks for wireless detection of respiratory infectious diseases by gaseous media. Matter, 2022, 5, 4347-4362.	5.0	14
679	Low-power flexible organic memristor based on PEDOT:PSS/pentacene heterojunction for artificial synapse. Frontiers in Neuroscience, 0, 16, .	1.4	13
680	Integration of body-mounted ultrasoft organic solar cell on cyborg insects with intact mobility. Npj Flexible Electronics, 2022, 6, .	5.1	16
681	Building a Versatile Platform for the Detection of Protein–Protein Interactions Based on Organic Field-Effect Transistors. ACS Applied Electronic Materials, 2022, 4, 4972-4981.	2.0	4
682	Towards organic electronics that learn at the body-machine interface: A materials journey. MRS Communications, 2022, 12, 565-577.	0.8	11
683	Bioinspired shark skin-based liquid metal triboelectric nanogenerator for self-powered gait analysis and long-term rehabilitation monitoring. Nano Energy, 2022, 104, 107852.	8.2	25
684	Vertical Organic Ferroelectric Synaptic Transistor for Temporal Information Processing. Advanced Materials Interfaces, 2022, 9, .	1.9	6
685	Emulating the Signal Transmission in a Neural System Using Polymer Membranes. ACS Applied Materials & Interfaces, 2022, 14, 42308-42316.	4.0	2
686	Recent Advances in the Development of Flexible Sensors: Mechanisms, Materials, Performance Optimization, and Applications. Journal of Electronic Materials, 2022, 51, 6735-6769.	1.0	11
687	Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management. Nature Communications, 2022, 13, .	5.8	71
688	Neurorobotic approaches to emulate human motor control with the integration of artificial synapse. Science Advances, 2022, 8, .	4.7	5
689	A thermally crosslinked ion-gel gated artificial synapse. Chinese Chemical Letters, 2023, 34, 107842.	4.8	2
690	Impact of Planar and Vertical Organic Field‣ffect Transistors on Flexible Electronics. Advanced Materials, 2023, 35, .	11.1	28
691	Magneto-Tactile Sensor Based on a Commercial Polyurethane Sponge. Nanomaterials, 2022, 12, 3231.	1.9	2
692	An Electrochemicalâ€Electret Coupled Organic Synapse with Singleâ€Polarity Driven Reversible Facilitationâ€toâ€Depression Switching. Advanced Materials, 2022, 34, .	11.1	6

#	Article	IF	CITATIONS
693	Multimodal Sensory Computing. , 2022, , 225-237.		0
694	Short-Term Plasticity in 2D Materials for Neuromorphic Computing. , 2022, , 33-53.		1
695	Bioinspired interactive neuromorphic devices. Materials Today, 2022, 60, 158-182.	8.3	55
696	Neuromorphic Metamaterials for Mechanosensing and Perceptual Associative Learning. Advanced Intelligent Systems, 2022, 4, .	3.3	5
697	Adaptive Hodgkin–Huxley Neuron for Retinaâ€Inspired Perception. Advanced Intelligent Systems, 2022, 4,	3.3	5
698	Robust Organic–Inorganic Heterosynapses with High PPF and Broad Photoperception. Advanced Materials Technologies, 2023, 8, .	3.0	9
699	An artificial remote tactile device with 3D depth-of-field sensation. Science Advances, 2022, 8, .	4.7	9
700	Advanced Functional Composite Materials toward Eâ€Skin for Health Monitoring and Artificial Intelligence. Advanced Materials Technologies, 2023, 8, .	3.0	24
701	Fabrication and Experimental Validation of a Sensitive and Robust Tactile Sensing Array with a Micro-Structured Porous Dielectric Layer. Micromachines, 2022, 13, 1724.	1.4	3
702	Tuning Threshold Voltage of Electrolyte-Gated Transistors by Binary Ion Doping. ACS Applied Materials & Interfaces, 2022, 14, 50004-50012.	4.0	6
703	Bioinspired Artificial Motion Sensory System for Rotation Recognition and Rapid Self-Protection. ACS Nano, 2022, 16, 19155-19164.	7.3	21
704	Flexible optoelectronic neural transistors with broadband spectrum sensing and instant electrical processing for multimodal neuromorphic computing. SmartMat, 2023, 4, .	6.4	16
705	A High-Strength Neuromuscular System That Implements Reflexes as Controlled by a Multiquadrant Artificial Efferent Nerve. ACS Nano, 2022, 16, 20294-20304.	7.3	9
706	Field effect transistorâ€based tactile sensors: From sensor configurations to advanced applications. InformaÄnÃ-Materiály, 2023, 5, .	8.5	24
707	An integrate-and-fire neuron circuit made from printed organic field-effect transistors. Organic Electronics, 2023, 113, 106685.	1.4	0
708	Bionic Robust Memristor-Based Artificial Nociception System for Robotics. , 2022, , .		1
709	Bioderived materials for stimuli-responsive, adaptive, and neuromorphic systems: A perspective. Journal of Composite Materials, 2023, 57, 659-678.	1.2	1
710	A biomimetic ocular prosthesis system: emulating autonomic pupil and corneal reflections. Nature Communications, 2022, 13, .	5.8	8

#	Article	IF	CITATIONS
711	Redox memristors with volatile threshold switching behavior for neuromorphic computing. Journal of Electronic Science and Technology, 2022, 20, 100177.	2.0	4
712	Recent advances in 2D organicâ~'inorganic heterostructures for electronics and optoelectronics. SmartMat, 2023, 4, .	6.4	15
713	An electronic synaptic memory device based on four-cation mixed halide perovskite. Discover Materials, 2022, 2, .	1.0	5
714	Wavelength and Polarization Sensitive Synaptic Phototransistor Based on Organic n-type Semiconductor/Supramolecular J-Aggregate Heterostructure. ACS Nano, 2022, 16, 19523-19532.	7.3	10
715	Advanced synaptic devices and their applications in biomimetic sensory neural system. , 2023, 2, 100031.		7
716	Highly adaptive and energy efficient neuromorphic computation enabled by deep-spike heterostructure photonic neuro-transistors. Nano Energy, 2022, 104, 107991.	8.2	2
717	Side chain engineering enhances the high-temperature resilience and ambient stability of organic synaptic transistors for neuromorphic applications. Nano Energy, 2022, 104, 107985.	8.2	13
718	Chemically Mediated Artificial Neuron. , 2022, , .		0
719	Engineering Electrodes with Robust Conducting Hydrogel Coating for Neural Recording and Modulation. Advanced Materials, 2023, 35, .	11.1	14
720	Flexible Wearable Optical Sensor Based on Optical Microfiber Bragg Grating. Journal of Lightwave Technology, 2023, 41, 1858-1864.	2.7	22
721	Interfacial Engineering for High-Performance DPPT-TT Polymer Transistors with the On/Off Ratio of 10 ⁸ and Mobility of 3 cm ² V ^{â^'1} s ^{â^'1} ., 2022, , .		0
722	Shape morphing of plastic films. Nature Communications, 2022, 13, .	5.8	9
723	An Ultrahigh Linear Sensitive Temperature Sensor Based on PANI:Graphene and PDMS Hybrid with Negative Temperature Compensation. ACS Nano, 2022, 16, 21527-21535.	7.3	20
724	Multiplexed Complementary Signal Transmission for a Selfâ€Regulating Artificial Nervous System. Advanced Science, 0, , 2205155.	5.6	2
725	Review of the Intelligent Sensorâ€Memory ontrol Fusion Systems. , 2023, 2, .		1
726	Flexible multiterminal photoelectronic neurotransistors based on selfâ€assembled rubber semiconductors for spatiotemporal information processing. SmartMat, 2023, 4, .	6.4	4
727	Biodegradable Materials for Transient Organic Transistors. Advanced Functional Materials, 2023, 33, .	7.8	16
729	Short-term plasticity, multimodal memory, and logical responses mimicked in stretchable hydrogels. Matter, 2023, 6, 429-444.	5.0	12

#	Article	IF	Citations
730	Neuromorphic Gustatory System with Salt-Taste Perception, Information Processing, and Excessive-Intake Warning Capabilities. Nano Letters, 2023, 23, 8-16.	4.5	10
731	Retina-inspired in-sensor broadband image preprocessing for accurate recognition via the flexophototronic effect. Matter, 2023, 6, 537-553.	5.0	12
732	Inâ€Sensor Reservoir Computing Based on Optoelectronic Synapse. Advanced Intelligent Systems, 2023, 5,	3.3	15
733	Batteryâ€Free, Wireless, Ionic Liquid Sensor Arrays to Monitor Pressure and Temperature of Patients in Bed and Wheelchair. Small, 2023, 19, .	5.2	11
734	Neuron devices: emerging prospects in neural interfaces and recognition. Microsystems and Nanoengineering, 2022, 8, .	3.4	7
735	Memristive Synapse Based on Singleâ€Crystalline LiNbO ₃ Thin Film with Bioinspired Microstructure for Experienceâ€Based Dynamic Image Mask Generation. Advanced Electronic Materials, 2023, 9, .	2.6	3
736	Nanoenabled Trainable Systems: From Biointerfaces to Biomimetics. ACS Nano, 2022, 16, 19651-19664.	7.3	5
737	Fiber-shaped artificial optoelectronic synapses for wearable visual-memory systems. Matter, 2023, 6, 925-939.	5.0	18
738	Flexible Memristor Constructed by 2D Cadmium Phosphorus Trichalcogenide for Artificial Synapse and Logic Operation. Advanced Functional Materials, 2023, 33, .	7.8	16
739	Retinaâ€Inspired Organic Photonic Synapses for Selective Detection of SWIR Light. Angewandte Chemie - International Edition, 2023, 62, .	7.2	12
740	Retinaâ€Inspired Organic Photonic Synapses for Selective Detection of SWIR Light. Angewandte Chemie, 2023, 135, .	1.6	2
741	基于图形化铌é…,é'¾é'纳米棒é~µå^—çš"自供ç"µåŽ‹åŠ›ä¼æ"Ÿå™". Science China Materials, 202	23,3666, 14	9421503.
742	Recent Progresses in Optoelectronic Artificial Synapse Devices. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2022, , 699.	0.6	0
743	Flexible Electronics Based on Organic Semiconductors: from Patterned Assembly to Integrated Applications. Small, 2023, 19, .	5.2	7
744	Neuromorphic functions with a polyelectrolyte-confined fluidic memristor. Science, 2023, 379, 156-161.	6.0	72
745	Threeâ€Terminal Artificial Olfactory Sensors based on Emerging Materials: Mechanism and Application. Advanced Functional Materials, 2023, 33, .	7.8	12
746	2D Semiconductor Based Flexible Photoresponsive Ring Oscillators for Artificial Vision Pixels. ACS Nano, 2023, 17, 991-999.	7.3	11
747	Emerging electrolyte-gated transistors for neuromorphic perception. Science and Technology of Advanced Materials, 2023, 24, .	2.8	13

#	Article	IF	CITATIONS
748	Selfâ€Powered Nanofluidic Pressure Sensor with a Linear Transfer Mechanism. Advanced Functional Materials, 2023, 33, .	7.8	20
749	2D metal-organic frameworks for ultraflexible electrochemical transistors with high transconductance and fast response speeds. Science Advances, 2023, 9, .	4.7	21
750	Biomimetic strategies and technologies for artificial tactile sensory systems. Trends in Biotechnology, 2023, 41, 951-964.	4.9	4
751	Low-Dimensional-Materials-Based Flexible Artificial Synapse: Materials, Devices, and Systems. Nanomaterials, 2023, 13, 373.	1.9	8
752	Artificial Neuronal Devices Based on Emerging Materials: Neuronal Dynamics and Applications. Advanced Materials, 2023, 35, .	11.1	16
753	Triboelectric nanogenerator for neuromorphic electronics. , 2023, 2, 100014.		7
754	A Flexible Tribotronic Artificial Synapse with Bioinspired Neurosensory Behavior. Nano-Micro Letters, 2023, 15, .	14.4	12
755	Brain-like optoelectronic artificial synapses with ultralow energy consumption based on MXene floating-gates for emotion recognition. Journal of Materials Chemistry C, 2023, 11, 3468-3479.	2.7	3
756	Nanoscale electronic synapses for neuromorphic computing. , 2023, , 189-218.		0
757	Halide perovskite photoelectric artificial synapses: materials, devices, and applications. Nanoscale, 2023, 15, 4653-4668.	2.8	10
758	Organic Neuromorphic Systems. , 2023, , 154-164.		0
759	Stochastic current response in diffusive memristor for security applications. Materials Today Nano, 2023, 22, 100315.	2.3	1
760	Ultralow-power consumption photonic synapse transistors based on organic array films fabricated using a particular prepatterned-guided crystallizing strategy. Journal of Materials Chemistry C, 2023, 11, 3213-3226.	2.7	4
761	é [~] ³ç¦»å纤҉»´ç´çº³ç±³çº¤҉»´å^†æ•£æ¶²æ€é‡ʿ属å^¶å¤҉é«˜çµæ•度和自修åër¼ç"µæ°´å‡èƒ¶ç"¨äºŽåº"åĩ伿"Ÿå	™ .:S &ienco	e C ha ina Ma ^{rce}
762	Artificial Multisensory Neuron with a Single Transistor for Multimodal Perception through Hybrid Visual and Thermal Sensing. ACS Applied Materials & Interfaces, 2023, 15, 5449-5455.	4.0	8
763	Electronic tattoos based on large-area Mo2C grown by chemical vapor deposition for electrophysiology. Nano Research, 2023, 16, 4100-4106.	5.8	5
764	In-Memory Tactile Sensor with Tunable Steep-Slope Region for Low-Artifact and Real-Time Perception of Mechanical Signals. ACS Nano, 2023, 17, 2134-2147.	7.3	5
765	Ferroelectrically modulated ion dynamics in Li + electrolyte-gated transistors for neuromorphic computing. Applied Physics Reviews, 2023, 10, .	5.5	6

#	Article	IF	CITATIONS
766	Stretchable Transistor‧tructured Artificial Synapses for Neuromorphic Electronics. Small, 2023, 19, .	5.2	14
767	An Image Detection–Memory–Recognition Artificial Visual Unit Based on Dualâ€Gate Phototransistors. Advanced Intelligent Systems, 2023, 5, .	3.3	1
768	Ionic Flexible Mechanical Sensors: Mechanisms, Structural Engineering, Applications, and Challenges. , 2023, 2, .		0
769	Simple Fabrication of Highly Sensitive Tactile Sensing Array Inlaid an Enhanced Porous Dielectric Layer for Robotic Manipulation. IEEE Sensors Journal, 2023, 23, 8214-8223.	2.4	2
770	Influence of BaTiO3 morphology on BaTiO3/P(VDF-HFP) electrolyte for self-charging sodium-ion batteries. Solid State Ionics, 2023, 393, 116183.	1.3	1
771	Self-aware artificial auditory neuron with a triboelectric sensor for spike-based neuromorphic hardware. Nano Energy, 2023, 109, 108322.	8.2	6
772	Advances in organic transistors for artificial perception applications. , 2023, 3, 100028.		3
773	Molecularly Hybridized Conduction in DPPâ€Based Donor–Acceptor Copolymers toward Highâ€Performance Ionoâ€Electronics. Small, 2023, 19, .	5.2	4
774	Perception of Static and Dynamic Forces with a Bio-inspired Tactile Fingertip. Journal of Bionic Engineering, 2023, 20, 1544-1554.	2.7	2
775	Soft Fiber Electronics Based on Semiconducting Polymer. Chemical Reviews, 2023, 123, 4693-4763.	23.0	40
776	Conjugated Polymer-Based Nanocomposites for Pressure Sensors. Molecules, 2023, 28, 1627.	1.7	10
777	Wireless, multimodal sensors for continuous measurement of pressure, temperature, and hydration of patients in wheelchair. Npj Flexible Electronics, 2023, 7, .	5.1	19
778	Perspective for soft robotics: the field's past and future. Bioinspiration and Biomimetics, 2023, 18, 035001.	1.5	6
779	Liquid-Based Memory Devices for Next-Generation Computing. ACS Applied Electronic Materials, 2023, 5, 664-673.	2.0	6
780	A flexible artificial chemosensory neuronal synapse based on chemoreceptive ionogel-gated electrochemical transistor. Nature Communications, 2023, 14, .	5.8	24
781	Optically modulated ionic conductivity in a hydrogel for emulating synaptic functions. Science Advances, 2023, 9, .	4.7	11
782	Recent Progress in Organic-Based Photonic Synapses. , 2022, 1, 155-173.		1
783	Recent progress in three-terminal artificial synapses based on 2D materials: from mechanisms to applications. Microsystems and Nanoengineering, 2023, 9, .	3.4	19

#	Article	IF	CITATIONS
784	A Wearable Flexible Tactile Sensor with Textile Microstructure for Wirelessly Recognizing Human Activity. , 2023, 2, .		3
785	Highly sensitive and wide linearity flexible pressure sensor with randomly distributed columnar arrays. Journal of Materials Science, 2023, 58, 3735-3751.	1.7	4
786	Biological function simulation in neuromorphic devices: from synapse and neuron to behavior. Science and Technology of Advanced Materials, 2023, 24, .	2.8	13
787	Advanced Bioinspired Organic Sensors for Futureâ€Oriented Intelligent Applications. , 0, , 2200066.		2
788	Molecular Structure Engineering of Polyelectrolyte Bilayer-Based Memristors: Implications for Linear Potentiation and Depression Characteristics. ACS Applied Nano Materials, 2023, 6, 3919-3926.	2.4	1
789	A Strain-Sensitive Flexible MoTe ₂ -Based Memristor for Gesture Recognition. IEEE Electron Device Letters, 2023, 44, 622-625.	2.2	3
790	Flexible Organic Transistors for Biosensing: Devices and Applications. Advanced Materials, 0, , .	11.1	21
791	A Tactile Sensor Array with a Monolithically Integrated Neural Network for Edge Computation. , 2023,		0
792	Flexible Organic–Inorganic Halide Perovskite-Based Diffusive Memristor for Artificial Nociceptors. ACS Applied Materials & Interfaces, 2023, 15, 13238-13248.	4.0	18
793	å∙有å§ç"µå⁻¼åŠ∵æ€èŒfå›′å'Œå≸级电å⁻¼æ€çš"é"电Hf0.5Zr0.5O2ææŽ§çªè§¦æ™¶ä½"ç®j. Science	China Mat	tertals, 202 <mark>3</mark> ,
794	Emerging Iontronic Neural Devices for Neuromorphic Sensory Computing. Advanced Materials, 2023, 35, .	11.1	18
795	Demonstration of p-type stack-channel ternary logic device using scalable DNTT patterning process. Nano Convergence, 2023, 10, .	6.3	1
796	Technology Roadmap for Flexible Sensors. ACS Nano, 2023, 17, 5211-5295.	7.3	238
797	Flexible and smart electronics for single-cell resolved brain–machine interfaces. Applied Physics Reviews, 2023, 10, .	5.5	1
798	The design and working effect evaluation of the conical surface-mounted end-effector. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45, .	0.8	0
799	Soft Electronics for Health Monitoring Assisted by Machine Learning. Nano-Micro Letters, 2023, 15, .	14.4	23
800	Machine Learning for Tactile Perception: Advancements, Challenges, and Opportunities. Advanced Intelligent Systems, 2023, 5, .	3.3	8
801	Bioâ€Inspired Artificial Perceptual Devices for Neuromorphic Computing and Gesture Recognition. Advanced Functional Materials, 2023, 33, .	7.8	15

ARTICLE IF CITATIONS Lowâ€Threshold, Externalâ€Cavityâ€Free Flexible Perovskite Lasers. Advanced Functional Materials, 2023, 33, 802 7.8 2 Nearâ€Sensor Reservoir Computing for Gait Recognition via a Multiâ€Gate Electrolyteâ€Gated Transistor. 5.6 Advanced Science, 2023, 10, . Advances in flexible sensors for intelligent perception system enhanced by artificial intelligence. 804 8.5 20 InformaÄnÃ-MateriÃily, 2023, 5, . A Bioinspired Ultra Flexible Artificial van der Waals 2Dâ€MoS₂ Channel/LiSiO<i><sub></i>Solid Electrolyte Synapse Arrays via Laserâ€Lift Off Process for Wearable Adaptive Neuromorphic Computing. Small Methods, 2023, 7, . Electronic Neurons for a New Learning Paradigm. Advanced Healthcare Materials, 0, , . 806 3.9 1 Design of a novel sensory neuromorphic circuit., 2023,,. Biocompatible Materialâ€Based Flexible Biosensors: From Materials Design to Wearable/Implantable 808 5.2 17 Devices and Integrated Sensing Systems. Small, 2023, 19, . A two-dimensional mid-infrared optoelectronic retina enabling simultaneous perception and 809 5.8 20 encoding. Nature Communications, 2023, 14, . Integration of Neuromorphic and Reconfigurable Logicâ€inâ€Memory Operations in an 810 3.3 1 Electrolyteâ€Manipulated Ferroelectric Organic Neuristor. Advanced Intelligent Systems, 2023, 5, . Artificial Action Potential and Ionic Power Device Inspired by Ion Channels and Excitable Cell. 5.6 Advanced Science, 2023, 10, . Recent Advances in Artificial Intelligence Sensors., 2023, 2, . 812 14 Laser-Induced Graphene for Multifunctional and Intelligent Wearable Systems: For Health Care and 1.3 Human–Computer Interaction. Applied Sciences (Switzerland), 2023, 13, 4688. Skin-Inspired Ultra-Tough Supramolecular Multifunctional Hydrogel Electronic Skin for 814 14.4 31 Human–Machine Interaction. Nano-Micro Letters, 2023, 15, . A Hybrid Strategyâ€Based Ultraâ€Narrow Stretchable Microelectrodes with Cell‣evel Resolution. Advanced Functional Materials, 2023, 33, . Sensory Adaptation in Biomolecular Memristors Improves Reservoir Computing Performance. 816 3.3 5 Advanced Intelligent Systems, 2023, 5, . A Wearable Healthcare Platform Integrated with Biomimetical Ions Conducted Metal–Organic Framework Composites for Gas and Strain Sensing in Nonâ€Overlapping Mode. Advanced Science, 2023, An Artificial Neuromuscular System for Bimodal Humanâ& Machine Interaction. Advanced Functional 818 7.8 14 Materials, 2023, 33, . Promising Materials and Synthesis Methods for Resistive Switching Memory Devices: A Status Review. ACS Applied Electronic Materials, 2023, 5, 2454-2481.

#	Article	IF	CITATIONS
824	Neural-inspired artificial synapses based on low-voltage operated organic electrochemical transistors. Journal of Materials Chemistry C, 2023, 11, 7485-7509.	2.7	5
829	Optically Readable Organic Electrochemical Synaptic Transistors for Neuromorphic Photonic Image Processing. Nano Letters, 2023, 23, 5264-5271.	4.5	6
832	Highly Bionic Neurotransmitter-Communicated Neurons Following Integrate-and-Fire Dynamics. Nano Letters, 2023, 23, 4974-4982.	4.5	3
874	Four levels of in-sensor computing in bionic olfaction: from discrete components to multi-modal integrations. Nanoscale Horizons, 2023, 8, 1301-1312.	4.1	1
881	Organic Resistive Memories for Neuromorphic Electronics. , 2023, , 60-120.		0
887	A retinomorphic neuron for artificial vision and iris accommodation. Materials Horizons, 2023, 10, 5753-5762.	6.4	1
891	Structurally tunable perovskite nanocones for artificial synaptic retina. , 2023, , .		0
894	In-sensor Computing Based on Two-terminal Optoelectronic Memristors. , 2023, , 339-372.		0
895	Sensing–Storage–Computing Integrated Devices Based on Carbon Nanomaterials. , 2023, , 555-568.		0
902	Artificial Intelligence Meets Flexible Sensors: Emerging Smart Flexible Sensing Systems Driven by Machine Learning and Artificial Synapses. Nano-Micro Letters, 2024, 16, .	14.4	5
907	é¢åŧ智能视觉感知的神ç»å½¢æ€ä¼æ"Ÿå™°çš"原ç†å'Œåº"ç". Science China Materials, 2023, 66	5, 45 50-45	650
921	Thin-film transistors for large-area electronics. Nature Electronics, 2023, 6, 963-972.	13.1	0
925	Organic mixed conductors for bioinspired electronics. Nature Reviews Materials, 2024, 9, 134-149.	23.3	3
947	Neuromorphic hardware for somatosensory neuroprostheses. Nature Communications, 2024, 15, .	5.8	1
951	Active Sensor for Multidimensional Force Detection. IFMBE Proceedings, 2024, , 407-414.	0.2	0
952	Nanomaterials in nonvolatile resistive memory devices. , 2024, , 57-79.		Ο