Water splitting by electrolysis at high current densities

Energy and Environmental Science 11, 2858-2864 DOI: 10.1039/c8ee00927a

Citation Report

#	Article	IF	CITATIONS
5	Construction of an efficient hole migration pathway on hematite for efficient photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2018, 6, 23478-23485.	5.2	73
6	Rationality in the new oxygen evolution catalyst development. Current Opinion in Electrochemistry, 2018, 12, 218-224.	2.5	24
7	Recent developments in earth-abundant and non-noble electrocatalysts for water electrolysis. Materials Today Physics, 2018, 7, 121-138.	2.9	203
8	Overall water splitting by graphdiyne-exfoliated and -sandwiched layered double-hydroxide nanosheet arrays. Nature Communications, 2018, 9, 5309.	5.8	287
9	Air-stable phosphorus-doped molybdenum nitride for enhanced electrocatalytic hydrogen evolution. Communications Chemistry, 2018, 1, .	2.0	36
10	Bifunctional hydrogen evolution and oxygen evolution catalysis using CoP-embedded N-doped nanoporous carbon synthesized via TEOS-assisted method. Energy, 2018, 165, 537-548.	4.5	19
11	NiFe Oxide Nanocatalysts Grown on Carbonized Algal Cells for Enhanced Oxygen Evolution Reaction. Journal of the Electrochemical Society, 2018, 165, J3157-J3165.	1.3	2
12	Simultaneous SO2 removal and CO2 reduction in a nano-BiVO4 Cu-In nanoalloy photoelectrochemical cell. Chemical Engineering Journal, 2019, 355, 11-21.	6.6	41
13	New Way to Synthesize Robust and Porous Ni1–xFex Layered Double Hydroxide for Efficient Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces, 2019, 11, 32909-32916.	4.0	16
14	Synthesis and identifying the active site of Cu2Se@CoSe nano-composite for enhanced electrocatalytic oxygen evolution. Electrochimica Acta, 2019, 320, 134589.	2.6	21
15	Upscaling high activity oxygen evolution catalysts based on CoFe2O4 nanoparticles supported on nickel foam for power-to-gas electrochemical conversion with energy efficiencies above 80%. Applied Catalysis B: Environmental, 2019, 259, 118055.	10.8	35
16	MoS2–Co3S4 hollow polyhedrons derived from ZIF-67 towards hydrogen evolution reaction and hydrodesulfurization. International Journal of Hydrogen Energy, 2019, 44, 24246-24255.	3.8	22
17	Morphological and Electronic Tuning of Ni ₂ P through Iron Doping toward Highly Efficient Water Splitting. ACS Catalysis, 2019, 9, 8882-8892.	5.5	227
18	Metal boride better than Pt: HCP Pd ₂ B as a superactive hydrogen evolution reaction catalyst. Energy and Environmental Science, 2019, 12, 3099-3105.	15.6	93
19	Copper-N-SiO2 nanoparticles catalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 22926-22935.	3.8	4
20	Enhanced electrocatalytic HER performance of non-noble metal nickel by introduction of divanadium trioxide. Electrochimica Acta, 2019, 320, 134535.	2.6	18
21	Improving electrocatalytic activity of iridium for hydrogen evolution at high current densities above 1000 mA cmâ^'2. Applied Catalysis B: Environmental, 2019, 258, 117965.	10.8	46
22	Powering the Hydrogen Economy from Waste Heat: A Review of Heatâ€ŧoâ€Hydrogen Concepts. ChemSusChem, 2019, 12, 3882-3895.	3.6	36

ARTICLE IF CITATIONS # Graphdiyne-engineered heterostructures for efficient overall water-splitting. Nano Energy, 2019, 64, 23 8.2 43 103928. NiFe (sulfur)oxyhydroxide porous nanoclusters/Ni foam composite electrode drives a large-current-density oxygen evolution reaction with an ultra-low overpotential. Journal of 24 5.2 Materials Chemistry A, 2019, 7, 18816-18822. Ce-doped CoS₂pyrite with weakened O₂adsorption suppresses catalyst leaching and stabilizes electrocatalytic H₂evolution. Journal of Materials Chemistry A, 25 5.2 35 2019, 7, 17775-17781. A hierarchically porous and hydrophilic 3D nickel–iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities. Nano Energy, 2019, 63, 103880. Molten salt electrochemical production and in situ utilization of hydrogen for iron production. 27 3.8 11 International Journal of Hydrogen Energy, 2019, 44, 24353-24359. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. 5.8 742 Nature Communications, 2019, 10, 5106. The Synergetic Effect of Ni and Fe Bi-metal Single Atom Catalysts on Graphene for Highly Efficient 29 1.2 20 Oxygen Evolution Reaction. Frontiers in Materials, 2019, 6, . Morphology enhancement of SiO2 aerogel films grown on Si substrate using dense SiO2 buffer layer. 3.6 Rare Metals, 2019, , 1. Comparison of Water Sampling between Environmental DNA Metabarcoding and Conventional 31 Microscopic Identification: A Case Study in Gwangyang Bay, South Korea. Applied Sciences 25 1.3 (Switzerland), 2019, 9, 3272. Electrochemically engineering defect-rich nickel-iron layered double hydroxides as a whole water 3.8 14 splitting electrocatalyst. International Journal of Hydrogen Energy, 2019, 44, 23689-23698. Precipitating Metal Nitrate Deposition of Amorphous Metal Oxyhydroxide Electrodes Containing Ni, 33 5.543 Fe, and Co for Electrocatalytic Water Oxidation. ACS Catalysis, 2019, 9, 9650-9662. Decoupled hydrogen and oxygen evolution by a two-step electrochemical–chemical cycle for efficient 19.8 296 overall water splitting. Nature Energy, 2019, 4, 786-795 Synergetic Effects of Dual Electrocatalysts for High-Performance Solar-Driven Water Oxidation. ACS 35 2.5 7 Applied Energy Materials, 2019, 2, 7256-7262. One-step construction of core/shell nanoarrays with a holey shell and exposed interfaces for 5.2 overall water splitting. Journal of Materials Chemistry A, 2019, 7, 1196-1205. Constructing Earthâ€abundant 3D Nanoarrays for Efficient Overall Water Splitting – A Review. 37 1.8 108 ChemCatChem, 2019, 11, 1550-1575. Polydopamine-assisted construction of cobalt phosphide encapsulated in N-doped carbon porous 38 polýhedrons for enhanced overall water splitting. Carbon, 2019, 145, 694-700. 39 Kinetics and mechanisms of catalytic water oxidation. Dalton Transactions, 2019, 48, 779-798. 1.6 42 Enhanced surface wettability and innate activity of an iron borate catalyst for efficient oxygen evolution and gas bubble detachment. Journal of Materials Chemistry A, 2019, 7, 15252-15261.

#	Article	IF	Citations
41	Electrochemical Cathodic Treatment of Mild Steel as a Host for Ni(OH) ₂ Catalyst for Oxygen Evolution Reaction in Alkaline Media. ChemElectroChem, 2019, 6, 4391-4401.	1.7	11
42	Laserâ€Assisted Doping and Architecture Engineering of Fe ₃ O ₄ Nanoparticles for Highly Enhanced Oxygen Evolution Reaction. ChemSusChem, 2019, 12, 3562-3570.	3.6	19
43	Lightweight, Superelastic Yet Thermoconductive Boron Nitride Nanocomposite Aerogel for Thermal Energy Regulation. ACS Nano, 2019, 13, 7860-7870.	7.3	143
44	Template-assisted fabrication of Ni nanowire arrays for high efficient oxygen evolution reaction. Electrochimica Acta, 2019, 318, 91-99.	2.6	3
45	Hybrid Amorphous/Crystalline FeNi (Oxy) Hydroxide Nanosheets for Enhanced Oxygen Evolution. ChemCatChem, 2019, 11, 3004-3009.	1.8	12
46	Ultrathin MoSSe alloy nanosheets anchored on carbon nanotubes as advanced catalysts for hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 16110-16119.	3.8	23
47	Enhancing oxygen evolution reaction by cationic surfactants. Nano Research, 2019, 12, 2302-2306.	5.8	28
48	Unique nanosheet–nanowire structured CoMnFe layered triple hydroxide arrays as self-supporting electrodes for a high-efficiency oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 13130-13141.	5.2	67
49	Influence of Electrochemical Aging on Bead-Blasted Nickel Electrodes for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 3166-3178.	2.5	5
50	Stepwise Electrochemical Construction of FeOOH/Ni(OH) ₂ on Ni Foam for Enhanced Electrocatalytic Oxygen Evolution. ACS Applied Energy Materials, 2019, 2, 3927-3935.	2.5	87
51	Enhancing the Performance of Ni-Mo Alkaline Hydrogen Evolution Electrocatalysts with Carbon Supports. ACS Applied Energy Materials, 2019, 2, 2524-2533.	2.5	43
52	Ultrafine Metallic Nickel Domains and Reduced Molybdenum States Improve Oxygen Evolution Reaction of NiFeMo Electrocatalysts. Small, 2019, 15, e1804764.	5.2	35
53	NiFe Alloy Nanoparticles with hcp Crystal Structure Stimulate Superior Oxygen Evolution Reaction Electrocatalytic Activity. Angewandte Chemie - International Edition, 2019, 58, 6099-6103.	7.2	267
54	NiFe Alloy Nanoparticles with hcp Crystal Structure Stimulate Superior Oxygen Evolution Reaction Electrocatalytic Activity. Angewandte Chemie, 2019, 131, 6160-6164.	1.6	14
55	Hierarchical tri-functional electrocatalysts derived from bimetallic–imidazolate framework for overall water splitting and rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2019, 7, 8641-8652.	5.2	41
56	Copper–Nickel Nitride Nanosheets as Efficient Bifunctional Catalysts for Hydrazineâ€Assisted Electrolytic Hydrogen Production. Advanced Energy Materials, 2019, 9, 1900390.	10.2	243
57	Oxygenâ€Deficient Ti _{0.9} Nb _{0.1} O _{2â€x} as an Efficient Anodic Catalyst Support for PEM Water Electrolyzer. ChemCatChem, 2019, 11, 2511-2519.	1.8	19
58	A strong coupled 2D metal-organic framework and ternary layered double hydroxide hierarchical nanocomposite as an excellent electrocatalyst for the oxygen evolution reaction. Electrochimica Acta, 2019, 307, 275-284.	2.6	49

#	Article	IF	CITATIONS
59	Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. Nature Catalysis, 2019, 2, 251-258.	16.1	188
60	Surface modification of porous g-C ₃ N ₄ materials using a waste product for enhanced photocatalytic performance under visible light. Green Chemistry, 2019, 21, 5934-5944.	4.6	31
61	Activating and optimizing the activity of NiCoP nanosheets for electrocatalytic alkaline water splitting through the V doping effect enhanced by P vacancies. Journal of Materials Chemistry A, 2019, 7, 24486-24492.	5.2	227
62	Heading to Distributed Electrocatalytic Conversion of Small Abundant Molecules into Fuels, Chemicals, and Fertilizers. Joule, 2019, 3, 2602-2621.	11.7	86
63	Au@Co ₂ P core/shell nanoparticles as a nano-electrocatalyst for enhancing the oxygen evolution reaction. RSC Advances, 2019, 9, 40811-40818.	1.7	7
64	Large-Scale, Low-Cost, and High-Efficiency Water-Splitting System for Clean H ₂ Generation. ACS Applied Materials & Interfaces, 2019, 11, 3971-3977.	4.0	46
65	Nobleâ€Metalâ€Free Electrocatalysts for Oxygen Evolution. Small, 2019, 15, e1804201.	5.2	388
66	A practical-oriented NiFe-based water-oxidation catalyst enabled by ambient redox and hydrolysis co-precipitation strategy. Applied Catalysis B: Environmental, 2019, 244, 844-852.	10.8	125
67	In-Situ Grown, Passivator-Modulated Anodization Derived Synergistically Well-Mixed Ni–Fe Oxides from Ni Foam as High-Performance Oxygen Evolution Reaction Electrocatalyst. ACS Applied Energy Materials, 2019, 2, 743-753.	2.5	34
68	Synergistically well-mixed MOFs grown on nickel foam as highly efficient durable bifunctional electrocatalysts for overall water splitting at high current densities. Nano Energy, 2019, 57, 1-13.	8.2	211
69	3D porous network heterostructure NiCe@NiFe electrocatalyst for efficient oxygen evolution reaction at large current densities. Applied Catalysis B: Environmental, 2020, 260, 118199.	10.8	100
70	Synergistic Control of Structural Disorder and Surface Bonding Nature to Optimize the Functionality of Manganese Oxide as an Electrocatalyst and a Cathode for Li–O 2 Batteries. Small, 2020, 16, 1903265.	5.2	26
71	In-situ formed NiS/Ni coupled interface for efficient oxygen evolution and hydrogen evolution. Journal of Materials Science and Technology, 2020, 42, 10-16.	5.6	52
72	High-efficient electrocatalytic overall water splitting over vanadium doped hexagonal Ni0.2Mo0.8N. Applied Catalysis B: Environmental, 2020, 263, 118330.	10.8	111
73	MOF-derived nitrogen-doped CoO@CoP arrays as bifunctional electrocatalysts for efficient overall water splitting. Electrochimica Acta, 2020, 330, 135210.	2.6	64
74	A highly active and durable electrocatalyst for large current density hydrogen evolution reaction. Science Bulletin, 2020, 65, 123-130.	4.3	58
75	Single Nanometer-Sized NiFe-Layered Double Hydroxides as Anode Catalyst in Anion Exchange Membrane Water Electrolysis Cell with Energy Conversion Efficiency of 74.7% at 1.0 A cm ^{–2} . ACS Catalysis, 2020, 10, 1886-1893.	5.5	91
76	A coaxial three-layer (Ni, Fe)O _x H _y /Ni/Cu mesh electrode: excellent oxygen evolution reaction activity for water electrolysis. Catalysis Science and Technology, 2020, 10, 1803-1808.	2.1	9

#	Article	IF	CITATIONS
77	Exceptional performance of hierarchical Ni–Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy and Environmental Science, 2020, 13, 86-95.	15.6	698
78	Insight into the Boosted Electrocatalytic Oxygen Evolution Performance of Highly Hydrophilic Nickel–Iron Hydroxide. ACS Applied Energy Materials, 2020, 3, 822-830.	2.5	37
79	A review on NiFe-based electrocatalysts for efficient alkaline oxygen evolution reaction. Journal of Power Sources, 2020, 448, 227375.	4.0	217
80	Stabilizing atomic Pt with trapped interstitial F in alloyed PtCo nanosheets for high-performance zinc-air batteries. Energy and Environmental Science, 2020, 13, 884-895.	15.6	99
81	Bifunctional CdS@Co ₉ S ₈ /Ni ₃ S ₂ catalyst for efficient electrocatalytic and photo-assisted electrocatalytic overall water splitting. Journal of Materials Chemistry A, 2020, 8, 3083-3096.	5.2	78
82	Hydrolysis assisted in-situ growth of 3D hierarchical FeS/NiS/nickel foam electrode for overall water splitting. Electrochimica Acta, 2020, 332, 135534.	2.6	44
83	Rapid growth of amorphous cobalt-iron oxyhydroxide nanosheet arrays onto iron foam: Highly efficient and low-cost catalysts for oxygen evolution. Journal of Electroanalytical Chemistry, 2020, 856, 113621.	1.9	13
84	Carbon dioxide mitigation using renewable power. Current Opinion in Chemical Engineering, 2020, 29, 51-58.	3.8	6
85	Recent advances on hydrogen production through seawater electrolysis. Materials Science for Energy Technologies, 2020, 3, 780-807.	1.0	45
86	Ultralow loading electroless deposition of IrOx on nickel foam for efficient and stable water oxidation catalysis. International Journal of Hydrogen Energy, 2020, 45, 26583-26594.	3.8	11
87	Ni foam electrode solution impregnated with Ni-FeX(OH)Y catalysts for efficient oxygen evolution reaction in alkaline electrolyzers. RSC Advances, 2020, 10, 25426-25434.	1.7	4
88	Amorphous CoO _{<i>x</i>} -Decorated Crystalline RuO ₂ Nanosheets as Bifunctional Catalysts for Boosting Overall Water Splitting at Large Current Density. ACS Sustainable Chemistry and Engineering, 2020, 8, 17520-17526.	3.2	95
89	Composition-balanced trimetallic MOFs as ultra-efficient electrocatalysts for oxygen evolution reaction at high current densities. Applied Catalysis B: Environmental, 2020, 279, 119375.	10.8	102
90	Non-precious-metal catalysts for alkaline water electrolysis: <i>operando</i> characterizations, theoretical calculations, and recent advances. Chemical Society Reviews, 2020, 49, 9154-9196.	18.7	448
91	NiCoP/NiOOH nanoflowers loaded on ultrahigh porosity Co foam for hydrogen evolution reaction under large current density. Green Energy and Environment, 2022, 7, 467-476.	4.7	21
92	Latticeâ€Strain Engineering of Homogeneous NiS _{0.5} Se _{0.5} Core–Shell Nanostructure as a Highly Efficient and Robust Electrocatalyst for Overall Water Splitting. Advanced Materials, 2020, 32, e2000231.	11.1	158
93	Enhanced Electrochemical Properties and OER Performances by Cu Substitution in NiCo2O4 Spinel Structure. Nanomaterials, 2020, 10, 1727.	1.9	37
94	Ultrathin and porous δ-FeOOH modified Ni ₃ S ₂ 3D heterostructure nanosheets with excellent alkaline overall water splitting performance. Journal of Materials Chemistry A, 2020, 8, 21199-21207.	5.2	67

#	Article	IF	CITATIONS
95	Framework for evaluating the performance limits of membraneless electrolyzers. Energy and Environmental Science, 2020, 13, 3663-3678.	15.6	33
96	Synergistic effects in bimetallic Pd–CoO electrocatalytic thin films for oxygen evolution reaction. Scientific Reports, 2020, 10, 14469.	1.6	17
97	Bifunctional catalytic activity of Ni–Co layered double hydroxide for the electro-oxidation of water and methanol. Sustainable Energy and Fuels, 2020, 4, 5254-5263.	2.5	48
98	Direct Observation of Ni–Mo Bimetallic Catalyst Formation via Thermal Reduction of Nickel Molybdate Nanorods. ACS Catalysis, 2020, 10, 10390-10398.	5.5	23
99	Evaluation of a V ₈ C ₇ Anode for Oxygen Evolution in Alkaline Media: Unusual Morphological Behavior. ACS Sustainable Chemistry and Engineering, 2020, 8, 14101-14108.	3.2	6
100	Significantly Improved Water Oxidation of CoP Catalysts by Electrochemical Activation. ACS Sustainable Chemistry and Engineering, 2020, 8, 17851-17859.	3.2	55
101	An electrochemical neutralization energy-assisted membrane-less microfluidic reactor for water electrolysis. Sustainable Energy and Fuels, 2020, 4, 6234-6244.	2.5	19
102	A diethyl methyl ammonium triflate based protic ionic liquid polymer membrane for intermediate temperature water electrolysis. International Journal of Hydrogen Energy, 2020, 45, 28303-28312.	3.8	5
103	Novel MOF-Derived Nickel Nitride as High-Performance Bifunctional Electrocatalysts for Hydrogen Evolution and Urea Oxidation. ACS Sustainable Chemistry and Engineering, 2020, 8, 7414-7422.	3.2	147
104	CoN C active sites-rich three-dimensional porous carbon nanofibers network derived from bacterial cellulose and bimetal-ZIFs as efficient multifunctional electrocatalyst for rechargeable Zn–air batteries. Journal of Energy Chemistry, 2020, 51, 323-332.	7.1	35
105	Enhanced Oxygen Evolution Reaction Activity by Encapsulating NiFe Alloy Nanoparticles in Nitrogen-Doped Carbon Nanofibers. ACS Applied Materials & Interfaces, 2020, 12, 31503-31513.	4.0	78
106	High performance multicomponent bifunctional catalysts for overall water splitting. Journal of Materials Chemistry A, 2020, 8, 13795-13805.	5.2	51
107	Hierarchical Porous NiS@NiO Nanoarrays in Situ Grown on Nickel Foam as Superior Electrocatalyst for Water Splitting. International Journal of Electrochemical Science, 2020, 15, 3563-3577.	0.5	7
108	Water Splitting: From Electrode to Green Energy System. Nano-Micro Letters, 2020, 12, 131.	14.4	288
109	The Influence of the Electrodeposition Parameters on the Properties of Mn-Co-Based Nanofilms as Anode Materials for Alkaline Electrolysers. Materials, 2020, 13, 2662.	1.3	6
110	Boosting electrochemical water oxidation: the merits of heterostructured electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 6393-6405.	5.2	63
111	Synergistic Assembly of a CoS@NiFe/Ni Foam Heterostructure Electrocatalyst for Efficient Water Oxidation Catalysis at Large Current Densities. Chemistry - an Asian Journal, 2020, 15, 1484-1492.	1.7	32
112	Recent Advances in Self-Supported Layered Double Hydroxides for Oxygen Evolution Reaction. Research, 2020, 2020, 3976278.	2.8	57

#	Article	IF	CITATIONS
113	Superior performance of anion exchange membrane water electrolyzer: Ensemble of producing oxygen vacancies and controlling mass transfer resistance. Applied Catalysis B: Environmental, 2020, 278, 119276.	10.8	80
114	Ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO ₂ nanosheets for highly efficient water splitting at large current density. Journal of Materials Chemistry A, 2020, 8, 14545-14554.	5.2	110
115	Innovative multifunctional hybrid photoelectrode design based on a ternary heterojunction with super-enhanced efficiency for artificial photosynthesis. Scientific Reports, 2020, 10, 10669.	1.6	4
116	Strongly coupling of amorphous/crystalline reduced FeOOH/α-Ni(OH)2 heterostructure for extremely efficient water oxidation at ultra-high current density. Journal of Colloid and Interface Science, 2020, 579, 340-346.	5.0	29
117	Cobalt phosphide nanoarrays with crystalline-amorphous hybrid phase for hydrogen production in universal-pH. Nano Research, 2020, 13, 2469-2477.	5.8	54
118	Single Ni Atoms and Clusters Embedded in Nâ€Doped Carbon "Tubes on Fibers―Matrix with Bifunctional Activity for Water Splitting at High Current Densities. Small, 2020, 16, e2002511.	5.2	38
119	A 3d-printed composite electrode for sustained electrocatalytic oxygen evolution. Chemical Communications, 2020, 56, 8476-8479.	2.2	7
120	Three-dimensional (3D) hierarchical coral-like Mn-doped Ni2P–Ni5P4/NF catalyst for efficient oxygen evolution. Journal of Alloys and Compounds, 2020, 826, 154210.	2.8	44
121	Self-supported phosphorus-doped CoMoO4 rod bundles for efficient hydrogen evolution. Journal of Materials Science, 2020, 55, 6502-6512.	1.7	18
122	Ni2P/rGO/NF Nanosheets As a Bifunctional High-Performance Electrocatalyst for Water Splitting. Materials, 2020, 13, 744.	1.3	11
123	Synthesis of novel cubic Ni2Mo3N and its electronic structure regulation by vanadium doping towards high-efficient HER electrocatalyst. Electrochimica Acta, 2020, 337, 135689.	2.6	11
124	Highâ€Valence Nickel Singleâ€Atom Catalysts Coordinated to Oxygen Sites for Extraordinarily Activating Oxygen Evolution Reaction. Advanced Science, 2020, 7, 1903089.	5.6	182
125	Alloy Foamâ€Derived Ni _{0.86} Fe _{2.14} O ₄ Hexagonal Plates as an Efficient Electrochemical Catalyst for the Oxygen Evolution Reaction. ChemistrySelect, 2020, 5, 1578-1585.	0.7	2
126	Regulating the electronic configuration of ruthenium nanoparticles via coupling cobalt phosphide for hydrogen evolution in alkaline media. Materials Today Physics, 2020, 12, 100182.	2.9	27
127	In situ Grown Ni phosphate@Ni ₁₂ P ₅ Nanorod Arrays as a Unique Core–Shell Architecture: Competitive Bifunctional Electrocatalysts for Urea Electrolysis at Large Current Densities. ACS Sustainable Chemistry and Engineering, 2020, 8, 7463-7471.	3.2	75
128	Porous flower-like nickel nitride as highly efficient bifunctional electrocatalysts for less energy-intensive hydrogen evolution and urea oxidation. International Journal of Hydrogen Energy, 2020, 45, 14199-14207.	3.8	36
129	Few-atom cluster model systems for a hydrogen economy. Advances in Physics: X, 2020, 5, 1754132.	1.5	8
130	Outstanding oxygen evolution reaction performance of nickel iron selenide/stainless steel mat for water electrolysis. Materials Today Physics, 2020, 13, 100216.	2.9	37

#	Article	IF	CITATIONS
131	Recent advances on metal alkoxide-based electrocatalysts for water splitting. Journal of Materials Chemistry A, 2020, 8, 10130-10149.	5.2	43
132	Water splitting with screw pitched cylindrical electrode and Fe(OH)2 catalyst under 1.4â€V. Renewable Energy, 2021, 165, 525-532.	4.3	5
133	Integrating Lowâ€Cost Earthâ€Abundant Coâ€Catalysts with Encapsulated Perovskite Solar Cells for Efficient and Stable Overall Solar Water Splitting. Advanced Functional Materials, 2021, 31, 2008245.	7.8	43
134	Tuning the electronic structure of the earth-abundant electrocatalysts for oxygen evolution reaction (OER) to achieve efficient alkaline water splitting – A review. Journal of Energy Chemistry, 2021, 56, 299-342.	7.1	148
135	Fe induced nanostructure reorganization and electronic structure modulation over CoNi (oxy)hydroxide nanorod arrays for boosting oxygen evolution reaction. Chemical Engineering Journal, 2021, 403, 126304.	6.6	75
136	Boosting the electrocatalytic HER performance of Ni3N-V2O3 via the interface coupling effect. Applied Catalysis B: Environmental, 2021, 283, 119590.	10.8	84
137	In-situ construction of lattice-matching NiP2/NiSe2 heterointerfaces with electron redistribution for boosting overall water splitting. Applied Catalysis B: Environmental, 2021, 282, 119584.	10.8	171
138	Ni-based layered double hydroxide catalysts for oxygen evolution reaction. Materials Today Physics, 2021, 16, 100292.	2.9	108
139	Energy Transferâ€Induced Photoelectrochemical Improvement from Porous Zeolitic Imidazolate Frameworkâ€Decorated BiVO ₄ Photoelectrodes. Small Methods, 2021, 5, e2000753.	4.6	14
140	Synthesis of ultrathin porous C3N4-modified Co3O4 nanosheets for enhanced oxygen evolution reaction. Electrochimica Acta, 2021, 367, 137537.	2.6	13
141	Transitionâ€Metal Carbides as Hydrogen Evolution Reduction Electrocatalysts: Synthetic Methods and Optimization Strategies. Chemistry - A European Journal, 2021, 27, 5074-5090.	1.7	41
142	Transforming Damage into Benefit: Corrosion Engineering Enabled Electrocatalysts for Water Splitting. Advanced Functional Materials, 2021, 31, 2009032.	7.8	70
143	Solvothermal synthesis of carbonate-type layered double hydroxide monolayer nanosheets: Solvent selection based on characteristic parameter matching criterion. Journal of Colloid and Interface Science, 2021, 587, 324-333.	5.0	4
144	Promoting electrocatalytic water oxidation through tungsten-modulated oxygen vacancies on hierarchical FeNi-layered double hydroxide. Nano Energy, 2021, 80, 105540.	8.2	76
145	Composition controllable fabrication of ultrathin 2D CoMn layered double hydroxides for highly efficient electrocatalytic oxygen evolution. Applied Surface Science, 2021, 539, 148305.	3.1	19
146	Double layer lanthanide –Pt/TiO ₂ nanotube arrays electrode as a cost-highly efficient electrocatalyst for hydrogen evolution in acid media. Journal of Experimental Nanoscience, 2021, 16, 81-100.	1.3	6
147	Promoting electrocatalytic overall water splitting by sulfur incorporation into CoFe-(oxy)hydroxide. Nanoscale Advances, 2021, 3, 6386-6394.	2.2	12
148	Arrays of Microscale Linear Ridges with Self-Cleaning Functionality for the Oxygen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2021, 13, 2399-2413.	4.0	13

#	Article	IF	CITATIONS
149	Facile synthesis of bimetallic-based CoMoO ₄ /MoO ₂ /CoP oxidized/phosphide nanorod arrays electroplated with FeOOH for efficient overall seawater splitting. CrystEngComm, 2021, 23, 6778-6791.	1.3	4
150	Unveiling the Formation of Solid Electrolyte Interphase and its Temperature Dependence in "Water-in-Salt―Supercapacitors. ACS Applied Materials & Interfaces, 2021, 13, 3979-3990.	4.0	19
151	Layer-structured FeCo bihydroxide as an ultra-stable bifunctional electrocatalyst for water splitting at high current densities. Sustainable Energy and Fuels, 2021, 5, 2747-2752.	2.5	13
152	Bifunctional citrate-Ni _{0.9} Co _{0.1} (OH) _{<i>x</i>} layer coated fluorine-doped hematite for simultaneous hole extraction and injection towards efficient photoelectrochemical water oxidation. Nanoscale, 2021, 13, 14197-14206.	2.8	16
153	Low-crystallinity mesoporous NiGaFe hydroxide nanosheets on macroporous Ni foam for high-efficiency oxygen evolution electrocatalysis. Journal of Materials Chemistry A, 2021, 9, 6223-6231.	5.2	24
154	Durability of anion exchange membrane water electrolyzers. Energy and Environmental Science, 2021, 14, 3393-3419.	15.6	213
155	Partially reduced Ru/RuO ₂ composites as efficient and pH-universal electrocatalysts for hydrogen evolution. Energy and Environmental Science, 2021, 14, 5433-5443.	15.6	73
156	Transition metal-based catalysts for electrochemical water splitting at high current density: current status and perspectives. Nanoscale, 2021, 13, 12788-12817.	2.8	142
157	Vanadium Substitution Steering Reaction Kinetics Acceleration for Ni ₃ N Nanosheets Endows Exceptionally Energy-Saving Hydrogen Evolution Coupled with Hydrazine Oxidation. ACS Applied Materials & Interfaces, 2021, 13, 3881-3890.	4.0	46
158	Rapid Synthesis of Various Electrocatalysts on Ni Foam Using a Universal and Facile Induction Heating Method for Efficient Water Splitting. Advanced Functional Materials, 2021, 31, 2009580.	7.8	63
160	Nickel-doped Co4N nanowire bundles as efficient electrocatalysts for oxygen evolution reaction. Science China Materials, 2021, 64, 1889-1899.	3.5	16
161	Transition metal-based electrocatalysts for overall water splitting. Chinese Chemical Letters, 2021, 32, 2597-2616.	4.8	94
162	Interface Engineering of Needleâ€Like Pâ€Doped MoS ₂ /CoP Arrays as Highly Active and Durable Bifunctional Electrocatalyst for Overall Water Splitting. ChemSusChem, 2021, 14, 1565-1573.	3.6	43
163	Recent development on self-supported transition metal-based catalysts for water electrolysis at large current density. Applied Materials Today, 2021, 22, 100913.	2.3	42
164	Phosphating-induced charge transfer on CoO/CoP interface for alkaline H2 evolution. Chinese Chemical Letters, 2021, 32, 3355-3358.	4.8	45
165	Preferential Adsorption of Hydroxide Ions onto Partially Crystalline NiFe-Layered Double Hydroxides Leads to Efficient and Selective OER in Alkaline Seawater. ACS Applied Energy Materials, 2021, 4, 4630-4637.	2.5	67
166	Hierarchically designed CoMo marigold flower-like 3D nano-heterostructure as an efficient electrocatalyst for oxygen and hydrogen evolution reactions. Applied Surface Science, 2021, 546, 149072.	3.1	35
167	V-doped Ni3N/Ni heterostructure with engineered interfaces as a bifunctional hydrogen electrocatalyst in alkaline solution: Simultaneously improving water dissociation and hydrogen adsorption. Nano Research, 2021, 14, 3489-3496.	5.8	39

#	Article	IF	CITATIONS
168	A Novel Phosphide Derived From Metal-Organic Frameworks as Cost-Effective Electrocatalyst for Oxygen Evolution Reaction. Journal of Electrochemical Energy Conversion and Storage, 2022, 19, .	1.1	2
169	Benchmarking of oxygen evolution catalysts on porous nickel supports. Joule, 2021, 5, 1281-1300.	11.7	74
170	Metallic two-dimensional metal-organic framework arrays for ultrafast water splitting. Journal of Power Sources, 2021, 494, 229733.	4.0	58
171	New TiO ₂ â€Based Oxide for Catalyzing Alkaline Hydrogen Evolution Reaction with Noble Metalâ€Like Performance. Small Methods, 2021, 5, e2100246.	4.6	25
172	Facile Preparation of a Porous Nanosheet P _X â€Doped Fe Biâ€Functional Catalyst with Excellent OER and HER Electrocatalytic Activity. ChemistrySelect, 2021, 6, 4979-4990.	0.7	4
173	Solution-Processed Ni-Based Nanocomposite Electrocatalysts: An Approach to Highly Efficient Electrochemical Water Splitting. ACS Applied Energy Materials, 2021, 4, 5255-5264.	2.5	16
174	Hierarchical Coreâ€5hell Nâ€Doped Carbon@FeP ₄ â€CoP Arrays as Robust Bifunctional Electrocatalysts for Overall Water Splitting at High Current Density. Advanced Materials Interfaces, 2021, 8, 2100065.	1.9	25
175	Bimetallic Oxyhydroxide as a High-Performance Water Oxidation Electrocatalyst under Industry-Relevant Conditions. Engineering, 2021, 7, 1306-1312.	3.2	21
176	Conductivity Modulation of 3Dâ€Printed Shellular Electrodes through Embedding Nanocrystalline Intermetallics into Amorphous Matrix for Ultrahighâ€Current Oxygen Evolution. Advanced Energy Materials, 2021, 11, 2100968.	10.2	40
177	Facile fabrication of flower-like CuS/MnCO3 microspheres clusters on nickel foam as an efficient bifunctional catalyst for overall water splitting. International Journal of Hydrogen Energy, 2021, 46, 19948-19961.	3.8	14
178	Heterogeneous Bimetallic Moâ€NiP <i>_x</i> /NiS <i>_y</i> as a Highly Efficient Electrocatalyst for Robust Overall Water Splitting. Advanced Functional Materials, 2021, 31, 2101532.	7.8	119
179	Layerâ€by‣ayer Assemblyâ€Based Electrocatalytic Fibril Electrodes Enabling Extremely Low Overpotentials and Stable Operation at 1ÂAÂcm ^{â^'2} in Waterâ€6plitting Reaction. Advanced Functional Materials, 2021, 31, 2102530.	7.8	15
180	Novel WS ₂ /Fe _{0.95} S _{1.05} Hierarchical Nanosphere as a Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction. Chemistry - A European Journal, 2021, 27, 10998-11004.	1.7	19
181	An Extreme Energy-Saving Carbohydrazide Oxidization Reaction Directly Driven by Commercial Graphite Paper in Alkali and Near-Neutral Seawater Electrolytes. ACS Omega, 2021, 6, 15737-15741.	1.6	1
182	One-step spontaneous growth of NiFe layered double hydroxide at room temperature for seawater oxygen evolution. Materials Today Physics, 2021, 19, 100419.	2.9	48
183	Ultrafast fabrication of porous transition metal foams for efficient electrocatalytic water splitting. Applied Catalysis B: Environmental, 2021, 288, 120002.	10.8	98
184	Principles of Water Electrolysis and Recent Progress in Cobaltâ€, Nickelâ€, and Ironâ€Based Oxides for the Oxygen Evolution Reaction. Angewandte Chemie, 2022, 134, .	1.6	18
185	Thermoelectric Driven Self-Powered Water Electrolyzer Using Nanostructured CuFeS ₂ Plates as Bifunctional Electrocatalyst. ACS Applied Energy Materials, 2021, 4, 7020-7029.	2.5	31

#	Article	IF	CITATIONS
186	Principles of Water Electrolysis and Recent Progress in Cobaltâ€, Nickelâ€, and Ironâ€Based Oxides for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	286
187	A membrane-free flow electrolyzer operating at high current density using earth-abundant catalysts for water splitting. Nature Communications, 2021, 12, 4143.	5.8	73
188	Adapting Early Transition Metal and Nonmetallic Dopants on CoFe Oxyhydroxides for Enhanced Alkaline and Neutral pH Saline Water Oxidation. ACS Applied Energy Materials, 2021, 4, 6942-6956.	2.5	28
189	Electrocatalytic acidic oxygen evolution reaction: From nanocrystals to single atoms. Aggregate, 2021, 2, e106.	5.2	27
190	Carbon-Based Composites as Electrocatalysts for Oxygen Evolution Reaction in Alkaline Media. Materials, 2021, 14, 4984.	1.3	23
191	Role of transition-metal electrocatalysts for oxygen evolution with Si-based photoanodes. Chinese Journal of Catalysis, 2021, 42, 1387-1394.	6.9	8
192	Engineering Single Atom Catalysts to Tune Properties for Electrochemical Reduction and Evolution Reactions. Advanced Energy Materials, 2021, 11, 2101670.	10.2	42
193	Design of Aligned Porous Carbon Films with Singleâ€Atom Co–N–C Sites for Highâ€Currentâ€Density Hydrogen Generation. Advanced Materials, 2021, 33, e2103533.	11.1	76
194	Engineering cobalt sulfide/oxide heterostructure with atomically mixed interfaces for synergistic electrocatalytic water splitting. Nano Research, 2022, 15, 1246-1253.	5.8	43
195	Mn-Doped NiFe Layered Double Hydroxide Nanosheets Decorated by Co(OH)2 Nanosheets: A 3-Dimensional Core–Shell Catalyst for Efficient Oxygen Evolution Reaction. Catalysis Letters, 2022, 152, 1719-1728.	1.4	5
196	Selfâ€Reconstruction of Sulfateâ€Containing High Entropy Sulfide for Exceptionally Highâ€Performance Oxygen Evolution Reaction Electrocatalyst. Advanced Functional Materials, 2021, 31, 2106229.	7.8	134
197	In Situ Formation of Nano Ni–Co Oxyhydroxide Enables Water Oxidation Electrocatalysts Durable at High Current Densities. Advanced Materials, 2021, 33, e2103812.	11.1	78
198	Selfâ€Supported Electrocatalysts for Practical Water Electrolysis. Advanced Energy Materials, 2021, 11, 2102074.	10.2	161
199	Co3O4–C@FeMoP on nickel foam as bifunctional electrocatalytic electrode for high-performance alkaline water splitting. International Journal of Hydrogen Energy, 2021, 46, 32846-32857.	3.8	14
200	A stable and active three-dimensional carbon based trimetallic electrocatalyst for efficient overall wastewater splitting. International Journal of Hydrogen Energy, 2021, 46, 30762-30779.	3.8	9
201	An overview of photocatalytic water splitting on semiconductor oxides for hydrogen production. International Journal of Environmental Analytical Chemistry, 0, , 1-11.	1.8	2
202	Minireview on the Evolution of Tetrathiometallate Salts as Protean Building Blocks of Catalysts and Materials for the Energy Transition: Recent Advances and Future Perspectives. Energy & Fuels, 0, , .	2.5	0
203	Simultaneous hydrogen evolution and ethanol oxidation in alkaline medium via a self-supported bifunctional electrocatalyst of Ni-Fe phosphide/Ni foam. Applied Surface Science, 2021, 561, 150080.	3.1	27

#	Article	IF	CITATIONS
204	The effect of calcination temperature on the electrocatalytic activity of Ni–Co–Ir-oxide and Ni–Co–Ru-oxide anodes in the oxygen evolution reaction in alkaline medium. Solid State Sciences, 2021, 119, 106703.	1.5	6
205	Doping modification, defects construction, and surface engineering: Design of cost-effective high-performance electrocatalysts and their application in alkaline seawater splitting. Nano Energy, 2021, 87, 106160.	8.2	57
206	Numerical modeling and analysis of the temperature effect on the performance of an alkaline water electrolysis system. Journal of Power Sources, 2021, 506, 230106.	4.0	51
207	Rational design of core-shell-structured CoP @FeOOH for efficient seawater electrolysis. Applied Catalysis B: Environmental, 2021, 294, 120256.	10.8	141
208	Refining d-band center in Ni0.85Se by Mo doping: A strategy for boosting hydrogen generation via coupling electrocatalytic oxidation 5-hydroxymethylfurfural. Chemical Engineering Journal, 2021, 422, 130125.	6.6	89
209	Anion-cation-dual doped tremella-like nickel phosphides for electrocatalytic water oxidation. Chemical Engineering Journal, 2021, 426, 130718.	6.6	46
210	lron-concentration adjusted Multi-Metal oxides for optimized oxygen evolution reaction performance. Applied Surface Science, 2021, 570, 151160.	3.1	19
211	MoO3 crystal facets modulation by doping heteroatom Fe from polyoxometalate for quasi-industrial oxygen evolution reaction. Applied Catalysis B: Environmental, 2021, 298, 120582.	10.8	49
212	Metal-ionic-conductor potassium ferrite nanocrystals with intrinsic superhydrophilic surfaces for electrocatalytic water splitting at ultrahigh current densities. Journal of Materials Chemistry A, 2021, 9, 7586-7593.	5.2	40
213	Electrochemically Activated NiFeO _{<i>x</i>} H _{<i>y</i>} for Enhanced Oxygen Evolution. ACS Applied Energy Materials, 2021, 4, 595-601.	2.5	10
214	A strategy for preparing high-efficiency and economical catalytic electrodes toward overall water splitting. Nanoscale, 2021, 13, 10624-10648.	2.8	53
215	Anodized Nickel Foam for Oxygen Evolution Reaction in Fe-Free and Unpurified Alkaline Electrolytes at High Current Densities. ACS Nano, 2021, 15, 3468-3480.	7.3	54
216	A New High Entropy Glycerate for High Performance Oxygen Evolution Reaction. Advanced Science, 2021, 8, 2002446.	5.6	95
217	Stabilized hydroxide-mediated nickel-based electrocatalysts for high-current-density hydrogen evolution in alkaline media. Energy and Environmental Science, 2021, 14, 4610-4619.	15.6	118
218	Large-current-stable bifunctional nanoporous Fe-rich nitride electrocatalysts for highly efficient overall water and urea splitting. Journal of Materials Chemistry A, 2021, 9, 10199-10207.	5.2	87
219	Perspective on High-Rate Alkaline Water Splitting. , 2021, 3, 224-234.		136
220	Alkaline Water Electrolysis at 25 A cm ^{â^'2} with a Microfibrous Flowâ€ŧhrough Electrode. Advanced Energy Materials, 2020, 10, 2001174.	10.2	66
221	Utilizing in-situ polymerization of pyrrole to fabricate composited hollow nanospindles for boosting oxygen evolution reaction. Applied Catalysis B: Environmental, 2020, 274, 119112.	10.8	23

ARTICLE IF CITATIONS # Stable complete seawater electrolysis by using interfacial chloride ion blocking layer on catalyst 222 5.2 102 surface. Journal of Materials Chemistry Á, 2020, 8, 24501-24514. Ultra-porous Co foam supported FeCoP electrode for high efficiency hydrogen evolution reaction. 1.3 Nanotechnology, 2021, 32, 024001. Ni₃S₂/MWCNTs/NF Hybrid Nanostructure as Effective Bifunctional Electrocatalysts for Urea Electrolysis Assisted Hydrogen Evolution. Journal of the Electrochemical 224 1.3 8 Society, 2020, 167, 126514. Positive self-reconstruction in an FeNiMo phosphide electrocatalyst for enhanced overall water 2.5 splitting. Sustainable Energy and Fuels, 2021, 5, 5789-5797. A low-cost 2D WO₃/Ni₃S₂ heterojunction for highly stable 226 3.2 8 hydrogen evolution. Materials Chemistry Frontiers, 2021, 5, 8248-8254. The Effect of Cobalt Incorporation into Nickel–Iron Oxide/(oxy)hydroxide Catalyst on Electrocatalytic Performance Toward Oxygen Evolution Reaction. Energy Technology, 2021, 9, 1.8 2100688. Recent advances in Niâ€Fe (Oxy)hydroxide electrocatalysts for the oxygen evolution reaction in alkaline 228 1.9 16 electrolyte targeting industrial applications. Nano Select, 2022, 3, 766-791. Co/CoP Heterojunction on Hierarchically Ordered Porous Carbon as a Highly Efficient 229 10.2 138 Electrocatalyst for Hydrogen and Oxygén Evolution. Advanced Energy Matérials, 2021, 11, 2102134. Interface engineering of NiO/RuO2 heterojunction nano-sheets for robust overall water splitting at 230 6.6 57 large current density. Chemical Engineering Journal, 2022, 430, 133117. Phaseâ€Controllable Growth Ni<i>_x</i>P<i>_y</i> Modified CdS@Ni₃S₂ Electrodes for Efficient Electrocatalytic and Enhanced 4.6 Photoassisted Electrocatalytic Overall Water Splitting. Small Methods, 2021, 5, e2100878. Enhanced H2 evolution via photocatalytic water splitting using mesoporous TiO2/RuO2/CuO ternary 232 10 1.1 nanomaterial. Journal of Photochemistry and Photobiology, 2021, 8, 100076. Enhanced Reaction of Renewable Hydrogen Energy Production Using Platinum-based Nanoclusters. 0.4 Daehan Hwan'gyeong Gonghag Hoéji, 2019, 41, 686-694. Binder-Free Synthesis of NiCo2S4 Nanowires Grown on Ni Foam as an Efficient Electrocatalyst for 234 0.1 5 Oxygen Evolution Reaction. Korean Journal of Materials Research, 2020, 30, 217-222. Constructing the Fe/Cr double (oxy)hydroxides on Fe3O4 for boosting the electrochemical oxygen evolution in alkaline seawater and domestic sewage. Applied Catalysis B: Environmental, 2022, 302, 10.8 120847. Quasiâ€Parallel NiFe Layered Double Hydroxide Nanosheet Arrays for Largeâ€Currentâ€Density Oxygen 236 3.6 16 Evolution Electrocatalysis. ChemSusChem, 2022, 15, . Cobalt–Iron–Phosphate Hydrogen Evolution Reaction Electrocatalyst for Solar-Driven Alkaline 14 Seawater Electrolyzer. Nanomáterials, 2021, 11, 2989. Advances and Challenges in Industrial-Scale Water Oxidation on Layered Double Hydroxides. ACS 238 2.515 Applied Energy Materials, 2021, 4, 12032-12055. Rational introduction of S and P in multi-stage electrocatalyst to drive a large-current-density water 239 oxidation reaction and overall water splitting. Journal of Power Sources, 2022, 518, 230757.

#	Article	IF	CITATIONS
240	Boosting Electrochemical Water Oxidation on NiFe (oxy) Hydroxides by Constructing Schottky Junction toward Water Electrolysis under Industrial Conditions. Small, 2022, 18, e2105544.	5.2	38
241	Critical Role of Phosphorus in Hollow Structures Cobaltâ€Based Phosphides as Bifunctional Catalysts for Water Splitting. Small, 2022, 18, e2103561.	5.2	54
242	NiFe Layered Double Hydroxides Grown on a Corrosion ell Cathode for Oxygen Evolution Electrocatalysis. Advanced Energy Materials, 2022, 12, 2102372.	10.2	51
243	Transition metal chalcogenides as emerging electrocatalysts for urea electrolysis. Current Opinion in Electrochemistry, 2022, 31, 100888.	2.5	18
244	Ultrafast Roomâ€Temperature Synthesis of Selfâ€Supported NiFeâ€Layered Double Hydroxide as Largeâ€Current–Density Oxygen Evolution Electrocatalyst. Small, 2022, 18, e2104354.	5.2	50
245	Feasibility of Using Electrodes with Ultralow Pt Loading in Two-Chamber Microbial Electrolysis Cells. Energies, 2021, 14, 7752.	1.6	1
246	Recent Advances in Design of Electrocatalysts for Highâ€Currentâ€Density Water Splitting. Advanced Materials, 2022, 34, e2108133.	11.1	293
247	Stable and Efficient Oxygen Evolution from Seawater Enabled by Grapheneâ€Supported Subâ€Nanometer Arrays of Transition Metal Phosphides. Advanced Materials Interfaces, 2022, 9, 2101720.	1.9	12
248	The 3D porous "celosia―heterogeneous interface engineering of layered double hydroxide and P-doped molybdenum oxide on MXene promotes overall water-splitting. Chemical Engineering Journal, 2022, 431, 133941.	6.6	21
249	Se-Incorporated Porous Carbon/Ni ₅ P ₄ Nanostructures for Electrocatalytic Hydrogen Evolution Reaction with Waste Heat Management. ACS Applied Nano Materials, 2022, 5, 1385-1396.	2.4	16
250	Micron-sized NiMn-glycerate solid spheres as cathode materials for all-solid-state asymmetric supercapacitor with superior energy density and cycling life. Chemical Engineering Journal, 2022, 431, 134100.	6.6	19
251	Hydrothermal temperature-driven evolution of morphology and electrocatalytic properties of hierarchical nanostructured CoFe-LDHs as highly efficient electrocatalysts for oxygen evolution reactions. Dalton Transactions, 2021, 51, 211-219.	1.6	4
252	Autogenous growth of highly active bifunctional Ni–Fe2B nanosheet arrays toward efficient overall water splitting. International Journal of Hydrogen Energy, 2022, 47, 8303-8313.	3.8	14
253	Fe–Co–Ni trimetallic organic framework chrysanthemum-like nanoflowers: efficient and durable oxygen evolution electrocatalysts. Journal of Materials Chemistry A, 2022, 10, 4230-4241.	5.2	37
254	Remarkable CO _{<i>x</i>} tolerance of Ni ³⁺ active species in a Ni ₂ O ₃ catalyst for sustained electrochemical urea oxidation. Journal of Materials Chemistry A, 2022, 10, 4209-4221.	5.2	57
255	Engineering Metallic Heterostructure Based on Ni ₃ N and 2Mâ€MoS ₂ for Alkaline Water Electrolysis with Industryâ€Compatible Current Density and Stability. Advanced Materials, 2022, 34, e2108505.	11.1	104
256	Effects of Elemental Modulation on Phase Purity and Electrochemical Properties of Coâ€free Highâ€Entropy Spinel Oxide Anodes for Lithiumâ€Ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	48
257	In-situ formed Cu-doped RuS2 hollow polyhedrons integrated with simultaneously heterostructure engineering with metallic Ru for boosting hydrogen evolution in alkaline media. Materials Today Physics, 2022, 23, 100625.	2.9	9

#	Article	IF	CITATIONS
258	Rose-like Cu-doped Ni3S2 nanoflowers decorated with thin NiFe LDH nanosheets for high-efficiency overall water and urea electrolysis. Applied Surface Science, 2022, 584, 152622.	3.1	41
259	One-step in-situ sprouting high-performance NiCoSxSey bifunctional catalysts for water electrolysis at low cell voltages and high current densities. Chemical Engineering Journal, 2022, 435, 134859.	6.6	24
260	Interfacial Electron Transfer Strategy to Improve the Hydrogen Evolution Catalysis of CrP Heterostructure. Small, 2022, 18, e2106139.	5.2	9
261	Metal-free pristine halloysite nanotubes: Electrochemically active and stable oxygen evolution reaction. Applied Clay Science, 2022, 219, 106442.	2.6	10
262	Simultaneous integration of low-level rhenium (Re) doping and nitrogen-functionalized 3D carbon backbone into nickel-iron hydroxide (NiFeOH) to amplify alkaline water electrolysis at high current densities. Chemical Engineering Journal, 2022, 435, 135184.	6.6	13
263	Composition-controlled high entropy metal glycerate as high-performance electrocatalyst for oxygen evolution reaction. Applied Materials Today, 2022, 27, 101398.	2.3	10
264	Simultaneous Integration of Low-Level Rhenium (Re) Doping and Nitrogen-Functionalized 3d Carbon Backbone into Nickel-Iron Hydroxide (Nifeoh) to Amplify Alkaline Water Electrolysis at High Current Densities. SSRN Electronic Journal, 0, , .	0.4	0
265	Modelling Production of Renewable Energy from Water Splitting High Thermal Electrolysis Processes. European Journal of Education and Pedagogy, 2021, 6, 79-86.	0.2	1
266	Copper mesh supported nickel nanowire array as a catalyst for the hydrogen evolution reaction in high current density water electrolysis. Dalton Transactions, 2022, 51, 5309-5314.	1.6	6
267	Unveiling the Optimal Interfacial Synergy of Plasmaâ€Modulated Trimetallic Mnâ€Niâ€Co Phosphides: Tailoring Deposition Ratio for Complementary Water Splitting. Energy and Environmental Materials, 2023, 6, .	7.3	32
268	In situ growth Fe and V co-doped Ni3S2 for efficient oxygen evolution reaction at large current densities. International Journal of Hydrogen Energy, 2022, 47, 14422-14431.	3.8	11
269	Metal–Organic Frameworkâ€Derived Hollow CoS <i>_x</i> Nanoarray Coupled with NiFe Layered Double Hydroxides as Efficient Bifunctional Electrocatalyst for Overall Water Splitting. Small, 2022, 18, e2200586.	5.2	81
270	Operando Photo-Electrochemical Catalysts Synchrotron Studies. Nanomaterials, 2022, 12, 839.	1.9	4
271	Breaking the linear correlations for enhanced electrochemical nitrogen reduction by carbon-encapsulated mixed-valence Fe7(PO4)6. Journal of Energy Chemistry, 2022, 71, 182-187.	7.1	11
272	Why should transition metal chalcogenides be investigated as water splitting precatalysts even though they transform into (oxyhydr)oxides?. Current Opinion in Electrochemistry, 2022, 34, 100991.	2.5	26
273	From Nickel Foam to Highly Active NiFeâ€based Oxygen Evolution Catalysts. ChemElectroChem, 2022, 9, .	1.7	3
274	Eco-designed electrocatalysts for water splitting: A path toward carbon neutrality. International Journal of Hydrogen Energy, 2023, 48, 6288-6307.	3.8	15
275	Operando Highâ€Valence Crâ€Modified NiFe Hydroxides for Water Oxidation. Small, 2022, 18, e2200303.	5.2	44

#	Article	IF	CITATIONS
276	Rapidly electrodeposited NiFe(OH) as the catalyst for oxygen evolution reaction. Inorganic Chemistry Communication, 2022, 139, 109350.	1.8	3
277	La-doped NiFe-LDH coupled with hierarchical vertically aligned MXene frameworks for efficient overall water splitting. Journal of Energy Chemistry, 2022, 70, 472-479.	7.1	90
278	Structural design for electrocatalytic water splitting to realize industrial-scale deployment: Strategies, advances, and perspectives. Journal of Energy Chemistry, 2022, 70, 129-153.	7.1	60
279	Regulation of Morphology and Electronic Structure of FeCoNi Layered Double Hydroxides for Highly Active and Stable Water Oxidization Catalysts. Advanced Energy Materials, 2021, 11, .	10.2	94
280	Charge Transfer of Interfacial Catalysts for Hydrogen Energy. , 2022, 4, 967-977.		35
281	Dual-doping in the bulk and the surface to ameliorate the hematite anode for photoelectrochemical water oxidation. Journal of Colloid and Interface Science, 2022, 624, 60-69.	5.0	17
283	High-Performance Anion Exchange Membrane Water Electrolyzer Enabled by Highly Active Oxygen Evolution Reaction Electrocatalyst: Synergistic Effect of Doping and Heterostructure. SSRN Electronic Journal, 0, , .	0.4	0
284	A universal synthesis of MOF-Hydroxyl for highly active oxygen evolution. Journal of Colloid and Interface Science, 2022, 623, 318-326.	5.0	7
285	Recent Advancement in Metalâ€Organic Framework for Water Electrolysis: A Review. ChemNanoMat, 2022, 8, .	1.5	8
286	A smart strategy of "laser-direct-writing―to achieve scalable fabrication of self-supported MoNi ₄ /Ni catalysts for efficient and durable hydrogen evolution reaction. Journal of Materials Chemistry A, 2022, 10, 12722-12732.	5.2	8
287	Innovative strategies in design of transition metal-based catalysts for large-current-density alkaline water/seawater electrolysis. Materials Today Physics, 2022, 26, 100727.	2.9	41
288	NiPd nano-alloy film as a promising low overpotential electrocatalyst for high activity water oxidation reaction. Journal of Environmental Chemical Engineering, 2022, 10, 107959.	3.3	11
289	CoSe2 grafted on 2D gC3N4: A promising material for wastewater treatment, electrocatalysis and energy storage. Chemical Engineering Journal, 2022, 446, 137023.	6.6	18
290	One Step Fabrication of High Performance Practical Electrode for Alkaline Water Electrolysis. SSRN Electronic Journal, 0, , .	0.4	0
291	Controllable transformation of sheet-like CoMo-hydro(oxide) and phosphide arrays on nickel foam as efficient catalysts for alkali water splitting and Zn–H2O cell. International Journal of Hydrogen Energy, 2022, 47, 23530-23539.	3.8	4
292	Cu-Based Multicomponent Metallic Compound Materials as Electrocatalyst for Water Splitting. Frontiers in Chemistry, 0, 10, .	1.8	5
293	Nobleâ€Metalâ€Free Oxygen Evolution Reaction Electrocatalysts Working at High Current Densities over 1000 <scp>mA</scp> cm ^{â^'2} : From Fundamental Understanding to Design Principles. Ene and Environmental Materials, 2023, 6, .	rg y. 3	12
294	Electrochemical Partial Reduction of Ni(Oh)2 to Ni(Oh)2/Ni Via Coupled Oxidation of an Interfacing Nial Intermetallic Compound for Robust Hydrogen Evolution. SSRN Electronic Journal, 0, , .	0.4	0

#	ARTICLE	IF	CITATIONS
295	High Current Density Oxygen Evolution in Carbonate Buffered Solution Achieved by Active Site Densification and Electrolyte Engineering. SSRN Electronic Journal, 0, , .	0.4	0
296	Thinâ€Film Oxynitride Photocatalysts for Solar Hydrogen Generation: Separating Surface and Bulk Effects Using Synchrotron Xâ€Ray and Neutronâ€Based Techniques. Solar Rrl, 2022, 6, .	3.1	3
297	Bimetal Modulation Stabilizing a Metallic Heterostructure for Efficient Overall Water Splitting at Large Current Density. Advanced Science, 2022, 9, .	5.6	34
298	Construction of Ni ₃ S ₂ -Ni _x P _y /NF@NiFe LDH with heterogeneous interface to accelerate catalytic kinetics of overall water splitting. Materials Research Letters, 2022, 10, 762-770.	4.1	8
299	In-situ surface structural reconstruction of NiMoO4 for efficient overall water splitting. Applied Surface Science, 2022, 602, 154314.	3.1	22
300	Accelerating Fe sites saturation coverage through Bi-metal dynamic balances on double-layer hollow MOF nanocages for oxygen evolution. Materials Today Physics, 2022, 27, 100778.	2.9	6
301	Synergistically enhancing electrocatalytic activity of Co2P by Cr doping and P vacancies for overall water splitting. Applied Surface Science, 2022, 600, 154099.	3.1	13
302	Hollow Nanowire Constructed by NiCo Doped RuO ₂ Nanoparticles for Robust Hydrogen Evolution at High urrentâ€Đensity. ChemSusChem, 2022, 15, .	3.6	3
303	In‣iquid Plasma Modified Nickel Foam: NiOOH/NiFeOOH Active Site Multiplication for Electrocatalytic Alcohol, Aldehyde, and Water Oxidation. Advanced Energy Materials, 2022, 12, .	10.2	23
304	Electrolyte Engineering for Oxygen Evolution Reaction Over Nonâ€Noble Metal Electrodes Achieving High Current Density in the Presence of Chloride Ion. ChemSusChem, 2022, 15, .	3.6	13
305	Highly Conductive and Mechanically Robust NiFe Alloy Aerogels: An Exceptionally Active and Durable Water Oxidation Catalyst. Small, 2022, 18, .	5.2	9
306	Metal–Organic Framework-Derived 2D NiCoP Nanoflakes from Layered Double Hydroxide Nanosheets for Efficient Electrocatalytic Water Splitting at High Current Densities. ACS Sustainable Chemistry and Engineering, 2022, 10, 11577-11586.	3.2	20
307	Heterostructure engineering of the Fe-doped Ni phosphides/Ni sulfide p-p junction for high-efficiency oxygen evolution. Journal of Alloys and Compounds, 2022, 924, 166613.	2.8	8
308	Investigation of electrochemical synthesis temperature effect of the binary transition metals sulfide on nickel foam in water oxidation study. Materials Chemistry and Physics, 2022, 291, 126670.	2.0	0
309	High-performance anion exchange membrane water electrolyzer enabled by highly active oxygen evolution reaction electrocatalysts: Synergistic effect of doping and heterostructure. Applied Catalysis B: Environmental, 2022, 318, 121824.	10.8	26
310	Synergistic effect of Cu doping and NiPx/NiSey heterostructure construction for boosted water electrolysis. Applied Surface Science, 2022, 604, 154617.	3.1	7
311	Efficient alkaline seawater oxidation by a three-dimensional core-shell dendritic NiCo@NiFe layered double hydroxide electrode. Materials Today Physics, 2022, 27, 100841.	2.9	20
312	Three-dimensional porous nanosheets array FeVO4/NF-a catalyst for oxygen evolution reaction at industrially relevant current densities. Journal of Alloys and Compounds, 2022, 929, 167312.	2.8	4

#	Article	IF	CITATIONS
313	Efficient electrocatalysis for oxygen evolution: W-doped NiFe nanosheets with oxygen vacancies constructed by facile electrodeposition and corrosion. Chemical Engineering Journal, 2023, 452, 139104.	6.6	18
314	Facile Synthesis of Ni3s2 Nanosheets with Abundant Active Sites Induced by Fe Incorporation on Ni Foam for Enhanced Oxygen Evolution Reaction. SSRN Electronic Journal, 0, , .	0.4	0
315	Boosting efficient alkaline fresh water and seawater electrolysis <i>via</i> electrochemical reconstruction. Energy and Environmental Science, 2022, 15, 3945-3957.	15.6	90
316	Identifying high-efficiency Ni-based alloys/(oxy)hydroxides electrocatalysts for oxygen evolution reaction through a rapid screening method. International Journal of Hydrogen Energy, 2022, 47, 33754-33764.	3.8	10
317	Bioâ€inspired <scp>NiO</scp> / <scp>ZrO₂</scp> mixed oxides (<scp>NZMO</scp>) for oxygen evolution reactions: from facile synthesis to electrochemical analysis. Journal of Chemical Technology and Biotechnology, 2023, 98, 296-305.	1.6	8
318	Multicomponent transition metal oxides and (oxy)hydroxides for oxygen evolution. Nano Research, 2023, 16, 1913-1966.	5.8	59
319	<i>In situ</i> electrochemical transformation of Ni ²⁺ to NiOOH as an effective electrode for water oxidation reaction. Dalton Transactions, 2022, 51, 17454-17465.	1.6	6
320	One step electrochemical fabrication of high performance Ni@Fe-doped Ni(oxy)hydroxide anode for practical alkaline water electrolysis. Journal of Materials Chemistry A, 2022, 10, 23863-23873.	5.2	7
321	Promising photocatalysts based on nanoshaped TiO2 - rGO composite doped with metals (Pt and Cu) for hydrogen photoproduction. Journal of Environmental Chemical Engineering, 2022, 10, 108877.	3.3	7
322	Overall water splitting realized by overall sputtering thin-film technology for a bifunctional MoNiFe electrode: A green technology for green hydrogen. Applied Catalysis B: Environmental, 2023, 322, 122103.	10.8	26
323	Transition Metalâ€Based Electrocatalysts for Seawater Oxidation. Advanced Materials Interfaces, 2022, 9, .	1.9	11
324	Facile synthesis of Ni3S2 nanosheets with abundant active sites induced by Fe incorporation on Ni foam for enhanced oxygen evolution reaction. Applied Surface Science, 2023, 610, 155537.	3.1	5
325	New high-entropy transition-metal sulfide nanoparticles for electrochemical oxygen evolution reaction. Electrochimica Acta, 2022, 436, 141444.	2.6	17
326	Construction of hierarchical and self-supported NiFe-Pt3Ir electrode for hydrogen production with industrial current density. Applied Catalysis B: Environmental, 2023, 321, 122072.	10.8	20
327	High Current Density Oxygen Evolution in Carbonate Buffered Solution Achieved by Active Site Densification and Electrolyte Engineering. ChemSusChem, 2023, 16, .	3.6	6
328	Tuning Mass Transport in Electrocatalysis Down to Subâ€5 nm through Nanoscale Grade Separation. Angewandte Chemie - International Edition, 2023, 62, .	7.2	101
329	Tuning Mass Transport in Electrocatalysis Down to Subâ€5nm Through Nanoscale Grade Separation. Angewandte Chemie, 0, , .	1.6	2
330	High-performing catalysts for energy-efficient commercial alkaline water electrolysis. Sustainable Energy and Fuels, 2022, 7, 31-60.	2.5	18

#	Article	IF	CITATIONS
331	Activation of nickel foam through in-liquid plasma-induced phosphorus incorporation for efficient quasi-industrial water oxidation and selective oxygenation of organics. Applied Catalysis B: Environmental, 2023, 324, 122249.	10.8	10
332	Nickel-doped lanthanum cerate nanomaterials as highly active electrocatalysts. Frontiers in Chemistry, 0, 10, .	1.8	1
333	Advanced energy materials: Current trends and challenges in electro- and photo-catalysts for H2O splitting. Journal of Industrial and Engineering Chemistry, 2023, 119, 90-111.	2.9	8
334	Catalyst deactivation in alkaline water splitting. Science China Chemistry, 2023, 66, 301-303.	4.2	4
335	Dual-metal hydroxide@oxide heterojunction catalyst constructed via corrosion engineering for large-current oxygen evolution reaction. Applied Catalysis B: Environmental, 2023, 325, 122311.	10.8	11
336	Research on Hydrogen Production by Water Electrolysis Using a Rotating Magnetic Field. Energies, 2023, 16, 86.	1.6	2
337	The effects of potential and solar input on Z-scheme C3N4-TiO2 nanotubes @ Ti electrode in a broad potential window. International Journal of Hydrogen Energy, 2023, 48, 14279-14286.	3.8	1
338	Highly Efficient All-3D-Printed Electrolyzer toward Ultrastable Water Electrolysis. Nano Letters, 2023, 23, 629-636.	4.5	24
339	Graft-growth of CoCo-PBA on defect-rich Cu1.94S arrays for high-current-density water splitting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 660, 130823.	2.3	3
340	Insights into alloy/oxide or hydroxide interfaces in Ni–Mo-based electrocatalysts for hydrogen evolution under alkaline conditions. Chemical Science, 2023, 14, 3400-3414.	3.7	75
341	Rational Design of Highly Active and Stable (Bi1â ́'xAx)2(Fe1â ́'yBy)4O9 Mullite for Neutral―and Alkalineâ€Water Electrolysis. Journal of Alloys and Compounds, 2023, 946, 169295.	2.8	1
342	Facile synthesis of CeSe2@CNs nanostructure for enhanced water oxidation. Materials Chemistry and Physics, 2023, 301, 127529.	2.0	4
343	Stainless steel supported NiCo2O4 active layer for oxygen evolution reaction. Electrochimica Acta, 2023, 453, 142295.	2.6	3
344	Bimetallic substrate induction synthesis of binder-free electrocatalysts for stable seawater oxidation at industrial current densities. Chemical Engineering Journal, 2023, 458, 141457.	6.6	8
345	Robust and Promising Electrocatalytic Oxygen Evolution Reaction by Activated Cu–Co–B Amorphous Nanosheets. ACS Sustainable Chemistry and Engineering, 2023, 11, 2541-2553.	3.2	15
346	NiCoCuP foam with a 3D hierarchical porous structure as all-pH efficient and stable HER electrocatalyst. International Journal of Hydrogen Energy, 2023, 48, 16725-16732.	3.8	4
347	Handily etching nickel foams into catalyst–substrate fusion selfâ€stabilized electrodes toward industrialâ€level water electrolysis. , 2023, 5, .		9
348	Roll-to-Roll Production of Electrocatalysts Achieving High-Current Alkaline Water Splitting. ACS Applied Materials & Interfaces, 0, , .	4.0	0

#	Article	IF	CITATIONS
349	Design of nickel nanocrystals embedded in nitrogen-doped carbon toward high-performance hydrogen evolution reaction. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	0
350	Tunable hydrogen evolution activity by modulating polarization states of ferroelectric BaTiO ₃ . Journal of Materials Chemistry A, 2023, 11, 7034-7042.	5.2	2
351	In situ rapid and deep self-reconstruction of Fe-doped hydrate NiMoO4 for stable water oxidation at high current densities. Chemical Engineering Journal, 2023, 461, 142081.	6.6	10
352	Structural and Electrochemical Identification of CoFe Pnictide Catalysts Affecting the Performance of the Oxygen Evolution Reaction. Journal of the Electrochemical Society, 2023, 170, 036503.	1.3	0
353	Scalable Green Synthesis of Ni ₃ N-Encapsulated NC-Layered FeOOH Heterostructures: Bifunctional Electrodes for Sustainable Electrocatalytic Seawater Splitting. ACS Sustainable Chemistry and Engineering, 2023, 11, 6556-6566.	3.2	5
354	Effects of ⁶⁰ Co γ-ray irradiation of thin-layer molybdenum disulfide for the hydrogen evolution reaction. New Journal of Chemistry, 0, , .	1.4	1
355	Recent Development of Self‣upported Alkaline Hydrogen Evolution Reaction Electrocatalysts for Industrial Electrolyzer. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	5
357	Electrochemical partial reduction of Ni(OH)2 to Ni(OH)2/Ni via coupled oxidation of an interfacing NiAl intermetallic compound for robust hydrogen evolution. Journal of Energy Chemistry, 2023, 82, 560-571.	7.1	7
358	Effect of phosphorus vacancies on activity of Fe-doped Nickel phosphide by NaBH4 reduction for efficient oxygen evolution under alkaline conditions. Journal of Industrial and Engineering Chemistry, 2023, 123, 201-208.	2.9	4
359	Lamella-heterostructured nanoporous bimetallic iron-cobalt alloy/oxyhydroxide and cerium oxynitride electrodes as stable catalysts for oxygen evolution. Nature Communications, 2023, 14, .	5.8	28
360	Exceptional alkaline hydrogen evolution by molybdenum-oxide-nitride-based electrocatalysts with fast water-dissociation and hydrogen-adsorption kinetics. Materials Chemistry Frontiers, 2023, 7, 2683-2692.	3.2	6
361	Nanorod Array-Based Hierarchical NiO Microspheres as a Bifunctional Electrocatalyst for a Selective and Corrosion-Resistance Seawater Photo/Electrolysis System. ACS Catalysis, 2023, 13, 5516-5528.	5.5	18
379	Nanotechnology for Water Splitting: A Sustainable Way to Generate Hydrogen. , 2023, , 223-253.		0
384	1-D arrays of porous Mn _{0.21} Co _{2.79} O ₄ nanoneedles with an enhanced electrocatalytic activity toward the oxygen evolution reaction. Dalton Transactions, 2023, 52, 12185-12193.	1.6	3
385	Critical challenges and opportunities for the commercialization of alkaline electrolysis: high current density, stability, and safety. Materials Chemistry Frontiers, 0, , .	3.2	0
397	Alkaline Liquid Electrolyte Water Electrolysis. , 2023, , 203-232.		1
398	Thermochemical Water Splitting Cycles. , 2023, , 105-157.		1
399	Green and Sustainable Chemistry: A New Blossoming Area to Solve Multiple Global Problems of Environment and Economy. , 2023, , 171-180.		0

ARTICLE

IF CITATIONS