All-solid-state flexible planar lithium ion micro-capacit

Energy and Environmental Science 11, 2001-2009 DOI: 10.1039/c8ee00855h

Citation Report

#	Article	IF	CITATIONS
1	Recent Progress in Microâ€Supercapacitor Design, Integration, and Functionalization. Small Methods, 2019, 3, 1800367.	4.6	154
2	Device Configurations and Future Prospects of Flexible/Stretchable Lithiumâ€lon Batteries. Advanced Functional Materials, 2018, 28, 1805596.	7.8	132
3	Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chemical Society Reviews, 2018, 47, 7426-7451.	18.7	384
4	<i>In situ</i> growth of Cu(OH) ₂ @FeOOH nanotube arrays on catalytically deposited Cu current collector patterns for high-performance flexible in-plane micro-sized energy storage devices. Energy and Environmental Science, 2019, 12, 194-205.	15.6	128
5	Recent progress in the synthesis of graphene and derived materials for next generation electrodes of high performance lithium ion batteries. Progress in Energy and Combustion Science, 2019, 75, 100786.	15.8	379
6	Flexible and high-performance microsupercapacitors with wide temperature tolerance. Nano Energy, 2019, 64, 103938.	8.2	49
7	Versatile Nâ€Doped MXene Ink for Printed Electrochemical Energy Storage Application. Advanced Energy Materials, 2019, 9, 1901839.	10.2	301
8	Allâ€5olidâ€5tate Planar Sodiumâ€Ion Microcapacitors with Multidirectional Fast Ion Diffusion Pathways. Advanced Science, 2019, 6, 1902147.	5.6	34
9	Thermally Durable Lithiumâ€lon Capacitors with High Energy Density from All Hydroxyapatite Nanowireâ€Enabled Fireâ€Resistant Electrodes and Separators. Advanced Energy Materials, 2019, 9, 1902497.	10.2	34
10	Direct Inkjet Printing of Aqueous Inks to Flexible All-Solid-State Graphene Hybrid Micro-Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 46044-46053.	4.0	70
11	One‣tep Scalable Fabrication of Grapheneâ€integrated Micro‣upercapacitors with Remarkable Flexibility and Exceptional Performance Uniformity. Advanced Functional Materials, 2019, 29, 1902860.	7.8	104
12	A perspective on two-dimensional materials for planar micro-supercapacitors. APL Materials, 2019, 7, .	2.2	28
13	An intelligent and portable power storage device able to visualize the energy status. Journal of Materials Chemistry A, 2019, 7, 23028-23037.	5.2	38
14	Mesoporeâ€Induced Ultrafast Na ⁺ â€Storage in Tâ€Nb ₂ O ₅ /Carbon Nanofiber Films toward Flexible Highâ€Power Naâ€Ion Capacitors. Small, 2019, 15, e1804539.	5.2	109
15	The Road Towards Planar Microbatteries and Micro upercapacitors: From 2D to 3D Device Geometries. Advanced Materials, 2019, 31, e1900583.	11.1	160
16	Healable and shape editable supercapacitors based on shape memory polyurethanes. Journal of Materials Chemistry A, 2019, 7, 17456-17465.	5.2	40
17	General Interfacial Selfâ€Assembly Engineering for Patterning Twoâ€Dimensional Polymers with Cylindrical Mesopores on Graphene. Angewandte Chemie - International Edition, 2019, 58, 10173-10178.	7.2	85
18	General Interfacial Selfâ€Assembly Engineering for Patterning Twoâ€Dimensional Polymers with Cylindrical Mesopores on Graphene. Angewandte Chemie, 2019, 131, 10279-10284.	1.6	25

#	Article	IF	CITATIONS
19	Construction of NiMoO4/CoMoO4 nanorod arrays wrapped by Ni-Co-S nanosheets on carbon cloth as high performance electrode for supercapacitor. Journal of Alloys and Compounds, 2019, 799, 415-424.	2.8	51
20	Roadmap of in-plane electrochemical capacitors and their advanced integrated systems. Energy Storage Materials, 2019, 21, 219-239.	9.5	30
21	A facile and versatile strategy towards high-performance Si anodes for Li-ion capacitors: Concomitant conductive network construction and dual-interfacial engineering. Nano Energy, 2019, 63, 103824.	8.2	94
22	High-temperature adaptive and robust ultra-thin inorganic all-solid-state smart electrochromic energy storage devices. Nano Energy, 2019, 62, 46-54.	8.2	73
23	Advances on threeâ€dimensional electrodes for microâ€supercapacitors: A miniâ€review. InformaÄnÃ- Materiály, 2019, 1, 74-84.	8.5	129
24	Lithium ion capacitors (LICs): Development of the materials. Energy Storage Materials, 2019, 19, 314-329.	9.5	180
25	Carbon-based materials for lithium-ion capacitors. Materials Chemistry Frontiers, 2019, 3, 1265-1279.	3.2	94
26	Ionic liquid pre-intercalated MXene films for ionogel-based flexible micro-supercapacitors with high volumetric energy density. Journal of Materials Chemistry A, 2019, 7, 9478-9485.	5.2	120
27	General hybrid asymmetric capacitor model: Validation with a commercial lithium ion capacitor. Journal of Power Sources, 2019, 425, 110-120.	4.0	29
28	Nano-sandwiched metal hexacyanoferrate/graphene hybrid thin films for in-plane asymmetric micro-supercapacitors with ultrahigh energy density. Materials Horizons, 2019, 6, 1041-1049.	6.4	54
29	2D hybrid interlayer of electrochemically exfoliated graphene and Co(OH) ₂ nanosheet as a bi-functionalized polysulfide barrier for high-performance lithium–sulfur batteries. JPhys Energy, 2019, 1, 015002.	2.3	15
30	Scalable microfabrication of three-dimensional porous interconnected graphene scaffolds with carbon spheres for high-performance all carbon-based micro-supercapacitors. Journal of Materiomics, 2019, 5, 303-312.	2.8	13
31	2D mesoporous MnO2 nanosheets for high-energy asymmetric micro-supercapacitors in water-in-salt gel electrolyte. Energy Storage Materials, 2019, 18, 397-404.	9.5	140
32	Two-dimensional materials for lithium/sodium-ion capacitors. Materials Today Energy, 2019, 11, 30-45.	2.5	88
33	Few-layer phosphorene: An emerging electrode material for electrochemical energy storage. Applied Materials Today, 2019, 15, 18-33.	2.3	53
34	Printable Fabrication of a Fully Integrated and Selfâ€Powered Sensor System on Plastic Substrates. Advanced Materials, 2019, 31, e1804285.	11.1	148
35	Scalable fabrication of printed Zn//MnO2 planar micro-batteries with high volumetric energy density and exceptional safety. National Science Review, 2020, 7, 64-72.	4.6	148
36	High-efficiency sacrificial prelithiation of lithium-ion capacitors with superior energy-storage performance. Energy Storage Materials, 2020, 24, 160-166.	9.5	124

#	Article	IF	CITATIONS
37	Hierarchical hollow carbon spheres: Novel synthesis strategy, pore structure engineering and application for micro-supercapacitor. Carbon, 2020, 157, 70-79.	5.4	97
38	Highly conducting, extremely durable, phosphorylated cellulose-based ionogels for renewable flexible supercapacitors. Energy Storage Materials, 2020, 25, 70-75.	9.5	68
39	Smart supercapacitors from materials to devices. InformaÄnÃ-Materiály, 2020, 2, 113-125.	8.5	145
40	On-chip 3D interdigital micro-supercapacitors with ultrahigh areal energy density. Energy Storage Materials, 2020, 27, 17-24.	9.5	54
41	Nitrogen Self-Doped Porous Carbon for High-Performance Supercapacitors. ACS Applied Energy Materials, 2020, 3, 1585-1592.	2.5	109
42	Harvesting honeycomb-like carbon nanosheets with tunable mesopores from mild-modified coal tar pitch for high-performance flexible all-solid-state supercapacitors. Journal of Power Sources, 2020, 448, 227446.	4.0	52
43	Recent Advances and Challenges of Twoâ€Dimensional Materials for Highâ€Energy and Highâ€Power Lithiumâ€lon Capacitors. Batteries and Supercaps, 2020, 3, 10-29.	2.4	48
44	Recyclable Highâ€Performance Polymer Electrolyte Based on a Modified Methyl Cellulose–Lithium Trifluoromethanesulfonate Salt Composite for Sustainable Energy Systems. ChemSusChem, 2020, 13, 376-384.	3.6	16
45	Substrateâ€Free and Shapeless Planar Microâ€Supercapacitors. Advanced Functional Materials, 2020, 30, 1908758.	7.8	57
46	Compact Assembly and Programmable Integration of Supercapacitors. Advanced Materials, 2020, 32, e1907005.	11.1	42
47	Flexible all-solid-state supercapacitors based on an integrated electrode of hollow N-doped carbon nanofibers embedded with graphene nanosheets. Electrochimica Acta, 2020, 332, 135398.	2.6	28
48	Boosting the electrochemical performance of nitrogen-oxygen co-doped carbon nanofibers based supercapacitors through esterification of lignin precursor. Renewable Energy, 2020, 162, 613-623.	4.3	56
49	High-performance all-inorganic portable electrochromic Li-ion hybrid supercapacitors toward safe and smart energy storage. Energy Storage Materials, 2020, 33, 258-267.	9.5	45
50	Recent advances in preparation and application of laser-induced graphene in energy storage devices. Materials Today Energy, 2020, 18, 100569.	2.5	43
51	In situ anchoring MnO nanoparticles on self-supported 3D interconnected graphene scroll framework: A fast kinetics boosted ultrahigh-rate anode for Li-ion capacitor. Energy Storage Materials, 2020, 33, 298-308.	9.5	40
52	Laser-oxidized Fe3O4 nanoparticles anchored on 3D macroporous graphene flexible electrodes for ultrahigh-energy in-plane hybrid micro-supercapacitors. Nano Energy, 2020, 77, 105058.	8.2	72
53	Micro-supercapacitors powered integrated system for flexible electronics. Energy Storage Materials, 2020, 32, 402-417.	9.5	47
54	Inkjet-Printed Ultrathin MoS ₂ -Based Electrodes for Flexible In-Plane Microsupercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 39444-39454.	4.0	45

#	Article	IF	CITATIONS
55	Zinc based microâ€electrochemical energy storage devices: Present status and future perspective. EcoMat, 2020, 2, e12042.	6.8	34
56	Boron Carbonitride Lithium-Ion Capacitors with an Electrostatically Expanded Operating Voltage Window. ACS Applied Materials & Interfaces, 2020, 12, 47425-47434.	4.0	20
57	Sodium Ion Microscale Electrochemical Energy Storage Device: Present Status and Future Perspective. Small Structures, 2020, 1, 2000053.	6.9	47
58	3D Crumpled Ultrathin 1T MoS ₂ for Inkjet Printing of Mg-Ion Asymmetric Micro-supercapacitors. ACS Nano, 2020, 14, 7308-7318.	7.3	100
59	Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chemical Society Reviews, 2020, 49, 4681-4736.	18.7	311
60	All Pseudocapacitive Nitrogen-Doped Reduced Graphene Oxide and Polyaniline Nanowire Network for High-Performance Flexible On-Chip Energy Storage. ACS Applied Energy Materials, 2020, 3, 6845-6852.	2.5	13
61	Recent Advancements and Perspective of High-Performance Printed Power Sources with Multiple Form Factors. Electrochemical Energy Reviews, 2020, 3, 581-612.	13.1	26
62	A high performance and flexible in-plane asymmetric micro-supercapacitor (MSC) fabricated with functional electrochemical-exfoliated graphene. Journal of Electroanalytical Chemistry, 2020, 866, 114169.	1.9	9
63	Energy density issues of flexible energy storage devices. Energy Storage Materials, 2020, 28, 264-292.	9.5	106
64	2D Amorphous V ₂ O ₅ /Graphene Heterostructures for High‣afety Aqueous Zn″on Batteries with Unprecedented Capacity and Ultrahigh Rate Capability. Advanced Energy Materials, 2020, 10, 2000081.	10.2	256
65	Recent Developments of Planar Microâ€Supercapacitors: Fabrication, Properties, and Applications. Advanced Functional Materials, 2020, 30, 1910000.	7.8	86
66	Laser-induced and KOH-activated 3D graphene: A flexible activated electrode fabricated via direct laser writing for in-plane micro-supercapacitors. Chemical Engineering Journal, 2020, 393, 124672.	6.6	93
67	The construction of sea urchin spines-like polypyrrole arrays on cotton-based fabric electrode via a facile electropolymerization for high performance flexible solid-state supercapacitors. Electrochimica Acta, 2020, 354, 136746.	2.6	19
68	MXene coupled with molybdenum dioxide nanoparticles as 2D-0D pseudocapacitive electrode for high performance flexible asymmetric micro-supercapacitors. Journal of Materiomics, 2020, 6, 138-144.	2.8	27
69	Hierarchical Ordered Dualâ€Mesoporous Polypyrrole/Graphene Nanosheets as Biâ€Functional Active Materials for Highâ€Performance Planar Integrated System of Microâ€Supercapacitor and Gas Sensor. Advanced Functional Materials, 2020, 30, 1909756.	7.8	106
70	Flexible in-plane micro-supercapacitors: Progresses and challenges in fabrication and applications. Energy Storage Materials, 2020, 28, 160-187.	9.5	113
71	Review of MXene electrochemical microsupercapacitors. Energy Storage Materials, 2020, 27, 78-95.	9.5	223
72	Atomic Modulation Triggering Improved Performance of MoO ₃ Nanobelts for Fiberâ€Shaped Supercapacitors. Small, 2020, 16, e1905778.	5.2	38

#	Article	IF	CITATIONS
73	Flexible on-chip micro-supercapacitors: Efficient power units for wearable electronics. Energy Storage Materials, 2020, 27, 169-186.	9.5	64
74	Graphene-like nitrogen-doped porous carbon nanosheets as both cathode and anode for high energy density lithium-ion capacitor. Electrochimica Acta, 2020, 349, 136303.	2.6	23
75	Recent progress on flexible lithium metal batteries: Composite lithium metal anodes and solid-state electrolytes. Energy Storage Materials, 2020, 29, 310-331.	9.5	63
76	Development of flexible Liâ€ion batteries for flexible electronics. InformaÄnÃ-Materiály, 2020, 2, 866-878.	8.5	132
77	Boosting chem-insertion and phys-adsorption in S/N co-doped porous carbon nanospheres for high-performance symmetric Li-ion capacitors. Journal of Materials Chemistry A, 2020, 8, 11529-11537.	5.2	30
78	Sulfide synergistic electrochemical activity for high-performance alkaline rechargeable microbatteries. Journal of Materials Science, 2021, 56, 629-639.	1.7	4
79	A supramolecular hydrogel electrolyte for high-performance supercapacitors. Journal of Energy Storage, 2021, 33, 101931.	3.9	26
80	Robust Highâ€Temperature Supercapacitors Based on SiC Nanowires. Advanced Functional Materials, 2021, 31, 2008901.	7.8	28
81	Tailoring carbon nanomaterials via a molecular scissor. Nano Today, 2021, 36, 101033.	6.2	67
82	Tailoring adsorption for tunable lithium ion storage and devices. Chemical Engineering Journal, 2021, 413, 127428.	6.6	29
83	Three-dimensional porous carbon materials derived from locust for efficient N-O-S co-doped supercapacitors by facile self-template and in-situ doping method. Fuel Processing Technology, 2021, 213, 106677.	3.7	21
84	Biaxial Stretchability in Highâ€Performance, Allâ€Solidâ€State Supercapacitor with a Doubleâ€Layer Anode and a Faradic Cathode Based on Graphiticâ€2200 Knitted Carbon Fiber. Advanced Energy Materials, 2021, 11, 2002961.	10.2	38
85	A high-performance rocking-chair lithium-ion battery-supercapacitor hybrid device boosted by doubly matched capacity and kinetics of the faradaic electrodes. Energy and Environmental Science, 2021, 14, 2269-2277.	15.6	63
86	Miniaturized energy storage: microsupercapacitor based on two-dimensional materials. , 2021, , 311-358.		3
87	Facile fabrication of graphene-based high-performance microsupercapacitors operating at a high temperature of 150 A°C. Nanoscale Advances, 2021, 3, 4674-4679.	2.2	4
88	Green quasi-solid-state planar asymmetric supercapacitors with high working voltage and extraordinary volumetric energy density. Journal of Materials Chemistry A, 2021, 9, 14363-14371.	5.2	14
89	Recent Advances in Alkali Metalâ€Ion Hybrid Supercapacitors. Batteries and Supercaps, 2021, 4, 1108-1121.	2.4	27
90	A Review of Compact Carbon Design for Supercapacitors with High Volumetric Performance. Small, 2021, 17, e2007548.	5.2	47

#	Article	IF	CITATIONS
91	Highâ€Voltage Potassium Ion Microâ€Supercapacitors with Extraordinary Volumetric Energy Density for Wearable Pressure Sensor System. Advanced Energy Materials, 2021, 11, 2003835.	10.2	53
92	Deep eutectic solvent-based supramolecular gel polymer electrolytes for high-performance electrochemical double layer capacitors. International Journal of Hydrogen Energy, 2021, 46, 13044-13049.	3.8	18
93	All-Solid High-Performance Asymmetric Supercapacitor Based on Yolk–Shell NiMoO ₄ /V ₂ CT _{<i>x</i>} @Reduced Graphene Oxide and Hierarchical Bamboo-Shaped MoO ₂ @Fe ₂ O ₃ /N-Doped Carbon. Energy & Fuels, 2021, 35, 10250-10261.	2.5	24
94	Orderly defective superstructure for enhanced pseudocapacitive storage in titanium niobium oxide. Nano Research, 2022, 15, 1570-1578.	5.8	24
95	Recent Developments of Two-Dimensional Anode Materials and Their Composites in Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 7440-7461.	2.5	48
96	Aqueous high-voltage all 3D-printed micro-supercapacitors with ultrahigh areal capacitance and energy density. Journal of Energy Chemistry, 2021, 63, 514-520.	7.1	25
97	Dual Active and Kinetically Inter-Promoting Li3VO4/Graphene Anode Enabling Printable High Energy Density Lithium Ion Micro Capacitors. Energy Storage Materials, 2021, 43, 482-491.	9.5	29
98	Evolution and application of all-in-one electrochemical energy storage system. Energy Storage Materials, 2021, 41, 677-696.	9.5	25
99	In-plane micro-sized energy storage devices: From device fabrication to integration and intelligent designs. Journal of Energy Chemistry, 2021, 63, 25-39.	7.1	12
100	Highly conductive EGaln/silk fibroin ink for graphene 3D array structure micro-supercapacitors. Chemical Engineering Journal, 2022, 428, 132084.	6.6	13
101	A rechargeable electrochromic energy storage device enabling effective energy recovery. Journal of Materials Chemistry A, 2021, 9, 6451-6459.	5.2	43
102	Emerging miniaturized energy storage devices for microsystem applications: from design to integration. International Journal of Extreme Manufacturing, 2020, 2, 042001.	6.3	96
103	In Situ Growing BCN Nanotubes on Carbon Fibers for Novel Highâ€Temperature Supercapacitor with Excellent Cycling Performance. Small, 2021, 17, e2102899.	5.2	21
104	The role and the necessary features of electrolytes for microsupercapacitors. , 2022, , 47-116.		3
105	Recent advances in micro-supercapacitors for AC line-filtering performance: From fundamental models to emerging applications. EScience, 2021, 1, 124-140.	25.0	57
106	A review of self-healing electrolyte and their applications in flexible/stretchable energy storage devices. Electrochimica Acta, 2022, 404, 139730.	2.6	21
107	Ambient-air in situ fabrication of high-surface-area, superhydrophilic, and microporous few-layer activated graphene films by ultrafast ultraviolet laser for enhanced energy storage. Nano Energy, 2022, 94, 106902.	8.2	23
108	A Review of Fabrication Technologies for Carbon Electrode-Based Micro-Supercapacitors. Applied Sciences (Switzerland), 2022, 12, 862.	1.3	24

#	Article	IF	CITATIONS
109	Processing robust lithium metal anode for high-security batteries: A minireview. Energy Storage Materials, 2022, 47, 122-133.	9.5	28
110	A Flexible Aqueous Zinc–Iodine Microbattery with Unprecedented Energy Density. Advanced Materials, 2022, 34, e2109450.	11.1	49
111	Ambient-Air <i>in Situ</i> Fabrication of High-Surface-Area, Superhydrophilic, and Microporous Few-Layer Activated Graphene Films by Ultrafast Ultraviolet Laser for Enhanced Energy Storage. SSRN Electronic Journal, 0, , .	0.4	0
112	Catalytic graphitization assisted synthesis of Fe ₃ C/Fe/graphitic carbon with advanced pseudocapacitance. RSC Advances, 2022, 12, 7935-7940.	1.7	7
113	Superior Volumetric Capability Dualâ€ion Batteries Enabled by A Microsize Niobium Tungsten Oxide Anode. Advanced Functional Materials, 2022, 32, .	7.8	14
114	A Multidimensional Topotactic Host Composite Anode Toward Transparent Flexible Potassium-Ion Microcapacitors. ACS Applied Materials & Interfaces, 2022, 14, 1478-1488.	4.0	9
115	Structure transitions of lithium ionic conductor Li ₃ PS ₄ . Chinese Science Bulletin, 2021, , .	0.4	1
116	Digital Microscale Electrochemical Energy Storage Devices for a Fully Connected and Intelligent World. ACS Energy Letters, 2022, 7, 267-281.	8.8	31
117	Hierarchically nitrogen-doped mesoporous carbon nanospheres with dual ion adsorption capability for superior rate and ultra-stable zinc ion hybrid supercapacitors. Science China Materials, 2022, 65, 2401-2411.	3.5	17
118	Low-temperature and high-voltage planar micro-supercapacitors based on anti-freezing hybrid gel electrolyte. Journal of Energy Chemistry, 2022, 72, 195-202.	7.1	12
119	Use of a superbase/DMSO/CO2 solvent in order to incorporate cellulose into organic ionogel electrolyte for flexible supercapacitors. Chemical Engineering Journal, 2022, 446, 137032.	6.6	9
120	Design Rationale and Device Configuration of Lithiumâ€lon Capacitors. Advanced Energy Materials, 2022, 12, .	10.2	40
121	Recent status and future perspectives of ultracompact and customizable micro-supercapacitors. , 2022, 1, e9120018.		60
122	Reliable and flexible supercapacitors toward wide-temperature operation based on self-supporting SiC/CNT composite films. Journal of Materials Chemistry A, 2022, 10, 15708-15718.	5.2	4
123	Understanding Synthesis–Structure–Performance Correlations of Nanoarchitectured Activated Carbons for Electrochemical Applications and Carbon Capture. Advanced Functional Materials, 2022, 32, .	7.8	32
124	3D Printing Flexible Sodiumâ€Ion Microbatteries with Ultrahigh Areal Capacity and Robust Rate Capability. Advanced Materials, 2022, 34, .	11.1	27
125	Energy storage performance of silicon-integrated epitaxial lead-free BaTiO3-based capacitor. Chemical Engineering Journal, 2022, 450, 138312.	6.6	6
126	Preparation of N-doped Polypyrrole-derived Porous Carbon and Its Electrochemical Properties. International Journal of Electrochemical Science, 0, , ArticleID:221028.	0.5	0

#	Article	IF	CITATIONS
127	Micro-electrochemical capacitors: Progress and future status. Journal of Energy Storage, 2022, 55, 105702.	3.9	7
128	Investigation of protic ionic liquid electrolytes for porous RuO2 micro-supercapacitors. Journal of Power Sources, 2022, 548, 232040.	4.0	13
129	High-performance all-solid-state electrochromic asymmetric Zn-ion supercapacitors for visualization of energy storage devices. Journal of Materials Chemistry A, 2022, 10, 17326-17337.	5.2	15
130	Recent Developments of Carbon-Based Anode Materials for Flexible Lithium-Ion Batteries. Crystals, 2022, 12, 1279.	1.0	10
131	Multifunctional devices based on planar microsupercapacitors: Progress and challenges. Science China Materials, 2022, 65, 3202-3228.	3.5	8
132	Sodiumâ€Intercalated Manganese Oxides for Achieving Ultraâ€Stable and Fast Charge Storage Kinetics in Wideâ€Voltage Aqueous Supercapacitors. Advanced Functional Materials, 2022, 32, .	7.8	17
133	How to commercialize solid-state batteries: a perspective from solid electrolytes. , 2023, 2, 20220036.		2
134	Exploring 2D Energy Storage Materials: Advances in Structure, Synthesis, Optimization Strategies, and Applications for Monovalent and Multivalent Metalâ€Ion Hybrid Capacitors. Small, 2022, 18, .	5.2	29
135	An overview of metal-air batteries, current progress, and future perspectives. Journal of Energy Storage, 2022, 56, 106075.	3.9	12
136	Direct mask-free fabrication of patterned hierarchical graphene electrode for on-chip micro-supercapacitors. Journal of Materials Science and Technology, 2023, 143, 12-19.	5.6	6
137	Improving the electrochemical performance of α-MoO3 electrode using aluminium trifluoromethanesulfonate water-in-salt electrolyte. Journal of Energy Chemistry, 2023, 78, 123-134.	7.1	3
138	A Transient Pseudo apacitor Using a Bioderived Ionic Liquid with Na Ions. Small, 2023, 19, .	5.2	5
139	Recent advances and key opportunities on in-plane micro-supercapacitors: From functional microdevices to smart integrated microsystems. Journal of Energy Chemistry, 2023, 81, 410-431.	7.1	6
140	Vertical Graphene Film Enables High-Performance Quasi-Solid-State Planar Zinc-Ion Microbatteries. ACS Applied Materials & Interfaces, 2023, 15, 9486-9493.	4.0	5
141	Fast Kinetic Carbon Anode Inherited and Developed from Architectural Designed Porous Aromatic Framework for Flexible Lithium Ion Micro Capacitors. Advanced Functional Materials, 2023, 33, .	7.8	7