The Frequency Response of Outer Hair Cell Voltage-Dep Kinetics of Prestin

Journal of Neuroscience 38, 5495-5506

DOI: 10.1523/jneurosci.0425-18.2018

Citation Report

#	Article	IF	CITATIONS
1	Prestin kinetics and corresponding frequency dependence augment during early development of the outer hair cell within the mouse organ of Corti. Scientific Reports, 2019, 9, 16460.	1.6	20
2	Lower expression of prestin and MYO7A correlates with menopause-associated hearing loss. Climacteric, 2019, 22, 361-369.	1.1	4
3	The speed limit of outer hair cell electromechanical activity. Hno, 2019, 67, 159-164.	0.4	13
4	Outer hair cell electromotility is low-pass filtered relative to the molecular conformational changes that produce nonlinear capacitance. Journal of General Physiology, 2019, 151, 1369-1385.	0.9	30
5	Voltage Does Not Drive Prestin (SLC26a5) Electro-Mechanical Activity at High Frequencies Where Cochlear Amplification Is Best. IScience, 2019, 22, 392-399.	1.9	19
6	An In Vitro Study on Prestin Analog Gene in the Bullfrog Hearing Organs. Neural Plasticity, 2020, 2020, 1-9.	1.0	0
7	Interactions between Passive and Active Vibrations in the Organ of Corti InÂVitro. Biophysical Journal, 2020, 119, 314-325.	0.2	7
8	The cochlear outer hair cell speed paradox. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21880-21888.	3.3	30
9	Establishment of sperm associated antigen 6 gene knockout mouse model and its mechanism of deafness. Saudi Journal of Biological Sciences, 2020, 27, 1289-1295.	1.8	1
10	Maturation of Voltage-induced Shifts in SLC26a5 (Prestin) Operating Point during Trafficking and Membrane Insertion. Neuroscience, 2020, 431, 128-133.	1.1	12
11	Diverse Mechanisms of Sound Frequency Discrimination in the Vertebrate Cochlea. Trends in Neurosciences, 2020, 43, 88-102.	4.2	34
12	Complex nonlinear capacitance in outer hair cell macro-patches: effects of membrane tension. Scientific Reports, 2020, 10, 6222.	1.6	24
13	Cooperativity of K _v 7.4 channels confers ultrafast electromechanical sensitivity and emergent properties in cochlear outer hair cells. Science Advances, 2020, 6, eaba1104.	4.7	26
14	Kinetic Membrane Model of Outer Hair Cells. Biophysical Journal, 2021, 120, 122-132.	0.2	4
15	Functional Parameters of Prestin Are Not Correlated With the Best Hearing Frequency. Frontiers in Cell and Developmental Biology, 2021, 9, 638530.	1.8	1
16	Identification and characterization of amphibian SLC26A5 using RNA-Seq. BMC Genomics, 2021, 22, 564.	1.2	2
18	The origin of mechanical harmonic distortion within the organ of Corti in living gerbil cochleae. Communications Biology, 2021, 4, 1008.	2.0	10
19	State dependent effects on the frequency response of prestin's real and imaginary components of nonlinear capacitance. Scientific Reports, 2021, 11, 16149.	1.6	16

CITATION REPORT

#	Article	IF	CITATIONS
20	Comparative Molecular Dynamics Investigation of the Electromotile Hearing Protein Prestin. International Journal of Molecular Sciences, 2021, 22, 8318.	1.8	2
23	A novel theoretical framework reveals more than one voltage-sensing pathway in the lateral membrane of outer hair cells. Journal of General Physiology, 2020, 152, .	0.9	1
24	Timing of the reticular lamina and basilar membrane vibration in living gerbil cochleae. ELife, 2018, 7, .	2.8	63
25	The frequency limit of outer hair cell motility measured in vivo. ELife, 2019, 8, .	2.8	60
26	Rectifying and sluggish: Outer hair cells as regulators rather than amplifiers. Hearing Research, 2022, 423, 108367.	0.9	13
28	Coupling between outer hair cell electromotility and prestin sensor charge depends on voltage operating point. Hearing Research, 2022, 423, 108373.	0.9	5
29	Recent advances in cochlear hair cell nanophysiology: subcellular compartmentalization of electrical signaling in compact sensory cells. Faculty Reviews, 2020, 9, 24.	1.7	2
31	Mechanics of the Cochlea. , 2020, , 392-418.		Ο
32	Cochlear outer hair cell electromotility enhances organ of Corti motion on a cycle-by-cycle basis at high frequencies in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	53
33	Prestin derived OHC surface area reduction underlies ageâ€related rescaling of frequency place coding. Hearing Research, 2022, 423, 108406.	0.9	10
34	An outer hair cell-powered global hydromechanical mechanism for cochlear amplification. Hearing Research, 2021, , 108407.	0.9	3
36	Single particle cryo-EM structure of the outer hair cell motor protein prestin. Nature Communications, 2022, 13, 290.	5.8	34
38	Unloading outer hair cell bundles in vivo does not yield evidence of spontaneous oscillations in the mouse cochlea. Hearing Research, 2022, 423, 108473.	0.9	6
39	Prestin-Mediated Frequency Selectivity Does not Cover Ultrahigh Frequencies in Mice. Neuroscience Bulletin, 2022, 38, 769-784.	1.5	11
40	Observation in inner ear of tree shrew using scanning electron microscope and the Atoh1 distribution in cochlea. Microscopy Research and Technique, 2021, , .	1.2	0
41	Progress in understanding the structural mechanism underlying prestin's electromotile activity. Hearing Research, 2022, 423, 108423.	0.9	2
43	On the frequency response of prestin charge movement in membrane patches. Biophysical Journal, 2022, 121, 2371-2379.	0.2	4
44	The Electromotive Protein Prestin as a Sensitive Core of the Fluorescent Voltage Indicator. Russian Journal of Bioorganic Chemistry, 2022, 48, 617-620.	0.3	0

CITATION REPORT

#	Article	IF	CITATIONS
45	Analysis of outer hair cell electromechanics reveals power delivery at the upper-frequency limits of hearing. Journal of the Royal Society Interface, 2022, 19, .	1.5	7
48	The Remarkable Outer Hair Cell: Proceedings of a Symposium in Honour of W. E. Brownell. JARO - Journal of the Association for Research in Otolaryngology, 2023, 24, 117-127.	0.9	3
49	The Long Outer-Hair-Cell RC Time Constant: A Feature, Not a Bug, of the Mammalian Cochlea. JARO - Journal of the Association for Research in Otolaryngology, 2023, 24, 129-145.	0.9	3
50	A parametric blueprint for optimum cochlear outer hair cell design. Journal of the Royal Society Interface, 2023, 20, .	1.5	1
51	Megahertz Sampling of Prestin (SLC26a5) Voltage-Sensor Charge Movements in Outer Hair Cell Membranes Reveals Ultrasonic Activity that May Support Electromotility and Cochlear Amplification. Journal of Neuroscience, 2023, 43, 2460-2468.	1.7	3
52	Prestin's fast motor kinetics is essential for mammalian cochlear amplification. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	8
53	The continued importance of comparative auditory research to modern scientific discovery. Hearing Research, 2023, 433, 108766.	0.9	1
60	Differential transverse motion of individual outer hair cells measured in gerbil high-frequency region. AIP Conference Proceedings, 2024, , .	0.3	Ο
61	Not so presto? Can outer hair cells be sluggish?. AIP Conference Proceedings, 2024, , .	0.3	0