CITATION REPORT List of articles citing

Identification of amino acids with sensitive nanoporous MoS2: towards machine learning-based predictions are sensitive nanoporous.

DOI: 10.1038/s41699-018-0060-8 Npj 2D Materials and Applications, 2018, 2, .

Source: https://exaly.com/paper-pdf/71093968/citation-report.pdf

Version: 2024-04-17

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
36	Single-Molecule Dynamics and Discrimination between Hydrophilic and Hydrophobic Amino Acids in Peptides, through Controllable, Stepwise Translocation across Nanopores. <i>Polymers</i> , 2018 , 10,	4.5	7
35	Colloquium: Ionic phenomena in nanoscale pores through 2D materials. <i>Reviews of Modern Physics</i> , 2019 , 91,	40.5	35
34	Can One Define the Conductance of Amino Acids?. <i>Biomolecules</i> , 2019 , 9,	5.9	13
33	Insights into protein sequencing with an EHemolysin nanopore by atomistic simulations. <i>Scientific Reports</i> , 2019 , 9, 6440	4.9	28
32	Molecular Dynamics Investigation of Polylysine Peptide Translocation through MoS Nanopores. Journal of Physical Chemistry B, 2019 , 123, 2342-2353	3.4	11
31	FraC nanopores with adjustable diameter identify the mass of opposite-charge peptides with 44 dalton resolution. <i>Nature Communications</i> , 2019 , 10, 835	17.4	74
30	Controlled Focused Ion Beam Milling of Composite Solid State Nanopore Arrays for Molecule Sensing. <i>Micromachines</i> , 2019 , 10,	3.3	7
29	Translocation through a narrow pore under a pulling force. Scientific Reports, 2019, 9, 17885	4.9	6
28	Nanoparticle-assisted polymer translocation through a nanopore. <i>Polymer</i> , 2020 , 204, 122847	3.9	2
27	N-Terminal Derivatization-Assisted Identification of Individual Amino Acids Using a Biological Nanopore Sensor. <i>ACS Sensors</i> , 2020 , 5, 1707-1716	9.2	7
26	Why is Single-Layer MoS2 a More Energy Efficient Membrane for Water Desalination?. <i>ACS Energy Letters</i> , 2020 , 5, 2217-2222	20.1	26
25	Molecular Transport across the Ionic Liquid-Aqueous Electrolyte Interface in a MoS Nanopore. <i>ACS Applied Materials & District Amplied & Di</i>	9.5	11
24	Solid-State Nanopore Platform Integrated with Machine Learning for Digital Diagnosis of Virus Infection. <i>Analytical Chemistry</i> , 2021 , 93, 215-227	7.8	18
23	Adaptive nanopores: A bioinspired label-free approach for protein sequencing and identification. <i>Nano Research</i> , 2021 , 14, 328-333	10	5
22	Velocity control of protein translocation through a nanopore by tuning the fraction of benzenoid residues. <i>Nanoscale</i> , 2021 , 13, 15352-15361	7.7	3
21	Machine learning and chemometrics for electrochemical sensors: moving forward to the future of analytical chemistry. <i>Analyst, The</i> , 2021 , 146, 6351-6364	5	3
20	Simultaneous Sensing of Force and Current Signals to Recognize Proteinogenic Amino Acids at a Single-Molecule Level. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 793-799	6.4	3

A short review on Molybdenum disulfide (MoS2) applications and challenges. **2021**,

18	A Review on MoS2 Properties, Synthesis, Sensing Applications and Challenges. <i>Crystals</i> , 2021 , 11, 355	2.3	26
17	DNA Detection with Single-Layer TiC MXene Nanopore. ACS Nano, 2021, 15, 4861-4869	16.7	11
16	Dynamic and weak electric double layers in ultrathin nanopores. <i>Journal of Chemical Physics</i> , 2021 , 154, 134703	3.9	3
15	Titanium Carbide MXene for Water Desalination: A Molecular Dynamics Study. <i>ACS Applied Nano Materials</i> , 2021 , 4, 6145-6151	5.6	10
14	Machine learning for biochemical engineering: A review. <i>Biochemical Engineering Journal</i> , 2021 , 172, 108054	4.2	14
13	A Guide to Signal Processing Algorithms for Nanopore Sensors. <i>ACS Sensors</i> , 2021 , 6, 3536-3555	9.2	10
12	Micro- and Nanopore Technologies for Single-Cell Analysis. 2022 , 343-373		
11	INSTRUCTION TOOLS FOR SIGNAL PROCESSING AND MACHINE LEARNING FOR ION-CHANNEL SENSORS. <i>International Journal of Virtual and Personal Learning Environments</i> , 2022 , 12, 0-0	0.8	
10	Micro- and Nanopore Technologies for Single-Cell Analysis. 2020 , 1-31		
9	Machine Learning Assisted Simultaneous Structural Profiling of Differently Charged Proteins in a Porin A (MspA) Electroosmotic Trap <i>Journal of the American Chemical Society</i> , 2022 , 144, 757-768	16.4	2
8	Pushing the limits of nanopore transport performance by polymer functionalization <i>Chemical Communications</i> , 2022 ,	5.8	5
7	Challenges in Protein Sequencing Using 2-D MoS\$\$_2\$\$ Nanopores. <i>Nanostructure Science and Technology</i> , 2022 , 343-366	0.9	
6	Extended DeepILST for Various Thermodynamic States and Applications in Coarse-Graining Journal of Physical Chemistry A, 2022,	2.8	1
5	Tailoring Nanoporous Graphene via Machine Learning: Predicting Probabilities and Formation Times of Arbitrary Nanopore Shapes. <i>Journal of Chemical Physics</i> ,	3.9	О
4	Machine Learning Prediction of the Transmission Function for Protein Sequencing with Graphene Nanoslit.		Ο
3	When bioprocess engineering meets machine learning: A survey from the perspective of automated bioprocess development. 2023 , 190, 108764		0
2	Machine Learning Aided Interpretable Approach for Single Nucleotide-Based DNA Sequencing using a Model Nanopore. 2022 , 13, 11818-11830		O

Material processing, performance and reliability of MoS2 field effect transistor (FET) technology- A critical review. **2023**, 160, 107397

О