The coding of valence and identity in the mammalian ta

Nature 558, 127-131 DOI: 10.1038/s41586-018-0165-4

Citation Report

#	Article	IF	CITATIONS
1	Innate and acquired tolerance to bitter stimuli in mice. PLoS ONE, 2018, 13, e0210032.	1.1	19
2	Neural Circuit Motifs in Valence Processing. Neuron, 2018, 100, 436-452.	3.8	168
3	Evaluation of Sweetener Synergy in Humans by Isobole Analyses. Chemical Senses, 2019, 44, 571-582.	1.1	13
4	Single and population coding of taste in the gustatory cortex of awake mice. Journal of Neurophysiology, 2019, 122, 1342-1356.	0.9	44
5	Hypothalamic neuronal circuits regulating hunger-induced taste modification. Nature Communications, 2019, 10, 4560.	5.8	39
6	Activity of Insula to Basolateral Amygdala Projecting Neurons is Necessary and Sufficient for Taste Valence Representation. Journal of Neuroscience, 2019, 39, 9369-9382.	1.7	55
7	Aversive state processing in the posterior insular cortex. Nature Neuroscience, 2019, 22, 1424-1437.	7.1	202
8	Sour Sensing from the Tongue to the Brain. Cell, 2019, 179, 392-402.e15.	13.5	158
9	Wide sensory filters underlie performance in memory-based discrimination and generalization. PLoS ONE, 2019, 14, e0214817.	1.1	27
10	The auditory cortex and the emotional valence of sounds. Neuroscience and Biobehavioral Reviews, 2019, 98, 256-264.	2.9	40
11	Affective valence in the brain: modules or modes?. Nature Reviews Neuroscience, 2019, 20, 225-234.	4.9	112
12	SatB2-Expressing Neurons in the Parabrachial Nucleus Encode Sweet Taste. Cell Reports, 2019, 27, 1650-1656.e4.	2.9	39
13	Intensityâ€related distribution of sweet and bitter taste fMRI responses in the insular cortex. Human Brain Mapping, 2019, 40, 3631-3646.	1.9	21
15	State-specific gating of salient cues by midbrain dopaminergic input to basal amygdala. Nature Neuroscience, 2019, 22, 1820-1833.	7.1	103
16	Valence coding in amygdala circuits. Current Opinion in Behavioral Sciences, 2019, 26, 97-106.	2.0	55
17	The Functional and Neurobiological Properties of Bad Taste. Physiological Reviews, 2019, 99, 605-663.	13.1	58
18	Hippocampal Input to the Nucleus Accumbens Shell Enhances Food Palatability. Biological Psychiatry, 2020, 87, 597-608.	0.7	26
19	A Neural Mechanism of Cue-Outcome Expectancy Generated by the Interaction Between Orbitofrontal Cortex and Amygdala. Chemical Senses, 2020, 45, 15-26.	1.1	3

TATION REPO

	C	ITATION REPORT	
#	Article	IF	CITATIONS
20	Tissue clearing and its applications inÂneuroscience. Nature Reviews Neuroscience, 2020, 21, 61-79.	4.9	350
21	A Novel Cortical Mechanism for Top-Down Control of Water Intake. Current Biology, 2020, 30, 4789-4798.e4.	1.8	13
22	The Insula Cortex Contacts Distinct Output Streams of the Central Amygdala. Journal of Neuroscience, 2020, 40, 8870-8882.	1.7	11
23	From Architecture to Evolution: Multisensory Evidence of Decentralized Emotion. Trends in Cognitive Sciences, 2020, 24, 916-929.	4.0	20
24	Encoding of social exploration by neural ensembles in the insular cortex. PLoS Biology, 2020, 18, e3000584.	2.6	20
25	Single-Neuron Correlates of Decision Confidence in the Human Medial Temporal Lobe. Current Biology, 2020, 30, 4722-4732.e5.	1.8	4
26	â€~Liking' and â€~wanting' in eating and food reward: Brain mechanisms and clinical implicat Physiology and Behavior, 2020, 227, 113152.	ions. 1.0	147
27	Viral Vectors for Neural Circuit Mapping and Recent Advances in Trans-synaptic Anterograde Tracers. Neuron, 2020, 107, 1029-1047.	3.8	66
28	A subset of broadly responsive Type III taste cells contribute to the detection of bitter, sweet and umami stimuli. PLoS Genetics, 2020, 16, e1008925.	1.5	32
29	Soft Drink Consumption in Young Mexican Adults Is Associated with Higher Total Body Fat Percentag in Men but Not in Women. Foods, 2020, 9, 1760.	ge 1.9	6
30	Identification of an Amygdala–Thalamic Circuit That Acts as a Central Gain Mechanism in Taste Perceptions. Journal of Neuroscience, 2020, 40, 5051-5062.	1.7	23
31	Valence Encoding Signals in the Human Amygdala and the Willingness to Eat. Journal of Neuroscienc 2020, 40, 5264-5272.	e, 1.7	13
32	Recent advances in development of biosensors for taste-related analyses. TrAC - Trends in Analytical Chemistry, 2020, 129, 115925.	5.8	34
33	Synaptic Specificity and Application of Anterograde Transsynaptic AAV for Probing Neural Circuitry. Journal of Neuroscience, 2020, 40, 3250-3267.	1.7	111
34	Neural Insensitivity to the Effects of Hunger in Women Remitted From Anorexia Nervosa. American Journal of Psychiatry, 2020, 177, 601-610.	4.0	39
35	Expression of serotonin 1A and 2A receptors in molecular- and projection-defined neurons of the mouse insular cortex. Molecular Brain, 2020, 13, 99.	1.3	26
36	Taste coding strategies in insular cortex. Experimental Biology and Medicine, 2020, 245, 448-455.	1.1	15
37	Frustrative nonreward: Chemogenetic inactivation of the central amygdala abolishes the effect of reward downshift without affecting alcohol intake. Neurobiology of Learning and Memory, 2020, 169 107173.	9, 1.0	13

#	Article	IF	CITATIONS
38	Cortical processing of chemosensory and hedonic features of taste in active licking mice. Journal of Neurophysiology, 2020, 123, 1995-2009.	0.9	22
39	Neural Circuit Mechanism Underlying the Feeding Controlled by Insula-Central Amygdala Pathway. IScience, 2020, 23, 101033.	1.9	14
40	PGC1α Controls Sucrose Taste Sensitization in Drosophila. Cell Reports, 2020, 31, 107480.	2.9	24
41	Facial expressions of emotion states and their neuronal correlates in mice. Science, 2020, 368, 89-94.	6.0	192
42	The gut–brain axis mediates sugar preference. Nature, 2020, 580, 511-516.	13.7	172
43	Neuronal diversity of the amygdala and the bed nucleus of the stria terminalis. Handbook of Behavioral Neuroscience, 2020, 26, 63-100.	0.7	34
44	Tissue clearing technique: Recent progress and biomedical applications. Journal of Anatomy, 2021, 238, 489-507.	0.9	74
46	Taste: A Scattered Affair. Current Biology, 2021, 31, R74-R76.	1.8	0
47	Top-Down Control of Sweet and Bitter Taste in the Mammalian Brain. Cell, 2021, 184, 257-271.e16.	13.5	37
48	The neural, behavioral, and epidemiological underpinnings of comorbid alcohol use disorder and post-traumatic stress disorder. International Review of Neurobiology, 2021, 157, 69-142.	0.9	11
49	Medial preoptic area antagonistically mediates stress-induced anxiety and parental behavior. Nature Neuroscience, 2021, 24, 516-528.	7.1	67
50	Recent Advances in Neural Circuits for Taste Perception in Hunger. Frontiers in Neural Circuits, 2021, 15, 609824.	1.4	11
51	Food allergy as a biological food quality control system. Cell, 2021, 184, 1440-1454.	13.5	53
53	Salt Sensation and Regulation. Metabolites, 2021, 11, 175.	1.3	7
54	Reaching Out for Food: How Food Incentives Modulate Peripersonal Space Perception. Journal of Cognition, 2021, 4, 21.	1.0	2
56	A Neural Circuit for Gut-Induced Sugar Preference. Neuroscience Bulletin, 2021, 37, 754-756.	1.5	0
57	Against gustotopic representation in the human brain: there is no Cartesian restaurant. Current Opinion in Physiology, 2021, 20, 23-28.	0.9	8
58	The function of groups of neurons changes from moment to moment. Current Opinion in Physiology, 2021, 20, 1-7.	0.9	3

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
59	Engram cell connectivity: an evolving substrate for information storage. Current Opinion in Neurobiology, 2021, 67, 215-225.	2.0	17
60	Connectivity characterization of the mouse basolateral amygdalar complex. Nature Communications, 2021, 12, 2859.	5.8	63
61	Investigation on the Loss of Taste and Smell and Consequent Psychological Effects: A Cross-Sectional Study on Healthcare Workers Who Contracted the COVID-19 Infection. Frontiers in Public Health, 2021, 9, 666442.	1.3	19
62	Cortical neurochemical signaling of gustatory stimuli and their visceral consequences during the acquisition and consolidation of taste aversion memory. Neurobiology of Learning and Memory, 2021, 181, 107437.	1.0	7
63	Expressions of emotions across species. Current Opinion in Neurobiology, 2021, 68, 57-66.	2.0	26
64	Convergence Circuit Mapping: Genetic Approaches From Structure to Function. Frontiers in Systems Neuroscience, 2021, 15, 688673.	1.2	4
65	Top-down control of conditioned overconsumption is mediated by insular cortex Nos1 neurons. Cell Metabolism, 2021, 33, 1418-1432.e6.	7.2	24
66	Parvalbumin interneuron inhibition onto anterior insula neurons projecting to the basolateral amygdala drives aversive taste memory retrieval. Current Biology, 2021, 31, 2770-2784.e6.	1.8	15
67	Valence encoding in the amygdala influences motivated behavior. Behavioural Brain Research, 2021, 411, 113370.	1.2	18
68	Cellular activity in insular cortex across seconds to hours: Sensations and predictions of bodily states. Neuron, 2021, 109, 3576-3593.	3.8	45
69	Novel, Fully Characterised Bovine Taste Bud Cells of Fungiform Papillae. Cells, 2021, 10, 2285.	1.8	2
70	Within and beyond an integrated framework of attentional capture: A perspective from cognitive-affective neuroscience. Visual Cognition, 0, , 1-4.	0.9	1
71	Better living through understanding the insula: Why subregions can make all the difference. Neuropharmacology, 2021, 198, 108765.	2.0	51
72	Satb2 neurons in the parabrachial nucleus mediate taste perception. Nature Communications, 2021, 12, 224.	5.8	29
73	The neuroscience of sugars in taste, gut-reward, feeding circuits, and obesity. Cellular and Molecular Life Sciences, 2020, 77, 3469-3502.	2.4	39
76	Neural Isolation of the Olfactory Bulbs Severely Impairs Taste-Guided Behavior to Normally Preferred, But Not Avoided, Stimuli. ENeuro, 2020, 7, ENEURO.0026-20.2020.	0.9	4
77	Behavioral Disassociation of Perceived Sweet Taste Intensity and Hedonically Positive Palatability. ENeuro, 2020, 7, ENEURO.0268-20.2020.	0.9	3
78	Sucrose intensity coding and decision-making in rat gustatory cortices. ELife, 2018, 7, .	2.8	42

#	Article	IF	Citations
79	Closed-loop optogenetic activation of peripheral or central neurons modulates feeding in freely moving Drosophila. ELife, 2019, 8, .	2.8	29
80	LTD at amygdalocortical synapses as a novel mechanism for hedonic learning. ELife, 2020, 9, .	2.8	19
81	A whole-brain connectivity map of mouse insular cortex. ELife, 2020, 9, .	2.8	153
82	Das Schmecken. , 2021, , 339-369.		0
83	Modellorganismen in der Sinnesphysiologie. , 2021, , 575-587.		0
84	Molecular aspects of fructose metabolism and metabolic disease. Cell Metabolism, 2021, 33, 2329-2354.	7.2	100
85	A matter of taste. Nature Reviews Neuroscience, 2018, 19, 444-444.	4.9	0
93	Behavioral Analysis of Taste Function in Rodent Models. , 2020, , 169-186.		1
95	Neural Coding of Thermal Preferences in the Nematode Caenorhabditis elegans. ENeuro, 2020, 7, ENEURO.0414-19.2020.	0.9	12
96	Taste Pathways, Representation and Processing in the Brain. , 2020, , 280-297.		1
98	Why display motion on packaging? The effect of implied motion on consumer behavior. Journal of Retailing and Consumer Services, 2022, 64, 102840.	5.3	9
99	Dysgeusia. Journal of the American Dental Association, 2022, 153, 251-264.	0.7	16
101	Encoding Taste: From Receptors to Perception. Handbook of Experimental Pharmacology, 2021, , 53-90.	0.9	5
102	Mechanisms for the Sour Taste. Handbook of Experimental Pharmacology, 2021, , 229-245.	0.9	1
104	History-dependent dopamine release increases cAMP levels in most basal amygdala glutamatergic neurons to control learning. Cell Reports, 2022, 38, 110297.	2.9	18
106	A genetically defined insula-brainstem circuit selectively controls motivational vigor. Cell, 2021, 184, 6344-6360.e18.	13.5	28
108	A bottom-up reward pathway mediated by somatostatin neurons in the medial septum complex underlying appetitive learning. Nature Communications, 2022, 13, 1194.	5.8	12
110	Activation Spectra of Human Bitter Taste Receptors Stimulated with Cyclolinopeptides Corresponding to Fresh and Aged Linseed Oil. Journal of Agricultural and Food Chemistry, 2022, 70, 4382-4390.	2.4	12

CITATION REPORT

#	Article	IF	CITATIONS
111	Role of anterior insula cortex in context-induced relapse of nicotine-seeking. ELife, 2022, 11, .	2.8	11
112	METTL3-mediated m6A RNA methylation regulates dorsal lingual epithelium homeostasis. International Journal of Oral Science, 2022, 14, 26.	3.6	6
113	The role of central amygdaloid nucleus in regulating the nongenomic effect of aldosterone on sodium intake in the nucleus tractus solitary. Brain and Behavior, 2022, 12, e2615.	1.0	1
118	A central alarm system that gates multi-sensory innate threat cues to the amygdala. Cell Reports, 2022, 40, 111222.	2.9	27
119	Control of non-REM sleep by ventrolateral medulla glutamatergic neurons projecting to the preoptic area. Nature Communications, 2022, 13, .	5.8	8
120	The central extended amygdala guides survival-relevant tradeoffs: Implications for understanding common psychiatric disorders. Neuroscience and Biobehavioral Reviews, 2022, 142, 104879.	2.9	12
121	Dissection of Insular Cortex Layer 5 Reveals Two Sublayers with Opposing Modulatory Roles in Appetitive Behavior. SSRN Electronic Journal, 0, , .	0.4	0
122	Amygdala function in emotion, cognition, and behavior. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2022, , 359-380.	1.0	10
123	Physiological Needs: Sensations and Predictions in the Insular Cortex. Physiology, 2023, 38, 73-81.	1.6	2
124	Insular cortical circuits as an executive gateway to decipher threat or extinction memory via distinct subcortical pathways. Nature Communications, 2022, 13, .	5.8	15
125	The effect of adulteration with a bitter tastant, denatonium benzoate, on the reinforcing value of sucrose. Behavioural Processes, 2022, 203, 104771.	0.5	0
126	Intrinsic Excitability in Layer IV–VI Anterior Insula to Basolateral Amygdala Projection Neurons Correlates with the Confidence of Taste Valence Encoding. ENeuro, 2023, 10, ENEURO.0302-22.2022.	0.9	1
128	Selective integration of diverse taste inputs within a single taste modality. ELife, 0, 12, .	2.8	4
129	Distinct reward processing by subregions of the nucleus accumbens. Cell Reports, 2023, 42, 112069.	2.9	10
130	Transforming experiences: Neurobiology of memory updating/editing. Frontiers in Systems Neuroscience, 0, 17, .	1.2	5
131	Chemogenetic inhibition of a monosynaptic projection from the basolateral amygdala to the ventral hippocampus selectively reduces appetitive, but not consummatory, alcohol drinkingâ€related behaviours. European Journal of Neuroscience, 2023, 57, 1241-1259.	1.2	2
132	Neural Circuits for Emotion. Annual Review of Neuroscience, 2023, 46, 211-231.	5.0	13
133	Cocaine induces locomotor sensitization through a dopamine-dependent VTA-mPFC-FrA cortico-cortical pathway in male mice. Nature Communications, 2023, 14, .	5.8	2

	CHAIL	CHATION REPORT	
#	Article	IF	CITATIONS
134	Experience-dependent changes in affective valence of taste in male mice. Molecular Brain, 2023, 16, .	1.3	3
145	Social circuits and their dysfunction in autism spectrum disorder. Molecular Psychiatry, 2023, 28, 3194-3206.	4.1	3