Formation of regulated and unregulated disinfection by algal organic matter extracted from freshwater and mar

Water Research 142, 313-324 DOI: 10.1016/j.watres.2018.05.051

Citation Report

#	Article	IF	CITATIONS
1	Insight into carbamazepine degradation by UV/monochloramine: Reaction mechanism, oxidation products, and DBPs formation. Water Research, 2018, 146, 288-297.	5.3	117
2	Chloramination of iodide-containing waters: Formation of iodinated disinfection byproducts and toxicity correlation with total organic halides of treated waters. Science of the Total Environment, 2019, 697, 134142.	3.9	33
3	Ferrate(VI) pre-treatment and subsequent chlorination of blue-green algae: Quantification of disinfection byproducts. Environment International, 2019, 133, 105195.	4.8	51
4	High ecological and human health risks from microcystins in vegetable fields in southern China. Environment International, 2019, 133, 105142.	4.8	67
5	Coagulation of Iodide-Containing Resorcinol Solution or Natural Waters with Ferric Chloride Can Produce Iodinated Coagulation Byproducts. Environmental Science & Technology, 2019, 53, 12407-12415.	4.6	28
6	Comparison of diatrizoate degradation by UV/chlorine and UV/chloramine processes: Kinetic mechanisms and iodinated disinfection byproducts formation. Chemical Engineering Journal, 2019, 375, 121972.	6.6	73
7	Formation of iodinated trihalomethanes and noniodinated disinfection byproducts during chloramination of algal organic matter extracted from Microcystis aeruginosa. Water Research, 2019, 162, 115-126.	5.3	30
8	A one-year long survey of temporal disinfection byproducts variations in a consumer's tap and their removals by a point-of-use facility. Water Research, 2019, 159, 203-213.	5.3	44
9	Temperature dependence of characteristics of organic precursors, bromide, and disinfection byproduct formation. Science of the Total Environment, 2019, 662, 746-754.	3.9	14
10	Speciation and seasonal variation of various disinfection by-products in a full-scale drinking water treatment plant in East China. Water Science and Technology: Water Supply, 2019, 19, 1579-1586.	1.0	4
11	Effect of UV wavelength on humic acid degradation and disinfection by-product formation during the UV/chlorine process. Water Research, 2019, 154, 199-209.	5.3	115
12	Evaluation of disinfection byproduct formation from extra- and intra-cellular algal organic matters during chlorination after Fe(vi) oxidation. RSC Advances, 2019, 9, 41022-41030.	1.7	10
13	Current methods for analyzing drinking water disinfection byproducts. Current Opinion in Environmental Science and Health, 2019, 7, 98-107.	2.1	44
14	Removal of disinfection byproduct precursors and reduction in additive toxicity of chlorinated and chloraminated waters by ozonation and up-flow biological activated carbon process. Chemosphere, 2019, 216, 624-632.	4.2	14
15	Removal of β-cyclocitral by UV/persulfate and UV/chlorine process: Degradation kinetics and DBPs formation. Chemical Engineering Journal, 2020, 382, 122659.	6.6	38
16	Non-negligible risk of chloropicrin formation during chlorination with the UV/persulfate pretreatment process in the presence of low concentrations of nitrite. Water Research, 2020, 168, 115194.	5.3	50
17	Nonhalogenated Aromatic DBPs in Drinking Water Chlorination: A Gap between NOM and Halogenated Aromatic DBPs. Environmental Science & Technology, 2020, 54, 1646-1656.	4.6	175
18	Summation of disinfection by-product CHO cell relative toxicity indices: sampling bias, uncertainty, and a path forward. Environmental Sciences: Processes and Impacts, 2020, 22, 708-718.	1.7	12

#	Article	IF	CITATIONS
19	Associations of blood trihalomethanes with semen quality among 1199 healthy Chinese men screened as potential sperm donors. Environment International, 2020, 134, 105335.	4.8	16
20	Assessing the potential effect of extreme weather on water quality and disinfection by-product formation using laboratory simulation. Water Research, 2020, 170, 115296.	5.3	23
21	Estimation of haloacetonitriles formation in water: Uniform formation conditions versus formation potential tests. Science of the Total Environment, 2020, 744, 140987.	3.9	11
22	Total organic halogen (TOX) species formation at different locations in drinking water distribution systems. Environmental Science: Water Research and Technology, 2020, 6, 2542-2552.	1.2	8
23	Toxicity of chlorinated algal-impacted waters: Formation of disinfection byproducts vs. reduction of cyanotoxins. Water Research, 2020, 184, 116145.	5.3	33
24	Treating water containing elevated bromide and iodide levels with granular activated carbon and free chlorine: impacts on disinfection byproduct formation and calculated toxicity. Environmental Science: Water Research and Technology, 2020, 6, 3460-3475.	1.2	7
25	Inactivation of harmful Anabaena flos-aquae by ultrasound irradiation: Cell disruption mechanism and enhanced coagulation. Ultrasonics Sonochemistry, 2020, 69, 105254.	3.8	29
26	Bioaccumulation and Phytotoxicity and Human Health Risk from Microcystin-LR under Various Treatments: A Pot Study. Toxins, 2020, 12, 523.	1.5	16
27	Characteristics of low and high SUVA precursors: Relationships among molecular weight, fluorescence, and chemical composition with DBP formation. Science of the Total Environment, 2020, 727, 138638.	3.9	51
28	Effect of bromide and iodide on halogenated by-product formation from different organic precursors during UV/chlorine processes. Water Research, 2020, 182, 116035.	5.3	33
29	Research status in quo of disinfection by-products formation from algal organic matter as precursors. , 2020, , 137-168.		0
30	Disinfection by-products in drinking water: detection and treatment methods. , 2020, , 279-304.		12
31	Methods including biomarkers used for detection of disinfection by-products. , 2020, , 413-431.		2
32	Formation, speciation and toxicity of CX3R-type disinfection by-products (DBPs) from chlor(am)ination of 2,4-diaminobutyric acid (DAB). Ecotoxicology and Environmental Safety, 2020, 191, 110247.	2.9	7
33	Formation of algal-derived nitrogenous disinfection by-products during chlorination and chloramination. Water Research, 2020, 183, 116047.	5.3	34
34	Nitrogen conversion from ammonia to trichloronitromethane: Potential risk during UV/chlorine process. Water Research, 2020, 172, 115508.	5.3	40
35	Formation of Disinfection Byproducts from Algal Organic Matter Exposed to Monochloramine: Effects of Monochloramine Dosages, pH, and Bromide Concentrations. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	9
36	The Relationships Between the Free-Living and Particle-Attached Bacterial Communities in Response to Elevated Eutrophication. Frontiers in Microbiology, 2020, 11, 423.	1.5	33

CITATION REPORT

#	Article	IF	CITATIONS
37	Formation of disinfection by-products in a UV-activated mixed chlorine/chloramine system. Journal of Hazardous Materials, 2021, 407, 124373.	6.5	14
38	Development of adaptive neuro-fuzzy inference system model for predict trihalomethane formation potential in distribution network simulation test. Environmental Science and Pollution Research, 2021, 28, 15870-15882.	2.7	3
39	Occurrence and Distribution of Disinfection Byproducts in Domestic Wastewater Effluent, Tap Water, and Surface Water during the SARS-CoV-2 Pandemic in China. Environmental Science & Technology, 2021, 55, 4103-4114.	4.6	75
40	Increasing Bromine in Intracellular Organic Matter of Freshwater Algae Growing in Bromide-Elevated Environments and Its Impacts on Characteristics of DBP Precursors. Environmental Science and Technology Letters, 2021, 8, 307-312.	3.9	9
41	Characterization of algal organic matter as precursors for carbonaceous and nitrogenous disinfection byproducts formation: Comparison with natural organic matter. Journal of Environmental Management, 2021, 282, 111951.	3.8	38
42	Impact of UV irradiation on disinfection by-product formation and speciation from post-chlorination of dissolved organic matter. Journal of Water Supply: Research and Technology - AQUA, 2021, 70, 1181-1191.	0.6	2
43	Histological and chemical damage induced by microcystin-LR and microcystin-RR on land snail Helix aspersa tissues after acute exposure. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2021, 245, 109031.	1.3	5
44	Ultrasound-enhanced coagulation for Microcystis aeruginosa removal and disinfection by-product control during subsequent chlorination. Water Research, 2021, 201, 117334.	5.3	15
45	Predictive modeling of haloacetonitriles under uniform formation conditions. Water Research, 2021, 201, 117322.	5.3	8
46	Bromide-intrusion into Chlorella sp. and Microcystis aeruginosa growing environments: Its impacts on algal growth and the formation potential of algal-derived DBPs upon chlorination. Science of the Total Environment, 2021, 795, 148772.	3.9	6
47	The role of metal oxides on oxidant decay and disinfection byproduct formation in drinking waters: Relevance to distribution systems. Journal of Environmental Sciences, 2021, 110, 140-149.	3.2	2
48	Highly efficient removal of DEET by UV-LED irradiation in the presence of iron-containing coagulant. Chemosphere, 2022, 286, 131613.	4.2	11
49	Synergistic cytotoxicity of bromoacetic acid and three emerging bromophenolic disinfection byproducts against human intestinal and neuronal cells. Chemosphere, 2022, 287, 131794.	4.2	10
50	Impact of nitrite on the formation of trichloronitromethane during the UV-LED/chlorine process. Environmental Science: Water Research and Technology, 2021, 8, 108-115.	1.2	2
51	Characteristics of extracellular organic matters and the formation potential of disinfection by-products during the growth phases of M. aeruginosa and Synedra sp Environmental Science and Pollution Research, 2022, 29, 14509-14521.	2.7	3
52	Characteristics of algae-derived biochars and their sorption and remediation performance for sulfamethoxazole in marine environment. Chemical Engineering Journal, 2022, 430, 133092.	6.6	38
53	A review on Trihalomethanes and Haloacetic acids in drinking water: Global status, health impact, insights of control and removal technologies. Journal of Environmental Chemical Engineering, 2021, 9, 106511.	3.3	28
54	Comparison of UV and UV/chlorine system on degradation of 2,4-diaminobutyric acid and formation of disinfection byproducts in subsequent chlorination. Separation and Purification Technology, 2022, 284, 120264.	3.9	3

#	Article	IF	CITATIONS
55	Molecular insights into formation of nitrogenous disinfection byproducts from algal organic matter in UV-LEDs/chlorine process based on FT-ICR analysis. Science of the Total Environment, 2022, 812, 152457.	3.9	12
56	Impact of pre-oxidation on the formation of byproducts in algae-laden water disinfection: Insights from fluorescent and molecular weight. Journal of Environmental Sciences, 2022, 117, 21-27.	3.2	10
57	Mineralization, characteristics variation, and removal mechanism of algal extracellular organic matter during vacuum ultraviolet/ozone process. Science of the Total Environment, 2022, 820, 153298.	3.9	3
58	Preferential Halogenation of Algal Organic Matter by Iodine over Chlorine and Bromine: Formation of Disinfection Byproducts and Correlation with Toxicity of Disinfected Waters. Environmental Science & amp; Technology, 2022, 56, 1244-1256.	4.6	27
59	Formation of regulated and unregulated disinfection byproducts during chlorination and chloramination: Roles of dissolved organic matter type, bromide, and iodide. Journal of Environmental Sciences, 2022, 117, 151-160.	3.2	17
60	Relationships between regulated DBPs and emerging DBPs of health concern in U.S. drinking water. Journal of Environmental Sciences, 2022, 117, 161-172.	3.2	10
64	Insights into the molecular compositions of CX3R-type disinfection byproduct precursors in algal organic matter from algae-laden water. Chemical Engineering Journal, 2022, 446, 136921.	6.6	8
65	Effects of operating conditions on disinfection by-product formation, calculated toxicity, and changes in organic matter structures during seawater chlorination. Water Research, 2022, 220, 118631.	5.3	2
66	Impacts of carbon-based advanced treatment processes on disinfection byproduct formation and speciation for potable reuse. Water Research, 2022, 220, 118643.	5.3	7
67	Molecular transformation of dissolved organic matter and the formation of disinfection byproducts in full-scale surface water treatment processes. Science of the Total Environment, 2022, 838, 156547.	3.9	11
68	NRF2-ARE signaling is responsive to haloacetonitrile-induced oxidative stress in human keratinocytes. Toxicology and Applied Pharmacology, 2022, 450, 116163.	1.3	2
69	Impacts of algal organic matter and humic substances on microcystin-LR removal and their biotransformation during the biodegradation process. Science of the Total Environment, 2022, 852, 157993.	3.9	13
70	Comparison of disinfection by-products formed by preoxidation of sulfamethazine by K2FeO4 and O3 and the influence on cytotoxicity and biological toxicity. Frontiers in Chemistry, 0, 10, .	1.8	1
71	Formation characteristics of disinfection byproducts from four different algal organic matter during chlorination and chloramination. Chemosphere, 2022, 308, 136171.	4.2	8
72	Degradation of β-N-methylamino-l-alanine (BMAA) by UV/peracetic acid system: Influencing factors, degradation mechanism and DBP formation. Chemosphere, 2022, 307, 136083.	4.2	7
73	Effective removal of diatoms (Synedra sp.) by pilot-scale UV/chlorine-flocculation process. Separation and Purification Technology, 2022, 302, 122117.	3.9	2
74	Insights into the formation and mitigation of iodinated disinfection by-products during household cooking with Laminaria japonica (Haidai). Water Research, 2022, 225, 119177.	5.3	2
75	Inactivation of algae by visible-light-driven modified photocatalysts: A review. Science of the Total Environment, 2023, 858, 159640.	3.9	10

#	Article	IF	CITATIONS
76	UV aging of microplastic polymers promotes their chemical transformation and byproduct formation upon chlorination. Science of the Total Environment, 2023, 858, 159842.	3.9	9
77	Removal of algae and algogenic odor compounds via combined pre-chlorination and powdered activated carbon adsorption for source water pretreatment. Separation and Purification Technology, 2023, 304, 122365.	3.9	9
78	Elimination and Redistribution of Intracellular and Extracellular Antibiotic Resistance Genes in Water and Wastewater Disinfection Processes: A Review. ACS ES&T Water, 2022, 2, 2273-2288.	2.3	8
79	Characteristic and Relative Environmental Risk of Disinfection by Products Associated with Simple Glucose or Naturally Occurring Algal Organic Matter as Tested in Ballast Water Treatment System. Journal of Marine Science and Engineering, 2022, 10, 1928.	1.2	1
80	Changes in toxicity and adsorbable organic bromine concentrations in ozonated reclaimed water irradiated with sunlight. Water Research, 2023, 230, 119512.	5.3	5
81	Decomposition of Total Organic Halogen Formed during Chlorination: The Iceberg of Halogenated Disinfection Byproducts Was Previously Underestimated. Environmental Science & Technology, 2023, 57, 1433-1442.	4.6	10
82	Fluorescence and molecular weight dependence of disinfection by-products formation from extracellular organic matter after ultrasound irradiation. Chemosphere, 2023, 323, 138279.	4.2	5
83	High formation of trichloroacetic acid from high molecular weight and ultra-hydrophilic components in freshwater raphidophytes upon chlorination. Science of the Total Environment, 2023, 879, 163000.	3.9	0
84	Modeling the effects of reservoir operation on algal dynamics. Case Studies in Chemical and Environmental Engineering, 2023, 7, 100309.	2.9	0
85	Exposure and carcinogenic risk assessment of trihalomethanes (THMs) for water supply consumers in Addis Ababa, Ethiopia. Toxicology Reports, 2023, 10, 261-268.	1.6	3
86	Effects of graphitic carbon nitride in the formation of disinfection byproducts. Water Science and Technology, 2023, 87, 1660-1671.	1.2	0
96	Algal organic matter as a disinfection by-product precursor during chlor(am)ination: a critical review. Environmental Science: Water Research and Technology, 0, , .	1.2	0

CITATION REPORT