Long-range exciton transport in conjugated polymer na growth

Science

360, 897-900

DOI: 10.1126/science.aar8104

Citation Report

#	Article	IF	CITATIONS
2	Scalable Fiber-like Micelles and Block Co-micelles by Polymerization-Induced Crystallization-Driven Self-Assembly. Journal of the American Chemical Society, 2018, 140, 18104-18114.	6.6	83
3	Preparing Semiconducting Nanoribbons with Tunable Length and Width via Crystallization-Driven Self-Assembly of a Simple Conjugated Homopolymer. Journal of the American Chemical Society, 2018, 140, 17218-17225.	6.6	22
4	Extending the Scope of "Living―Crystallization-Driven Self-Assembly: Well-Defined 1D Micelles and Block Comicelles from Crystallizable Polycarbonate Block Copolymers. Journal of the American Chemical Society, 2018, 140, 17127-17140.	6.6	77
5	Multiblock Bottlebrush Nanofibers from Organic Electronic Materials. Journal of the American Chemical Society, 2018, 140, 11599-11603.	6.6	40
6	Enhancing energy transport in conjugated polymers. Science, 2018, 360, 854-855.	6.0	5
7	Straightforward Synthesis of Conjugated Block Copolymers by Controlled Suzuki–Miyaura Cross-Coupling Polymerization Combined with ATRP. Macromolecules, 2019, 52, 5917-5924.	2.2	13
8	Uniform, High-Aspect-Ratio, and Patchy 2D Platelets by Living Crystallization-Driven Self-Assembly of Crystallizable Poly(ferrocenyldimethylsilane)-Based Homopolymers with Hydrophilic Charged Termini. Macromolecules, 2019, 52, 6068-6079.	2.2	26
9	Interface-Dependent Aggregation-Induced Delayed Fluorescence in Bottlebrush Polymer Nanofibers. Journal of the American Chemical Society, 2019, 141, 13970-13976.	6.6	72
10	Synthesis of Monodisperse Cylindrical Nanoparticles via Crystallization-driven Self-assembly of Biodegradable Block Copolymers. Journal of Visualized Experiments, 2019, , .	0.2	2
11	Seeded Photoinitiated Polymerization-Induced Self-Assembly: Cylindrical Micelles with Patchy Structures Prepared via the Chain Extension of a Third Block. ACS Macro Letters, 2019, 8, 955-961.	2.3	46
12	Emission Enhanced and Stabilized by Stereoisomeric Strategy in Hierarchical Uniform Supramolecular Framework. CheM, 2019, 5, 2470-2483.	5.8	45
13	Solving the Trivial Crossing Problem While Preserving the Nodal Symmetry of the Wave Function. Journal of Chemical Theory and Computation, 2019, 15, 4332-4343.	2.3	10
14	Signatures of Strong Vibronic Coupling Mediating Coherent Charge Transfer in Two-Dimensional Electronic Spectroscopy. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2019, 74, 721-737.	0.7	10
15	Kinetically Controlled Self-Assembly of Phosphorescent Au ^{III} Aggregates and Ligand-to-Metal–Metal Charge Transfer Excited State: A Combined Spectroscopic and DFT/TDDFT Study. Journal of the American Chemical Society, 2019, 141, 11572-11582.	6.6	51
16	Highly Emissive Hierarchical Uniform Dialkylfluorene-Based Dimer Microcrystals for Ultraviolet Organic Laser. Journal of Physical Chemistry C, 2019, 123, 28881-28886.	1.5	6
17	Macrocyclization of a Class of Camptothecin Analogues into Tubular Supramolecular Polymers. Journal of the American Chemical Society, 2019, 141, 17107-17111.	6.6	42
18	Alkyl-chain branched effect on the aggregation and photophysical behavior of polydiarylfluorenes toward stable deep-blue electroluminescence and efficient amplified spontaneous emission. Chinese Chemical Letters, 2019, 30, 1959-1964.	4.8	7
19	Dual self-assembly of supramolecular peptide nanotubes to provide stabilisation in water. Nature Communications, 2019, 10, 4708.	5.8	63

#	Article	IF	CITATIONS
20	One-shot preparation of topologically chimeric nanofibers via a gradient supramolecular copolymerization. Nature Communications, 2019, 10, 4578.	5.8	35
21	Ultrafast Tracking of Exciton and Charge Carrier Transport in Optoelectronic Materials on the Nanometer Scale. Journal of Physical Chemistry Letters, 2019, 10, 6727-6733.	2.1	42
22	Interplay between structural hierarchy and exciton diffusion in artificial light harvesting. Nature Communications, 2019, 10, 4615.	5.8	44
23	Uniform Biodegradable Fiber-Like Micelles and Block Comicelles via "Living―Crystallization-Driven Self-Assembly of Poly(<scp>I</scp> -lactide) Block Copolymers: The Importance of Reducing Unimer Self-Nucleation via Hydrogen Bond Disruption. Journal of the American Chemical Society, 2019, 141, 19088-19098.	6.6	104
24	Multistep nucleation and growth mechanisms of organic crystals from amorphous solid states. Nature Communications, 2019, 10, 3872.	5.8	57
25	"Rod–coil―copolymers get self-assembled in solution. Materials Chemistry Frontiers, 2019, 3, 2283-2307.	3.2	41
26	Structure and thermodynamics of mixed polymeric micelles with crystalline cores: tuning properties <i>via</i> co-assembly. Soft Matter, 2019, 15, 7777-7786.	1.2	6
27	Linear and Branched Fiber-like Micelles from the Crystallization-Driven Self-Assembly of Heterobimetallic Block Copolymer Polyelectrolyte/Surfactant Complexes. Macromolecules, 2019, 52, 7289-7300.	2.2	17
28	Aggregation-Induced Energy Transfer in Color-Tunable Multiblock Bottlebrush Nanofibers. Journal of the American Chemical Society, 2019, 141, 16422-16431.	6.6	45
29	Getting into Shape: Reflections on a New Generation of Cylindrical Nanostructures' Self-Assembly Using Polymer Building Blocks. Journal of the American Chemical Society, 2019, 141, 2742-2753.	6.6	186
30	Investigation of Excitonic Gates in Organic Semiconductor Thin Films. Physical Review Applied, 2019, 11,	1.5	4
31	Hierarchical Uniform Supramolecular Conjugated Spherulites with Suppression of Defect Emission. IScience, 2019, 16, 399-409.	1.9	30
32	Quantum coherences reveal excited-state dynamics in biophysical systems. Nature Reviews Chemistry, 2019, 3, 477-490.	13.8	51
33	Low length dispersity fiber-like micelles from an A–B–A triblock copolymer with terminal crystallizable poly(ferrocenyldimethylsilane) segments <i>via</i> living crystallization-driven self-assembly. Polymer Chemistry, 2019, 10, 3973-3982.	1.9	6
34	First-passage properties of mortal random walks: Ballistic behavior, effective reduction of dimensionality, and scaling functions for hierarchical graphs. Physical Review E, 2019, 99, 062110.	0.8	8
35	Exciton funneling in light-harvesting organic semiconductor microcrystals for wavelength-tunable lasers. Science Advances, 2019, 5, eaaw2953.	4.7	37
36	Future of Supramolecular Copolymers Unveiled by Reflecting on Covalent Copolymerization. Journal of the American Chemical Society, 2019, 141, 6110-6121.	6.6	130
37	Rational design of a junction structure to realize an NIR-selective narrowband organic thin-film photodiode. Journal of Materials Chemistry C, 2019, 7, 4770-4777.	2.7	13

#	ARTICLE	IF	Citations
38	Templated Synthesis of Gold Nanoparticles on Surface-Aminated 2D Cellulose Assemblies. Bulletin of the Chemical Society of Japan, 2019, 92, 982-988.	2.0	25
39	Solution self-assembly of ABC triblock terpolymers with a central crystallizable poly(ferrocenyldimethylsilane) core-forming segment. Polymer Chemistry, 2019, 10, 2559-2569.	1.9	7
40	Unconventional Nanofabrication for Supramolecular Electronics. Advanced Materials, 2019, 31, e1900599.	11.1	42
41	Photoluminescent Anisotropy Amplification in Polymorphic Organic Nanocrystals by Light-Harvesting Energy Transfer. Journal of the American Chemical Society, 2019, 141, 6157-6161.	6.6	92
42	Manipulation and Deposition of Complex, Functional Block Copolymer Nanostructures Using Optical Tweezers. ACS Nano, 2019, 13, 3858-3866.	7.3	21
43	Controlling the supramolecular polymerization and metallogel formation of Pt(<scp>ii</scp>) complexes <i>via</i> delicate tuning of non-covalent interactions. Polymer Chemistry, 2019, 10, 5465-5472.	1.9	12
44	Access to Metastable Gel States Using Seeded Selfâ€Assembly of Lowâ€Molecularâ€Weight Gelators. Angewandte Chemie - International Edition, 2019, 58, 3800-3803.	7.2	47
45	Tailored Self-Assembled Ferroelectric Polymer Nanostructures with Tunable Response. Macromolecules, 2019, 52, 354-364.	2.2	12
46	Access to Metastable Gel States Using Seeded Selfâ€Assembly of Lowâ€Molecularâ€Weight Gelators. Angewandte Chemie, 2019, 131, 3840-3843.	1.6	9
47	Simultaneous Singlet–Singlet and Triplet–Singlet Förster Resonance Energy Transfer from a Single Donor Material. Journal of Physical Chemistry Letters, 2019, 10, 310-315.	2.1	65
48	Competition between Exceptionally Longâ€Range Alkyl Sidechain Ordering and Backbone Ordering in Semiconducting Polymers and Its Impact on Electronic and Optoelectronic Properties. Advanced Functional Materials, 2019, 29, 1806977.	7.8	31
49	Semiconducting Singleâ€Walled Carbon Nanotubes or Very Rigid Conjugated Polymers: A Comparison. Advanced Electronic Materials, 2019, 5, 1800514.	2.6	18
50	Organic Photodetectors for Nextâ€Generation Wearable Electronics. Advanced Materials, 2020, 32, e1902045.	11.1	401
51	Formation of Hierarchical Architectures with Dimensional and Morphological Control in the Selfâ€Assembly of Conjugated Block Copolymers. Small Methods, 2020, 4, 1900470.	4.6	16
52	From wavelike to sub-diffusive motion: exciton dynamics and interaction in squaraine copolymers of varying length. Chemical Science, 2020, 11, 456-466.	3.7	38
53	Self-assembly of luminescent triblock bottlebrush copolymers in solution. Polymer Chemistry, 2020, 11, 1062-1071.	1.9	9
54	Bead-String-Shaped DNA Nanowires with Intrinsic Structural Advantages and Their Potential for Biomedical Applications. ACS Applied Materials & Samp; Interfaces, 2020, 12, 3341-3353.	4.0	34
55	Supramolecular polymerization through kinetic pathway control and living chain growth. Nature Reviews Chemistry, 2020, 4, 38-53.	13.8	351

#	ARTICLE	IF	CITATIONS
56	Bulk-Heterojunction with Long-Range Ordering: C ₆₀ Single-Crystal with Incorporated Conjugated Polymer Networks. Journal of the American Chemical Society, 2020, 142, 1630-1635.	6.6	30
57	Enhanced Energy Transfer in Doped Bifluorene Single Crystals: Prospects for Organic Lasers. Advanced Optical Materials, 2020, 8, 1901670.	3.6	14
58	Concepts, fabrication methods and applications of living crystallization-driven self-assembly of block copolymers. Progress in Polymer Science, 2020, 101, 101195.	11.8	116
59	Enhancing Exciton Diffusion Length Provides New Opportunities for Organic Photovoltaics. Matter, 2020, 3, 341-354.	5.0	63
60	Long-range exciton diffusion in molecular non-fullerene acceptors. Nature Communications, 2020, 11, 5220.	5.8	204
61	Directional and ultrafast migrations of excitons/biexcitons in organic polymers by utilizing a local nonuniform electric field. Journal of Materials Chemistry C, 2020, 8, 11274-11281.	2.7	5
62	Spherical Micelles with Nonspherical Cores: Effect of Chain Packing on the Micellar Shape. Macromolecules, 2020, 53, 10686-10698.	2.2	4
63	Polymers producing hydrogen. Nature Chemistry, 2020, 12, 1093-1095.	6.6	6
64	Rapid formation and real-time observation of micron-sized conjugated nanofibers with tunable lengths and widths in 20 minutes by living crystallization-driven self-assembly. Chemical Science, 2020, 11, 8416-8424.	3.7	32
65	Seeded Self-Assembly of Charge-Terminated Poly(3-hexylthiophene) Amphiphiles Based on the Energy Landscape. Journal of the American Chemical Society, 2020, 142, 15038-15048.	6.6	59
66	Uniform Continuous and Segmented Nanofibers Containing a π-Conjugated Oligo(<i>p</i> poligo(<i>p</i> phenylene) Tj ETQq0 Oligo(<i>p</i> phenylene ethynylene) Chain Length. Macromolecules, 2020, 53, 6299-6313.	0 0 rgBT / 2.2	
67	Dynamic Exciton Funneling by Local Strain Control in a Monolayer Semiconductor. Nano Letters, 2020, 20, 6791-6797.	4.5	64
68	Highly Ordered 2Dâ€Assemblies of Phaseâ€Segregated Block Molecules for Upconverted Linearly Polarized Emission. Advanced Materials, 2020, 32, e2004775.	11.1	14
69	Energy transport and light propagation mechanisms in organic single crystals. Journal of Chemical Physics, 2020, 153, 144202.	1.2	11
70	Self-Assembly of Poly(3-hexylthiophene) Bottlebrush Polymers into End-On-End Linear Fiber Morphologies. Macromolecules, 2020, 53, 8592-8599.	2,2	11
71	Solution-State Long-Range Molecular Ordering in Poly(3-hexylthiophene). Langmuir, 2020, 36, 11028-11033.	1.6	0
72	Unraveling Decisive Structural Parameters for the Self-Assembly of Supramolecular Polymer Bottlebrushes Based on Benzene Trisureas. Macromolecules, 2020, 53, 7552-7560.	2.2	10
73	Impact of amino acids on the aqueous self-assembly of benzenetrispeptides into supramolecular polymer bottlebrushes. Polymer Chemistry, 2020, 11, 6763-6771.	1.9	9

#	Article	IF	CITATIONS
74	Few‣ayer Organic Crystalline van der Waals Heterojunctions for Ultrafast UV Phototransistors. Advanced Electronic Materials, 2020, 6, 2000062.	2.6	22
75	Ultralongâ€Range Energy Transport in a Disordered Organic Semiconductor at Room Temperature Via Coherent Excitonâ€Polariton Propagation. Advanced Materials, 2020, 32, e2002127.	11.1	58
76	Kinetically Stable Nanoribbons with Improved Exciton Migration Length for Detecting Explosives. ACS Applied Nano Materials, 2020, 3, 4880-4885.	2.4	7
77	Cooperative Supramolecular Block Copolymerization for the Synthesis of Functional Axial Organic Heterostructures. Journal of the American Chemical Society, 2020, 142, 11528-11539.	6.6	86
78	Two-Dimensional Exciton Diffusion in an HJ-Aggregate of Naphthobisoxadiazole-Based Copolymer Films. Journal of Physical Chemistry C, 2020, 124, 13063-13070.	1.5	11
79	Femtosecond Transient Absorption Microscopy of Singlet Exciton Motion in Side-Chain Engineered Perylene-Diimide Thin Films. Journal of Physical Chemistry A, 2020, 124, 2721-2730.	1.1	23
80	Supramolecular Energy Materials. Advanced Materials, 2020, 32, e1907247.	11.1	101
81	Organization of Chromophores into Multiblock Bottlebrush Nanofibers Allows for Regulation of Energy Transfer Processes. Chemistry of Materials, 2020, 32, 2208-2219.	3.2	18
82	Controlling the supramolecular polymerization of dinuclear isocyanide gold(⟨scp⟩i⟨/scp⟩) arylethynylene complexes through tuning the central Ï€-conjugated moiety. Polymer Chemistry, 2020, 11, 2700-2707.	1.9	10
83	Hierarchical Uniform Crystalline Nanowires of Wide Bandgap Conjugated Polymer for Light-Emitting Optoelectronic Devices. Cell Reports Physical Science, 2020, 1, 100029.	2.8	11
84	Isolated asymmetric bilateral steric conjugated polymers with thickness-independent emission for efficient and stable light-emitting optoelectronic devices. Journal of Materials Chemistry C, 2020, 8, 5064-5070.	2.7	7
85	Solid-State Donor–Acceptor Coaxial Heterojunction Nanowires via Living Crystallization-Driven Self-Assembly. Journal of the American Chemical Society, 2020, 142, 13469-13480.	6.6	45
86	Excitonic Effects in Polymeric Photocatalysts. Angewandte Chemie - International Edition, 2020, 59, 22828-22839.	7.2	94
87	Cellular uptake and targeting of low dispersity, dual emissive, segmented block copolymer nanofibers. Chemical Science, 2020, 11, 8394-8408.	3.7	39
88	Excitonic Effects in Polymeric Photocatalysts. Angewandte Chemie, 2020, 132, 23024-23035.	1.6	15
89	Controlled Synthesis of PdII and PtII Supramolecular Copolymer with Sequential Multiblock and Amplified Phosphorescence. CheM, 2020, 6, 945-967.	5.8	67
90	How a Small Change of Oligo(<i>p</i> -phenylenevinylene) Chain Length Affects Self-Seeding of Oligo(<i>p</i> -phenylenevinylene)-Containing Block Copolymers. Macromolecules, 2020, 53, 1831-1841.	2.2	24
91	The Power of Confocal Laser Scanning Microscopy in Supramolecular Chemistry: In situ Realâ€time Imaging of Stimuliâ€Responsive Multicomponent Supramolecular Hydrogels. ChemistryOpen, 2020, 9, 67-79.	0.9	39

#	Article	IF	CITATIONS
92	Self-Assembled Extended π-Systems for Sensing and Security Applications. Accounts of Chemical Research, 2020, 53, 496-507.	7.6	100
93	Supramolecular Polymerization: A Conceptual Expansion for Innovative Materials. Progress in Polymer Science, 2020, 105, 101250.	11.8	164
94	Organic Photodetectors: Materials, Structures, and Challenges. Solar Rrl, 2020, 4, 2000139.	3.1	78
95	Supramolecular polymer bottlebrushes. Chemical Communications, 2020, 56, 5079-5110.	2.2	36
96	Oxidation promoted self-assembly of π-conjugated polymers. Chemical Science, 2020, 11, 6383-6392.	3.7	24
97	Formation of 2D and 3D multi-tori mesostructures via crystallization-driven self-assembly. Science Advances, 2020, 6, eaaz7301.	4.7	12
98	Enhancing Long-Range Energy Transport in Supramolecular Architectures by Tailoring Coherence Properties. Journal of the American Chemical Society, 2020, 142, 8323-8330.	6.6	43
99	Influence of donor:acceptor ratio on charge transfer dynamics in non-fullerene organic bulk heterojunctions. Chinese Chemical Letters, 2021, 32, 529-534.	4.8	8
100	Exciton Transport in Molecular Semiconductor Crystals for Spinâ€Optoelectronics Paradigm. Chemistry - A European Journal, 2021, 27, 222-227.	1.7	8
101	Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions. Nature Reviews Chemistry, 2021, 5, 21-45.	13.8	154
102	Direct formation of nano-objects <i>via in situ</i> self-assembly of conjugated polymers. Polymer Chemistry, 2021, 12, 1393-1403.	1.9	11
103	Overcoming the Necessity of a Lateral Aggregation in the Formation of Supramolecular Polymer Bottlebrushes in Water. Macromolecular Rapid Communications, 2021, 42, 2000585.	2.0	2
104	CO ₂ adsorption of MSU-2 synthesized by using nonionic polyethyleneoxide (PEO)-based surfactants. Chemical Engineering Communications, 2021, 208, 474-482.	1.5	5
105	Interfacialâ€Potentialâ€Gradient Induced a Significant Enhancement of Photoelectric Conversion: Thiophene Polyelectrolyte (PTEâ€BS) and Bipyridine Ruthenium (N3) Cooperative Regulated Biomimetic Nanochannels. Advanced Energy Materials, 2021, 11, 2003340.	10.2	9
106	Fabrication of complex hierarchical heterostructures with controlled luminescence via seeded self-assembly. Journal of Materials Chemistry C, 2021, 9, 12073-12078.	2.7	3
107	Kinetically controlled synthesis of supramolecular block copolymers with narrow dispersity and tunable block lengths. Chemical Communications, 2021, 57, 3937-3940.	2.2	29
108	Towards scalable, low dispersity, and dimensionally tunable 2D platelets using living crystallization-driven self-assembly. Polymer Chemistry, 2021, 12, 3650-3660.	1.9	8
109	Emerging applications for living crystallization-driven self-assembly. Chemical Science, 2021, 12, 4661-4682.	3.7	126

#	Article	IF	CITATIONS
110	Longâ€Range Exciton Migration in Coassemblies: Achieving High Photostability without Disrupting the Electron Donation of Fluorene Oligomers. Angewandte Chemie, 2021, 133, 5891-5896.	1.6	0
111	Longâ€Range Exciton Migration in Coassemblies: Achieving High Photostability without Disrupting the Electron Donation of Fluorene Oligomers. Angewandte Chemie - International Edition, 2021, 60, 5827-5832.	7.2	8
112	Enzyme-assisted Photoinitiated Polymerization-induced Self-assembly in Continuous Flow Reactors with Oxygen Tolerance. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1127-1137.	2.0	40
113	Preparation of Block Copolymer Nanoâ€Objects with Embedded βâ€Ketoester Functional Groups by Photoinitiated RAFT Dispersion Polymerization. Macromolecular Rapid Communications, 2021, 42, e2000720.	2.0	8
114	Photoexcitation Dynamics of Thiophene–Fluorene Fluorophore in Matrix Encapsulation for Deep-Blue Amplified Spontaneous Emission. ACS Applied Polymer Materials, 2021, 3, 1306-1313.	2.0	6
115	Tweaking a BODIPY Spherical Selfâ€Assembly to 2D Supramolecular Polymers Facilitates Excitedâ€State Cascade Energy Transfer. Angewandte Chemie, 2021, 133, 7930-7938.	1.6	8
116	Tweaking a BODIPY Spherical Selfâ€Assembly to 2D Supramolecular Polymers Facilitates Excitedâ€State Cascade Energy Transfer. Angewandte Chemie - International Edition, 2021, 60, 7851-7859.	7.2	49
117	Phase Diagrams of Ternary π-Conjugated Polymer Solutions for Organic Photovoltaics. Polymers, 2021, 13, 983.	2.0	10
118	Efficient Access to 3D Mesoscopic Prisms in Polymeric Soft Materials. Macromolecular Rapid Communications, 2021, 42, e2100064.	2.0	4
120	Efficient Energy Funneling in Spatially Tailored Segmented Conjugated Block Copolymer Nanofiber–Quantum Dot or Rod Conjugates. Journal of the American Chemical Society, 2021, 143, 7032-7041.	6.6	25
121	Semi-conducting 2D rectangles with tunable length via uniaxial living crystallization-driven self-assembly of homopolymer. Nature Communications, 2021, 12, 2602.	5.8	47
122	Bottlebrush polymers: From controlled synthesis, self-assembly, properties to applications. Progress in Polymer Science, 2021, 116, 101387.	11.8	138
123	Origin of the Anisotropy and Structure of Ellipsoidal Poly(fluorene) Nanoparticles. Macromolecules, 2021, 54, 5267-5277.	2.2	6
124	Microscopic Imaging Techniques for Molecular Assemblies: Electron, Atomic Force, and Confocal Microscopies. Chemical Reviews, 2021, 121, 14281-14347.	23.0	34
125	Uniform Nanowires Containing a HeterogeneousÏ€â€Conjugated Core of Controlled Length, Composition and Morphology. Chemistry - A European Journal, 2021, 27, 8479-8483.	1.7	10
126	A Single Molecule Polyphenylene-Vinylene Photonic Wire. ACS Nano, 2021, 15, 9404-9411.	7.3	14
127	Living supramolecular polymerization of fluorinated cyclohexanes. Nature Communications, 2021, 12, 3134.	5.8	49
128	Molecular Engineering of Water-Soluble Oligomers to Elucidate Radical π–Anion Interactions in n-Doped Nanoscale Objects. Journal of Physical Chemistry C, 2021, 125, 10526-10538.	1.5	7

#	ARTICLE	IF	CITATIONS
129	Patchy Micelles with a Crystalline Core: Self-Assembly Concepts, Properties, and Applications. Polymers, 2021, 13, 1481.	2.0	20
130	Long-Range Ordered Hierarchical Structure Assisted by the Side-Oligoether Network in Light-Emitting Conjugated Polymer for an Efficient Deep-Blue Organic Laser. Chemistry of Materials, 2021, 33, 5326-5336.	3.2	13
131	Programmable Assembly of π onjugated Polymers. Advanced Materials, 2021, 33, e2006287.	11.1	29
132	Temperatureâ€Triggered Supramolecular Assembly of Organic Semiconductors. Advanced Materials, 2022, 34, e2101487.	11.1	8
133	Self-Seeding of Oligo(<i>p</i> phenylenevinylene)- <i>b</i> poly(2-vinylpyridine) Micelles: Effect of Metal lons. Macromolecules, 2021, 54, 6705-6717.	2.2	18
134	Efficient energy transport in an organic semiconductor mediated by transient exciton delocalization. Science Advances, 2021, 7, .	4.7	68
135	Enhancement of Red Thermally Assisted Fluorescence in Bottlebrush Block Copolymers. Macromolecules, 2021, 54, 7880-7889.	2.2	7
136	Long-Range Interactions Boost Singlet Exciton Diffusion in Nanofibers of π-Extended Polymer Chains. Journal of Physical Chemistry Letters, 2021, 12, 8188-8193.	2.1	19
137	Coaxial Conjugated Polymer/Quantum Rod Assembly into Hybrid Nanowires with Preferred Quantum Rod Orientation. Chemistry of Materials, 2021, 33, 7878-7888.	3.2	3
138	Anchorage-Dependent Living Supramolecular Self-Assembly of Polymeric Micelles. Journal of the American Chemical Society, 2021, 143, 14684-14693.	6.6	13
139	Macromolecular strategies for transporting electrons and excitation energy in ordered polymer layers. Progress in Polymer Science, 2021, 121, 101433.	11.8	16
140	Crystallization-induced emission enhancement of highly electron-deficient dicyanomethylene-bridged triarylboranes. Chemical Communications, 2021, 57, 7926-7929.	2.2	6
141	Continuous and Segmented Semiconducting Fiberâ€like Nanostructures with Spatially Selective Functionalization by Living Crystallizationâ€Driven Selfâ€Assembly. Angewandte Chemie, 2020, 132, 8309-8316.	1.6	13
142	Continuous and Segmented Semiconducting Fiberâ€like Nanostructures with Spatially Selective Functionalization by Living Crystallizationâ€Driven Selfâ€Assembly. Angewandte Chemie - International Edition, 2020, 59, 8232-8239.	7.2	63
143	Living Crystallization-Driven Self-Assembly of Polymeric Amphiphiles: Low-Dispersity Fiber-like Micelles from Crystallizable Phosphonium-Capped Polycarbonate Homopolymers. Macromolecules, 2020, 53, 10591-10600.	2.2	13
144	Functional nanoparticles through π-conjugated polymer self-assembly. Nature Reviews Materials, 2021, 6, 7-26.	23.3	179
145	<i>In Situ</i> Real-time Confocal Imaging of a Self-assembling Peptide-grafted Polymer Showing pH-responsive Hydrogelation. Chemistry Letters, 2020, 49, 1319-1323.	0.7	12
146	Unveiling the Effects of Interchain Hydrogen Bonds on Solution Gelation and Mechanical Properties of Diarylfluorene-Based Semiconductor Polymers. Research, 2020, 2020, 3405826.	2.8	29

#	ARTICLE	IF	CITATIONS
147	Slow Energy Transfer in Selfâ€Doped βâ€Conformation Film of Steric Polydiarylfluorenes toward Stable Dual Deepâ€Blue Amplified Spontaneous Emission. Advanced Optical Materials, 2022, 10, 2100723.	3.6	8
148	Dynamical study of ultrafast exciton migration in coujugated polymers driven by nonuniform field. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 177201.	0.2	0
149	Propagation-Instigated Self-Limiting Polymerization of Multiarmed Amphiphiles into Finite Supramolecular Polymers. Journal of the American Chemical Society, 2021, 143, 18446-18453.	6.6	14
150	Ï€-Conjugated-polymer-based nanofibers through living crystallization-driven self-assembly: preparation, properties and applications. Chemical Communications, 2021, 57, 13259-13274.	2.2	38
151	Device Physics in Organic Solar Cells and Drift-Diffusion Simulations. , 2020, , 1-36.		1
152	Theoretical study of nonlinear multi-exciton dynamics in coupled molecular chains. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 197301.	0.2	0
153	Elucidation of hole transport mechanism in efficient energy cascade organic photovoltaics using triple donor system. Applied Surface Science, 2022, 576, 151747.	3.1	5
154	Recent progress and strategies in photodetectors based on 2D inorganic/organic heterostructures. 2D Materials, 2021, 8, 012001.	2.0	21
155	Competition between exceptionally long-range alkyl sidechain ordering and backbone ordering in semiconducting polymers and its impact on electronic and optoelectronic properties. Advanced Functional Materials, 2018, 29, .	7.8	0
156	Understanding, quantifying, and controlling the molecular ordering of semiconducting polymers: from novices to experts and amorphous to perfect crystals. Materials Horizons, 2022, 9, 577-606.	6.4	117
157	Disorder in P3HT Nanoparticles Probed by Optical Spectroscopy on P3HT- <i>b</i> -PEG Micelles. Journal of Physical Chemistry A, 2021, 125, 10165-10173.	1.1	5
158	Exploring the "Living―Growth of Block Copolymer Nanofibers from Surface-Confined Seeds by ⟨i⟩ln Situ⟨i⟩ Solution-Phase Atomic Force Microscopy. Journal of the American Chemical Society, 2022, 144, 951-962.	6.6	9
159	Efficient Longâ€Range Triplet Exciton Transport by Metal–Metal Interaction at Room Temperature. Angewandte Chemie, 0, , .	1.6	2
160	Efficient Longâ€Range Triplet Exciton Transport by Metal–Metal Interaction at Room Temperature. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
161	Evolutionary 2D organic crystals for optoelectronic transistors and neuromorphic computing. Neuromorphic Computing and Engineering, 2022, 2, 012001.	2.8	9
162	Single crystals and twoâ€dimensional crystalline assemblies of block copolymers. Journal of Polymer Science, 2022, 60, 2153-2174.	2.0	7
163	Vapor-Phase Living Assembly of π-Conjugated Organic Semiconductors. ACS Nano, 2022, 16, 3290-3299.	7.3	12
164	Gridizationâ€Driven Mesoscale Selfâ€Assembly of Conjugated Nanopolymers into Luminescenceâ€Anisotropic Photonic Crystals. Advanced Materials, 2022, 34, e2109399.	11.1	14

#	Article	IF	CITATIONS
165	Efficient and Controlled Seeded Growth of Poly(3-hexylthiophene) Block Copolymer Nanofibers through Suppression of Homogeneous Nucleation. Macromolecules, 2021, 54, 11269-11280.	2.2	14
166	Probing the Analogy between Living Crystallization-Driven Self-Assembly and Living Covalent Polymerizations: Length-Independent Growth Behavior for 1D Block Copolymer Nanofibers. Macromolecules, 2022, 55, 359-369.	2.2	11
167	Elucidating the Supramolecular Copolymerization of N―and C entered Benzeneâ€1,3,5â€Tricarboxamides: The Role of Parallel and Antiparallel Packing of Amide Groups in the Copolymer Microstructure. Chemistry - A European Journal, 2022, 28, .	1.7	13
168	Effect of Phosphotungstic Acid on Self-seeding of Oligo(<i>p</i> p-qi>p-qi>p-qi>p-qi>p-qi>p-qi>p-qi>p-q	0.5	1
169	Intrachain Exciton Motion Can Compete with Interchain Hopping in Conjugated Polymer Films with a Strong J-Aggregate Property. Journal of Physical Chemistry Letters, 2022, 13, 2078-2083.	2.1	5
170	Designing supramolecular polymers with nucleation and growth processes. Polymer International, 2022, 71, 590-595.	1.6	16
171	Dynamics of Excitons in Conjugated Molecules and Organic Semiconductor Systems. Chemical Reviews, 2022, 122, 8487-8593.	23.0	61
172	π-Electronic Coassembled Microflake Sensors with Förster Resonance Energy Transfer Enhanced Discrimination of Methanol and Ethanol. ACS Applied Materials & Discrimination of Methanol and Ethanol. ACS Applied Materials & Discrimination of Methanol and Ethanol. ACS Applied Materials & Discrimination of Methanol and Ethanol. ACS Applied Materials & Discrimination of Methanol and Ethanol. ACS Applied Materials & Discrimination of Methanol and Ethanol. ACS Applied Materials & Discrimination of Methanol and Ethanol. ACS Applied Materials & Discrimination of Methanol and Ethanol. ACS Applied Materials & Discrimination of Methanol and Ethanol. ACS Applied Materials & Discrimination of Methanol and Ethanol.	4.0	5
173	Synchronous Preparation of Length-Controllable 1D Nanoparticles via Crystallization-Driven <i>In Situ</i> Nanoparticlization of Conjugated Polymers. Journal of the American Chemical Society, 2022, 144, 5921-5929.	6.6	15
174	Hierarchical Nanowire Architectures Selfâ€Assembled from Ultraâ€Deepâ€Blue Fluoreneâ€Based Conjugated Molecules toward Organic Lightâ€Emitting Diodes with CIE <i>_y</i> Å= 0.06. Advanced Optical Materials, 2022, 10, .	3.6	2
175	Atomic-resolved hierarchical structure of elastic π-conjugated molecular crystal for flexible organic photonics. CheM, 2022, 8, 1427-1441.	5.8	19
176	WO ₃ Nanowires Enhance Molecular Alignment and Optical Anisotropy in Electrospun Nanocomposite Fibers: Implications for Hybrid Light-Emitting Systems. ACS Applied Nano Materials, 2022, 5, 3654-3666.	2.4	3
177	Universal 4-qualifiable fluorene-based building blocks for potential optoelectronic applications. Chinese Chemical Letters, 2022, 33, 5137-5141.	4.8	3
178	Driving forces and molecular interactions in the self-assembly of block copolymers to form fiber-like micelles. Applied Physics Reviews, 2022, 9, .	5.5	11
179	A Molecular Design Principle for Pure-Blue Light-Emitting Polydiarylfluorene with Suppressed Defect Emission by the Side-Chain Steric Hindrance Effect. Macromolecules, 2022, 55, 3335-3343.	2,2	4
180	Heat-Induced Living Crystallization-Driven Self-Assembly: The Effect of Temperature and Polymer Composition on the Assembly and Disassembly of Poly(2-oxazoline) Nanorods. Macromolecules, 2022, 55, 3650-3660.	2.2	12
181	Fabrication of Semiconducting Nanoribbons with Tunable Length and Width via Crystallization-Driven Self-Assembly of a Homopolymer Prepared by Cyclopolymerization Using Grubbs Catalyst. Macromolecules, 2022, 55, 3484-3492.	2.2	7
182	Lateral growth of cylinders. Nature Communications, 2022, 13, 2170.	5.8	15

#	Article	IF	CITATIONS
183	Exploring Axial Organic Multiblock Heterostructure Nanowires: Advances in Molecular Design, Synthesis, and Functional Applications. Advanced Functional Materials, 2022, 32, .	7.8	15
184	Hybrid Nanocrystals of Small Molecules and Chemically Disordered Polymers. ACS Nano, 2022, 16, 8993-9003.	7.3	8
185	Interfacing DNA nanotechnology and biomimetic photonic complexes: advances and prospects in energy and biomedicine. Journal of Nanobiotechnology, 2022, 20, .	4.2	9
186	Medical applications of biopolymer nanofibers. Biomaterials Science, 2022, 10, 4107-4118.	2.6	16
187	DNA-templated programmable excitonic wires for micron-scale exciton transport. CheM, 2022, 8, 2442-2459.	5.8	12
188	(Bio)degradable and Biocompatible Nano-Objects from Polymerization-Induced and Crystallization-Driven Self-Assembly. Biomacromolecules, 2022, 23, 3043-3080.	2.6	24
190	Bioinspired Bottlebrush Polymers for Aqueous Boundary Lubrication. Polymers, 2022, 14, 2724.	2.0	9
191	Linear and Star Block Copolymer Nanoparticles Prepared by Heterogeneous RAFT Polymerization Using an ω,ω-Heterodifunctional Macro-RAFT Agent. ACS Macro Letters, 2022, 11, 910-918.	2.3	8
192	Progresses on electrospun metal–organic frameworks nanofibers and their wastewater treatment applications. Materials Today Chemistry, 2022, 25, 100974.	1.7	33
193	Photocurrent generation following long-range propagation of organic exciton–polaritons. Optica, 2022, 9, 1029.	4.8	7
194	A New Frontier in Exciton Transport: Transient Delocalization. Journal of Physical Chemistry Letters, 2022, 13, 6820-6830.	2.1	22
195	Conjugated Block Copolymers for Functional Nanostructures. Accounts of Chemical Research, 2022, 55, 2224-2234.	7.6	22
196	Electrospinning of 1D Fiberâ€Like Block Copolymer Micelles with a Crystalline Core. Macromolecular Chemistry and Physics, 0, , 2200151.	1.1	1
197	Living Crystallization-Driven Self-Assembly of Linear and V-Shaped Oligo($\langle i \rangle p \langle l i \rangle$ -phenylene) Tj ETQq1 1 0.78431 Macromolecules, 2022, 55, 7856-7868.	14 rgBT /O 2.2	verlock 10 T 18
199	In-situ self-assembled block copolymer nanowires on high-modulus carbon fibers surface for enhanced interfacial performance of CFRPs. Chemical Engineering Journal, 2023, 451, 138583.	6.6	5
200	Dynamics and coherence of photoexcited states in polyfluorene films with ordered chain phases. Journal of Materials Chemistry C, 2022, 10, 11801-11809.	2.7	4
201	Dopant-Stabilized Assembly of Poly(3-hexylthiophene). Journal of the American Chemical Society, 2022, 144, 16456-16470.	6.6	7
202	AIE-Active, Stimuli-Responsive Fluorescent 2D Block Copolymer Nanoplatelets Based on Corona Chain Compression. Journal of the American Chemical Society, 2022, 144, 17630-17641.	6.6	23

#	Article	IF	CITATIONS
203	Selfâ€Assembly of Peapodâ€like Micrometer Tubes from a Planetâ€Satelliteâ€type Supramolecular Megamer. Angewandte Chemie - International Edition, 2022, 61, .	7.2	0
204	Selfâ€Assembly of Peapodâ€like Micron Tubes from a Planetâ€Satelliteâ€type Supramolecular Megamer. Angewandte Chemie, 0, , .	1.6	0
205	Precise and Controllable Assembly of Block Copolymers < sup>†< /sup>. Chinese Journal of Chemistry, 2023, 41, 93-110.	2.6	8
206	Electrochemiluminescence biosensing and bioimaging with nanomaterials as emitters. Science China Chemistry, 2022, 65, 2417-2436.	4.2	26
207	Twoâ€Dimensional Excitonic Networks Directed by DNA Templates as an Efficient Model Lightâ€Harvesting and Energy Transfer System. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
208	Twoâ€Dimensional Excitonic Networks Directed by DNA Templates as an Efficient Model Lightâ€Harvesting and Energy Transfer System. Angewandte Chemie, 0, , .	1.6	O
209	Charge generation in organic solar cells: Journey toward 20% power conversion efficiency. Aggregate, 2022, 3, .	5.2	15
210	Uniform Ï€â€Conjugatedâ€Coâ€Oligomerâ€Based Nanofibers of Controlled Length with Nearâ€Infrared Emission, Photodynamic and Photothermal Activities. Advanced Materials Interfaces, 2022, 9, .	1.9	5
211	Controlling morphology and microstructure of conjugated polymers via solution-state aggregation. Progress in Polymer Science, 2023, 136, 101626.	11.8	34
212	Synthesis and living crystallization-driven self-assembly of backbone asymmetric and symmetric π-conjugated oligo(<i>p</i> -phenylene ethynylene)-based block copolymers. Polymer Chemistry, 2023, 14, 137-151.	1.9	6
213	Connecting the dots for fundamental understanding of structure–photophysics–property relationships of COFs, MOFs, and perovskites using a Multiparticle Holstein Formalism. Chemical Science, 2023, 14, 1040-1064.	3.7	2
214	Fabrication of conjugated polymer encapsulated fluorescent hybrid micelles for augmented, highly selective and step-wise detection of nitroaromatic pollutants and hepatobiliary biomarker. Sensors and Actuators B: Chemical, 2023, 377, 133081.	4.0	11
215	Controllable Synthesis and Photocatalytic Applications of Two-dimensional Covalent Organic Frameworks. Acta Chimica Sinica, 2022, 80, 1494.	0.5	5
216	A one-dimensional conductive metal-organic framework with extended π-d conjugated nanoribbon layers. Nature Communications, 2022, 13, .	5.8	20
217	Control over the Geometric Shapes and Mechanical Properties of Uniform Platelets via Tunable Two-Dimensional Living Self-Assembly. Chemistry of Materials, 2023, 35, 1310-1317.	3.2	1
218	Photoexcitation dynamics and energy engineering in supramolecular doping of organic conjugated molecules. Light: Science and Applications, 2023, 12, .	7.7	3
219	Scalable Preparation of Cylindrical Block Copolymer Micelles with a Liquid-Crystalline Perfluorinated Core by Photoinitiated Reversible Addition-Fragmentation Chain Transfer Dispersion Polymerization. Macromolecules, 2023, 56, 440-447.	2.2	8
220	Exciton diffusion and dissociation in organic and quantumâ€dot solar cells. SmartMat, 2023, 4, .	6.4	12

#	Article	IF	CITATIONS
221	All-optical control of high-purity trions in nanoscale waveguide. Nature Communications, 2023, 14, .	5.8	5
222	Spatiotemporal Mapping Uncouples Exciton Diffusion from Singlet–Singlet Annihilation in the Electron Acceptor Y6. Journal of Physical Chemistry Letters, 2023, 14, 1999-2005.	2.1	5
223	Pathway Complexity in Supramolecular Copolymerization and Blocky Star Copolymers by a Hetero-Seeding Effect. Journal of the American Chemical Society, 2023, 145, 5270-5284.	6.6	17
224	Fine-tuning of the size of supramolecular nanotoroids suppresses the subsequent catenation of nano-[2]catenane. Chemical Science, 2023, 14, 3270-3276.	3.7	4
225	Charge-Transfer-Induced Self-Assembly of Doped Conjugated Block Copolymer Nanofibers. ACS Macro Letters, 2023, 12, 382-388.	2.3	3
226	Semi-conductive micellar networks of all-conjugated diblock and triblock copolymer blends. Chemical Communications, 2023, 59, 3578-3581.	2.2	1
227	Highly Ordered Supramolecular Materials of Phaseâ€Separated Block Molecules for Longâ€Range Exciton Transport. Advanced Materials, 2023, 35, .	11.1	2
228	Size-Tunable Semiconducting 2D Nanorectangles from Conjugated Polyenyne Homopolymer Synthesized via Cascade Metathesis and Metallotropy Polymerization. Journal of the American Chemical Society, 2023, 145, 9029-9038.	6.6	4
229	Unveiling the Transformation from Aggregationâ€Caused Quenching to Encapsulationâ€Induced Emission Enhancement for Improving the Photoluminescence Properties and Detection Performance of Conjugated Polymer Material in Multiple States. Advanced Optical Materials, 2023, 11, .	3.6	4
230	Fabrication of Two-Dimensional Platelets with Heat-Resistant Luminescence and Large Two-Photon Absorption Cross Sections via Cooperative Solution/Solid Self-Assembly. Journal of the American Chemical Society, 2023, 145, 9771-9776.	6.6	6
232	Crystallization-Driven Solution-State Assembly of Conjugated Block Copolymers in Materials Science. Macromolecules, 2023, 56, 3474-3496.	2.2	4
273	Decontamination of Oily and Micro-pollutant Loaded Wastewater Using Metal Organic Framework. , 2024, , .		O