Analysis of red blood cell partitioning at bifurcations in networks

Physics of Fluids 30, DOI: 10.1063/1.5024783

Citation Report

#	Article	IF	CITATIONS
1	Antimargination of Microparticles and Platelets in the Vicinity of Branching Vessels. Biophysical Journal, 2018, 115, 411-425.	0.2	28
2	A unified analysis of nano-to-microscale particle dispersion in tubular blood flow. Physics of Fluids, 2019, 31, 081903.	1.6	11
3	Threeâ€dimensional distribution of wall shear stress and its gradient in red cellâ€resolved computational modeling of blood flow in inÂvivoâ€like microvascular networks. Physiological Reports, 2019, 7, e14067.	0.7	32
4	Small Vessels Are a Big Problem in Neurodegeneration and Neuroprotection. Frontiers in Neurology, 2019, 10, 889.	1.1	42
5	Fluid dynamics of oscillatory flow in three-dimensional branching networks. Physics of Fluids, 2019, 31, 063601.	1.6	16
6	Red blood cell distribution in a microvascular network with successive bifurcations. Biomechanics and Modeling in Mechanobiology, 2019, 18, 1821-1835.	1.4	19
7	Deformation and rupture of compound cells under shear: A discrete multiphysics study. Physics of Fluids, 2019, 31, .	1.6	27
8	Oscillating droplet trains in microfluidic networks and their suppression in blood flow. Nature Physics, 2019, 15, 706-713.	6.5	30
9	Boundary integral simulations of a red blood cell squeezing through a submicron slit under prescribed inlet and outlet pressures. Physics of Fluids, 2019, 31, .	1.6	42
10	Red blood cell and platelet diffusivity and margination in the presence of cross-stream gradients in blood flows. Physics of Fluids, 2019, 31, .	1.6	34
11	Motion, deformation, and aggregation of multiple red blood cells in three-dimensional microvessel bifurcations. Physics of Fluids, 2019, 31, .	1.6	46
12	The cell-free layer in simulated microvascular networks. Journal of Fluid Mechanics, 2019, 864, 768-806.	1.4	26
13	Migration velocity of red blood cells in microchannels. Microvascular Research, 2019, 124, 30-36.	1.1	34
14	Study of the Partitioning of Red Blood Cells Through Asymmetric Bifurcating Microchannels. Journal of Medical and Biological Engineering, 2020, 40, 53-61.	1.0	4
15	Parallel modeling of cell suspension flow in complex micro-networks with inflow/outflow boundary conditions. Journal of Computational Physics, 2020, 401, 109031.	1.9	24
16	<i>In vitro</i> investigations of red blood cell phase separation in a complex microchannel network. Biomicrofluidics, 2020, 14, 014101.	1.2	32
17	Deformation and sorting of capsules in a T-junction. Journal of Fluid Mechanics, 2020, 885, .	1.4	12
18	Local vs. Global Blood Flow Modulation in Artificial Microvascular Networks: Effects on Red Blood Cell Distribution and Partitioning, Frontiers in Physiology, 2020, 11, 566273	1.3	12

CITATION REPORT

#	Article	IF	CITATIONS
19	Heterogeneous partition of cellular blood-borne nanoparticles through microvascular bifurcations. Physical Review E, 2020, 102, 013310.	0.8	16
20	Investigating the Interaction Between Circulating Tumor Cells and Local Hydrodynamics via Experiment and Simulations. Cellular and Molecular Bioengineering, 2020, 13, 527-540.	1.0	9
21	Computational Modeling of Blood Flow with Rare Cell in a Microbifurcation. Lecture Notes in Computational Vision and Biomechanics, 2020, , 518-525.	0.5	1
22	Dynamic capillary stalls in reperfused ischemic penumbra contribute to injury: A hyperacute role for neutrophils in persistent traffic jams. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 236-252.	2.4	73
23	Computational fluid dynamic–discrete element method coupling analysis of particle transport in branched networks. Particuology, 2021, 55, 140-150.	2.0	5
24	Emergent cell-free layer asymmetry and biased haematocrit partition in a biomimetic vascular network of successive bifurcations. Soft Matter, 2021, 17, 3619-3633.	1.2	21
25	Lingering Dynamics in Microvascular Blood Flow. Biophysical Journal, 2021, 120, 432-439.	0.2	12
26	Computational models of cancer cell transport through the microcirculation. Biomechanics and Modeling in Mechanobiology, 2021, 20, 1209-1230.	1.4	5
27	Investigation of red blood cell partitioning in an in vitro microvascular bifurcation. Artificial Organs, 2021, 45, 1083-1096.	1.0	12
28	Association between erythrocyte dynamics and vessel remodelling in developmental vascular networks. Journal of the Royal Society Interface, 2021, 18, 20210113.	1.5	20
29	Fully implicit spectral boundary integral computation of red blood cell flow. Physics of Fluids, 2021, 33, .	1.6	4
30	Effect of pulse width on the dynamics of a deflated vesicle in unipolar and bipolar pulsed electric fields. Physics of Fluids, 2021, 33, 081905.	1.6	1
32	Effects of artery size on the hydrodynamic diffusivity of red cells and other contained particles. Physical Review Fluids, 2019, 4, .	1.0	3
33	PyOIF: Computational tool for modelling of multi-cell flows in complex geometries. PLoS Computational Biology, 2020, 16, e1008249.	1.5	15
34	Computational modeling of biomechanics andÂbiorheology of heated red blood cells. Biophysical Journal, 2021, 120, 4663-4671.	0.2	12
36	Numerical Study on Flow Behavior of Red Blood Cells through Symmetric Capillary Bifurcations. , 2019, , .		0
37	Load Balancing in Large Scale Bayesian Inference. , 2020, , .		2
38	In vitro study on the partitioning of red blood cells using a microchannel network. Microvascular Research, 2022, 140, 104281.	1.1	5

#	Article	IF	Citations
39	Capillary module haemodynamics and mechanisms of blood flow regulation in skeletal muscle capillary networks: Experimental and computational analysis. Journal of Physiology, 2022, 600, 1867-1888.	1.3	3
40	A few upstream bifurcations drive the spatial distribution of red blood cells in model microfluidic networks. Soft Matter, 2022, 18, 1463-1478.	1.2	13
41	Dependence of red blood cell dynamics in microvessel bifurcations on the endothelial surface layer's resistance to flow and compression. Biomechanics and Modeling in Mechanobiology, 2022, 21, 771-796.	1.4	2
42	A computational study of red blood cell deformability effect on hemodynamic alteration in capillary vessel networks. Scientific Reports, 2022, 12, 4304.	1.6	26
43	Continuum microhaemodynamics modelling using inverse rheology. Biomechanics and Modeling in Mechanobiology, 2022, 21, 335-361.	1.4	4
45	Direct simulation of blood flow with heterogeneous cell suspensions in a patient-specific capillary network. Physics of Fluids, 2022, 34, 041912.	1.6	4
48	Contact area of cell cluster in a simple bifurcation. , 2022, , .		1
49	Application of machine learning in predicting blood flow and red cell distribution in capillary vessel networks. Journal of the Royal Society Interface, 2022, 19, .	1.5	2
51	Cellular Blood Flow Modeling with Smoothed Dissipative Particle Dynamics. , 2022, , 1-40.		0
52	Influence of storage and buffer composition on the mechanical behavior of flowing red blood cells. Biophysical Journal, 2023, 122, 360-373.	0.2	1
53	Hematocrit skewness along sequential bifurcations within a microfluidic network induces significant changes in downstream red blood cell partitioning. Biomicrofluidics, 2022, 16, .	1.2	2
54	A numerical study of tumor cell arrest in microvessels qualifying for mechanical entrapment. AIP Advances, 2022, 12, 125105.	0.6	0
55	Anomalous Diffusion of Deformable Particles in a Honeycomb Network. Physical Review Letters, 2023, 130, .	2.9	5
56	Accurate modeling of blood flow in a micro-channel as a non-homogeneous mixture using continuum approach-based diffusive flux model. Physics of Fluids, 2023, 35, .	1.6	2
57	Temporal-spatial heterogeneity of hematocrit in microvascular networks. Physics of Fluids, 2023, 35, .	1.6	6
58	Measuring red blood cell shape in the human retina. Optics Letters, 2023, 48, 1554.	1.7	2
59	Red blood cell lingering modulates hematocrit distribution in the microcirculation. Biophysical Journal, 2023, 122, 1526-1537.	0.2	5

CITATION REPORT