The reference epigenome and regulatory chromatin lan leukemia

Nature Medicine

24, 868-880

DOI: 10.1038/s41591-018-0028-4

Citation Report

#	Article	IF	CITATIONS
1	Enhancer Architecture and Essential Core Regulatory Circuitry of Chronic Lymphocytic Leukemia. Cancer Cell, 2018, 34, 982-995.e7.	7.7	101
2	Insight into origins, mechanisms, and utility of DNA methylation in B-cell malignancies. Blood, 2018, 132, 999-1006.	0.6	24
3	Insight into genetic predisposition to chronic lymphocytic leukemia from integrative epigenomics. Nature Communications, 2019, 10, 3615.	5.8	32
4	Nuclear factor of activated T-cells, NFATC1, governs FLT3ITD-driven hematopoietic stem cell transformation and a poor prognosis in AML. Journal of Hematology and Oncology, 2019, 12, 72.	6.9	12
5	Chronic lymphocytic leukaemia: from genetics to treatment. Nature Reviews Clinical Oncology, 2019, 16, 684-701.	12.5	154
6	Clonal Evolution in Chronic Lymphocytic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, S16-S19.	0.2	0
7	IL-10-producing regulatory B cells and plasmocytes: Molecular mechanisms and disease relevance. Seminars in Immunology, 2019, 44, 101323.	2.7	39
8	The Mithralog EC-7072 Induces Chronic Lymphocytic Leukemia Cell Death by Targeting Tonic B-Cell Receptor Signaling. Frontiers in Immunology, 2019, 10, 2455.	2.2	4
9	The Open Chromatin Landscape of Non–Small Cell Lung Carcinoma. Cancer Research, 2019, 79, 4840-4854.	0.4	24
10	Linking aberrant chromatin features in chronic lymphocytic leukemia to transcription factor networks. Molecular Systems Biology, 2019, 15, e8339.	3.2	39
11	Epigenetic evolution and lineage histories of chronic lymphocytic leukaemia. Nature, 2019, 569, 576-580.	13.7	195
12	Ibrutinib induces chromatin reorganisation of chronic lymphocytic leukaemia cells. Oncogenesis, 2019, 8, 32.	2.1	10
13	Corrupted coordination of epigenetic modifications leads to diverging chromatin states and transcriptional heterogeneity in CLL. Nature Communications, 2019, 10, 1874.	5.8	63
14	Dissecting CLL through high-dimensional single-cell technologies. Blood, 2019, 133, 1446-1456.	0.6	5
15	Clinical significance of DNA methylation in chronic lymphocytic leukemia patients: results from 3 UK clinical trials. Blood Advances, 2019, 3, 2474-2481.	2.5	25
16	Clonal dynamics in chronic lymphocytic leukemia. Blood Advances, 2019, 3, 3759-3769.	2.5	23
17	Advances in Epigenetics and Epigenomics in Chronic Lymphocytic Leukemia. Current Genetic Medicine Reports, 2019, 7, 214-226.	1.9	5

#	Article	IF	Citations
19	CCND2 and CCND3 hijack immunoglobulin light-chain enhancers in cyclin D1â^' mantle cell lymphoma. Blood, 2019, 133, 940-951.	0.6	77
20	Epigenetic dynamics in normal and malignant B cells: die a hero or live to become a villain. Current Opinion in Immunology, 2019, 57, 15-22.	2.4	4
21	Foundations and Application of Precision Medicine. , 2019, , 21-45.		0
22	Dynamic changes in intron retention are tightly associated with regulation of splicing factors and proliferative activity during B-cell development. Nucleic Acids Research, 2020, 48, 1327-1340.	6.5	49
23	Evolution of the Epigenetic Landscape in Childhood B Acute Lymphoblastic Leukemia and Its Role in Drug Resistance. Cancer Research, 2020, 80, 5189-5202.	0.4	9
24	SOHO State of the Art Updates and Next Questions: Clonal Evolution in Chronic Lymphocytic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, 779-784.	0.2	4
25	Determinants and role of chromatin organization in acute leukemia. Leukemia, 2020, 34, 2561-2575.	3.3	16
26	Educational Updates in Hematology Book: 25th Congress of the European Hematology Association, Virtual Edition 2020. HemaSphere, 2020, 4, .	1.2	2
27	Chromatin network markers of leukemia. Bioinformatics, 2020, 36, i455-i463.	1.8	8
28	Molecular tumor classification using DNA methylome analysis. Human Molecular Genetics, 2020, 29, R205-R213.	1.4	10
29	Chromatin accessibility landscape of pediatric Tâ€lymphoblastic leukemia and human Tâ€cell precursors. EMBO Molecular Medicine, 2020, 12, e12104.	3.3	13
30	Advances in whole genome methylomic sequencing. , 2020, , 213-233.		2
31	The proliferative history shapes the DNA methylome of B-cell tumors and predicts clinical outcome. Nature Cancer, 2020, 1, 1066-1081.	5.7	51
32	VRK1 Phosphorylates Tip60/KAT5 and Is Required for H4K16 Acetylation in Response to DNA Damage. Cancers, 2020, 12, 2986.	1.7	17
33	Assessing prognosis of chronic lymphocytic leukemia using biomarkers and genetics. Expert Opinion on Orphan Drugs, 2020, 8, 329-342.	0.5	2
34	Chromatin activation as a unifying principle underlying pathogenic mechanisms in multiple myeloma. Genome Research, 2020, 30, 1217-1227.	2.4	35
35	DNA methylation of chronic lymphocytic leukemia with differential response to chemotherapy. Scientific Data, 2020, 7, 133.	2.4	6
36	Chronic lymphocytic leukemias with trisomy 12 show a distinct DNA methylation profile linked to altered chromatin activation. Haematologica, 2020, 105, 2864-2867.	1.7	11

#	Article	IF	CITATIONS
37	Genomic deregulation of PRMT5 supports growth and stress tolerance in chronic lymphocytic leukemia. Scientific Reports, 2020, 10, 9775.	1.6	5
38	Using GARDEN-NET and ChAseR to explore human haematopoietic 3D chromatin interaction networks. Nucleic Acids Research, 2020, 48, 4066-4080.	6.5	18
39	Tumor Suppressors in Chronic Lymphocytic Leukemia: From Lost Partners to Active Targets. Cancers, 2020, 12, 629.	1.7	6
40	Precision Medicine Management of Chronic Lymphocytic Leukemia. Cancers, 2020, 12, 642.	1.7	28
41	IgCaller for reconstructing immunoglobulin gene rearrangements and oncogenic translocations from whole-genome sequencing in lymphoid neoplasms. Nature Communications, 2020, 11, 3390.	5.8	24
42	Chronic lymphocytic leukemia: from molecular pathogenesis to novel therapeutic strategies. Haematologica, 2020, 105, 2205-2217.	1.7	47
43	A lncRNA-SWI/SNF complex crosstalk controls transcriptional activation at specific promoter regions. Nature Communications, 2020, 11, 936.	5.8	69
44	Altered chromatin landscape and enhancer engagement underlie transcriptional dysregulation in MED12 mutant uterine leiomyomas. Nature Communications, 2020, 11, 1019.	5.8	34
45	Genomic and Epigenomic Alterations in Chronic Lymphocytic Leukemia. Annual Review of Pathology: Mechanisms of Disease, 2020, 15, 149-177.	9.6	17
46	Sexual-dimorphism in human immune system aging. Nature Communications, 2020, 11, 751.	5.8	316
47	Molecular networks in Network Medicine: Development and applications. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2020, 12, e1489.	6.6	128
48	CLL intraclonal fractions exhibit established and recently acquired patterns of DNA methylation. Blood Advances, 2020, 4, 893-905.	2.5	5
49	Genomic and transcriptomic correlates of Richter transformation in chronic lymphocytic leukemia. Blood, 2021, 137, 2800-2816.	0.6	51
50	Preneoplastic Alterations Define CLL DNA Methylome and Persist through Disease Progression and Therapy. Blood Cancer Discovery, 2021, 2, 54-69.	2.6	16
51	Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics. Nature Reviews Genetics, 2021, 22, 3-18.	7.7	228
52	shinyÉPICo: a graphical pipeline to analyze Illumina DNA methylation arrays. Bioinformatics, 2021, 37, 257-259.	1.8	19
53	Dynamics of genome architecture and chromatin function during human B cell differentiation and neoplastic transformation. Nature Communications, 2021, 12, 651.	5.8	67
54	Genomic Instability and Clonal Evolution in Chronic Lymphocytic Leukemia: Clinical Relevance. Journal of the National Comprehensive Cancer Network: JNCCN, 2021, 19, 227-233.	2.3	2

#	Article	IF	CITATIONS
55	Characterization of complete lncRNAs transcriptome reveals the functional and clinical impact of lncRNAs in multiple myeloma. Leukemia, 2021, 35, 1438-1450.	3.3	28
56	LncRNAs activate longevity regulation pathway due to aging of Leydig cells caused by DEHP exposure: A transcriptome-based study. Ecotoxicology and Environmental Safety, 2021, 209, 111798.	2.9	8
57	FoxO1-GAB1 axis regulates homing capacity and tonic AKT activity in chronic lymphocytic leukemia. Blood, 2021, 138, 758-772.	0.6	19
58	EOMES is essential for antitumor activity of CD8+ T cells in chronic lymphocytic leukemia. Leukemia, 2021, 35, 3152-3162.	3.3	26
59	Human pluripotent stem cells identify molecular targets of trisomy 12 in chronic lymphocytic leukemia patients. Cell Reports, 2021, 34, 108845.	2.9	3
61	Clonal evolution in chronic lymphocytic leukemia is scant in relapsed but accelerated in refractory cases after chemo(immune) therapy. Haematologica, 2022, 107, 604-614.	1.7	11
62	The Role of IncRNAs in the Pathobiology and Clinical Behavior of Multiple Myeloma. Cancers, 2021, 13, 1976.	1.7	9
63	Role of NFAT in Chronic Lymphocytic Leukemia and Other B-Cell Malignancies. Frontiers in Oncology, 2021, 11, 651057.	1.3	5
65	Gene expression derived from alternative promoters improves prognostic stratification in multiple myeloma. Leukemia, 2021, 35, 3012-3016.	3.3	11
66	The Evolving Landscape of Chronic Lymphocytic Leukemia on Diagnosis, Prognosis and Treatment. Diagnostics, 2021, 11, 853.	1.3	15
67	Transcriptome Analysis Reveals the Profile of Long Non-coding RNAs During Chicken Muscle Development. Frontiers in Physiology, 2021, 12, 660370.	1.3	3
68	Mutational mechanisms shaping the coding and noncoding genome of germinal center derived B-cell lymphomas. Leukemia, 2021, 35, 2002-2016.	3.3	34
69	Challenges with Approved Targeted Therapies against Recurrent Mutations in CLL: A Place for New Actionable Targets. Cancers, 2021, 13, 3150.	1.7	1
70	Antioxidant stress and anticancer activity of peptide‑chelated selenium <i>inÂvitro</i> . International Journal of Molecular Medicine, 2021, 48, .	1.8	8
71	Exploring the pathways to chronic lymphocytic leukemia. Blood, 2021, 138, 827-835.	0.6	20
73	Leveraging three-dimensional chromatin architecture for effective reconstruction of enhancer–target gene regulatory interactions. Nucleic Acids Research, 2021, 49, e97-e97.	6.5	6
74	Genetics of Chronic Lymphocytic Leukemia. Cancer Journal (Sudbury, Mass), 2021, 27, 259-265.	1.0	1
75	The Biology of Chronic Lymphocytic Leukemia. Cancer Journal (Sudbury, Mass), 2021, 27, 266-274.	1.0	3

#	Article	IF	CITATIONS
76	The DNA methylation landscape of multiple myeloma shows extensive inter- and intrapatient heterogeneity that fuels transcriptomic variability. Genome Medicine, 2021, 13, 127.	3.6	9
77	CRIS: complete reconstruction of immunoglobulin <i>V-D-J</i> sequences from RNA-seq data. Bioinformatics Advances, 2021, 1, vbab021.	0.9	4
78	Chromatin-based, in cis and in trans regulatory rewiring underpins distinct oncogenic transcriptomes in multiple myeloma. Nature Communications, 2021, 12, 5450.	5.8	19
79	Loss of synergistic transcriptional feedback loops drives diverse B-cell cancers. EBioMedicine, 2021, 71, 103559.	2.7	1
80	Biomimetic Ti–6Al–4V alloy/gelatin methacrylate hybrid scaffold with enhanced osteogenic and angiogenic capabilities for large bone defect restoration. Bioactive Materials, 2021, 6, 3437-3448.	8.6	43
81	Chromatin accessibility profiling methods. Nature Reviews Methods Primers, 2021, 1, .	11.8	95
82	Novel genes exhibiting DNA methylation alterations in Korean patients with chronic lymphocytic leukaemia: a methyl-CpG-binding domain sequencing study. Scientific Reports, 2020, 10, 1085.	1.6	3
83	Ribosomal RNA 2′O-methylation as a novel layer of inter-tumour heterogeneity in breast cancer. NAR Cancer, 2020, 2, zcaa036.	1.6	40
87	Pathogenesis of chronic lymphocytic leukemia and the development of novel therapeutic strategies. Journal of Clinical and Experimental Hematopathology: JCEH, 2020, 60, 146-158.	0.3	20
88	Robust Glycogene-Based Prognostic Signature for Proficient Mismatch Repair Colorectal Adenocarcinoma. Frontiers in Oncology, 2021, 11, 727752.	1.3	2
89	Chronic lymphocytic leukemia: 2022 update on diagnostic and therapeutic procedures. American Journal of Hematology, 2021, 96, 1679-1705.	2.0	150
93	Clonal dynamics in chronic lymphocytic leukemia. Hematology American Society of Hematology Education Program, 2019, 2019, 466-475.	0.9	0
97	Epigenetic Trajectories of the Premalignant-to-Malignant Transition of Chronic Lymphocytic Leukemia. Blood Cancer Discovery, 2021, 2, 6-8.	2.6	0
98	Rare t(X;14)(q28;q32) translocation reveals link between MTCP1 and chronic lymphocytic leukemia. Nature Communications, 2021, 12, 6338.	5.8	3
99	Towards precision medicine in lymphoid malignancies. Journal of Internal Medicine, 2022, 292, 221-242.	2.7	9
100	InterTADs: integration of multi-omics data on topologically associated domains, application to chronic lymphocytic leukemia. NAR Genomics and Bioinformatics, 2022, 4, lqab121.	1.5	2
101	Super enhancers as master gene regulators in the pathogenesis of hematologic malignancies. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188697.	3.3	8
102	Dissecting TET2 Regulatory Networks in Blood Differentiation and Cancer. Cancers, 2022, 14, 830.	1.7	9

#	Article	IF	CITATIONS
103	Transcriptome Analysis Reveals the Gene Expression Changes in the Silkworm (Bombyx mori) in Response to Hydrogen Sulfide Exposure. Insects, 2021, 12, 1110.	1.0	11
104	Targets Exploration of Hydroxychloroquine for Pigmentation and Cell Protection Effect in Melanocytes: The Clue for Vitiligo Treatment. Drug Design, Development and Therapy, 2022, Volume 16, 1011-1024.	2.0	2
105	Lift the curtain on long non-coding RNAs in hematological malignancies: Pathogenic elements and potential targets. Cancer Letters, 2022, 536, 215645.	3.2	7
106	Clonal Evolution of High-Risk Chronic Lymphocytic Leukemia: A Contemporary Perspective. Frontiers in Oncology, 2021, 11, 790004.	1.3	11
107	Understanding CLL biology through mouse models of human genetics. Blood, 2021, 138, 2621-2631.	0.6	11
110	A leukemia-protective germline variant mediates chromatin module formation via transcription factor nucleation. Nature Communications, 2022, 13, 2042.	5.8	6
114	The International Consensus Classification of Mature Lymphoid Neoplasms: a report from the Clinical Advisory Committee. Blood, 2022, 140, 1229-1253.	0.6	512
116	B cell receptor signaling drives APOBEC3 expression via direct enhancer regulation in chronic lymphocytic leukemia B cells. Blood Cancer Journal, 2022, 12, .	2.8	2
117	Genomic profiling for clinical decision making in lymphoid neoplasms. Blood, 2022, 140, 2193-2227.	0.6	63
118	Drugâ€microenvironment perturbations reveal resistance mechanisms and prognostic subgroups in <scp>CLL</scp> . Molecular Systems Biology, 2022, 18, .	3.2	8
119	Detection of early seeding of Richter transformation in chronic lymphocytic leukemia. Nature Medicine, 2022, 28, 1662-1671.	15.2	53
120	Integrative epigenomics in chronic lymphocytic leukaemia: Biological insights and clinical applications. British Journal of Haematology, 2023, 200, 280-290.	1.2	4
121	Genome-wide Analyses of Histone Modifications in the Mammalian Genome. , 2023, , 137-161.		1
122	The end of the beginning: application of single-cell sequencing to chronic lymphocytic leukemia. Blood, 2023, 141, 369-379.	0.6	4
123	Characterization of differentially expressed and lipid metabolism-related lncRNA-mRNA interaction networks during the growth of liver tissue through rabbit models. Frontiers in Veterinary Science, 0, 9, .	0.9	0
124	Molecular map of chronic lymphocytic leukemia and its impact on outcome. Nature Genetics, 2022, 54, 1664-1674.	9.4	52
125	scTAM-seq enables targeted high-confidence analysis of DNA methylation in single cells. Genome Biology, 2022, 23, .	3.8	7
126	Viral transduction of primary human lymphoma B cells reveals mechanisms of NOTCH-mediated immune escape. Nature Communications, 2022, 13, .	5.8	8

#	Article	IF	CITATIONS
127	Expression of long noncoding RNAs in the ovarian granulosa cells of women with diminished ovarian reserve using high-throughput sequencing. Journal of Ovarian Research, 2022, 15, .	1.3	6
128	CD160 receptor in CLL: Current state and future avenues. Frontiers in Immunology, 0, 13, .	2.2	4
129	Whole-genome sequencing of chronic lymphocytic leukemia identifies subgroups with distinct biological and clinical features. Nature Genetics, 2022, 54, 1675-1689.	9.4	21
131	Genetics and epigenetics of CLL. Leukemia and Lymphoma, 2023, 64, 551-563.	0.6	1
132	Tumorigenic role of Musashi-2 in aggressive mantle cell lymphoma. Leukemia, 0, , .	3.3	1
133	Genome-wide DNA methylation profiling in chronic lymphocytic leukaemia. Frontiers in Genetics, 0, 13,	1.1	3
135	The immunomodulatory molecule TIGIT is expressed by chronic lymphocytic leukemia cells and contributes to anergy. Haematologica, 2023, 108, 2101-2115.	1.7	4
136	Molecular characterization of Richter syndrome identifies de novo diffuse large B-cell lymphomas with poor prognosis. Nature Communications, 2023, 14, .	5.8	13
137	Chronic Lymphocytic Leukemia: Current Knowledge and Future Advances in Cytogenomic Testing. , 0, , 93-106.		0
138	Identification of two unannotated miRNAs in classic Hodgkin lymphoma cell lines. PLoS ONE, 2023, 18, e0283186.	1.1	0
148	Recurrent DNMT3B rearrangements are associated with unfavorable outcome in dicentric (9;20)-positive pediatric BCP-ALL. Leukemia, 0, , .	3.3	0
152	Clinical Studies and Epi-Drugs in Various Cancer Types. Epigenetics and Human Health, 2023, , 165-212.	0.2	0