3D charge and 2D phonon transports leading to high ou crystals

Science 360, 778-783 DOI: 10.1126/science.aaq1479

Citation Report

#	Article	IF	CITATIONS
3	Cost effective synthesis of p-type Zn-doped MgAgSb by planetary ball-milling with enhanced thermoelectric properties. RSC Advances, 2018, 8, 35353-35359.	1.7	17
4	Large enhancement of electrical transport properties of SnS in the out-of-plane direction by n-type doping: a combined ARPES and DFT study. Journal of Materials Chemistry A, 2018, 6, 24588-24594.	5.2	22
5	Low thermal conductivity and high figure of merit for rapidly synthesized n-type Pb _{1â^'x} Bi _x Te alloys. Dalton Transactions, 2018, 47, 15957-15966.	1.6	10
6	The transverse thermoelectric effect in <i>a</i> -axis inclined oriented SnSe thin films. Journal of Materials Chemistry C, 2018, 6, 12858-12863.	2.7	14
7	Thermoelectric properties of textured polycrystalline Na _{0.03} Sn _{0.97} Se enhanced by hot deformation. Journal of Materials Chemistry A, 2018, 6, 23730-23735.	5.2	27
8	Mechanism of large tunable thermal transport in graphene with oxygen functional groups. Journal of Applied Physics, 2018, 124, 175108.	1.1	4
9	Chemical Insights into PbSe– <i>x</i> %HgSe: High Power Factor and Improved Thermoelectric Performance by Alloying with Discordant Atoms. Journal of the American Chemical Society, 2018, 140, 18115-18123.	6.6	80
10	Phonon anharmonicity in single-crystalline SnSe. Physical Review B, 2018, 98, .	1.1	76
11	Achieving higher thermoelectric performance for p-type Cr2Ge2Te6 via optimizing doping. Applied Physics Letters, 2018, 113, .	1.5	12
12	Investigations on electrical and thermal transport properties of Cu2SnSe3 with unusual coexisting nanophases. Materials Today Physics, 2018, 7, 77-88.	2.9	25
13	First-principles calculations of the ultralow thermal conductivity in two-dimensional group-IV selenides. Physical Review B, 2018, 98, .	1.1	98
14	Thermal Conductivity during Phase Transitions. Advanced Materials, 2019, 31, e1806518.	11.1	80
15	Advances in thermoelectrics. Advances in Physics, 2018, 67, 69-147.	35.9	383
16	N-type Bi-doped SnSe Thermoelectric Nanomaterials Synthesized by a Facile Solution Method. Inorganic Chemistry, 2018, 57, 13800-13808.	1.9	28
17	Dual Alloying Strategy to Achieve a High Thermoelectric Figure of Merit and Lattice Hardening in p-Type Nanostructured PbTe. ACS Energy Letters, 2018, 3, 2593-2601.	8.8	37
18	The Atomic Circus: Small Electron Beams Spotlight Advanced Materials Down to the Atomic Scale. Advanced Materials, 2018, 30, e1802402.	11.1	27
19	The Thermoelectric Properties of SnSe Continue to Surprise: Extraordinary Electron and Phonon Transport. Chemistry of Materials, 2018, 30, 7355-7367.	3.2	79
20	Charge and phonon transport in PbTe-based thermoelectric materials. Npj Quantum Materials, 2018, 3, .	1.8	227

#	Article	IF	CITATIONS
21	Bonding Hierarchy Gives Rise to High Thermoelectric Performance in Layered Zintl Compound BaAu2P4. Chemistry of Materials, 2018, 30, 7760-7768.	3.2	28
22	Polycrystalline SnSe with Extraordinary Thermoelectric Property <i>via</i> Nanoporous Design. ACS Nano, 2018, 12, 11417-11425.	7.3	141
23	High-Performance n-Type PbSe–Cu ₂ Se Thermoelectrics through Conduction Band Engineering and Phonon Softening. Journal of the American Chemical Society, 2018, 140, 15535-15545.	6.6	103
24	Tuning the thermoelectric performance of π–d conjugated nickel coordination polymers through metal–ligand frontier molecular orbital alignment. Journal of Materials Chemistry A, 2018, 6, 19757-19766.	5.2	26
25	Achieving high thermoelectric performance with Pb and Zn codoped polycrystalline SnSe via phase separation and nanostructuring strategies. Nano Energy, 2018, 53, 683-689.	8.2	98
26	Ultra-high thermoelectric performance in graphene incorporated Cu2Se: Role of mismatching phonon modes. Nano Energy, 2018, 53, 993-1002.	8.2	145
27	Perspectives on Thermoelectricity in Layered and 2D Materials. Advanced Electronic Materials, 2018, 4, 1800248.	2.6	77
28	Approaching Topological Insulating States Leads to High Thermoelectric Performance in n-Type PbTe. Journal of the American Chemical Society, 2018, 140, 13097-13102.	6.6	77
29	Determining ideal strength and failure mechanism of thermoelectric CuInTe2 through quantum mechanics. Journal of Materials Chemistry A, 2018, 6, 11743-11750.	5.2	10
30	Defect Engineering for High-Performance n-Type PbSe Thermoelectrics. Journal of the American Chemical Society, 2018, 140, 9282-9290.	6.6	123
31	Boosting the thermoelectric performance of p-type heavily Cu-doped polycrystalline SnSe <i>via</i> inducing intensive crystal imperfections and defect phonon scattering. Chemical Science, 2018, 9, 7376-7389.	3.7	125
32	An <i>in situ</i> eutectic remelting and oxide replacement reaction for superior thermoelectric performance of InSb. Journal of Materials Chemistry A, 2018, 6, 17049-17056.	5.2	20
33	Optimizing the thermoelectric transport properties of BiCuSeO via doping with the rare-earth variable-valence element Yb. Journal of Materials Chemistry C, 2018, 6, 8479-8487.	2.7	26
34	Low-cost and environmentally benign selenides as promising thermoelectric materials. Journal of Materiomics, 2018, 4, 304-320.	2.8	73
35	Facile one-pot synthesis of tin selenide nanostructures using diorganotin bis(5-methyl-2-pyridylselenolates). Journal of Organometallic Chemistry, 2018, 873, 15-21.	0.8	20
36	Soft phonon modes from off-center Ge atoms lead to ultralow thermal conductivity and superior thermoelectric performance in n-type PbSe–GeSe. Energy and Environmental Science, 2018, 11, 3220-3230.	15.6	115
37	Realizing High Thermoelectric Performance below Phase Transition Temperature in Polycrystalline SnSe via Lattice Anharmonicity Strengthening and Strain Engineering. ACS Applied Materials & Interfaces, 2018, 10, 30558-30565.	4.0	39
38	Germanium Chalcogenide Thermoelectrics: Electronic Structure Modulation and Low Lattice Thermal Conductivity. Chemistry of Materials, 2018, 30, 5799-5813.	3.2	105

#	Article	IF	CITATIONS
39	Realizing high performance n-type PbTe by synergistically optimizing effective mass and carrier mobility and suppressing bipolar thermal conductivity. Energy and Environmental Science, 2018, 11, 2486-2495.	15.6	200
40	Integration of multi-scale defects for optimizing thermoelectric properties of n-type Cu _{1â°x} Cd _x FeS ₂ (<i>x</i> = 0–0.1). Nanoscale, 2019, 11, 17340-17349	2.8	22
41	Enhanced thermoelectric properties of Pb-doped Cu1.8S polycrystalline materials. Solid State Sciences, 2019, 95, 105953.	1.5	10
42	Unusual thermoelectric transport anisotropy in quasi-two-dimensional rhombohedral GeTe. Physical Review B, 2019, 100, .	1.1	31
43	Oxygen adsorption and its influence on the thermoelectric performance of polycrystalline SnSe. Journal of Materials Chemistry C, 2019, 7, 10507-10513.	2.7	28
44	High thermoelectric cooling performance of n-type Mg ₃ Bi ₂ -based materials. Science, 2019, 365, 495-498.	6.0	457
45	Ultralow Thermal Conductivity and High-Temperature Thermoelectric Performance in n-Type K _{2.5} Bi _{8.5} Se ₁₄ . Chemistry of Materials, 2019, 31, 5943-5952.	3.2	25
46	Resolving different scattering effects on the thermal and electrical transport in doped SnSe. Journal of Applied Physics, 2019, 126, .	1.1	33
47	Promising materials for thermoelectric applications. Journal of Alloys and Compounds, 2019, 806, 471-486.	2.8	76
48	Thermoelectric power generation: from new materials to devices. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180450.	1.6	116
49	Thermoelectric Properties of Metal Chalcogenides Nanosheets and Nanofilms Grown by Chemical and Physical Routes. , 2019, , 157-184.		2
50	Hole-doped <i>M</i> 4SiTe4 (<i>M</i> = Ta, Nb) as an efficient <i>p</i> -type thermoelectric material for low-temperature applications. Applied Physics Letters, 2019, 115, .	1.5	7
51	Coefficient of performance at maximum cooling power of a simplified quantum dot refrigerator model with resistance. Physica Scripta, 2019, 94, 125004.	1.2	0
52	High intrinsic <i>ZT</i> in InP ₃ monolayer at room temperature. Journal of Physics Condensed Matter, 2019, 31, 365501.	0.7	6
53	Improvement of thermoelectric properties of Cu3SbSe4 hierarchical with in-situ second phase synthesized by microwave-assisted solvothermal method. Journal of Alloys and Compounds, 2019, 806, 676-682.	2.8	15
54	Enhancing thermoelectric performance by Fermi level tuning and thermal conductivity degradation in (Ge1â°'xBix)Te crystals. Scientific Reports, 2019, 9, 8616.	1.6	39
55	Phase Transformation Contributions to Heat Capacity and Impact on Thermal Diffusivity, Thermal Conductivity, and Thermoelectric Performance. Advanced Materials, 2019, 31, e1902980.	11.1	47
56	Intrinsic Low Thermal Conductivity and Phonon Renormalization Due to Strong Anharmonicity of Single-Crystal Tin Selenide. Nano Letters, 2019, 19, 4941-4948.	4.5	41

#	Article	IF	CITATIONS
57	Thermoelectric study of Zn-doped n-type AgIn5Se8: Hopping and band electrical conduction along with low lattice thermal conduction in diamond-like structure. Journal of Alloys and Compounds, 2019, 805, 444-453.	2.8	6
58	Synergistically optimizing interdependent thermoelectric parameters of n-type PbSe through introducing a small amount of Zn. Materials Today Physics, 2019, 9, 100102.	2.9	38
59	Effect of In and Cd co-doping on the thermoelectric properties of Sn _{1â^'x} Pb _x Te. Materials Research Express, 2019, 6, 104010.	0.8	12
60	Intrinsically Low Lattice Thermal Conductivity Derived from Rattler Cations in an AMM′Q3 Family of Chalcogenides. Chemistry of Materials, 2019, 31, 8734-8741.	3.2	26
61	Realization of High Thermoelectric FigureÂof Merit in GeTe by Complementary Co-doping of Bi and In. Joule, 2019, 3, 2565-2580.	11.7	175
62	Enhancing Thermoelectric Performance of p-Type PbSe through Suppressing Electronic Thermal Transports. ACS Applied Energy Materials, 2019, 2, 8236-8243.	2.5	30
63	Texture Development and Grain Alignment of Hotâ€Pressed Tetradymite Bi _{0.48} Sb _{1.52} Te ₃ via Powder Molding. Energy Technology, 2019, 7, 1900814.	1.8	11
64	Enhancing thermoelectric transport properties of n-type PbS through introducing CaS/SrS. Journal of Solid State Chemistry, 2019, 280, 120995.	1.4	15
65	Boosting Thermoelectric Performance of SnSe via Tailoring Band Structure, Suppressing Bipolar Thermal Conductivity, and Introducing Large Mass Fluctuation. ACS Applied Materials & Interfaces, 2019, 11, 45133-45141.	4.0	38
66	Defect-induced electronic structures on SnSe surfaces. Japanese Journal of Applied Physics, 2019, 58, SIIA06.	0.8	4
67	Comprehensive Investigation on the Thermoelectric Properties of pâ€Type PbTeâ€PbSeâ€PbS Alloys. Advanced Electronic Materials, 2019, 5, 1900609.	2.6	29
68	Thermoelectric phase diagram of the SrTiO3-LaTiO3 solid-solution system through a metal to Mott insulator transition. Journal of Applied Physics, 2019, 126, .	1.1	8
69	Phase stabilities of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>P</mml:mi> <mml:mi> n</mml:mi> <</mml:mrow></mml:math </mml:mi></mml:mrow></mml:math 	1.1	14
70	SnSe studied by phonon quasiparticle approach. Physical Review B, 2019, 100, . Investigation of optical, electrical and optoelectronic properties of SnSe crystals. European Physical Journal B, 2019, 92, 1.	0.6	41
71	Realizing High Thermoelectric Performance in GeTe through Optimizing Ge Vacancies and Manipulating Ge Precipitates. ACS Applied Energy Materials, 2019, 2, 7594-7601.	2.5	61
72	Self-Powered Wearable Multi-Sensing Bracelet with Flexible Thermoelectric Power Generator. , 2019, ,		4
73	Thermoelectric properties and stability of Tl-doped SnS. Journal of Alloys and Compounds, 2019, 811, 151902.	2.8	12
74	Thermo-photoelectric coupled effect induced electricity in N-type SnSe:Br single crystals for enhanced self-powered photodetectors. Nano Epergy, 2019, 66, 104111	8.2	42

#	Article	IF	CITATIONS
75	Nonreciprocity and thermoelectric performance in a double-dot Aharonov–Bohm interferometer. Journal of Applied Physics, 2019, 126, 124305.	1.1	1
76	Enhanced thermoelectric performance of N-type eco-friendly material Cu1-xAgxFeS2 (x=0–0.14) via bandgap tuning. Journal of Alloys and Compounds, 2019, 809, 151717.	2.8	26
77	High thermoelectric performance in low-cost SnS _{0.91} Se _{0.09} crystals. Science, 2019, 365, 1418-1424.	6.0	395
78	Crystal structure and improved thermoelectric performance of iron stabilized cubic Cu ₃ SbS ₃ compound. Journal of Materials Chemistry C, 2019, 7, 394-404.	2.7	41
79	Optimized orientation and enhanced thermoelectric performance in Sn _{0.97} Na _{0.03} Se with Te addition. Journal of Materials Chemistry C, 2019, 7, 2653-2658.	2.7	19
80	Low lattice thermal conductivity and high thermoelectric figure of merit in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Na</mml:mi><mml:r Physical Review B, 2019, 99, .</mml:r </mml:msub></mml:mrow></mml:math 	nn 12 <td>nl:ms></td>	nl:ms>
81	Surface Oxide Removal for Polycrystalline SnSe Reveals Near-Single-Crystal Thermoelectric Performance. Joule, 2019, 3, 719-731.	11.7	168
82	Highâ€Performance Organic Thermoelectric Materials: Theoretical Insights and Computational Design. Advanced Electronic Materials, 2019, 5, 1800882.	2.6	39
83	Super Large Sn _{1–<i>x</i>} Se Single Crystals with Excellent Thermoelectric Performance. ACS Applied Materials & Interfaces, 2019, 11, 8051-8059.	4.0	43
84	Zintl-phase Eu ₂ ZnSb ₂ : A promising thermoelectric material with ultralow thermal conductivity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2831-2836.	3.3	103
85	Phonon Localization and Entropy-Driven Point Defects Lead to Ultralow Thermal Conductivity and Enhanced Thermoelectric Performance in (SnTe) _{1–2<i>x</i>} (SnSe) _{<i>x</i>} (SnS) _{<i>x</i>} . ACS Energy Letters, 2019, 4, 1658-1662.	8.8	70
86	Underlying mechanism of CO ₂ adsorption onto conjugated azacyclo-copolymers: N-doped adsorbents capture CO ₂ chiefly through acid–base interaction?. Journal of Materials Chemistry A, 2019, 7, 17842-17853.	5.2	63
87	Solvothermal synthesis of high-purity porous Cu1.7Se approaching low lattice thermal conductivity. Chemical Engineering Journal, 2019, 375, 121996.	6.6	28
88	Thermoelectric transport properties of n-type tin sulfide. Scripta Materialia, 2019, 170, 99-105.	2.6	29
89	Realizing Highâ€Ranged Outâ€ofâ€Plane ZTs in Nâ€Type SnSe Crystals through Promoting Continuous Phase Transition. Advanced Energy Materials, 2019, 9, 1901334.	10.2	83
90	The N-type Pb-doped single crystal SnSe thermoelectric material synthesized by a Sn-flux method. Physica B: Condensed Matter, 2019, 570, 128-132.	1.3	13
91	High Thermoelectric and Flexible PEDOT/SWCNT/BC Nanoporous Films Derived from Aerogels. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	16
92	Chemical doping of the SnSe monolayer: a first-principle calculation. Physical Chemistry Chemical Physics, 2019, 21, 14629-14637.	1.3	9

#	Article	IF	CITATIONS
93	Effectively restricting MnSi precipitates for simultaneously enhancing the Seebeck coefficient and electrical conductivity in higher manganese silicide. Journal of Materials Chemistry C, 2019, 7, 7212-7218.	2.7	8
94	High Thermoelectric Performance in n-Type Polycrystalline SnSe via Dual Incorporation of Cl and PbSe and Dense Nanostructures. ACS Applied Materials & Interfaces, 2019, 11, 21645-21654.	4.0	47
95	Flexible Thermoelectric Materials and Generators: Challenges and Innovations. Advanced Materials, 2019, 31, e1807916.	11.1	419
96	Seeing atomic-scale structural origins and foreseeing new pathways to improved thermoelectric materials. Materials Horizons, 2019, 6, 1548-1570.	6.4	27
97	Nanostructured SnSe integrated with Se quantum dots with ultrahigh power factor and thermoelectric performance from magnetic field-assisted hydrothermal synthesis. Journal of Materials Chemistry A, 2019, 7, 15757-15765.	5.2	45
98	Automotive exhaust thermoelectric generators: Current status, challenges and future prospects. Energy Conversion and Management, 2019, 195, 1138-1173.	4.4	172
99	Enhanced thermoelectric performance of a simple method prepared polycrystalline SnSe optimized by spark plasma sintering. Journal of Applied Physics, 2019, 125, .	1.1	10
100	Multipoint Defect Synergy Realizing the Excellent Thermoelectric Performance of nâ€Type Polycrystalline SnSe via Re Doping. Advanced Functional Materials, 2019, 29, 1902893.	7.8	73
101	Reduction of thermal conductivity in Al2O3 dispersed p-type bismuth antimony telluride composites. Materials Chemistry and Physics, 2019, 233, 9-15.	2.0	10
102	Synergistically optimizing interdependent thermoelectric parameters of n-type PbSe through alloying CdSe. Energy and Environmental Science, 2019, 12, 1969-1978.	15.6	99
103	Ultrahigh figureâ€ofâ€merit of Cu ₂ Se incorporated with carbon coated boron nanoparticles. InformaÄnÄ-Materiály, 2019, 1, 108-115.	8.5	47
104	Enhanced and stabilized n-type thermoelectric performance in α-CuAgSe by Ni doping. Materials Today Physics, 2019, 10, 100095.	2.9	13
105	New horizons in thermoelectric materials: Correlated electrons, organic transport, machine learning, and more. Journal of Applied Physics, 2019, 125, .	1.1	50
106	Computational strategies for design and discovery of nanostructured thermoelectrics. Npj Computational Materials, 2019, 5, .	3.5	39
107	Enhanced thermoelectric performance of GeTe through <i>in situ</i> microdomain and Ge-vacancy control. Journal of Materials Chemistry A, 2019, 7, 15181-15189.	5.2	56
108	Delocalized Carriers and the Electrical Transport Properties of n-Type GeSe Crystals. ACS Applied Energy Materials, 2019, 2, 3703-3707.	2.5	7
109	2D semiconductors towards high-performance ultraviolet photodetection. Journal Physics D: Applied Physics, 2019, 52, 303002.	1.3	22
110	Present and future thermoelectric materials toward wearable energy harvesting. Applied Materials Today, 2019, 15, 543-557.	2.3	119

#	Article	IF	CITATIONS
111	Thermoelectric Properties of Pure SnSe Single Crystal Prepared by a Vapor Deposition Method. Crystal Research and Technology, 2019, 54, 1900032.	0.6	8
112	Realizing n-type BiCuSeO through halogens doping. Ceramics International, 2019, 45, 14953-14957.	2.3	11
113	Highly enhanced thermoelectric properties of nanostructured Bi ₂ S ₃ bulk materials <i>via</i> carrier modification and multi-scale phonon scattering. Inorganic Chemistry Frontiers, 2019, 6, 1374-1381.	3.0	33
114	Good Performance and Flexible PEDOT:PSS/Cu ₂ Se Nanowire Thermoelectric Composite Films. ACS Applied Materials & Interfaces, 2019, 11, 12819-12829.	4.0	153
115	Dynamic Ag ⁺ -intercalation with AgSnSe ₂ nano-precipitates in Cl-doped polycrystalline SnSe ₂ toward ultra-high thermoelectric performance. Journal of Materials Chemistry A, 2019, 7, 9761-9772.	5.2	50
116	Realizing high thermoelectric performance of polycrystalline SnS through optimizing carrier concentration and modifying band structure. Journal of Alloys and Compounds, 2019, 789, 485-492.	2.8	34
117	Enhanced Thermoelectric Performance of SnSe with Trace Au Particles via Transport Channel Design. ACS Applied Energy Materials, 2019, 2, 2604-2610.	2.5	9
118	Amphoteric Indium Enables Carrier Engineering to Enhance the Power Factor and Thermoelectric Performance in <i>n</i> â€īype Ag <i>_n</i> Pb ₁₀₀ In <i>_n</i> Te ₁₀₀₊₂ <i>_n</i> (UST). Advanced Energy Materials. 2019. 9. 1900414.	10.2	60
119	Dramatically reduced lattice thermal conductivity of Mg2Si thermoelectric material from nanotwinning. Acta Materialia, 2019, 169, 9-14.	3.8	30
120	First-principles assessment of thermoelectric properties of CuFeS2. Journal of Applied Physics, 2019, 125, .	1.1	22
121	Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance. Energy and Environmental Science, 2019, 12, 1396-1403.	15.6	233
122	Versatile Crystal Structures and (Opto)electronic Applications of the 2D Metal Monoâ€, Diâ€, and Triâ€Chalcogenide Nanosheets. Advanced Functional Materials, 2019, 29, 1900040.	7.8	58
123	Chemical exfoliation of SnSe1–xTex nanosheets with conductive PEDOT:PSS for flexible thermoelectric composite films. Journal of Alloys and Compounds, 2019, 792, 638-643.	2.8	19
124	Coupling of spin-orbit interaction with phonon anharmonicity leads to significant impact on thermoelectricity in SnSe. Nano Energy, 2019, 60, 673-679.	8.2	17
125	Six Quaternary Chalcogenides of the Pavonite Homologous Series with Ultralow Lattice Thermal Conductivity. Chemistry of Materials, 2019, 31, 3430-3439.	3.2	28
126	Effects of temperature and pressure on the optical and vibrational properties of thermoelectric SnSe. Physical Chemistry Chemical Physics, 2019, 21, 8663-8678.	1.3	20
127	Bonding heterogeneity and lone pair induced anharmonicity resulted in ultralow thermal conductivity and promising thermoelectric properties in n-type AgPbBiSe ₃ . Chemical Science, 2019, 10, 4905-4913.	3.7	74
128	Kinetic condition driven phase and vacancy enhancing thermoelectric performance of low-cost and eco-friendly Cu _{2â°'x} S. Journal of Materials Chemistry C, 2019, 7, 5366-5373.	2.7	29

	CITATION	Report	
#	ARTICLE Superseding van der Waals with Electrostatic Interactions: Intercalation of Cs into the Interlayer	IF 1.9	CITATIONS 8
130	Space of SiAs ₂ . Inorganic Chemistry, 2019, 58, 4997-5005. Realization of High Thermoelectric Figure of Merit in Solution Synthesized 2D SnSe Nanoplates via Ge Alloying. Journal of the American Chemical Society, 2019, 141, 6141-6145.	6.6	127
131	A Game-Changing Strategy in SnSe Thermoelectrics. Joule, 2019, 3, 636-638.	11.7	14
132	High Thermoelectric Performance in pâ€type Polycrystalline Cdâ€doped SnSe Achieved by a Combination of Cation Vacancies and Localized Lattice Engineering. Advanced Energy Materials, 2019, 9, 1803242.	10.2	150
133	Progress on PEDOT:PSS/Nanocrystal Thermoelectric Composites. Advanced Electronic Materials, 2019, 5, 1800822.	2.6	70
134	Extraordinary thermoelectric performance in MgAgSb alloy with ultralow thermal conductivity. Nano Energy, 2019, 59, 311-320.	8.2	59
135	Highâ€Performance Solutionâ€Processable Flexible SnSe Nanosheet Films for Lower Grade Waste Heat Recovery. Advanced Electronic Materials, 2019, 5, 1800774.	2.6	32
136	Emerging Theory, Materials, and Screening Methods: New Opportunities for Promoting Thermoelectric Performance. Annalen Der Physik, 2019, 531, 1800437.	0.9	83
137	Synergistically optimized electrical and thermal transport properties of polycrystalline SnSe via alloying SnS. Journal of Solid State Chemistry, 2019, 273, 85-91.	1.4	23
138	Origin of Ultralow Thermal Conductivity in n-Type Cubic Bulk AgBiS ₂ : Soft Ag Vibrations and Local Structural Distortion Induced by the Bi 6s ² Lone Pair. Chemistry of Materials, 2019, 31, 2106-2113.	3.2	70
139	High performance n-type Ag2Se film on nylon membrane for flexible thermoelectric power generator. Nature Communications, 2019, 10, 841.	5.8	291
140	Topological current for transverse electrical and thermal conductivity in thermoelectric effect. Journal of Physics Communications, 2019, 3, 115020.	0.5	0
141	Realizing high thermoelectric performance in GeTe through decreasing the phase transition temperature <i>via</i> entropy engineering. Journal of Materials Chemistry A, 2019, 7, 26393-26401.	5.2	103
142	Texturization-Induced In-Plane High-Performance Thermoelectrics and Inapplicability of the Debye Model to Out-of-Plane Lattice Thermal Conductivity in Misfit-Layered Chalcogenides. ACS Applied Materials & Interfaces, 2019, 11, 48079-48085.	4.0	17
143	Influence of periodic table in designing solid-state metal chalcogenides for thermoelectric energy conversion. Journal of Chemical Sciences, 2019, 131, 1.	0.7	4
144	Influence of Nanostructuration on PbTe Alloys Synthesized by Arc-Melting. Materials, 2019, 12, 3783.	1.3	9
145	Ultralow Thermal Conductivity in Chain-like TlSe Due to Inherent Tl ⁺ Rattling. Journal of the American Chemical Society, 2019, 141, 20293-20299.	6.6	61
146	Novel Thermoelectric Materials and Device Design Concepts. , 2019, , .		12

		CITATION REF	PORT	
#	Article		IF	Citations
147	Multicomponent Chalcogenides with Diamond-Like Structure as Thermoelectrics. , 2019, ,	137-157.		0
148	Enhancing the thermoelectric performance of Bi2S3: A promising earth-abundant thermoe material. Frontiers of Physics, 2019, 14, 1.	lectric	2.4	24
149	Realizing tremendous electrical transport properties of polycrystalline SnSe2 by Cl-doped anisotropy. Ceramics International, 2019, 45, 82-89.	and	2.3	22
150	Enhancing thermoelectric performance of SnTe via stepwisely optimizing electrical and the transport properties. Journal of Alloys and Compounds, 2019, 773, 571-584.	ermal	2.8	37
151	High-Temperature Structural and Thermoelectric Study of Argyrodite Ag ₈ GeSe ₆ . ACS Applied Materials & Interfaces, 2019, 11, 2	2168-2176.	4.0	51
152	Silver Telluride Nanowire Assembly for Highâ€Performance Flexible Thermoelectric Film an Application in Selfâ€Powered Temperature Sensor. Advanced Electronic Materials, 2019, 5	d Its 5, 1800612.	2.6	58
153	Optimization of thermoelectric properties achieved in Cu doped β-In2S3 bulks. Journal of Compounds, 2019, 782, 641-647.	Alloys and	2.8	14
154	Thermoelectric Properties of Zn4Sb3 Composites with Incomplete Reaction. Journal of Ele Materials, 2019, 48, 1159-1163.	ctronic	1.0	4
155	Intrinsically Low Thermal Conductivity in BiSbSe ₃ : A Promising Thermoelectri with Multiple Conduction Bands. Advanced Functional Materials, 2019, 29, 1806558.	c Material	7.8	86
156	High Thermoelectric Performance in Polycrystalline SnSe Via Dualâ€Ðoping with Ag/Na an Nanostructuring With Ag ₈ SnSe ₆ . Advanced Energy Materials, 2	d 019, 9, 1803072.	10.2	98
157	Multiple-valley effect on modulation of thermoelectric properties of n-type ZrCuSiAs-struc oxyantimonides LnTSbO (Ln= lanthanides and T=Zn, Mn). Journal of Materiomics, 2019, 5	ture , 51-55.	2.8	4
158	Study on thermoelectric properties of co-evaporated Sn-Se films with different phase form Thin Solid Films, 2019, 672, 133-137.	lations.	0.8	10
159	Discovery of TaFeSb-based half-Heuslers with high thermoelectric performance. Nature Communications, 2019, 10, 270.		5.8	227
160	Vacancies in SnSe single crystals in a near-equilibrium state. Physical Review B, 2019, 99, .		1.1	33
161	Thermoelectrics: From history, a window to the future. Materials Science and Engineering 2019, 138, 100501.	Reports,	14.8	341
162	Realizing High Thermoelectric Performance in p-Type SnSe through Crystal Structure Mod Journal of the American Chemical Society, 2019, 141, 1141-1149.	ification.	6.6	137
163	SnSe/SiO ₂ /Si Heterostructures for Ultrahigh-Sensitivity and Broadband Optic Sensitive Detectors. IEEE Electron Device Letters, 2019, 40, 55-58.	al Position	2.2	26
164	Investigations on distinct thermoelectric transport behaviors of Cu in n-type PbS. Journal c and Compounds, 2019, 781, 820-830.	of Alloys	2.8	32

# 165	ARTICLE Manipulating the doping level via host-dopant synergism towards high performance n-type thermoelectric composites. Chemical Engineering Journal, 2020, 382, 122817.	IF 6.6	Citations 20
166	Glass-like electronic and thermal transport in crystalline cubic germanium selenide. Journal of Energy Chemistry, 2020, 45, 83-90.	7.1	16
167	Chalcogenide Thermoelectrics Empowered by an Unconventional Bonding Mechanism. Advanced Functional Materials, 2020, 30, 1904862.	7.8	148
168	Recent Advances in Liquidâ€Like Thermoelectric Materials. Advanced Functional Materials, 2020, 30, 1903867.	7.8	148
169	Realizing High Thermoelectric Performance in Polycrystalline SnSe via Silver Doping and Germanium Alloying. ACS Applied Energy Materials, 2020, 3, 2049-2054.	2.5	52
170	Intrinsic mechanical behavior of MgAgSb thermoelectric material: An ab initio study. Journal of Materiomics, 2020, 6, 24-32.	2.8	5
171	Enhanced out-of-plane thermoelectric performance of Cmcm SnSe phase by uniaxial strain. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126002.	0.9	9
172	Nanoscale Organic Thermoelectric Materials: Measurement, Theoretical Models, and Optimization Strategies. Advanced Functional Materials, 2020, 30, 1903873.	7.8	97
173	Discordant nature of Cd in PbSe: off-centering and core–shell nanoscale CdSe precipitates lead to high thermoelectric performance. Energy and Environmental Science, 2020, 13, 200-211.	15.6	57
174	In-plane anisotropic electronics based on low-symmetry 2D materials: progress and prospects. Nanoscale Advances, 2020, 2, 109-139.	2.2	84
175	Facile <i>in situ</i> solution synthesis of SnSe/rGO nanocomposites with enhanced thermoelectric performance. Journal of Materials Chemistry A, 2020, 8, 1394-1402.	5.2	117
176	Band structure, phonon spectrum, and thermoelectric properties of β-BiAs and β-BiSb monolayers. Journal of Materials Chemistry C, 2020, 8, 581-590.	2.7	21
177	The high thermoelectric performance of slightly Sb doped PbTe alloys. Journal of Materials Chemistry C, 2020, 8, 1679-1685.	2.7	22
178	Experimental study of the thermoelectric properties of YbH2. Journal of Alloys and Compounds, 2020, 821, 153496.	2.8	3
179	Exploring thermoelectric performance of Ca3Co4O9+δ ceramics via chemical electroless plating with Cu. Journal of Alloys and Compounds, 2020, 821, 153522.	2.8	10
180	Revealing nano-chemistry at lattice defects in thermoelectric materials using atom probe tomography. Materials Today, 2020, 32, 260-274.	8.3	73
181	Polycrystalline SnSe–Sn1–vS solid solutions: Vacancy engineering and nanostructuring leading to high thermoelectric performance. Nano Energy, 2020, 69, 104393.	8.2	25
182	Enhanced Thermoelectric Performance of n-Type Polycrystalline SnSe via MoCl5 Doping. Journal of Electronic Materials, 2020, 49, 621-626.	1.0	16

~		_	
CITAT	ION	Drno	DT
CITAT	IUN	REPU	UK L

#	Article	IF	CITATIONS
183	Enhancing the thermoelectric properties of Bi2Ba2Co2Oy by dispersing SiC nanoparticles based on Na element doping. Ceramics International, 2020, 46, 6899-6905.	2.3	16
184	High thermoelectric figure of merit ZT > 1 in SnS polycrystals. Journal of Materiomics, 2020, 6, 77-85.	2.8	46
185	Dynamic piezo-thermoelectric generator for simultaneously harvesting mechanical and thermal energies. Nano Energy, 2020, 69, 104397.	8.2	38
186	Optimization of sodium hydroxide for securing high thermoelectric performance in polycrystalline Sn _{1 â^' <i>x</i>} Se via anisotropy and vacancy synergy. InformaÄnÃ-Materiály, 2020, 2, 1201-1215.	8.5	46
187	High-Performance Thermoelectrics from Cellular Nanostructured Sb2Si2Te6. Joule, 2020, 4, 159-175.	11.7	103
188	Enhanced Thermoelectric Performance and Service Stability of Cu ₂ Se Via Tailoring Chemical Compositions at Multiple Atomic Positions. Advanced Functional Materials, 2020, 30, 1908315.	7.8	46
189	Cu Intercalation and Br Doping to Thermoelectric SnSe ₂ Lead to Ultrahigh Electron Mobility and Temperatureâ€Independent Power Factor. Advanced Functional Materials, 2020, 30, 1908405.	7.8	53
190	Tuning the Electronic Structure of an α-Antimonene Monolayer through Interface Engineering. Nano Letters, 2020, 20, 8408-8414.	4.5	33
191	Suppressed phase transition and enhanced thermoelectric performance in iodine-doped AgCuTe. Nano Energy, 2020, 77, 105297.	8.2	21
192	High-Quality SnSe ₂ Single Crystals: Electronic and Thermoelectric Properties. ACS Applied Energy Materials, 2020, 3, 10787-10792.	2.5	34
193	High Power Factor and Enhanced Thermoelectric Performance in Sc and Bi Codoped GeTe: Insights into the Hidden Role of Rhombohedral Distortion Degree. Advanced Energy Materials, 2020, 10, 2002588.	10.2	75
194	The synthesis of competing phase GeSe and GeSe ₂ 2D layered materials. RSC Advances, 2020, 10, 38227-38232.	1.7	17
195	Constructing Layered MXene/CNTs Composite Film with 2D–3D Sandwich Structure for High Thermoelectric Performance. Advanced Materials Interfaces, 2020, 7, 2001340.	1.9	44
196	Geometrical Structure Optimization Design of High-Performance Bi2Te3-Based Artificially Tilted Multilayer Thermoelectric Devices. Journal of Electronic Materials, 2020, 49, 5980-5988.	1.0	5
197	HPHT Synthesis: Effects of the Synergy of Pressure Regulation and Atom Filling on the Microstructure and Thermoelectric Properties of Yb <i>_x</i> Ba _{8–<i>x</i>} Ga ₁₆ Ge ₃₀ . ACS Omega, 2020, 5, 11202-11209.	1.6	2
198	Enhancing power factor of SnSe sheet with grain boundary by doping germanium or silicon. Npj Computational Materials, 2020, 6, .	3.5	9
199	Thermal decomposition study of SnSe single crystals. European Physical Journal Plus, 2020, 135, 1.	1.2	3
200	Ultralow Thermal Conductivity, Enhanced Mechanical Stability, and High Thermoelectric Performance in (GeTe) _{1–2<i>x</i>} (SnSe) _{<i>x</i>} (SnS) _{<i>x</i>} (SnS) _{<i>x</i>})	6.6	61

#	Article	IF	CITATIONS
201	Hierarchically nanostructured thermoelectric materials: challenges and opportunities for improved power factors. European Physical Journal B, 2020, 93, 1.	0.6	12
202	Crystal Structure and Atomic Vacancy Optimized Thermoelectric Properties in Gadolinium Selenides. Chemistry of Materials, 2020, 32, 10130-10139.	3.2	36
203	Realization of High Thermoelectric Performance in Polycrystalline Tin Selenide through Schottky Vacancies and Endotaxial Nanostructuring. Chemistry of Materials, 2020, 32, 9761-9770.	3.2	22
204	High thermoelectric figure of merit in monolayer Tl2O from first principles. Journal of Applied Physics, 2020, 128, .	1.1	6
205	2D Materials Based on Main Group Element Compounds: Phases, Synthesis, Characterization, and Applications. Advanced Functional Materials, 2020, 30, 2001127.	7.8	58
206	SrTiO3-based thermoelectrics: Progress and challenges. Nano Energy, 2020, 78, 105195.	8.2	127
207	Te-free compound Bi2SeS2 as a promising mid-temperature thermoelectric material. Journal of Alloys and Compounds, 2020, 849, 156677.	2.8	6
208	Tuning electronic and optical properties of SnSe by external strain. Optik, 2020, 218, 165260.	1.4	3
209	Ternary Chalcogenides GeSb2Se3 and Ge3Sb4Se7 Containing a â^ž1[Sb2Se2]2– 1D Chain and a 2D Structure Related to SnSe. Inorganic Chemistry, 2020, 59, 11207-11212.	1.9	4
210	Symmetry and asymmetry in thermoelectrics. Journal of Materials Chemistry C, 2020, 8, 12054-12061.	2.7	14
211	Rational structural design and manipulation advance SnSe thermoelectrics. Materials Horizons, 2020, 7, 3065-3096.	6.4	73
212	Exceptionally High Average Power Factor and Thermoelectric Figure of Merit in n-type PbSe by the Dual Incorporation of Cu and Te. Journal of the American Chemical Society, 2020, 142, 15172-15186.	6.6	72
213	Enhancement of the Thermoelectric Performance of 2D SnSe Nanoplates through Incorporation of Magnetic Nanoprecipitates. ACS Applied Energy Materials, 2020, 3, 9051-9057.	2.5	27
214	High Thermoelectric Performance in the New Cubic Semiconductor AgSnSbSe ₃ by High-Entropy Engineering. Journal of the American Chemical Society, 2020, 142, 15187-15198.	6.6	108
215	Singleâ€Crystal SnSe Thermoelectric Fibers via Laserâ€Induced Directional Crystallization: From 1D Fibers to Multidimensional Fabrics. Advanced Materials, 2020, 32, e2002702.	11.1	57
216	Routes for advancing SnTe thermoelectrics. Journal of Materials Chemistry A, 2020, 8, 16790-16813.	5.2	87
217	High thermoelectric performance of two-dimensional α-GeTe bilayer. Energy, 2020, 211, 118693.	4.5	9
218	Effects of Electric Field on Electronic and Optical Properties of SnSe: A First-Principle Study. Integrated Ferroelectrics, 2020, 211, 167-174.	0.3	2

#	Article	IF	CITATIONS
219	Strain-Induced Ultrahigh Electron Mobility and Thermoelectric Figure of Merit in Monolayer α-Te. ACS Applied Materials & Interfaces, 2020, 12, 43901-43910.	4.0	36
220	Structure-Dependent Thermoelectric Properties of GeSe _{1–<i>x</i>} Te _{<i>x</i>} (0 ≤i>x ≤0.5). ACS Applied Materials & Interfaces, 2020, 12, 41381-41389.	4.0	18
221	Power Conversion and Its Efficiency in Thermoelectric Materials. Entropy, 2020, 22, 803.	1.1	18
222	Two-Dimensional SnSe Composited with One-Dimensional Mn Nanowires: A Promising Thermoelectric with Ultrahigh Power Factor. ACS Applied Energy Materials, 2020, 3, 9234-9245.	2.5	9
223	Boosted carrier mobility and enhanced thermoelectric properties of polycrystalline Na _{0.03} Sn _{0.97} Se by liquid-phase hot deformation. Materials Advances, 2020, 1, 1092-1098.	2.6	3
224	High Thermoelectric Performance and Defect Energetics of Multipocketed Full Heusler Compounds. Physical Review Applied, 2020, 14, .	1.5	25
225	Investigating the thermoelectric performance of n-type SnSe: the synergistic effect of NbCl ₅ doping and dislocation engineering. Journal of Materials Chemistry C, 2020, 8, 13244-13252.	2.7	31
226	High-Performance n-type SnSe Thermoelectric Polycrystal Prepared by Arc-Melting. Cell Reports Physical Science, 2020, 1, 100263.	2.8	23
227	Enhancement of thermoelectric performance of n-type AgBi1+xSe2 via improvement of the carrier mobility by modulation doping. Bulletin of Materials Science, 2020, 43, 1.	0.8	5
228	Thermoelectric properties of flexible PEDOT:PSS-based films tuned by SnSe via the vacuum filtration method. RSC Advances, 2020, 10, 43840-43846.	1.7	16
229	Hierarchical Structures Advance Thermoelectric Properties of Porous n-type β-Ag ₂ Se. ACS Applied Materials & Interfaces, 2020, 12, 51523-51529.	4.0	51
230	Enhanced Thermoelectric Performance in Li Doped SnS via Carrier Concentration Optimization. IOP Conference Series: Materials Science and Engineering, 2020, 738, 012016.	0.3	4
231	Computer-aided design of high-efficiency GeTe-based thermoelectric devices. Energy and Environmental Science, 2020, 13, 1856-1864.	15.6	103
232	Investigation on carrier mobility when comparing nanostructures and bands manipulation. Nanoscale, 2020, 12, 12741-12747.	2.8	13
233	A plausible method of preparing the ideal p-n junction interface of a thermoelectric material by surface doping. Applied Surface Science, 2020, 520, 146314.	3.1	3
234	Effect of Te doping on thermoelectric properties in vast off-stoichiometric tin-rich SnSe crystals. Journal of Alloys and Compounds, 2020, 836, 155480.	2.8	9
235	Dynamic Epitaxial Crystallization of SnSe ₂ on the Oxidized SnSe Surface and Its Atomistic Mechanisms. ACS Applied Materials & Interfaces, 2020, 12, .	4.0	9
236	Thermoelectric transport properties of PbS and its contrasting electronic band structures. Scripta Materialia, 2020, 185, 76-81.	2.6	7

#	Article	IF	CITATIONS
237	Layered materials with 2D connectivity for thermoelectric energy conversion. Journal of Materials Chemistry A, 2020, 8, 12226-12261.	5.2	74
238	Large enhancement of thermoelectric performance in MoS ₂ / <i>h</i> -BN heterostructure due to vacancy-induced band hybridization. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13929-13936.	3.3	34
239	Phonon Engineering for Thermoelectric Enhancement of p-Type Bismuth Telluride by a Hot-Pressing Texture Method. ACS Applied Materials & Interfaces, 2020, 12, 31612-31618.	4.0	41
240	n-Bi _{2–<i>x</i>} Sb <i>_x</i> Te ₃ : A Promising Alternative to Mainstream Thermoelectric Material n-Bi ₂ Te _{3<i>–x</i>} Se <i>_x</i> near Room Temperature. ACS Applied Materials & Interfaces, 2020, 12, 31619-31627.	4.0	33
241	Review of current high-ZT thermoelectric materials. Journal of Materials Science, 2020, 55, 12642-12704.	1.7	187
242	Strong lattice anharmonicity securing intrinsically low lattice thermal conductivity and high performance thermoelectric SnSb2Te4 via Se alloying. Nano Energy, 2020, 76, 105084.	8.2	39
243	Bi ₈ Se ₇ : Delocalized Interlayer π-Bond Interactions Enhancing Carrier Mobility and Thermoelectric Performance near Room Temperature. Journal of the American Chemical Society, 2020, 142, 12536-12543.	6.6	27
244	Facile microwave-assisted hydrothermal synthesis of SnSe: impurity removal and enhanced thermoelectric properties. Journal of Materials Chemistry C, 2020, 8, 10333-10341.	2.7	18
245	Realizing record high performance in n-type Bi ₂ Te ₃ -based thermoelectric materials. Energy and Environmental Science, 2020, 13, 2106-2114.	15.6	249
246	Strong Anisotropic Thermal Conductivity in Polycrystalline Layers of (Ag x Sn 1―x S) 1.2 (TiS 2) 2 with Prospects Toward Improved Thermoelectric Performance. Annalen Der Physik, 2020, 532, 1900551.	0.9	1
247	Estimation of the potential performance in p-type SnSe crystals through evaluating weighted mobility and effective mass. Journal of Materiomics, 2020, 6, 671-676.	2.8	38
248	Sb2Si2Te6: A Robust New Thermoelectric Material. Trends in Chemistry, 2020, 2, 89-91.	4.4	15
249	Inorganic thermoelectric materials: A review. International Journal of Energy Research, 2020, 44, 6170-6222.	2.2	119
250	Ultralow Thermal Conductivity and Thermoelectric Properties of Rb2Bi8Se13. Chemistry of Materials, 2020, 32, 3561-3569.	3.2	23
251	Effect of TiO ₂ additive on thermoelectric properties of SrTiO ₃ . Functional Materials Letters, 2020, 13, 2051001.	0.7	4
252	High Thermoelectric Figure of Merit of Fullâ€Heusler Ba ₂ AuX (X = As, Sb, and Bi). Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000084.	1.2	11
253	The crystallization, thermodynamic and thermoelectric properties of vast off-stoichiometric Sn–Se crystals. Journal of Materials Chemistry C, 2020, 8, 6422-6434.	2.7	14
254	Exploring Thermoelectric Materials from High Mobility Organic Semiconductors. Chemistry of Materials, 2020, 32, 2688-2702.	3.2	82

#	Article	IF	CITATIONS
255	Enhanced thermoelectric performance in polycrystalline N-type Pr-doped SnSe by hot forging. Acta Materialia, 2020, 190, 1-7.	3.8	35
256	Study on thermoelectric properties of CrI3 monolayer. Applied Physics Express, 2020, 13, 045001.	1.1	10
257	Thermoelectric Penta-Silicene with a High Room-Temperature Figure of Merit. ACS Applied Materials & Interfaces, 2020, 12, 14298-14307.	4.0	71
258	Modulating electrical transport properties of SnSe crystal to improve the thermoelectric power factor by adjusting growth method. Applied Physics Letters, 2020, 116, .	1.5	5
259	Ultrahigh Average <i>ZT</i> Realized in p-Type SnSe Crystalline Thermoelectrics through Producing Extrinsic Vacancies. Journal of the American Chemical Society, 2020, 142, 5901-5909.	6.6	94
260	Contrasting roles of small metallic elements M (M = Cu, Zn, Ni) in enhancing the thermoelectric performance of n-type PbM _{0.01} Se. Journal of Materials Chemistry A, 2020, 8, 5699-5708.	5.2	32
261	Effects of Preparation Methods on the Thermoelectric Performance of SWCNT/Bi2Te3 Bulk Composites. Materials, 2020, 13, 2636.	1.3	8
262	Advanced Thermoelectric Design: From Materials and Structures to Devices. Chemical Reviews, 2020, 120, 7399-7515.	23.0	1,248
263	Nanoscale defect structures advancing high performance n-type PbSe thermoelectrics. Coordination Chemistry Reviews, 2020, 421, 213437.	9.5	41
264	Thermoelectric thin films: Promising strategies and related mechanism on boosting energy conversion performance. Journal of Materiomics, 2020, 6, 494-512.	2.8	49
265	Bipolar Thermoelectrical Transport of SnSe Nanoplate in Low Temperature*. Chinese Physics Letters, 2020, 37, 017301.	1.3	6
266	Ultralow thermal conductivity from transverse acoustic phonon suppression in distorted crystalline α-MgAgSb. Nature Communications, 2020, 11, 942.	5.8	44
267	Synthesis process and thermoelectric properties of the layered crystal structure SnS2. Journal of Materials Science: Materials in Electronics, 2020, 31, 5425-5433.	1.1	5
268	Growth of SnSe single crystal via vertical vapor deposition method and characterization of its thermoelectric performance. Materials Research Bulletin, 2020, 126, 110819.	2.7	9
269	Synergistic optimization of thermoelectric performance of Sb doped GeTe with a strained domain and domain boundaries. Journal of Materials Chemistry A, 2020, 8, 5332-5341.	5.2	42
270	Morphology and Texture Engineering Enhancing Thermoelectric Performance of Solvothermal Synthesized Ultralarge SnS Microcrystal. ACS Applied Energy Materials, 2020, 3, 2192-2199.	2.5	23
271	Highâ€Performance Thermoelectric SnSe: Aqueous Synthesis, Innovations, and Challenges. Advanced Science, 2020, 7, 1902923.	5.6	156
272	Fermi-surface dynamics and high thermoelectric performance along the out-of-plane direction in n-type SnSe crystals. Energy and Environmental Science, 2020, 13, 616-621.	15.6	32

#	Article	IF	CITATIONS
273	Promising and Ecoâ€Friendly Cu ₂ Xâ€Based Thermoelectric Materials: Progress and Applications. Advanced Materials, 2020, 32, e1905703.	11.1	165
274	A Review on Silicide-Based Materials: Thermoelectric and Mechanical Properties. Metals and Materials International, 2021, 27, 2205.	1.8	21
275	Recent Progress of Two-Dimensional Thermoelectric Materials. Nano-Micro Letters, 2020, 12, 36.	14.4	218
276	Thermal transport of chalcogenides. , 2020, , 339-370.		1
277	Intrinsically Low Thermal Conductivity and High Carrier Mobility in Dual Topological Quantum Material, nâ€Type BiTe. Angewandte Chemie, 2020, 132, 4852-4859.	1.6	19
278	Intrinsically Low Thermal Conductivity and High Carrier Mobility in Dual Topological Quantum Material, nâ€Type BiTe. Angewandte Chemie - International Edition, 2020, 59, 4822-4829.	7.2	45
279	Improved Thermoelectric Properties and Environmental Stability of Conducting PEDOT:PSS Films Post-treated With Imidazolium Ionic Liquids. Frontiers in Chemistry, 2019, 7, 870.	1.8	35
280	High-pressure synthesis and excellent thermoelectric performance of Ni/BiTeSe magnetic nanocomposites. Journal of Materials Chemistry A, 2020, 8, 4816-4826.	5.2	55
281	Toward Accelerated Thermoelectric Materials and Process Discovery. ACS Applied Energy Materials, 2020, 3, 2240-2257.	2.5	75
282	Cu3ErTe3: a new promising thermoelectric material predicated by high-throughput screening. Materials Today Physics, 2020, 12, 100180.	2.9	20
283	Achieving high room-temperature thermoelectric performance in cubic AgCuTe. Journal of Materials Chemistry A, 2020, 8, 4790-4799.	5.2	46
284	Redesign high-performance flexible thermoelectrics: From mathematical algorithm to artificial cracks. Applied Physics Letters, 2020, 116, .	1.5	8
285	Growth of large size SnSe crystal via directional solidification and evaluation of its properties. Journal of Alloys and Compounds, 2020, 824, 153869.	2.8	5
286	Comparing study of picene thin films on SnSe and Au(1Â1Â1) surfaces. Chemical Physics, 2020, 532, 110689.	0.9	2
287	High Thermoelectric Performance of Co-Doped P-Type Polycrystalline SnSe via Optimizing Electrical Transport Properties. ACS Applied Materials & Interfaces, 2020, 12, 8446-8455.	4.0	31
288	Ultrahigh Performance of n-Type Ag ₂ Se Films for Flexible Thermoelectric Power Generators. ACS Applied Materials & Interfaces, 2020, 12, 9646-9655.	4.0	115
289	Enhancing the Thermoelectric Performance of p-Type Mg ₃ Sb ₂ via Codoping of Li and Cd. ACS Applied Materials & Interfaces, 2020, 12, 8359-8365.	4.0	54
290	High-quality textured SnSe thin films for self-powered, rapid-response photothermoelectric application. Nano Energy, 2020, 72, 104742.	8.2	58

# 291	ARTICLE Seeking new, highly effective thermoelectrics. Science, 2020, 367, 1196-1197.	IF 6.0	Citations 313
292	Magnetic properties of SnSe monolayer doped by transition-metal atoms: A first-principle calculation. Results in Physics, 2020, 17, 103126.	2.0	11
293	Thermoelectricity of n-type MnBi4S7-7xSe7x solid solution. Chemical Engineering Journal, 2020, 396, 125219.	6.6	8
294	Study of Structural, Thermoelectric, and Photoelectric Properties of Layered Tin Monochalcogenides SnX (X = S, Se) for Energy Application. ACS Applied Energy Materials, 2020, 3, 4896-4905.	2.5	22
295	Bi8Se9: Effective Reduction of Bipolar Diffusion via Increasing Band Gap. Crystal Growth and Design, 2020, 20, 3555-3560.	1.4	11
296	Electronic structure modulation strategies in high-performance thermoelectrics. APL Materials, 2020, 8, .	2.2	52
297	Boosting thermoelectric performance of n-type PbS through synergistically integrating In resonant level and Cu dynamic doping. Journal of Physics and Chemistry of Solids, 2021, 148, 109640.	1.9	26
298	Ultralow Lattice Thermal Conductivity at Room Temperature in Cu 4 TiSe 4. Angewandte Chemie, 2021, 133, 9188-9195.	1.6	2
299	Ultralow Lattice Thermal Conductivity at Room Temperature in Cu ₄ TiSe ₄ . Angewandte Chemie - International Edition, 2021, 60, 9106-9113.	7.2	24
300	Evidence of Highly Anharmonic Soft Lattice Vibrations in a Zintl Rattler. Angewandte Chemie, 2021, 133, 4305-4311.	1.6	11
301	Poly(3,4-ethylenedioxythiophene) (PEDOT) as promising thermoelectric materials and devices. Chemical Engineering Journal, 2021, 404, 126552.	6.6	64
302	De novo design of polymers embedded with platinum acetylides towards n-type organic thermoelectrics. Chemical Engineering Journal, 2021, 405, 126692.	6.6	14
303	The thermoeletric performance of nanoporous SnSe assembled by hollow cage cluster. Applied Surface Science, 2021, 537, 147692.	3.1	2
304	Two-dimensional WSe2/SnSe p-n junctions secure ultrahigh thermoelectric performance in n-type Pb/l Co-doped polycrystalline SnSe. Materials Today Physics, 2021, 16, 100306.	2.9	51
305	Thermoelectric properties of finite two-dimensional quantum dot arrays with band-like electronic states. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 126, 114406.	1.3	0
306	Recent developments in flexible thermoelectrics: From materials to devices. Renewable and Sustainable Energy Reviews, 2021, 137, 110448.	8.2	84
307	Acido-treatment of PEDOT:PSS/Carbon Dots (CDots) nano-composite films for high thermoelectric power factor performance and generator. Materials Chemistry and Physics, 2021, 257, 123762.	2.0	29
308	Achieving enhanced thermoelectric performance of Ca1â^'xâ^'yLaxSryMnO3 via synergistic carrier concentration optimization and chemical bond engineering. Chemical Engineering Journal, 2021, 408, 127364.	6.6	23

#	Article	IF	CITATIONS
309	Band flattening and phonon-defect scattering in cubic SnSe–AgSbTe2 alloy for thermoelectric enhancement. Materials Today Physics, 2021, 16, 100298.	2.9	20
310	Enhancing thermoelectric performance of Sb2Te3 through swapped bilayer defects. Nano Energy, 2021, 79, 105484.	8.2	32
311	Preparing bulk Cu-Ni-Mn based thermoelectric alloys and synergistically improving their thermoelectric and mechanical properties using nanotwins and nanoprecipitates. Materials Today Physics, 2021, 17, 100332.	2.9	17
312	Realizing enhanced thermoelectric properties in Cu2S-alloyed SnSe based composites produced via solution synthesis and sintering. Journal of Materials Science and Technology, 2021, 78, 121-130.	5.6	38
313	Highly anisotropic electronic and mechanical properties of monolayer and bilayer As2S3. Applied Surface Science, 2021, 542, 148665.	3.1	10
314	The Origin of Quantum Effects in Lowâ€Dimensional Thermoelectric Materials. Advanced Quantum Technologies, 2021, 4, .	1.8	14
315	Rational band engineering and structural manipulations inducing high thermoelectric performance in n-type CoSb3 thin films. Nano Energy, 2021, 81, 105683.	8.2	82
316	Vacancy cluster-induced local disordered structure for the enhancement of thermoelectric property in Cu ₂ ZnSnSe ₄ . Journal of Materials Chemistry A, 2021, 9, 1006-1013.	5.2	15
317	Influences of texture, off-stoichiometry, and phases on thermoelectric properties of Sn–Se polycrystals sintered by SPS from millimeter-scale crystal sheets. Journal of Solid State Chemistry, 2021, 293, 121760.	1.4	0
318	In ₄ Pb _{5.5} Sb ₅ S ₁₉ : A Stable Quaternary Chalcogenide with Low Thermal Conductivity. Inorganic Chemistry, 2021, 60, 325-333.	1.9	5
319	Boosting the thermoelectric performance of p-type polycrystalline SnSe with high doping efficiency <i>via</i> precipitation design. Journal of Materials Chemistry A, 2021, 9, 2991-2998.	5.2	10
320	Evidence of Highly Anharmonic Soft Lattice Vibrations in a Zintl Rattler. Angewandte Chemie - International Edition, 2021, 60, 4259-4265.	7.2	32
321	Dynamic stabilization and heat transport characteristics of monolayer SnSe at finite temperature: A study by phonon quasiparticle approach. Physical Review B, 2021, 103, .	1.1	3
322	Coupling an organic photosensitizer and an inorganic framework into a single-phase material that shows visible-light photocurrent response. CrystEngComm, 2021, 23, 1881-1884.	1.3	Ο
323	Tin-selenide as a futuristic material: properties and applications. RSC Advances, 2021, 11, 6477-6503.	1.7	71
324	Electronic transport descriptors for the rapid screening of thermoelectric materials. Materials Horizons, 2021, 8, 2463-2474.	6.4	16
325	Ultralow lattice thermal conductivity and dramatically enhanced thermoelectric properties of monolayer InSe induced by an external electric field. Physical Chemistry Chemical Physics, 2021, 23, 13633-13646.	1.3	10
326	Modulation of the electronic structure and thermoelectric properties of orthorhombic and cubic SnSe by AgBiSe ₂ alloying. Chemical Science, 2021, 12, 13074-13082.	3.7	20

	CITATION I	CITATION REPORT	
#	Article	IF	CITATIONS
327	Highly Stretchable Carbon Nanotubes/Polymer Thermoelectric Fibers. Nano Letters, 2021, 21, 1047-1055.	4.5	60
328	Anomalous thermoelectricity at the two-dimensional structural transition of SnSe monolayers. Physical Review B, 2021, 103, .	1.1	18
329	SnSe, the rising star thermoelectric material: a new paradigm in atomic blocks, building intriguing physical properties. Materials Horizons, 2021, 8, 1847-1865.	6.4	29
330	Thickness-dependent anisotropic transport of phonons and charges in few-layered PdSe ₂ . Physical Chemistry Chemical Physics, 2021, 23, 18869-18884.	1.3	17
331	Phonon spectrum and thermoelectric properties of square/octagon structure of bismuth monolayer. RSC Advances, 2021, 11, 5107-5117.	1.7	2
332	Synchrotron Radiation and Its Applications in Inorganic Materials. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 901.	0.6	27
333	CALPHAD as a powerful technique for design and fabrication of thermoelectric materials. Journal of Materials Chemistry A, 2021, 9, 6634-6649.	5.2	16
334	Novel optimization perspectives for thermoelectric properties based on Rashba spin splitting: a mini review. Nanoscale, 2021, 13, 18032-18043. Giant Nernst effect and field-enhanced transversal <mml:math< td=""><td>2.8</td><td>10</td></mml:math<>	2.8	10
335	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mi>z</mml:mi><mml:mi>Nmathvariant="normal">T</mml:mi> in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">ZrTe<mml:mn>5</mml:mn></mml:mi </mml:msub>. Physical Review</mml:math </mml:msub>	i> 1.1	sub> <mml:mi 16</mml:mi
336	B, 2021, 103, . Advances in the applications of thermoelectric materials. , 2021, , 313-337.		О
337	Charting lattice thermal conductivity for inorganic crystals and discovering rare earth chalcogenides for thermoelectrics. Energy and Environmental Science, 2021, 14, 3559-3566.	15.6	51
338	Boosting the thermoelectric performance of GeTe by manipulating the phase transition temperature <i>via</i> Sb doping. Journal of Materials Chemistry C, 2021, 9, 6484-6490.	2.7	19
339	Mechanical Property of SnSe Single Crystal Prepared <i>via</i> Vertical Bridgman Method. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 313.	0.6	0
340	Intrinsically ultralow thermal conductive inorganic solids for high thermoelectric performance. Chemical Communications, 2021, 57, 4751-4767.	2.2	45
341	Strategies for Manipulating Phonon Transport in Solids. ACS Nano, 2021, 15, 2182-2196.	7.3	22
342	Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe ₂ . Science, 2021, 371, 722-727.	6.0	306
343	Exploring a Superlattice of SnO-PbO: A New Material for Thermoelectric Applications. ACS Applied Energy Materials, 2021, 4, 2081-2090.	2.5	7
344	Directional Design of Materials Based on Multi-Objective Optimization: A Case Study of Two-Dimensional Thermoelectric SnSe. Chinese Physics Letters, 2021, 38, 027301.	1.3	14

#	Article	IF	CITATIONS
345	Anisotropic elasticity drives negative thermal expansion in monocrystalline SnSe. Physical Review B, 2021, 103, .	1.1	11
346	Substrate-independent growth and characterization of single-crystalline SnSe nanoplates. Materials Characterization, 2021, 172, 110864.	1.9	4
347	High-entropy-stabilized chalcogenides with high thermoelectric performance. Science, 2021, 371, 830-834.	6.0	546
348	A brief review of thermal transport in mesoscopic systems from nonequilibrium Green's function approach. Frontiers of Physics, 2021, 16, 1.	2.4	14
349	Super deformability and thermoelectricity of bulk γ-InSe single crystals*. Chinese Physics B, 2021, 30, 078101.	0.7	12
350	Metavalent Bonding in GeSe Leads to High Thermoelectric Performance. Angewandte Chemie - International Edition, 2021, 60, 10350-10358.	7.2	58
351	Preparation and thermoelectric performance of tetrahedrite-like cubic Cu3SbS3 compound. Journal of Materials Science: Materials in Electronics, 2021, 32, 10789-10802.	1.1	8
352	Br-Doped n-Type SnSe ₂ : Single-Crystal Growth and Thermoelectric Properties. ACS Applied Energy Materials, 2021, 4, 2908-2913.	2.5	12
353	Thermoelectric materials for space applications. CEAS Space Journal, 2021, 13, 325-340.	1.1	13
354	Achieving High Thermoelectric Performance of n-Type Bi ₂ Te _{2.79} Se _{0.21} Sintered Materials by Hot-Stacked Deformation. ACS Applied Materials & Interfaces, 2021, 13, 15429-15436.	4.0	18
355	Metavalent Bonding in GeSe Leads to High Thermoelectric Performance. Angewandte Chemie, 2021, 133, 10438-10446.	1.6	12
357	Fracture toughness of thermoelectric materials. Materials Science and Engineering Reports, 2021, 144, 100607.	14.8	39
359	Growth and electrical properties of SnS1-xSex (0 â‰≇€‰x â‰≇€‰1) single crystals grown using the gradient method. Journal of the Korean Physical Society, 2021, 78, 1095-1100.	temperatu 0.3	re 6
360	Highly Anisotropic Thermoelectric Properties of Two-Dimensional As ₂ Te ₃ . ACS Applied Electronic Materials, 2021, 3, 1610-1620.	2.0	24
361	Impact of Graphene or Reduced Graphene Oxide on Performance of Thermoelectric Composites. Journal of Carbon Research, 2021, 7, 37.	1.4	8
363	Repairable Characteristic of Zn ₄ Sb ₃ and Its Influence on Thermoelectric Performance. ACS Applied Energy Materials, 2021, 4, 5332-5338.	2.5	5
364	The origin of the lattice thermal conductivity enhancement at the ferroelectric phase transition in GeTe. Npj Computational Materials, 2021, 7, .	3.5	42
365	α-Cu2Se thermoelectric thin films prepared by copper sputtering into selenium precursor layers. Chemical Engineering Journal, 2021, 410, 128444.	6.6	48

#	Article	IF	CITATIONS
366	Ultralow Thermal Conductivity in Earth-Abundant Cu _{1.6} Bi _{4.8} S ₈ : Anharmonic Rattling of Interstitial Cu. Chemistry of Materials, 2021, 33, 2993-3001.	3.2	26
367	Lattice Strain Leads to High Thermoelectric Performance in Polycrystalline SnSe. ACS Nano, 2021, 15, 8204-8215.	7.3	66
368	Recent progress on antimonene: from theoretical calculation to epitaxial growth. Japanese Journal of Applied Physics, 2021, 60, SE0805.	0.8	13
369	Realizing high thermoelectric properties in p-type polycrystalline SnSe by inducing DOS distortion. Rare Metals, 2021, 40, 2819-2828.	3.6	33
370	Application-Driven Carbon Nanotube Functional Materials. ACS Nano, 2021, 15, 7946-7974.	7.3	102
371	Zintl Phase BaAgSb: Low Thermal Conductivity and High Performance Thermoelectric Material in Ab Initio Calculation. Chinese Physics Letters, 2021, 38, 046301.	1.3	11
372	Entropy engineering promotes thermoelectric performance in p-type chalcogenides. Nature Communications, 2021, 12, 3234.	5.8	105
373	Surprisingly high in-plane thermoelectric performance in a-axis-oriented epitaxial SnSe thin films. Materials Today Physics, 2021, 18, 100399.	2.9	17
374	Magneto-enhanced electro-thermal conversion performance. Science China Materials, 2021, 64, 2835-2845.	3.5	14
375	Recyclable, Healable, and Stretchable Highâ€Power Thermoelectric Generator. Advanced Energy Materials, 2021, 11, 2100920.	10.2	65
376	Realizing high thermoelectric performance in n-type SnSe polycrystals via (Pb, Br) co-doping and multi-nanoprecipitates synergy. Journal of Alloys and Compounds, 2021, 864, 158401.	2.8	19
377	Contrasting Thermoelectric Transport Properties of n-Type PbS Induced by Adding Ni and Zn. ACS Applied Energy Materials, 2021, 4, 6284-6289.	2.5	5
378	Theoretically comparative study of spectrally selective solar absorbers in concentrated solar-thermoelectric generators working at high temperature. Applied Optics, 2021, 60, 5291.	0.9	2
379	A Review on Performance Evaluation of Bi2Te3-based and some other Thermoelectric Nanostructured Materials. Current Nanoscience, 2021, 17, 423-446.	0.7	16
380	Tuning thermoelectric efficiency of monolayer indium nitride by mechanical strain. Journal of Applied Physics, 2021, 129, 234302.	1.1	3
381	Synthesis and photoelectric properties of SnSe films through selenization of evaporated Sn-metal films. Modern Physics Letters B, 2021, 35, 2150382.	1.0	0
382	Low carrier concentration leads to high in-plane thermoelectric performance in n-type SnS crystals. Science China Materials, 2021, 64, 3051-3058.	3.5	16
383	The thermoelectric performance of new structure SnSe studied by quotient graph and deep learning potential. Materials Today Energy, 2021, 20, 100665.	2.5	11

#	Article	IF	CITATIONS
384	Flexible thermoelectric materials and devices: From materials to applications. Materials Today, 2021, 46, 62-108.	8.3	206
385	Facile preparation of flexible all organic PEDOT:PSS/methyl cellulose thermoelectric composite film by a screen printing process. Synthetic Metals, 2021, 276, 116752.	2.1	13
387	Grain size-induced enhancement of thermoelectric performance of Cu3Sb1â^'xInxSe4 materials. Functional Materials Letters, 2021, 14, 2151026.	0.7	0
388	Large-scale preparation of thermal anisotropic macroscopic layered metallic materials by a mechanical rolling method. International Journal of Heat and Mass Transfer, 2021, 171, 121059.	2.5	5
389	Thermal diffusivity and its lower bound in orthorhombic SnSe. Physical Review B, 2021, 104, .	1.1	4
390	Enhanced Band Convergence and Ultra‣ow Thermal Conductivity Lead to High Thermoelectric Performance in SnTe. Angewandte Chemie, 2021, 133, 17827-17833.	1.6	16
391	Promising thermoelectric performance of full-Heusler compound Sr2AuBi. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 404, 127413.	0.9	4
392	Lead-free SnTe-based compounds as advanced thermoelectrics. Materials Today Physics, 2021, 19, 100405.	2.9	38
393	Defect Engineering in Ultrathin SnSe Nanosheets for High-Performance Optoelectronic Applications. ACS Applied Materials & Interfaces, 2021, 13, 33226-33236.	4.0	35
394	Understanding the anisotropic phonon thermal transport through 2D Î ² -siligraphene. Carbon, 2021, 179, 523-530.	5.4	1
395	Thermoelectric CoGeTe with an Orthorhombic Crystal Symmetry and Balance of the Electrical and Thermal Properties. Inorganic Chemistry, 2021, 60, 12331-12338.	1.9	1
396	Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments. Science, 2021, 373, 556-561.	6.0	270
397	Understanding the electrical transports of <i>p</i> -type polycrystalline SnSe with effective medium theory. Applied Physics Letters, 2021, 119, .	1.5	8
398	Performance Analysis and Optimization of a SnSe-Based Thermoelectric Generator. ACS Applied Energy Materials, 2021, 4, 8211-8219.	2.5	7
399	Enhanced Band Convergence and Ultra‣ow Thermal Conductivity Lead to High Thermoelectric Performance in SnTe. Angewandte Chemie - International Edition, 2021, 60, 17686-17692.	7.2	42
400	Grain size and compositional gradient dependence of thermoelectric performance for Cu3â^'Ni SbSe4 materials. Results in Physics, 2021, 26, 104337.	2.0	6
401	Room-temperature thermoelectric materials: Challenges and a new paradigm. Journal of Materiomics, 2022, 8, 427-436.	2.8	34
402	Phonon–dislocation interaction and its impact on thermal conductivity. Journal of Applied Physics, 2021, 130, .	1.1	14

#	Article	IF	CITATIONS
403	Thermoelectric properties of phosphorus-doped van der Waals crystal Ta4SiTe4. Materials Today Physics, 2021, 19, 100417.	2.9	13
404	High power factor n-type Ag ₂ Se/SWCNTs hybrid film for flexible thermoelectric generator. Journal Physics D: Applied Physics, 2021, 54, 434004.	1.3	11
405	Novel thermoelectric performance of 2D 1T- Se ₂ Te and SeTe ₂ with ultralow lattice thermal conductivity but high carrier mobility. Nanotechnology, 2021, 32, 455401.	1.3	18
406	Some Thermoelectric Phenomena in Copper Chalcogenides Replaced by Lithium and Sodium Alkaline Metals. Nanomaterials, 2021, 11, 2238.	1.9	14
407	High thermoelectric performance enabled by convergence of nested conduction bands in Pb7Bi4Se13 with low thermal conductivity. Nature Communications, 2021, 12, 4793.	5.8	53
408	Regulating Te Vacancies through Dopant Balancing via Excess Ag Enables Rebounding Power Factor and High Thermoelectric Performance in pâ€Type PbTe. Advanced Science, 2021, 8, e2100895.	5.6	18
409	Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal. Nature Materials, 2021, 20, 1378-1384.	13.3	340
410	Decoupling of the Electrical and Thermal Transports in Strongly Coupled Interlayer Materials. Journal of Physical Chemistry Letters, 2021, 12, 7832-7839.	2.1	8
411	Aggregate structure evolution induced by annealing and subsequent solvent post-treatment for thermoelectric property enhancement of PEDOT:PSS films. Chemical Engineering Journal, 2021, 417, 129230.	6.6	27
412	Thermoelectric Materials: Current Status and Future Challenges. Frontiers in Electronic Materials, 2021, 1, .	1.6	41
413	Al doping effect on optoelectronic and thermoelectric properties of h-ZnS monolayer: a DFT approach. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	8
414	Thermoelectric Property of n-Type Bismuth-Doped SnSe Film: Influence of Characteristic Film Defect. ACS Applied Energy Materials, 2021, 4, 9563-9571.	2.5	7
415	Microscopic origin of the high thermoelectric figure of merit of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi> -doped SnSe. Physical Review B, 2021, 104, .</mml:math 	1.1	7
416	Introducing PbSe quantum dots and manipulating lattice strain contributing to high thermoelectric performance in polycrystalline SnSe. Materials Today Physics, 2021, 21, 100542.	2.9	14
417	High ZT Value of Pure SnSe Polycrystalline Materials Prepared by High-Energy Ball Milling plus Hot Pressing Sintering. ACS Applied Materials & Interfaces, 2021, 13, 43011-43021.	4.0	5
418	Realizing high doping efficiency and thermoelectric performance in n-type SnSe polycrystals via bandgap engineering and vacancy compensation. Materials Today Physics, 2021, 20, 100452.	2.9	16
419	Demonstration of valley anisotropy utilized to enhance the thermoelectric power factor. Nature Communications, 2021, 12, 5408.	5.8	66
420	Effects of SiC doping on the thermoelectric properties of Bi1.9Ba0.1Sr2Co2Oy ceramics. Ceramics International, 2021, 47, 25045-25050.	2.3	9

	Сіт	CITATION REPORT	
#	Article	IF	Citations
421	Thermoelectric degrees of freedom determining thermoelectric efficiency. IScience, 2021, 24, 102934.	. 1.9	15
422	Thermal management of thermoelectric generators for waste energy recovery. Applied Thermal Engineering, 2021, 196, 117291.	3.0	61
423	Fully printed and flexible carbon nanotube-based thermoelectric generator capable for high-temperature applications. Journal of Power Sources, 2021, 507, 230323.	4.0	18
424	Optimizing thermocouple's ZT through design innovation. Scientific Reports, 2021, 11, 19338.	1.6	2
425	Boosting the thermoelectric performance of n-type Bi2S3 by hierarchical structure manipulation and carrier density optimization. Nano Energy, 2021, 87, 106171.	8.2	39
426	Enhancing thermoelectric performance of SrFBiS2â^'Se via band engineering and structural texturing. Journal of Materiomics, 2021, , .	2.8	2
427	Defect Engineering in Solution-Processed Polycrystalline SnSe Leads to High Thermoelectric Performance. ACS Nano, 2022, 16, 78-88.	7.3	50
428	Anisotropic thermoelectric transport properties in polycrystalline SnSe ₂ *. Chinese Physics B, 2021, 30, 067101.	0.7	5
429	Enhancement of thermoelectric properties of <scp>Dâ€A</scp> conjugated polymer through constructing random copolymers with more electronic donors. Journal of Polymer Science, 2022, 60, 1002-1012.	2.0	8
430	Enhanced thermoelectric performance of BiSe by Sn doping and ball milling. Ceramics International, 2021, 47, 26375-26382.	2.3	10
431	Zn-Induced Defect Complexity for the High Thermoelectric Performance of n-Type PbTe Compounds. ACS Applied Materials & Interfaces, 2021, 13, 43134-43143.	4.0	16
432	Combined effect of N-methyl pyrrolidone and ferrocene derivatives on thermoelectric performance of n-type single-wall carbon nanotube-based composites. Chemical Engineering Journal, 2021, 421, 129718.	6.6	22
433	Thermo-phototronic effect in p-type Na-doped SnS single crystals for enhanced self-powered photodetectors. Nano Energy, 2021, 88, 106268.	8.2	18
434	Ultralow and glass-like lattice thermal conductivity in crystalline BaAg2Te2: Strong fourth-order anharmonicity and crucial diffusive thermal transport. Materials Today Physics, 2021, 21, 100487.	2.9	17
435	Optimising the thermoelectric properties of Bi2Sr2Co2Oy using Ag substitution and Nano-SiC doping. Ceramics International, 2021, 47, 30657-30664.	2.3	17
436	Double perovskite Pr2CoFeO6 thermoelectric oxide: Roles of Sr-doping and Micro/nanostructuring. Chemical Engineering Journal, 2021, 425, 130668.	6.6	39
437	Constructing multi-type defects in In0.1Sb1.9Te3-(MgB2) composites: Simultaneously enhancing the thermoelectric and mechanical properties. Nano Energy, 2021, 90, 106530.	8.2	10
438	Ultra-low lattice thermal conductivity and enhanced thermoelectric performance in Ag2â°xSe1/3S1/3Te1/3 via anion permutation and cation modulation. Journal of Alloys and Compound 2021, 885, 161378.	ls, 2.8	6

ARTICLE

439 Intrinsic vacancy suppression and band convergence to enhance thermoelectric performance of (Ge,) Tj ETQq0 0 0 gBT /Overlock 10 Tf

440	High carrier mobility and ultralow thermal conductivity in the synthetic layered superlattice Sn ₄ Bi ₁₀ Se ₁₉ . Materials Advances, 2021, 2, 2382-2390.	2.6	8
441	Thermoelectric performance of Dy/Y co-doped SrTiO ₃ ceramic composites with submicron A ₂ Ti ₂ O ₇ (A = Dy, Y) pyrochlore. Journal Physics D: Applied Physics, 2021, 54, 155501.	1.3	5
442	ⁿ Bu ₂ Sn(S ⁿ Bu) ₂ and ⁿ Bu ₃ SnE ⁿ Bu (E = S or Se) – effective single source precursors for the CVD of SnS and SnSe thermoelectric thin films. Materials Advances, 0, , .	2.6	5
443	Fiber-based thermoelectrics for solid, portable, and wearable electronics. Energy and Environmental Science, 2021, 14, 729-764.	15.6	143
444	Environmentally friendly thermoelectric sulphide Cu ₂ ZnSnS ₄ single crystals achieving a 1.6 dimensionless figure of merit <i>ZT</i> . Journal of Materials Chemistry A, 2021, 9, 15595-15604.	5.2	17
445	Beyond 3D-traditional materials thermoelectric materials. , 2021, , 163-193.		1
446	Oxidation-induced thermopower inversion in nanocrystalline SnSe thin film. Scientific Reports, 2021, 11, 1637.	1.6	7
447	Realizing high thermoelectric performance in SnSe ₂ <i>via</i> intercalating Cu. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 208401.	0.2	3
448	Suppressing Ge-vacancies to achieve high single-leg efficiency in GeTe with an ultra-high room temperature power factor. Journal of Materials Chemistry A, 2021, 9, 23335-23344.	5.2	38
449	Enhanced Thermoelectric Performance of Polythiophene/Carbon Nanotube-Based Composites. Journal of Electronic Materials, 2020, 49, 2371-2380.	1.0	7
450	Thermoelectric properties of all-inorganic perovskite CsSnBr3: A combined experimental and theoretical study. Chemical Physics Letters, 2020, 754, 137637.	1.2	9
451	Se/Sn flux ratio effects on epitaxial SnSe thin films; crystallinity & domain rotation. Journal of Alloys and Compounds, 2020, 840, 155680.	2.8	10
452	The electronic-thermal transport properties and the exploration of magneto-thermoelectric properties and the Nernst thermopower of Ag2(1+)Se. Journal of Solid State Chemistry, 2020, 288, 121453.	1.4	11
453	Phase structure, phase transition and thermoelectric properties of pristine and Br doped SnSe2. Journal of Solid State Chemistry, 2020, 289, 121468.	1.4	15
454	Tin Selenide Molecular Precursor for the Solution Processing of Thermoelectric Materials and Devices. ACS Applied Materials & Interfaces, 2020, 12, 27104-27111.	4.0	15
455	The unique evolution of transport bands and thermoelectric performance enhancement by extending low-symmetry phase to high temperature in tin selenide. Journal of Materials Chemistry C, 2020, 8, 9345-9351.	2.7	8
456	Strong lattice anharmonicity exhibited by the high-energy optical phonons in thermoelectric material. New Journal of Physics, 2020, 22, 083083.	1.2	11

#	Article	IF	CITATIONS
457	Critical mode and band-gap-controlled bipolar thermoelectric properties of SnSe. Physical Review Materials, 2018, 2, .	0.9	13
458	Remarkable thermoelectric performance in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>BaPdS</mml:mi><mml:mn>2via pudding-mold band structure, band convergence, and ultralow lattice thermal conductivity. Physical Review Materials, 2019, 3.</mml:mn></mml:msub></mml:math 	ıl:mn> <td>ıml:msub> <!--</td--></td>	ıml:msub> </td
459	High thermoelectric performance in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>BaAgYTe</mml:mi><mml:mn>3via low lattice thermal conductivity induced by bonding heterogeneity. Physical Review Materials, 2019, 3, .</mml:mn></mml:msub></mml:math 	nml:mn>< 0.9	/mml:msub:
460	Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide. Photonics Research, 2019, 7, 494.	3.4	159
461	Highly Textured N-Type SnSe Polycrystals with Enhanced Thermoelectric Performance. Research, 2019, 2019, 9253132.	2.8	39
462	High-Performance Mg ₃ Sb _{2- <i>x</i>} Bi <i> _x </i> Thermoelectrics: Progress and Perspective. Research, 2020, 2020, 1934848.	2.8	63
463	Recent advances and future prospects in energy harvesting technologies. Japanese Journal of Applied Physics, 2020, 59, 110201.	0.8	68
464	Effects of Co Doping on the Thermoelectric Properties of Cu ₃ SbSe ₄ at Moderate Temperature. Materials Science Forum, 0, 993, 899-905.	0.3	2
465	Dimethyltin(<scp>iv</scp>)-4,6-dimethyl-2-pyridylselenolate: an efficient single source precursor for the preparation of SnSe nanosheets as anode material for lithium ion batteries. Dalton Transactions, 2021, 50, 15730-15742.	1.6	12
466	The Importance of Surface Adsorbates in Solutionâ€Processed Thermoelectric Materials: The Case of SnSe. Advanced Materials, 2021, 33, e2106858.	11.1	19
467	High-performance thermoelectrics and challenges for practical devices. Nature Materials, 2022, 21, 503-513.	13.3	248
468	First-principles study of the structural, optoelectronic and thermophysical properties of the π-SnSe for thermoelectric applications. Beilstein Journal of Nanotechnology, 2021, 12, 1101-1114.	1.5	4
469	New Progress on Fiber-Based Thermoelectric Materials: Performance, Device Structures and Applications. Materials, 2021, 14, 6306.	1.3	11
470	Surprisingly good thermoelectric performance of monolayer C ₃ N. Nanotechnology, 2022, 33, 045401.	1.3	7
471	Enhanced thermoelectric performance of polycrystalline SnSe by compositing with layered Ti3C2. Journal of Materials Science: Materials in Electronics, 2021, 32, 28192-28203.	1.1	1
472	Enhanced Thermoelectric Performance Achieved in SnTe via the Synergy of Valence Band Regulation and Fermi Level Modulation. ACS Applied Materials & amp; Interfaces, 2021, 13, 50037-50045.	4.0	18
473	Single-Crystalline SnSe2 Nanosheets with Enhanced Lithium Storage Properties. Energy & Fuels, 0,	2.5	7
474	Strained Endotaxial PbS Nanoprecipitates Boosting Ultrahigh Thermoelectric Quality Factor in nâ€Type PbTe Asâ€Cast Ingots. Small, 2021, 17, e2104496.	5.2	20

#	Article	IF	CITATIONS
475	Decoupling thermoelectric transport coefficients of Dirac semimetal Na2AgSb with intrinsically ultralow lattice thermal conductivity. Materials Today Physics, 2021, 21, 100560.	2.9	5
476	Essential Considerations for Reporting Thermoelectric Properties. ACS Energy Letters, 2021, 6, 3715-3718.	8.8	9
477	Emphanisis in Cubic (SnSe) _{0.5} (AgSbSe ₂) _{0.5} : Dynamical Off-Centering of Anion Leads to Low Thermal Conductivity and High Thermoelectric Performance. Journal of the American Chemical Society, 2021, 143, 16839-16848.	6.6	37
478	Recent progress in polarization-sensitive photodetectors based on low-dimensional semiconductors. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 163201.	0.2	11
479	Chapter 5. Properties and Applications of Layered Thermoelectric Materials. RSC Smart Materials, 2019, , 129-164.	0.1	0
480	First-Principles Investigations on Magnetic and Optical Properties of Transition-Metal Dopants in β-SnSe. Journal of Superconductivity and Novel Magnetism, 2020, 33, 2801-2807.	0.8	3
481	Magnetic and optical properties of δ-SnSe doped by transition-metal atoms: A first-principle calculation. Optik, 2020, 214, 164810.	1.4	2
482	Thickness-dependent thermoelectric transporting properties of few-layered SnSe. Journal of Alloys and Compounds, 2022, 894, 162542.	2.8	12
483	Porous Thermoelectric Zintl: YbCd ₂ Sb ₂ . ACS Applied Energy Materials, 2021, 4, 913-920.	2.5	9
484	Research Advances of Typical Two Dimensional Layered Thermoelectric Materials. Research and Application of Materials Science, 2020, 2, .	0.2	1
485	Contrasting Thermoelectric Transport Behaviors of <i>p</i> -Type PbS Caused by Doping Alkali Metals (Li and Na). Research, 2020, 2020, 4084532.	2.8	2
486	The room-temperature thermoelectric property of PbTe enhanced by mean-free-path filtering. Journal of Alloys and Compounds, 2022, 893, 162296.	2.8	5
487	Microstructure and thermoelectric property of (Bi _{1–x} Tb _x) ₂ (Te _{0.9fabricated by high pressure sintering technique. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 057201.}	gt; 6e <s	ub & gt;0.1<
488	Thermoelectric Fibers. Progress in Optical Science and Photonics, 2020, , 175-197.	0.3	0
489	Growth and Thermoelectric Properties of Cl Doped SnSe Single Crystal. Material Sciences, 2020, 10, 877-884.	0.0	0
490	Unique surface structure resulting in the excellent long-term thermal stability of Fe4Sb12-based filled skutterudites. Journal of the European Ceramic Society, 2021, , .	2.8	2
491	The challenge of tuning the ratio of lattice/total thermal conductivity toward conversion efficiency vs power density. Applied Physics Letters, 2021, 119, .	1.5	9
492	Combined effect of donor doping and RGO (reduced graphene oxide) coating in La/Nb-doped SrTiO3 thermoelectrics. Solid State Sciences, 2021, 122, 106774.	1.5	2

#	Article	IF	CITATIONS
493	Tuning the carrier type and density of monolayer tin selenide via organic molecular doping. Journal of Physics Condensed Matter, 2022, 34, 085001.	0.7	1
494	Thermoelectric Generators: A comprehensive review of characteristics and applications. Applied Thermal Engineering, 2022, 201, 117793.	3.0	153
495	Core–shell nanostructures for better thermoelectrics. Materials Advances, 2022, 3, 125-141.	2.6	13
496	Effect of pressure on structural and elastic properties of SnSe: First-principles calculations. Solid State Communications, 2022, 342, 114596.	0.9	0
497	Limits of thermoelectric performance with a bounded transport distribution. Physical Review B, 2021, 104, .	1.1	6
498	An Overview of the Strategies for Tin Selenide Advancement in Thermoelectric Application. Micromachines, 2021, 12, 1463.	1.4	7
499	Facile self-supporting and flexible Cu2S/PEDOT:PSS composite thermoelectric film with high thermoelectric properties for body energy harvesting. Results in Physics, 2021, 31, 105061.	2.0	8
500	Inhibition of Lattice Thermal Conductivity of ZrNiSn-based Half-Heusler Thermoelectric Materials by Entropy Adjustment. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2022, 37, 717.	0.6	6
501	Exceptionally low thermal conductivity realized in the chalcopyrite CuFeS2 via atomic-level lattice engineering. Nano Energy, 2022, 94, 106941.	8.2	19
502	Comparative Study of Thermoelectric Properties of Sb ₂ Si ₂ Te ₆ and Bi ₂ Si ₂ Te ₆ . ACS Applied Materials & amp; Interfaces, 2022, 14, 1270-1279.	4.0	15
503	Layered thermoelectric materials: Structure, bonding, and performance mechanisms. Applied Physics Reviews, 2022, 9, .	5.5	25
504	Realization of adjustable electron concentration and its effect on electrical- and Seebeck-property of n-type SnSe crystals. Applied Physics Letters, 2022, 120, 022102.	1.5	2
505	Rapid fabrication and thermoelectric properties of Sn1.03Te-based materials with porous configuration. Journal of Materials Science: Materials in Electronics, 2022, 33, 2479-2489.	1.1	1
506	Thermoelectric Coolers: Progress, Challenges, and Opportunities. Small Methods, 2022, 6, e2101235.	4.6	77
507	Photoinduced Ultrafast Symmetry Switch in SnSe. Journal of Physical Chemistry Letters, 2022, 13, 442-448.	2.1	8
508	SnSe:Kx intermetallic thermoelectric polycrystals prepared by arc-melting. Journal of Materials Science, 2022, 57, 8489-8503.	1.7	6
509	PEDOT-based thermoelectric nanocomposites/hybrids. , 2022, , 165-198.		0
510	Realizing High Thermoelectric Performance in p-Type SnSe Crystals via Convergence of Multiple Electronic Valence Bands. ACS Applied Materials & Interfaces, 2022, 14, 4091-4099.	4.0	8

#	Article	IF	CITATIONS
511	Effects of electron-phonon intervalley scattering and band non-parabolicity on electron transport properties of high-temperature phase SnSe: An ab initio study. Materials Today Physics, 2022, 22, 100592.	2.9	5
512	Outstanding CdSe with Multiple Functions Leads to High Performance of GeTe Thermoelectrics. Advanced Energy Materials, 2022, 12, .	10.2	21
513	Tuning the Carrier Scattering Mechanism by Rare-Earth Element Doping for High Average <i>zT</i> in Mg ₃ Sb ₂ -Based Compounds. ACS Applied Materials & Interfaces, 2022, 14, 7022-7029.	4.0	16
514	Thermoelectric Performance of the 2D Bi ₂ Si ₂ Te ₆ Semiconductor. Journal of the American Chemical Society, 2022, 144, 1445-1454.	6.6	37
515	Seeing Structural Mechanisms of Optimized Piezoelectric and Thermoelectric Bulk Materials through Structural Defect Engineering. Materials, 2022, 15, 487.	1.3	3
516	Low Thermal Conductivity in Heteroanionic Materials with Layers of Homoleptic Polyhedra. Journal of the American Chemical Society, 2022, 144, 2569-2579.	6.6	13
517	Unconventional Doping Effect Leads to Ultrahigh Average Thermoelectric Power Factor in Cu ₃ SbSe ₄ â€Based Composites. Advanced Materials, 2022, 34, e2109952.	11.1	28
518	Enhanced thermoelectric properties of Cu3SbSe4 via configurational entropy tuning. Journal of Materials Science, 2022, 57, 4643-4651.	1.7	2
519	Study on the thermoelectric properties of p-type doped CsCdF3 and CsHgF3 with quartic anharmonicity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 428, 127946.	0.9	8
520	Enhanced thermoelectric perfromance in cubic form of SnSe stabilized through enformatingly alloying AgSbTe2. Acta Materialia, 2022, 227, 117681.	3.8	16
521	Promoted thermoelectric performance of (Ag, Na) co-doped polycrystalline BiSe by optimizing the thermal and electrical transports simultaneously. Journal of Alloys and Compounds, 2022, 901, 163652.	2.8	8
522	Recent progress of halide perovskites for thermoelectric application. Nano Energy, 2022, 94, 106949.	8.2	18
523	High thermoelectric and mechanical performance in the n-type polycrystalline SnSe incorporated with multi-walled carbon nanotubes. Journal of Materials Science and Technology, 2022, 114, 55-61.	5.6	29
524	Quantum Sensing of Thermoelectric Power in Lowâ€Dimensional Materials. Advanced Materials, 2023, 35, e2106871.	11.1	6
525	Thermoelectric Generator: Materials and Applications in Wearable Health Monitoring Sensors and Internet of Things Devices. Advanced Materials Technologies, 2022, 7, .	3.0	42
526	Novel Thermal Diffusion Temperature Engineering Leading to High Thermoelectric Performance in Bi ₂ Te ₃ â€Based Flexible Thinâ€Films. Advanced Science, 2022, 9, e2103547.	5.6	102
527	Ionization Energy Theory Program to Improve Thermoelectricity in Snse. SSRN Electronic Journal, 0, , .	0.4	0
529	General strategies to improve thermoelectric performance with an emphasis on tin and germanium chalcogenides as thermoelectric materials. Journal of Materials Chemistry A, 2022, 10, 6872-6926.	5.2	26

#	Article	IF	CITATIONS
530	Remarkable electron and phonon transports in low-cost SnS: A new promising thermoelectric material. Science China Materials, 2022, 65, 1143-1155.	3.5	9
531	Application of Materials Genome Methods in Thermoelectrics. Frontiers in Materials, 2022, 9, .	1.2	4
532	Observation of a Novel Lattice Instability in Ultrafast Photoexcited SnSe. Physical Review X, 2022, 12, .	2.8	10
533	Extremely Anisotropic Thermoelectric Properties of SnSe Under Pressure. Energy and Environmental Materials, 2023, 6, .	7.3	8
534	Selfâ€Driven High Performance Broadband Photodetector Based on SnSe/InSe van der Waals Heterojunction. Advanced Materials Interfaces, 2022, 9, .	1.9	16
535	Giant Roomâ€Temperature Power Factor in <i>p</i> â€Type Thermoelectric SnSe under High Pressure. Advanced Science, 2022, 9, e2103720.	5.6	7
536	Revealing Electron–Phonon Coupling Dependence on the π-Conjugated Groups in Rare-Earth Borates. Crystal Growth and Design, 2022, 22, 2686-2691.	1.4	5
537	Recent Advances and Prospects of Small Molecular Organic Thermoelectric Materials. Small, 2022, 18, e2200679.	5.2	25
538	Attosecond-Resolved Coherent Control of Lattice Vibrations in Thermoelectric SnSe. Journal of Physical Chemistry Letters, 2022, 13, 2584-2590.	2.1	4
539	Investigations on the Thermoelectric Transport Properties in the Holeâ€doped La ₂ CuO ₄ . Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2022, 648, .	0.6	2
540	Phase Modulation Enabled High Thermoelectric Performance in Polycrystalline GeSe _{0.75} Te _{0.25} . Advanced Functional Materials, 2022, 32, .	7.8	7
541	Organic/Inorganic Hybrid Design as a Route for Promoting the Bi _{0.5} Sb _{1.5} Te ₃ for Highâ€Performance Thermoelectric Power Generation. Advanced Functional Materials, 2022, 32, .	7.8	13
542	Wide-spectrum polarization-sensitive and fast-response photodetector based on 2D group IV-VI semiconductor tin selenide. Fundamental Research, 2022, 2, 985-992.	1.6	8
543	Temperature-Dependent n–p–n Switching and Highly Selective Room-Temperature n-SnSe ₂ /p-SnO/n-SnSe Heterojunction-Based NO ₂ Gas Sensor. ACS Applied Materials & Interfaces, 2022, 14, 15381-15390.	4.0	23
544	Imprints of interfaces in thermoelectric materials. Critical Reviews in Solid State and Materials Sciences, 2023, 48, 361-410.	6.8	6
545	Highâ€Ranged <i>ZT</i> Value Promotes Thermoelectric Cooling and Power Generation in nâ€Type PbTe. Advanced Energy Materials, 2022, 12, .	10.2	36
546	A promising thermoelectrics In4SnSe4 with a wide bandgap and cubic structure composited by layered SnSe and In4Se3. Journal of Materiomics, 2022, 8, 982-991.	2.8	5
547	High thermoelectric performance realized through manipulating layered phonon-electron decoupling. Science, 2022, 375, 1385-1389.	6.0	194

#	Article	IF	CITATIONS
548	Enhanced thermoelectric performance of n-type polycrystalline SnSe via NdCl3 doping. Journal of Alloys and Compounds, 2022, 910, 164900.	2.8	9
549	Distinct electron and hole transports in SnSe crystals. Science Bulletin, 2022, 67, 1105-1107.	4.3	16
550	Electronic structure and thermoelectric properties of biaxial strained SnSe from first principles calculations. Physica Scripta, 0, , .	1.2	1
551	Electron delocalization enhances the thermoelectric performance of misfit layer compound (Sn _{1â^x} Bi _x S) _{1.2} (TiS ₂) ₂ . Chinese Physics B, 2022, 31, 117202.	0.7	1
552	lonization energy theory program to improve thermoelectricity in SnSe. Solid State Communications, 2022, 350, 114767.	0.9	1
553	First-principles study on the structural, electronic, vibrational, and optical properties of the Ru-doped SnSe. Physica B: Condensed Matter, 2022, 633, 413789.	1.3	4
554	Multiple emerging nano-phases are at the origin of the low lattice thermal conductivity of SnSe?. Materials Today Physics, 2022, 24, 100656.	2.9	3
555	Self-powered SnSe photodetectors fabricated by ultrafast laser. Nano Energy, 2022, 97, 107188.	8.2	22
556	Effects of different LaCl3 doping processes on the thermoelectric properties of SnSe bulk materials. Journal of Solid State Chemistry, 2022, 310, 123037.	1.4	6
557	Electron mean-free-path filtering in n-type SnSe for improved thermoelectric performance at room temperature. Journal of Alloys and Compounds, 2022, 906, 164299.	2.8	6
558	Energy-dependent carrier scattering at weak localizations leading to decoupling of thermopower and conductivity. Carbon, 2022, 194, 62-71.	5.4	3
559	Integrating band engineering with point defect scattering for high thermoelectric performance in Bi2Si2Te6. Chemical Engineering Journal, 2022, 441, 135968.	6.6	15
560	Attaining enhanced thermoelectric performance in p-type (SnSe)1–(SnS2) produced via sintering their solution-synthesized micro/nanostructures. Journal of Materials Science and Technology, 2022, 120, 205-213.	5.6	5
561	Preparation and Inâ€Situ Highâ€Throughput Screening of Bi Thixotropic Ink. Advanced Materials Interfaces, 2022, 9, 2101691.	1.9	0
562	Effects of external strain on electronic and optical properties of β-SnSe: a first-principle study. Ferroelectrics, 2021, 585, 111-117.	0.3	0
563	Total solar spectrum energy converter with integrated photovoltaics, thermoelectrics, and thermal energy storage: System modeling and design. International Journal of Energy Research, 2022, 46, 5731-5744.	2.2	4
564	High-Performance Thermoelectrics Based on Solution-Grown SnSe Nanostructures. ACS Nano, 2022, 16, 7-14.	7.3	31
565	SnSe/SnS: Multifunctions Beyond Thermoelectricity. , 0, 1, 1-20.		18

ARTICLE IF CITATIONS # A Solvothermal Synthetic Environmental Design for Highâ€Performance SnSeâ€Based Thermoelectric 566 10.2 82 Materials. Advanced Energy Materials, 2022, 12, . Effects of Bond Strength on the Electronic Structure and Thermoelectric Properties of βâ€VA 1.5 Monolayers (Sb, As, and P). ChemNanoMat, 2022, 8, . Valence Disproportionation of GeS in the PbS Matrix Forms Pb₅Ge₅S₁₂ Inclusions with Conduction Band Alignment Leading 568 6.6 24 to High n-Type Thermoelectric Performance. Journal of the American Chemical Society, 2022, 144, 7402-7413 High-Throughput Screening for Thermoelectric Semiconductors with Desired Conduction Types by 570 Energy Positions of Band Edges. Journal of the American Chemical Society, 2022, 144, 8030-8037. Routes to High-Ranged Thermoelectric Performance., 0, 1, . 571 10 Zintl Phase Compounds Mg3Sb2â[°]xBix (x = 0, 1, and 2) Monolayers: Electronic, Phonon and Thermoelectric Properties From ab Initio Calculations. Frontiers in Mechanical Engineering, 2022, 8, . 0.8 Structural, microstructural, magnetic, and thermoelectric properties of bulk and nanostructured 573 2.311 n-type CuFeS2 Chalcopyrite. Ceramics International, 2022, 48, 29039-29048. Achieving High Thermoelectric Properties of Cu₂Se via Lattice Softening and Phonon 574 2.5 9 Scattering Mechanism. ACS Applied Energy Materials, 2022, 5, 6453-6461. Polycrystalline NiSe-Alloyed SnSe with Improved Medium-Temperature Thermoelectric Performance. 575 2.5 6 Enérgy & amp; Fuels, 2022, 36, 5352-5359. Wet-spun PEDOT:PSS/CNT composite fibers for wearable thermoelectric energy harvesting. Composites 3.3 28 Communications, 2022, 32, 101179. Enhanced Thermoelectric Properties of Te Doped Polycrystalline Sn0.94Pb0.01Se. Nanomaterials, 2022, 577 2 1.9 12, 1575. 3dâ€Transition metal doped two-dimensional SnTe: Modulation of thermoelectric properties. Materials Today Communications, 2022, 31, 103656. Out-of-plane thermoelectric performance for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math> -doped GeSe. 579 1.1 6 Physical Review B, 2022, 105, . Crystallographic design for half-Heuslers with low lattice thermal conductivity. Materials Today 580 14 Physics, 2022, 25, 100704. Realization of high thermoelectric performance in solution-synthesized porous Zn and Ga codoped 581 5.29 SnSe nanosheets. Journal of Materials Chemistry A, 2022, 10, 12429-12437. Boosting the Thermoelectric Performance of Zinc blende-like Cu2SnSe3 through Phase Structure and Band Structure Regulations. Journal of Materials Chemistry A, O, , . Direct ink writing of high-performance Bi₂Te₃-based thermoelectric materials 583 using quasi-inorganic inks and interface engineering. Journal of Materials Chemistry A, 2022, 10, 5.28 12921-12927. Strategies to Improve the Thermoelectric Figure of Merit in Thermoelectric Functional Materials. 1.8 Frontiers in Chemistry, 2022, 10, .

#	Article	IF	CITATIONS
586	Simultaneously optimized thermoelectric and mechanical performance of p-type polycrystalline SnSe enabled by CNTs addition. Scripta Materialia, 2022, 218, 114846.	2.6	11
587	Modulation of Electrical and Thermal Transports through Lattice Distortion in BaTi _{1–<i>x</i>} Nb <i> _x </i> O ₃ Solid Solutions. Nanotechnology, 0, , .	1.3	1

High Thermoelectric Performance in 2D Technetium Dichalcogenides TcX₂ (X = S, Se, or) Tj ETQq0 0 0 rgBT /Overlock 10 Tr 2.3

589	Tin-Substituted Chalcopyrite: An <i>n</i> -Type Sulfide with Enhanced Thermoelectric Performance. Chemistry of Materials, 2022, 34, 5860-5873.	3.2	12
590	Grain Size Dependence of the Thermoelectric Performance in Cu2.98Co0.02SbSe4. Journal of Electronic Materials, 0, , .	1.0	0
591	Tuning of the electronic bandgap of SnSe compound by oxygen and sulphur doping and their optical characteristics for solar cell applications. Journal of Materials Research and Technology, 2022, 19, 3443-3450.	2.6	1
592	Creating high-dense stacking faults and endo-grown nanoneedles to enhance phonon scattering and improve thermoelectric performance of Cu2SnSe3. Nano Energy, 2022, 100, 107510.	8.2	18
593	Optimizing thermoelectric performance of CoSbS0.85Se0.15 by doping 3d transition metal ions M (M =) Tj ETQq	1 1 0.784 ^{1.4}	314 rgBT /
594	Realizing nearly isotropic thermoelectric properties in 2D-layered SnS nanomaterials through highly symmetric metastable-phase powder precursors. Nano Research, 2022, 15, 7713-7722.	5.8	2
595	Stegosaurus-Inspired Wearable Thermoelectric Generator with Cooling-Enhanced Electrodes for Human Body Heat Harvest. SSRN Electronic Journal, 0, , .	0.4	0
596	A facile way to optimize thermoelectric properties of SnSe thin films via sonication-assisted liquid-phase exfoliation. Journal of Materials Science: Materials in Electronics, 2022, 33, 15385-15392.	1.1	0
597	Mechanically Induced Highly Efficient Hydrogen Evolution from Water over Piezoelectric SnSe nanosheets. Small, 2022, 18, .	5.2	22
598	Secondary phase effect on the thermoelectricity by doping Ag in SnSe. Journal of Alloys and Compounds, 2022, 923, 166251.	2.8	8
599	Ba _{1/3} CoO ₂ : A Thermoelectric Oxide Showing a Reliable <i>ZT</i> of â^¼0.55 at 600 °C in Air. ACS Applied Materials & Interfaces, 2022, 14, 33355-33360.	4.0	8
600	The electronic structure, elastic properties, dynamical stability and thermoelectric properties of rock-salt and orthorhombic phases of CdS: First-principles calculations. Solid State Communications, 2022, 353, 114878.	0.9	4
601	Evolution of in-plane heat transport in tellurium from 2D to 3D. Materials Today Physics, 2022, 27, 100776.	2.9	1
602	Challenges and strategies to optimize the figure of merit: Keeping eyes on thermoelectric metamaterials. Materials Science in Semiconductor Processing, 2022, 150, 106944.	1.9	10
603	Enhanced thermoelectric performance of Cu2SnSe3 via synergistic effects of Cd-doping and CuGaTe2 alloying. Rare Metals, 2022, 41, 3466-3474.	3.6	9

ARTICLE IF CITATIONS Environmentally Tolerant Ionic Hydrogel with High Power Density for Low-Grade Heat Harvesting. 604 4.0 13 ACS Applied Materials & amp; Interfaces, 2022, 14, 34714-34721. High-Entropy Thermoelectric Materials Emerging., 0, 1, . Multiple valence bands convergence and strong phonon scattering lead to high thermoelectric 606 5.8 37 performance in p-type PbSe. Nature Communications, 2022, 13, . Theoretical Study of Ba₂X₆ (X = S, Se, Te) for Thermoelectric Applications Based on First-Principles Calculations and Machine Learning. Journal of Physical Chemistry C, 2022, 126, 12735-12741 Data-Driven Enhancement of ZT in SnSe-Based Thermoelectric Systems. Journal of the American 608 6.6 16 Chemical Society, 2022, 144, 13748-13763. Strong Anharmonicityâ€Induced Low Thermal Conductivity and High nâ€type Mobility in the Topological Insulator Bi_{1.1}Sb_{0.9}Te₂S. Angewandte Chemie, 2022, 134, . 609 1.6 Thermoelectric <scp>MgAgSb</scp> alloys for sustainable energy application. International Journal 610 2.2 5 of Energy Research, 2022, 46, 22266-22284. Modular Nanostructures Facilitate Low Thermal Conductivity and Ultraâ€High Thermoelectric 11.1 Performance in <i>n</i>â€Ţype SnSe. Advanced Materials, 2022, 34, . Strong Anharmonicityâ€Induced Low Thermal Conductivity and High nâ€type Mobility in the Topological 612 Insulator Bi_{1.1}Sb_{0.9}Te₂S. Angewandte Chemie - International 7.2 8 Edition, 2022, 61, . Enhanced thermoelectric properties of Cu-Se system via bond-structure adjustment by Ag-doping. 2.8 Journal of Alloys and Compounds, 2022, 927, 166872. Realizing a 10°C Cooling Effect in a Flexible Thermoelectric Cooler Using a Vortex Generator. 614 11.1 15 Advanced Materials, 2022, 34, . Achieving weak anisotropy in N-type I-doped SnSe polycrystalline thermoelectric materials. Journal of 2.8 the European Ceramic Society, 2022, 42, 7027-7035. Glassy thermal conductivity in Cs3Bi2I6Cl3 single crystal. Nature Communications, 2022, 13, . 616 5.8 28 Dramatic Enhancement of Thermoelectric Performance in PbTe by Unconventional Grain Shrinking in 11.1 the Sintering Process. Advanced Materials, 2022, 34, . Giant phonon anharmonicity driven by the asymmetric lone pairs in Mg3Bi2. Materials Today Physics, 618 2.9 11 2022, 27, 100791. DFT study of the structural, electronic, and optical properties of bulk, monolayer, and bilayer Sn-monochalcogenides. Applied Surface Science Advances, 2022, 11, 100275. Characterization of polycrystalline SnSe2 thin films for thermoelectric applications grown by 620 1.7 0 single-stage horizontal tube furnace (SSHTF). Optical Materials, 2022, 133, 112797. Advances in thermoelectric devices for localized cooling. Chemical Engineering Journal, 2022, 450, 34 6.6 138389.

#	Article	IF	CITATIONS
622	Advances in the design and assembly of flexible thermoelectric device. Progress in Materials Science, 2023, 131, 101003.	16.0	140
623	Specific behavior of transition metal chloride complexes for achieving giant ionic thermoelectric properties. Npj Flexible Electronics, 2022, 6, .	5.1	10
624	Identifying polymorphic lattice positioning of copper and the effects on the thermoelectric performance of δ-LAST. Materials Today Physics, 2022, 27, 100833.	2.9	2
625	Highly tailorable, ultra-foldable, and resorbable thermoelectric paper for origami-enabled energy generation. Nano Energy, 2022, 103, 107824.	8.2	9
626	Electronic structure and thermoelectric properties of uniaxial strained SnSe from first-principles calculations. Physica B: Condensed Matter, 2022, 646, 414334.	1.3	5
627	Redox-induced thermocells for low-grade heat harvesting: mechanism, progress, and their applications. Journal of Materials Chemistry A, 2022, 10, 20730-20755.	5.2	11
628	Enhancement of the power factor of SnSe by adjusting the crystal and energy band structures. Physical Chemistry Chemical Physics, 2022, 24, 24130-24136.	1.3	3
630	Breaking the sodium solubility limit for extraordinary thermoelectric performance in p-type PbTe. Energy and Environmental Science, 2022, 15, 3958-3967.	15.6	25
631	Significantly (00 <i>l</i>)-textured Ag ₂ Se thin films with excellent thermoelectric performance for flexible power applications. Journal of Materials Chemistry A, 2022, 10, 21603-21610.	5.2	22
632	Carbon-based monochalcogenides for efficient solar and heat energy harvesting. Applied Surface Science, 2023, 608, 155121.	3.1	4
633	Enhancement of the thermoelectric properties in β-Cu2+xSe/a-C nano-multilayer films by heterogeneous interfaces. Journal of Alloys and Compounds, 2023, 930, 167432.	2.8	4
634	The Role of Cation Vacancies in GeSe: Stabilizing Highâ€5ymmetric Phase Structure and Enhancing Thermoelectric Performance. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	6
635	Realizing zT > 2 in Environmentâ€Friendly Monoclinic Cu2S – Tetragonal Cu1.96S Nanoâ€Phase Junctions for Thermoelectrics. Angewandte Chemie, 0, , .	1.6	0
636	High thermoelectric figure of merit in rhombic porous carbon nitride nanoribbons. Journal of the Chinese Chemical Society, 0, , .	0.8	0
637	Effect of four-phonon interaction on phonon thermal conductivity and mean-free-path spectrum of high-temperature phase SnSe. Applied Physics Letters, 2022, 121, .	1.5	8
638	Y ₂ Te ₃ : A New n-Type Thermoelectric Material. ACS Applied Materials & Interfaces, 2022, 14, 43517-43526.	4.0	5
639	Realizing <i>zT</i> >2 in Environmentâ€Friendly Monoclinic Cu ₂ S—Tetragonal Cu _{1.96} S Nanoâ€Phase Junctions for Thermoelectrics. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
640	Enhancing the thermoelectric performance of solution-synthesized SnSe-based materials via incorporating Ti3C2T MXene. Materials Today Energy, 2022, 30, 101137.	2.5	5

ARTICLE IF CITATIONS # Local structural distortions and reduced thermal conductivity in Ge-substituted chalcopyrite. 641 5.2 7 Journal of Materials Chemistry A, 2022, 10, 23874-23885. Facile phase transition to \hat{l}^2 - from \hat{l} +-SnSe by uniaxial strain. Current Applied Physics, 2022, , . 642 1.1 A thermoelectric materials database auto-generated from the scientific literature using 643 2.4 18 ChemDataExtractor. Scientific Data, 2022, 9, . Realizing high-ranged thermoelectric performance in PbSnS2 crystals. Nature Communications, 2022, 644 5.8 Enhanced thermoelectric performance of 3D-printed Bi2Te3-based materials via adding Te/Se. Journal of 645 2.8 3 Materiomics, 2023, 9, 328-337. When IVâ[^]VI Meets lâ[^]Vâ[^]VI₂: A Reinvigorating Thermoelectric Strategy for Tin 1.5 Monochalcogenides. ChemNanoMat, 2023, 9, . Towards More Accurate Determination of the Thermoelectric Properties of Bi2Se3 Epifilms by 647 2.1 0 Suspension via Nanomachining Techniques. Sensors, 2022, 22, 8042. Synthesis and investigation of thermoelectric properties of Cu-doped bismuth sulfide (Bi2S3) 648 0.8 nanostructures: an experimental approach. Journal of Nanoparticle Research, 2022, 24, . Ex-situ modification of lattice thermal transport through coherent and incoherent heat baths. 649 2.9 0 Materials Today Physics, 2022, 29, 100884. Anharmonic phonon renormalization assisted acoustic branch scattering induces ultralow thermal conductivity and high thermoelectric performance of 2D SnSe. Journal of Alloys and Compounds, 2.8 2023, 932, 167525. The ultra-high thermoelectric power factor in facile and scalable single-step thermal evaporation 651 2.7 6 fabricated composite SnSe/Bi thin films. Journal of Materials Chemistry C, 2022, 10, 18017-18024. A high-efficient photo-thermoelectric coupling generator of cuprous iodide. AIP Advances, 2022, 12, . 0.6 Hybrid Photovoltaic/Thermoelectric Systems for Round-the-Clock Energy Harvesting. Molecules, 2022, 653 1.7 5 27, 7590. Reduced Graphene Oxides Modified Bi₂Te₃ Nanosheets for Rapid Photoâ€Thermoelectric Catalytic Therapy of Bacteriaâ€Infected Wounds. Advanced Functional Materials, 654 2023, 33, . Advances in Versatile GeTe Thermoelectrics from Materials to Devices. Advanced Materials, 2023, 35, . 655 11.1 38 Electrodeposition of low-cost SnS films with increasing carrier concentration and mobility by aluminum doping and texture adjustment. Journal of Materials Science: Materials in Electronics, 0, , . Synthesis of n-type SnSe polycrystals with high and isotropic thermoelectric performance. Journal of 657 2.8 1 Alloys and Compounds, 2022, , 168043. Realizing high thermoelectric performance of Cu and Ce co-doped p-type polycrystalline SnSe via inducing nanoprecipitation arrays. Journal of Advanced Ceramics, 2022, 11, 1671-1686.

#	ARTICLE	IF	CITATIONS
659	Study on the Thermoelectric Properties of n-Type Polycrystalline SnSe by CeCl ₃ Doping. ACS Applied Energy Materials, 2022, 5, 15093-15101.	2.5	6
660	The enhanced effect of magnetism on the thermoelectric performance of a Crl ₃ monolayer. Nanoscale, 2023, 15, 1032-1041.	2.8	3
661	Recent Advances in Ultrahigh Thermoelectric Performance Material SnSe. , 0, 1, .		1
662	Emerging homogeneous superlattices in CaTiO ₃ bulk thermoelectric materials. Materials Horizons, 2023, 10, 454-465.	6.4	5
663	Comparison between thermoelectric generator and organic Rankine cycle for low to medium temperature heat source: A Techno-economic analysis. Sustainable Energy Technologies and Assessments, 2023, 55, 102914.	1.7	3
664	Rare earth element Ce enables high thermoelectric performance in n-type SnSe polycrystals. Journal of Materials Science and Technology, 2023, 143, 234-241.	5.6	8
665	Giant power factor and high air stability in an n-type metal–organic charge-transfer complex. Journal of Materials Chemistry A, 2022, 10, 25019-25028.	5.2	5
666	Opportunities for thermoelectric generators in supporting a low carbon economy. Nanomaterials and Energy, 2022, 11, 8-26.	0.1	2
667	HfSe ₂ /GaSe Heterostructure as a Promising Near-Room-Temperature Thermoelectric Material. Journal of Physical Chemistry C, 2022, 126, 20326-20331.	1.5	3
668	Defining shapes of two-dimensional crystals with undefinable edge energies. Nature Computational Science, 2022, 2, 729-735.	3.8	2
669	Wearable Thermoelectric Generator with Cooling-Enhanced Electrode Design for High-Efficient Human Body Heat Harvesting. , 2023, 1, 660-668.		1
671	Thermoelectric Property of SnSe Films on Glass Substrate: Influence of Columnar Grain Boundary on Carrier Scattering. ACS Applied Electronic Materials, 2022, 4, 6364-6372.	2.0	4
672	A Review of Key Properties of Thermoelectric Composites of Polymers and Inorganic Materials. Materials, 2022, 15, 8672.	1.3	3
673	Thermoelectric-Powered Sensors for Internet of Things. Micromachines, 2023, 14, 31.	1.4	6
674	Elastic Moduli: a Tool for Understanding Chemical Bonding and Thermal Transport in Thermoelectric Materials. Angewandte Chemie, 2023, 135, .	1.6	1
675	Energy Level Modulation of Small Molecules Enhances Thermoelectric Performances of Carbon Nanotube-Based Organic Hybrid Materials. ACS Applied Materials & Interfaces, 2022, 14, 55627-55635.	4.0	4
676	Recent Developments in Thermoelectric Generation: A Review. Sustainability, 2022, 14, 16821.	1.6	11
677	Elastic Moduli: a Tool for Understanding Chemical Bonding and Thermal Transport in Thermoelectric Materials. Angewandte Chemie - International Edition, 2023, 62, .	7.2	15

#	Article	IF	CITATIONS
678	Thermoelectric Response Enhanced by Surface/Edge States in Physical Nanogaps. Materials, 2023, 16, 660.	1.3	1
679	Physics-guided co-designing flexible thermoelectrics with techno-economic sustainability for low-grade heat harvesting. Science Advances, 2023, 9, .	4.7	15
680	Intrinsically Low Lattice Thermal Conductivity and Anisotropic Thermoelectric Performance in Inâ€doped GeSb ₂ Te ₄ Single Crystals. Advanced Functional Materials, 2023, 33, .	7.8	11
681	Theoretical Prediction of Thermoelectric Performance for Layered LaAgOX (X = S, Se) Materials in Consideration of the Fourâ€Phonon and Multiple Carrier Scattering Processes. Small Methods, 2023, 7, .	4.6	2
682	Discordant Distortion in Cubic GeMnTe ₂ and High Thermoelectric Properties of GeMnTe ₂ - <i>x</i> %SbTe. Journal of the American Chemical Society, 2023, 145, 1988-1996.	6.6	8
683	Enhanced Thermoelectric Performance and Mechanical Property in Layered Chalcostibite CuSb _{1–<i>x</i>} Pb _{<i>x</i>} Se ₂ . ACS Applied Energy Materials, 2023, 6, 723-733.	2.5	6
684	Effect of Sn oxides on the thermal conductivity of polycrystalline SnSe. Materials Today Physics, 2023, 31, 100967.	2.9	3
685	Enhanced photodetector at low-temperature via thermo-phototronic effect in N-type SnSe:Br single crystal. Nano Energy, 2023, 107, 108140.	8.2	2
686	Structural stability, optical and thermoelectric properties of the layered RbSn ₂ Br ₅ halide synthesized using mechanochemistry. CrystEngComm, 2023, 25, 1857-1868.	1.3	1
687	Texture Engineering to Boost the Thermoelectric Properties. Transactions of Tianjin University, 2023, 29, 189-195.	3.3	1
688	Recent progress in phosphide materials for thermoelectric conversion. Journal of Materials Chemistry A, 2023, 11, 8453-8469.	5.2	3
689	Estimation of Temperature-Dependent Band Parameters for Bi-Doped SnSe with High Thermoelectric Performance. Ceramics, 2023, 6, 504-513.	1.0	7
690	A review of pressure manipulating structure and performance in thermoelectrics. Journal Physics D: Applied Physics, 2023, 56, 183001.	1.3	1
691	Contrasting thermoelectric properties in cubic SnSe-NaSbSe2 and SnSe-NaSbTe2: High performance achieved via increasing cation vacancies and charge densities. Acta Materialia, 2023, 247, 118754.	3.8	5
692	Performance analysis of thermoelectric generator system in different aspect ratio collector channels. Applied Thermal Engineering, 2023, 226, 120330.	3.0	2
693	Thermoelectric device performance beyond average ZT: Holistic consideration of materials and design. Materials Today Physics, 2023, 34, 101071.	2.9	8
694	Strategies to advance earth-abundant PbS thermoelectric. Chemical Engineering Journal, 2023, 465, 142785.	6.6	7
695	Tuned electronic band structure and intensified phonon scattering of Ge2Sb2Te5 by strain engineering for thermoelectric performance. Materials Today Communications, 2023, 35, 105839.	0.9	1

ARTICLE IF CITATIONS # Efficacy of pyrostilpnite (Ag3SbS3) mineral as thermoelectric material: A first principles study. 696 1.9 3 Materials Science in Semiconductor Processing, 2023, 162, 107513. Multiparameter optimization of the thermoelectric module under the constant heat flux condition. 2.5 Materials Today Energy, 2023, 34, 101282. Raman structural transition studies and optical band calculation on the multiphase of tin selenides. 698 2.0 1 Materials Chemistry and Physics, 2023, 301, 127622. Ultrafast generation and detection of coherent acoustic phonons in SnS0.91Se0.09. Results in Physics, 699 2.0 2023, 45, 106241. Improving thermoelectric performance of CuCrSe2 by manipulating the precipitated ferromagnetic 700 2.9 2 spinel phase. Materials Today Physics, 2023, 31, 100995. Prediction of lattice thermal conductivity with two-stage interpretable machine learning. Chinese Physics B, 2023, 32, 046301. 702 Powering internet-of-things from ambient energy: a review. JPhys Energy, 2023, 5, 022001. 2.311 Structural, transport, and thermoelectric properties of electron beam-irradiated Bi1.2Pb0.33Sr1.54Ca2.06Co3Oy cobalties. Journal of Materials Science: Materials in Electronics, 2023, 34, 1.1 Defect Reconfiguration in Hole-Doped PbSe via Minute Te Doping for Significantly Enhanced 704 2.5 2 Thermoelectric Performance. ACS Applied Energy Materials, 2023, 6, 2611-2617. Unraveling the structural details and thermoelectric transports of 2D-3D hetero-structure composites. Materials Today Physics, 2023, 32, 101018. Modulation Doping Leads to Optimized Thermoelectric Properties in <i>n</i>‶ype Bi₆Cu₂Se₄O₆ due to Interface Effects. Advanced 706 9 7.8 Functional Materials, 2023, 33, . Unexpected Piezoresistive Effect, Roomâ€Temperature Ferromagnetism, and Thermal Stability of 2D βâ€CuI 2.6 Crystals in Reduced Graphene Oxide Membrane. Advanced Electronic Materials, 2023, 9, . Continuous Phase Change Materials for Power Generation from Daily Air Temperature Cycles. 708 3.0 0 Advanced Materials Technologies, 0, , 2201639. Greatly enhanced mechanical properties of thermoelectric SnSe through microstructure enginéering. Journal of Advanced Ceramics, 2023, 12, 1081-1089. Review on Fiber-Based Thermoelectrics: Materials, Devices, and Textiles. Advanced Fiber Materials, 710 7.9 7 2023, 5, 1105-1140. Modulation of Vacancy Defects and Texture for High Performance nâ€Type Bi₂Te₃ via High Energy Refinement. Small, 2023, 19, . Electrical and Optical Properties of Î³-SnSe: A New Ultra-narrow Band Gap Material. ACS Applied 712 4.0 1 Materials & amp; Interfaces, 2023, 15, 15668-15675. Superior Thermoelectric Properties of Twistâ€Angle Superlattice Borophene Induced by Interlayer Electrons Transport. Small, 2023, 19, .

#	Article	IF	CITATIONS
714	Doping by Design: Enhanced Thermoelectric Performance of GeSe Alloys Through Metavalent Bonding. Advanced Materials, 2023, 35, .	11.1	22
715	Enhancing Carrier Mobility and Seebeck Coefficient by Modifying Scattering Factor. Advanced Energy Materials, 2023, 13, .	10.2	12
716	High thermoelectric efficiency realized in SnSe crystals via structural modulation. Nature Communications, 2023, 14, .	5.8	20
717	TEXplorer.org: Thermoelectric material properties data platform for experimental and first-principles calculation results. APL Materials, 2023, 11, .	2.2	4
718	Ultra-low lattice thermal conductivity induces high-performance thermoelectricity in Janus group-VIA binary monolayers: A comparative investigation. Vacuum, 2023, 213, 112075.	1.6	5
719	Co-Cr-Fe-Mn-Ni Oxide as a Highly Efficient Thermoelectric High-Entropy Alloy. ACS Omega, 0, , .	1.6	0
720	Controlling the carrier and phonon transport behavior of SnSe via stoichiometric adjustment. Current Applied Physics, 2023, 51, 13-21.	1.1	1
772	Data analytics accelerates the experimental discovery of Cu _{1â^'<i>x</i>} Ag _{<i>x</i>} GaTe ₂ based thermoelectric chalcogenides with high figure of merit. Journal of Materials Chemistry A, 2023, 11, 18651-18659.	5.2	1
791	Metal Oxide Based Thermoelectric Materials. Progress in Optical Science and Photonics, 2023, , 399-430.	0.3	0
829	Germanium-telluride-based thermoelectrics. , 2024, 1, 109-123.		0
835	Resonantly Bonded Semiconductors. Springer Theses, 2023, , 45-64.	0.0	0
845	Synthesis and Characterization of SnS Nanoparticles by Hydrothermal Method. Advances in Sustainability Science and Technology, 2024, , 337-348.	0.4	0