Disease-Associated Microglia: A Universal Immune Sen

Cell 173, 1073-1081 DOI: 10.1016/j.cell.2018.05.003

Citation Report

#	Article	IF	CITATIONS
1	Brain Theranostics and Radiotheranostics: Exosomes and Graphenes In Vivo as Novel Brain Theranostics. Nuclear Medicine and Molecular Imaging, 2018, 52, 407-419.	1.0	8
2	Interplay Between the Unfolded Protein Response and Immune Function in the Development of Neurodegenerative Diseases. Frontiers in Immunology, 2018, 9, 2541.	4.8	32
3	The Role of Glial Cells and Synapse Loss in Mouse Models of Alzheimer's Disease. Frontiers in Cellular Neuroscience, 2018, 12, 473.	3.7	24
4	THE TRIGGERING RECEPTOR EXPRESSED ON MYELOID CELLS-2 (TREM-2) AS EXPRESSION OF THE RELATIONSHIP BETWEEN MICROGLIA AND ALZHEIMER'S DISEASE: A NOVEL MARKER FOR A PROMISING PATHWAY TO EXPLORE. Journal of Frailty & Aging,the, 2019, 8, 1-3.	1.3	4
5	The Multifarious Role of Microglia in Brain Metastasis. Frontiers in Cellular Neuroscience, 2018, 12, 414.	3.7	25
6	TREM2 — a key player in microglial biology and Alzheimer disease. Nature Reviews Neurology, 2018, 14, 667-675.	10.1	396
7	Sigma-1 Receptor-Modulated Neuroinflammation in Neurological Diseases. Frontiers in Cellular Neuroscience, 2018, 12, 314.	3.7	53
8	Role of triggering receptor expressed on myeloid cells 2 in neuroinflammation and neurodegeneration of the central nervous system. Clinical and Experimental Neuroimmunology, 2018, 9, 219-224.	1.0	1
9	The diverse culinary habits of microglia. Nature Neuroscience, 2018, 21, 1023-1025.	14.8	6
10	Untangling the Tauopathy for Alzheimer's disease and parkinsonism. Journal of Biomedical Science, 2018, 25, 54.	7.0	37
11	The Neuro-Immune-Regulators (NIREGs) Promote Tissue Resilience; a Vital Component of the Host's Defense Strategy against Neuroinflammation. Journal of NeuroImmune Pharmacology, 2018, 13, 309-329.	4.1	17
12	Landscape of Intercellular Crosstalk in Healthy and NASH Liver Revealed by Single-Cell Secretome Gene Analysis. Molecular Cell, 2019, 75, 644-660.e5.	9.7	488
13	Microenvironmental Regulation of Tumor Progression and Therapeutic Response in Brain Metastasis. Frontiers in Immunology, 2019, 10, 1713.	4.8	144
14	A Therapeutic Strategy for Alzheimer's Disease Focused on Immune-inflammatory Modulation. Dementia and Neurocognitive Disorders, 2019, 18, 33.	1.4	20
15	Neuroinflammatory Processes, A1 Astrocyte Activation and Protein Aggregation in the Retina of Alzheimer's Disease Patients, Possible Biomarkers for Early Diagnosis. Frontiers in Neuroscience, 2019, 13, 925.	2.8	98
16	Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nature Reviews Neurology, 2019, 15, 501-518.	10.1	734
17	The interplay between microglial states and major risk factors in Alzheimer's disease through the eyes of single-cell RNA-sequencing: beyond black and white. Journal of Neurophysiology, 2019, 122, 1291-1296.	1.8	7
18	Transcriptional regulation of homeostatic and diseaseâ€associatedâ€microglial genes by IRF1, LXRβ, and CEBPα. Glia, 2019, 67, 1958-1975.	4.9	48

#	Article	IF	CITATIONS
19	Efficacy and mechanism of cGAMP to suppress Alzheimer's disease by elevating TREM2. Brain, Behavior, and Immunity, 2019, 81, 495-508.	4.1	39
20	Anti-Neuroinflammatory Effect of Alantolactone through the Suppression of the NF-κB and MAPK Signaling Pathways. Cells, 2019, 8, 739.	4.1	33
21	Integrating Gene and Protein Expression Reveals Perturbed Functional Networks in Alzheimer's Disease. Cell Reports, 2019, 28, 1103-1116.e4.	6.4	67
22	Letter to the Editor concerning "Influence of microglia and astrocyte activation in the neuroinflammatory pathogenesis of Alzheimer's disease: Rational insights for the therapeutic approaches― Journal of Clinical Neuroscience, 2019, 68, 354.	1.5	0
23	Direct and indirect effects of lipids on microglia function. Neuroscience Letters, 2019, 708, 134348.	2.1	23
24	Lipid-Associated Macrophages Control Metabolic Homeostasis in a Trem2-Dependent Manner. Cell, 2019, 178, 686-698.e14.	28.9	718
25	Altered Insulin Signaling in Alzheimer's Disease Brain – Special Emphasis on PI3K-Akt Pathway. Frontiers in Neuroscience, 2019, 13, 629.	2.8	235
26	Reformulating Pro-Oxidant Microglia in Neurodegeneration. Journal of Clinical Medicine, 2019, 8, 1719.	2.4	47
27	Increased interactions and engulfment of dendrites by microglia precede Purkinje cell degeneration in a mouse model of Niemann Pick Type-C. Scientific Reports, 2019, 9, 14722.	3.3	33
28	Phenotypic Expansion in Nasu-Hakola Disease: Immunological Findings in Three Patients and Proposal of a Unifying Pathogenic Hypothesis. Frontiers in Immunology, 2019, 10, 1685.	4.8	15
29	Inflammasomeâ€nediated innate immunity in Alzheimer's disease. FASEB Journal, 2019, 33, 13075-13084.	0.5	55
30	Postmortem Cortex Samples Identify Distinct Molecular Subtypes of ALS: Retrotransposon Activation, Oxidative Stress, and Activated Glia. Cell Reports, 2019, 29, 1164-1177.e5.	6.4	184
31	What Do Microglia Really Do in Healthy Adult Brain?. Cells, 2019, 8, 1293.	4.1	91
32	The Role of Microglia in the Homeostasis of the Central Nervous System and Neuroinflammation. Molecular Biology, 2019, 53, 696-703.	1.3	26
33	Chicoric acid improves neuron survival against inflammation by promoting mitochondrial function and energy metabolism. Food and Function, 2019, 10, 6157-6169.	4.6	17
34	Role of the protease-activated receptor 1 in regulating the function of glial cells within central and peripheral nervous system. Journal of Neural Transmission, 2019, 126, 1259-1271.	2.8	5
35	Central Nervous System Remyelination: Roles of Glia and Innate Immune Cells. Frontiers in Molecular Neuroscience, 2019, 12, 225.	2.9	49
36	Inflammation in Traumatic Brain Injury: Roles for Toxic A1 Astrocytes and Microglial–Astrocytic Crosstalk. Neurochemical Research, 2019, 44, 1410-1424.	3.3	82

#	Article	IF	CITATIONS
37	Human iPSC application in Alzheimer's disease and Tau-related neurodegenerative diseases. Neuroscience Letters, 2019, 699, 31-40.	2.1	27
38	The P2X7 receptor: a new therapeutic target in Alzheimer's disease. Expert Opinion on Therapeutic Targets, 2019, 23, 165-176.	3.4	37
39	Physiological Interactions between Microglia and Neural Stem Cells in the Adult Subependymal Niche. Neuroscience, 2019, 405, 77-91.	2.3	16
40	EZH2 inhibitor DZNep modulates microglial activation and protects against ischaemic brain injury after experimental stroke. European Journal of Pharmacology, 2019, 857, 172452.	3.5	34
41	Early-life high-fat diet-induced obesity programs hippocampal development and cognitive functions via regulation of gut commensal Akkermansia muciniphila. Neuropsychopharmacology, 2019, 44, 2054-2064.	5.4	121
42	The Transcriptional Landscape of Microglial Genes in Aging and Neurodegenerative Disease. Frontiers in Immunology, 2019, 10, 1170.	4.8	51
43	Temporal profiling of Kv1.3 channel expression in brain mononuclear phagocytes following ischemic stroke. Journal of Neuroinflammation, 2019, 16, 116.	7.2	19
44	Myeloid Cell and Transcriptome Signatures Associated With Inflammation Resolution in a Model of Self-Limiting Acute Brain Inflammation. Frontiers in Immunology, 2019, 10, 1048.	4.8	16
45	Astrocytes and Microglia as Potential Contributors to the Pathogenesis of C9orf72 Repeat Expansion-Associated FTLD and ALS. Frontiers in Neuroscience, 2019, 13, 486.	2.8	47
46	Global Brain Transcriptome Analysis of a <i>Tpp1</i> Neuronal Ceroid Lipofuscinoses Mouse Model. ASN Neuro, 2019, 11, 175909141984339.	2.7	13
47	Polyphenol Microbial Metabolites Exhibit Gut and Blood–Brain Barrier Permeability and Protect Murine Microglia against LPS-Induced Inflammation. Metabolites, 2019, 9, 78.	2.9	59
48	A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nature Neuroscience, 2019, 22, 1021-1035.	14.8	603
49	Checking macrophages at the border. Nature Neuroscience, 2019, 22, 848-850.	14.8	6
50	Microglia responses to interleukinâ€6 and type I interferons in neuroinflammatory disease. Clia, 2019, 67, 1821-1841.	4.9	63
51	Amelioration of Amyotrophic Lateral Sclerosis in SOD1 ^{G93A} Mice by M ₂ Microglia from Transplanted Marrow. In Vivo, 2019, 33, 675-688.	1.3	4
52	Inflaming the Brain. Neuron, 2019, 101, 991-993.	8.1	4
53	Microglial Progranulin: Involvement in Alzheimer's Disease and Neurodegenerative Diseases. Cells, 2019, 8, 230.	4.1	53
54	Distinct metabolic patterns during microglial remodeling by oleate and palmitate. Bioscience Reports, 2019, 39, .	2.4	30

#	ARTICLE	IF	CITATIONS
55	GPR34 in spinal microglia exacerbates neuropathic pain in mice. Journal of Neuroinflammation, 2019, 16, 82.	7.2	35
56	RNA Sequencing Reveals Small and Variable Contributions of Infectious Agents to Transcriptomes of Postmortem Nervous Tissues From Amyotrophic Lateral Sclerosis, Alzheimer's Disease and Parkinson's Disease Subjects, and Increased Expression of Genes From Disease-Activated Microglia. Frontiers in Neuroscience. 2019. 13. 235.	2.8	26
57	The Potential Influence of Bone-Derived Modulators on the Progression of Alzheimer's Disease. Journal of Alzheimer's Disease, 2019, 69, 59-70.	2.6	30
58	CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature, 2019, 568, 187-192.	27.8	283
59	Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis. Science, 2019, 364, 89-93.	12.6	297
60	Microglia exit the CNS in spinal root avulsion. PLoS Biology, 2019, 17, e3000159.	5.6	33
61	Microglia in Alzheimer's disease: A target for immunotherapy. Journal of Leukocyte Biology, 2019, 106, 219-227.	3.3	78
62	Myeloid cells in the central nervous system: So similar, yet so different. Science Immunology, 2019, 4, .	11.9	8
63	Microglia express TMEM119 in the brains of Nasu-Hakola disease. Intractable and Rare Diseases Research, 2019, 8, 260-265.	0.9	4
64	DHEA Attenuates Microglial Activation via Induction of JMJD3 in Experimental Subarachnoid Haemorrhage. Journal of Neuroinflammation, 2019, 16, 243.	7.2	37
65	Targeting Neuroinflammation as a Therapeutic Strategy for Alzheimer's Disease: Mechanisms, Drug Candidates, and New Opportunities. ACS Chemical Neuroscience, 2019, 10, 872-879.	3.5	90
66	Sexual differentiation of microglia. Frontiers in Neuroendocrinology, 2019, 52, 156-164.	5.2	97
67	Poly(ADP-ribosylated) proteins in β-amyloid peptide-stimulated microglial cells. Biochemical Pharmacology, 2019, 167, 50-57.	4.4	15
68	Microglia metabolism in health and disease. Neurochemistry International, 2019, 130, 104331.	3.8	56
69	Engineering advanced neural tissue constructs to mitigate acute cerebral inflammation after brain transplantation in rats. Biomaterials, 2019, 192, 510-522.	11.4	15
70	The Myeloid Cell Compartment—Cell by Cell. Annual Review of Immunology, 2019, 37, 269-293.	21.8	140
71	PET imaging of microglia by targeting macrophage colony-stimulating factor 1 receptor (CSF1R). Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1686-1691.	7.1	140
72	Role of the CD200-CD200R Axis During Homeostasis and Neuroinflammation. Neuroscience, 2019, 405, 118-136.	2.3	76

#	Article	IF	CITATIONS
73	Enforced microglial depletion and repopulation as a promising strategy for the treatment of neurological disorders. Glia, 2019, 67, 217-231.	4.9	79
74	The association between schizophrenia and the immune system: Review of the evidence from unbiased â€~omic-studies'. Schizophrenia Research, 2020, 217, 114-123.	2.0	30
75	Opportunities and Challenges in Phenotypic Screening for Neurodegenerative Disease Research. Journal of Medicinal Chemistry, 2020, 63, 1823-1840.	6.4	33
76	Targeting the cannabinoid receptor CB2 in a mouse model of l-dopa induced dyskinesia. Neurobiology of Disease, 2020, 134, 104646.	4.4	20
77	A 20-Year Journey from Axonal Injury to Neurodegenerative Diseases and the Prospect of Immunotherapy for Combating Alzheimer's Disease. Journal of Immunology, 2020, 204, 243-250.	0.8	26
78	Systemic factors as mediators of brain homeostasis, ageing and neurodegeneration. Nature Reviews Neuroscience, 2020, 21, 93-102.	10.2	120
79	Classical complement cascade initiating C1q protein within neurons in the aged rhesus macaque dorsolateral prefrontal cortex. Journal of Neuroinflammation, 2020, 17, 8.	7.2	42
80	Mitochondria-targeted TPP-MoS2 with dual enzyme activity provides efficient neuroprotection through M1/M2 microglial polarization in an Alzheimer's disease model. Biomaterials, 2020, 232, 119752.	11.4	123
81	Transcriptional profiling of microglia; current state of the art and future perspectives. Glia, 2020, 68, 740-755.	4.9	90
82	mTORâ€mediated metabolic reprogramming shapes distinct microglia functions in response to lipopolysaccharide and ATP. Clia, 2020, 68, 1031-1045.	4.9	101
83	In vivo characterization of functional states of cortical microglia during peripheral inflammation. Brain, Behavior, and Immunity, 2020, 87, 243-255.	4.1	38
84	14,15-Epoxyeicosatrienoic Acid Alleviates Pathology in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2020, 40, 8188-8203.	3.6	25
85	Interaction of microglia with infiltrating immune cells in the different phases of stroke. Brain Pathology, 2020, 30, 1208-1218.	4.1	31
86	Emerging Microglia Biology Defines Novel Therapeutic Approaches for Alzheimer's Disease. Neuron, 2020, 108, 801-821.	8.1	132
87	Non-pathological roles of microglial TREM2/DAP12: TREM2/DAP12 regulates the physiological functions of microglia from development to aging. Neurochemistry International, 2020, 141, 104878.	3.8	17
88	Immunity in amyotrophic lateral sclerosis: blurred lines between excessive inflammation and inefficient immune responses. Brain Communications, 2020, 2, fcaa124.	3.3	53
89	Alzheimer's Patient Microglia Exhibit Enhanced Aging and Unique Transcriptional Activation. Cell Reports, 2020, 31, 107843.	6.4	222
90	Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer's disease. Molecular Neurodegeneration, 2020, 15, 40.	10.8	438

	Сітатіо	n Report	
# 91	ARTICLE Microglia-mediated neuroinflammation and Mediterranean diet. , 2020, , 347-356.	IF	CITATIONS
92	Tau Pathology Drives Dementia Risk-Associated Gene Networks toward Chronic Inflammatory States and Immunosuppression. Cell Reports, 2020, 33, 108398.	6.4	57
93	Knockdown lncRNA NEAT1 regulates the activation of microglia and reduces AKT signaling and neuronal apoptosis after cerebral ischemic reperfusion. Scientific Reports, 2020, 10, 19658.	3.3	42
94	Diesel exhaust impairs TREM2 to dysregulate neuroinflammation. Journal of Neuroinflammation, 2020, 17, 351.	7.2	13
95	Microglia and Inflammatory Responses in Diabetic Retinopathy. Frontiers in Immunology, 2020, 11, 564077.	4.8	129
96	Microglia Diversity in Health and Multiple Sclerosis. Frontiers in Immunology, 2020, 11, 588021.	4.8	44
97	Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nature Reviews Drug Discovery, 2020, 19, 609-633.	46.4	441
98	Trem2 deficiency differentially affects phenotype and transcriptome of human APOE3 and APOE4 mice. Molecular Neurodegeneration, 2020, 15, 41.	10.8	43
99	RNA interference in glial cells for nerve injury treatment. Journal of Tissue Engineering, 2020, 11, 204173142093922.	5.5	8
100	Microglia: Agents of the CNS Pro-Inflammatory Response. Cells, 2020, 9, 1717.	4.1	174
101	Glia Crosstalk in Neuroinflammatory Diseases. Frontiers in Cellular Neuroscience, 2020, 14, 209.	3.7	87
102	Control of Innate Immunity by Sialic Acids in the Nervous Tissue. International Journal of Molecular Sciences, 2020, 21, 5494.	4.1	18
103	Cholinergic Modulation of Glial Function During Aging and Chronic Neuroinflammation. Frontiers in Cellular Neuroscience, 2020, 14, 577912.	3.7	71
104	Sex- and region-biased depletion of microglia/macrophages attenuates CLN1 disease in mice. Journal of Neuroinflammation, 2020, 17, 323.	7.2	20
105	BV-2 Microglial Cells Overexpressing C9orf72 Hexanucleotide Repeat Expansion Produce DPR Proteins and Show Normal Functionality but No RNA Foci. Frontiers in Neurology, 2020, 11, 550140.	2.4	4
106	Emerging Developments in Human Induced Pluripotent Stem Cell-Derived Microglia: Implications for Modelling Psychiatric Disorders With a Neurodevelopmental Origin. Frontiers in Psychiatry, 2020, 11, 789.	2.6	14
107	Aging and Neurodegenerative Disease: Is the Adaptive Immune System a Friend or Foe?. Frontiers in Aging Neuroscience, 2020, 12, 572090.	3.4	78
108	Cell-Type- and Brain-Region-Resolved Mouse Brain Lipidome. Cell Reports, 2020, 32, 108132.	6.4	147

#	Article	IF	CITATIONS
109	Alzheimer's Retinopathy: Seeing Disease in the Eyes. Frontiers in Neuroscience, 2020, 14, 921.	2.8	61
110	Tau-Mediated Dysregulation of Neuroplasticity and Glial Plasticity. Frontiers in Molecular Neuroscience, 2020, 13, 151.	2.9	11
111	The Inflamed Brain in Schizophrenia: The Convergence of Genetic and Environmental Risk Factors That Lead to Uncontrolled Neuroinflammation. Frontiers in Cellular Neuroscience, 2020, 14, 274.	3.7	114
112	Microglia-targeting nanotherapeutics for neurodegenerative diseases. APL Bioengineering, 2020, 4, 030902.	6.2	49
113	ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. Antioxidants, 2020, 9, 743.	5.1	427
114	How Microglia Manages Non-cell Autonomous Vicious Cycling of Aβ Toxicity in the Pathogenesis of AD. Frontiers in Molecular Neuroscience, 2020, 13, 593724.	2.9	7
115	Non-genetic Heterogeneity of Macrophages in Diseases—A Medical Perspective. Frontiers in Cell and Developmental Biology, 2020, 8, 613116.	3.7	10
116	Differential Roles of TREM2+ Microglia in Anterograde and Retrograde Axonal Injury Models. Frontiers in Cellular Neuroscience, 2020, 14, 567404.	3.7	12
117	Sensitivity of Rodent Microglia to Kynurenines in Models of Epilepsy and Inflammation In Vivo and In Vitro: Microglia Activation Is Inhibited by Kynurenic Acid and the Synthetic Analogue SZR104. International Journal of Molecular Sciences, 2020, 21, 9333.	4.1	8
118	Thioredoxin-Interacting Protein (TXNIP) with Focus on Brain and Neurodegenerative Diseases. International Journal of Molecular Sciences, 2020, 21, 9357.	4.1	74
119	Astrocyte-Derived Estrogen Regulates Reactive Astrogliosis and is Neuroprotective following Ischemic Brain Injury. Journal of Neuroscience, 2020, 40, 9751-9771.	3.6	70
120	Astaxanthin Ameliorated Parvalbumin-Positive Neuron Deficits and Alzheimer's Disease-Related Pathological Progression in the Hippocampus of AppNL-G-F/NL-G-F Mice. Frontiers in Pharmacology, 2020, 11, 307.	3.5	27
121	Cellular and Molecular Changes of Brain Metastases-Associated Myeloid Cells during Disease Progression and Therapeutic Response. IScience, 2020, 23, 101178.	4.1	32
122	Cene Ontology Curation of Neuroinflammation Biology Improves the Interpretation of Alzheimer's Disease Gene Expression Data. Journal of Alzheimer's Disease, 2020, 75, 1417-1435.	2.6	18
123	Regulation of Microglial Functions by Purinergic Mechanisms in the Healthy and Diseased CNS. Cells, 2020, 9, 1108.	4.1	129
124	Ocular hypertension suppresses homeostatic gene expression in optic nerve head microglia of DBA/2 J mice. Molecular Brain, 2020, 13, 81.	2.6	31
125	Neuronâ€glia interactions: Molecular basis of alzheimer's disease and applications of neuroproteomics. European Journal of Neuroscience, 2020, 52, 2931-2943.	2.6	32
126	New Classification of Macrophages in Plaques: a Revolution. Current Atherosclerosis Reports, 2020, 22, 31.	4.8	12

#	Article	IF	CITATIONS
127	The Physiology, Pathology, and Potential Therapeutic Applications of the TREM2 Signaling Pathway. Cell, 2020, 181, 1207-1217.	28.9	279
128	25-Hydroxycholesterol amplifies microglial IL-1Î ² production in an apoE isoform-dependent manner. Journal of Neuroinflammation, 2020, 17, 192.	7.2	57
129	A Novel Microglia-Specific Transcriptional Signature Correlates With Behavioral Deficits in Neuropsychiatric Lupus. Frontiers in Immunology, 2020, 11, 230.	4.8	27
130	Alzheimer's Risk Factors Age, APOE Genotype, and Sex Drive Distinct Molecular Pathways. Neuron, 2020, 106, 727-742.e6.	8.1	152
131	Dissecting cellular crosstalk by sequencing physically interacting cells. Nature Biotechnology, 2020, 38, 629-637.	17.5	187
132	CD300f immunoreceptor is associated with major depressive disorder and decreased microglial metabolic fitness. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6651-6662.	7.1	21
133	Metabolic Reprograming of Microglia in the Regulation of the Innate Inflammatory Response. Frontiers in Immunology, 2020, 11, 493.	4.8	152
134	Role of Glia in the Regulation of Sleep in Health and Disease. , 2020, 10, 687-712.		30
135	PLCG2 protective variant p.P522R modulates tau pathology and disease progression in patients with mild cognitive impairment. Acta Neuropathologica, 2020, 139, 1025-1044.	7.7	40
136	CRISPR-based functional genomics for neurological disease. Nature Reviews Neurology, 2020, 16, 465-480.	10.1	89
137	Abnormal Mitochondrial Quality Control in Neurodegenerative Diseases. Frontiers in Cellular Neuroscience, 2020, 14, 138.	3.7	42
138	The role of innate immunity in Alzheimer's disease. Immunological Reviews, 2020, 297, 225-246.	6.0	70
139	Microglia heterogeneity and neurodegeneration: The emerging paradigm of the role of immunity in Alzheimer's disease. Journal of Neuroimmunology, 2020, 341, 577185.	2.3	58
140	Microgliaâ€Related Gene Triggering Receptor Expressed in Myeloid Cells 2 (<i>TREM2</i>) Is Upregulated in the Substantia Nigra of Progressive Supranuclear Palsy. Movement Disorders, 2020, 35, 885-890.	3.9	11
141	The Leukotriene Receptor Antagonist Montelukast Reduces Alpha-Synuclein Load and Restores Memory in an Animal Model of Dementia with Lewy Bodies. Neurotherapeutics, 2020, 17, 1061-1074.	4.4	17
142	Abrogation of type-I interferon signalling alters the microglial response to Aβ1–42. Scientific Reports, 2020, 10, 3153.	3.3	21
143	Plasma membrane receptors of tissue macrophages: functions and role in pathology. Journal of Pathology, 2020, 250, 656-666.	4.5	14
144	Nrf2 Suppresses Oxidative Stress and Inflammation in <i>App</i> Knock-In Alzheimer's Disease Model Mice. Molecular and Cellular Biology, 2020, 40, .	2.3	98

#	Article	IF	CITATIONS
145	Patterns of Expression of Purinergic Receptor P2RY12, a Putative Marker for Non-Activated Microglia, in Aged and Alzheimer's Disease Brains. International Journal of Molecular Sciences, 2020, 21, 678.	4.1	86
146	Trem2 Deletion Reduces Late-Stage Amyloid Plaque Accumulation, Elevates the Aβ42:Aβ40 Ratio, and Exacerbates Axonal Dystrophy and Dendritic Spine Loss in the PS2APP Alzheimer's Mouse Model. Journal of Neuroscience, 2020, 40, 1956-1974.	3.6	114
147	Novel Alzheimer risk genes determine the microglia response to amyloidâ€Î² but not to TAU pathology. EMBO Molecular Medicine, 2020, 12, e10606.	6.9	182
148	Neuroinflammation in CNS diseases: Molecular mechanisms and the therapeutic potential of plant derived bioactive molecules. PharmaNutrition, 2020, 11, 100176.	1.7	26
149	Potential of activated microglia as a source of dysregulated extracellular microRNAs contributing to neurodegeneration in amyotrophic lateral sclerosis. Journal of Neuroinflammation, 2020, 17, 135.	7.2	25
150	Transcriptomic profiling of microglia and astrocytes throughout aging. Journal of Neuroinflammation, 2020, 17, 97.	7.2	99
151	Polysaccharide from Schisandra chinensis acts via LRP-1 to reverse microglia activation through suppression of the NF-κB and MAPK signaling. Journal of Ethnopharmacology, 2020, 256, 112798.	4.1	31
152	Reduction of the RNA Binding Protein TIA1 Exacerbates Neuroinflammation in Tauopathy. Frontiers in Neuroscience, 2020, 14, 285.	2.8	24
153	The Important Interface Between Apolipoprotein E and Neuroinflammation in Alzheimer's Disease. Frontiers in Immunology, 2020, 11, 754.	4.8	100
154	Pharmacological approaches to mitigate neuroinflammation in Alzheimer's disease. International Immunopharmacology, 2020, 84, 106479.	3.8	73
155	IL-33-PU.1 Transcriptome Reprogramming Drives Functional State Transition and Clearance Activity of Microglia in Alzheimer's Disease. Cell Reports, 2020, 31, 107530.	6.4	65
156	Natural killer cells modulate motor neuron-immune cell cross talk in models of Amyotrophic Lateral Sclerosis. Nature Communications, 2020, 11, 1773.	12.8	93
157	What are activated and reactive glia and what is their role in neurodegeneration?. Neurobiology of Disease, 2021, 148, 105172.	4.4	39
158	Functional insights from biophysical study of TREM2 interactions with apoE and Aβ _{1â€42} . Alzheimer's and Dementia, 2021, 17, 475-488.	0.8	31
159	Dietary Protein Source Influences Brain Inflammation and Memory in a Male Senescence-Accelerated Mouse Model of Dementia. Molecular Neurobiology, 2021, 58, 1312-1329.	4.0	1
160	Tissue-specific features of microglial innate immune responses. Neurochemistry International, 2021, 142, 104924.	3.8	8
161	Transformative Network Modeling of Multi-omics Data Reveals Detailed Circuits, Key Regulators, and Potential Therapeutics for Alzheimer's Disease. Neuron, 2021, 109, 257-272.e14.	8.1	108
162	Hypoperfusion is a potential inducer of immunosuppressive network in Alzheimer's disease. Neurochemistry International, 2021, 142, 104919.	3.8	7

#	Article	IF	CITATIONS
163	Alzheimer's-associated PU.1 expression levels regulate microglial inflammatory response. Neurobiology of Disease, 2021, 148, 105217.	4.4	55
164	Hepatoprotective and anti-inflammatory effects of a standardized pomegranate (<i>Punica) Tj ETQq1 1 0.784314 Sciences and Nutrition, 2021, 72, 499-510.</i>	rgBT /Ove 2.8	erlock 10 Tf 17
165	Influenza vaccine combined with moderate-dose PD1 blockade reduces amyloid- $\hat{1}^2$ accumulation and improves cognition in APP/PS1 mice. Brain, Behavior, and Immunity, 2021, 91, 128-141.	4.1	16
166	MicroRNAs in the Spinal Microglia Serve Critical Roles in Neuropathic Pain. Molecular Neurobiology, 2021, 58, 132-142.	4.0	12
167	Microglial Polarization: Novel Therapeutic Strategy against Ischemic Stroke. , 2021, 12, 466.		72
168	TREM2 Sensing of Tumor Cell Efferocytosis Promotes a Macrophage Molecular State that Limits NK Cell Antitumor Immunity. SSRN Electronic Journal, 0, , .	0.4	2
169	Erythropoietin-derived peptide treatment reduced neurological deficit and neuropathological changes in a mouse model of tauopathy. Alzheimer's Research and Therapy, 2021, 13, 32.	6.2	4
170	Microglia Degrade Extracellular Tau Oligomers Deposits via Purinergic P2Y12-Driven Podosomes, Filopodia Formation and Induce Chemotaxis. SSRN Electronic Journal, 0, , .	0.4	0
171	Oligodendroglial Heterogeneity in Neuropsychiatric Disease. Life, 2021, 11, 125.	2.4	6
173	Activated microglia drive demyelination via <scp>CSF1R</scp> signaling. Glia, 2021, 69, 1583-1604.	4.9	74
174	Strategies and Tools for Studying Microglial-Mediated Synapse Elimination and Refinement. Frontiers in Immunology, 2021, 12, 640937.	4.8	10
175	TREM2 Mediates Microglial Anti-Inflammatory Activations in Alzheimer's Disease: Lessons Learned from Transcriptomics. Cells, 2021, 10, 321.	4.1	25
176	Alzheimer's Risk Gene TREM2 Determines Functional Properties of New Type of Human iPSC-Derived Microglia. Frontiers in Immunology, 2020, 11, 617860.	4.8	32
177	Gaucher disease: Basic and translational science needs for more complete therapy and management. Molecular Genetics and Metabolism, 2021, 132, 59-75.	1.1	28
178	Unique Subtype of Microglia in Degenerative Thalamus After Cortical Stroke. Stroke, 2021, 52, 687-698.	2.0	38
179	Diet-dependent regulation of TGFÎ ² impairs reparative innate immune responses after demyelination. Nature Metabolism, 2021, 3, 211-227.	11.9	41
180	Hypothalamic Microglial Heterogeneity and Signature under High Fat Diet–Induced Inflammation. International Journal of Molecular Sciences, 2021, 22, 2256.	4.1	13
181	Insight into the role of phosphatidylserine in complement-mediated synapse loss in Alzheimer's disease. Faculty Reviews, 2021, 10, 19.	3.9	17

#	Article	IF	CITATIONS
182	Extracellular microvesicles promote microgliaâ€mediated proâ€inflammatory responses to ethanol. Journal of Neuroscience Research, 2021, 99, 1940-1956.	2.9	31
183	Transcriptomic Analysis of Mouse Brain After Traumatic Brain Injury Reveals That the Angiotensin Receptor Blocker Candesartan Acts Through Novel Pathways. Frontiers in Neuroscience, 2021, 15, 636259.	2.8	13
184	The sTREM2 Concentrations in the Blood: A Marker of Neurodegeneration?. Frontiers in Molecular Biosciences, 2020, 7, 627931.	3.5	12
185	Multiple sclerosis risk gene Mertk is required for microglial activation and subsequent remyelination. Cell Reports, 2021, 34, 108835.	6.4	61
186	Corneal Application of R9-SOCS1-KIR Peptide Alleviates Endotoxin-Induced Uveitis. Translational Vision Science and Technology, 2021, 10, 25.	2.2	7
187	TSPO PET imaging of natalizumab-associated progressive multifocal leukoencephalopathy. Brain, 2021, 144, 2683-2695.	7.6	13
188	Meningeal inflammation in multiple sclerosis induces phenotypic changes in cortical microglia that differentially associate with neurodegeneration. Acta Neuropathologica, 2021, 141, 881-899.	7.7	47
190	Chinese Medicine Formula Kai-Xin-San Ameliorates Neuronal Inflammation of CUMS-Induced Depression-like Mice and Reduces the Expressions of Inflammatory Factors via Inhibiting TLR4/IKK/NF-κB Pathways on BV2 Cells. Frontiers in Pharmacology, 2021, 12, 626949.	3.5	30
191	Reduction of Amyloid Burden by Proliferated Homeostatic Microglia in Toxoplasma gondii-Infected Alzheimer's Disease Model Mice. International Journal of Molecular Sciences, 2021, 22, 2764.	4.1	5
192	Cognitive Impairment in SLE: Mechanisms and Therapeutic Approaches. Current Rheumatology Reports, 2021, 23, 25.	4.7	4
193	Unique molecular characteristics and microglial origin of Kv1.3 channel–positive brain myeloid cells in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	25
194	Dectin-1 limits autoimmune neuroinflammation and promotes myeloid cell-astrocyte crosstalk via Card9-independent expression of Oncostatin M. Immunity, 2021, 54, 484-498.e8.	14.3	34
195	Plaque associated microglia hyper-secrete extracellular vesicles and accelerate tau propagation in a humanized APP mouse model. Molecular Neurodegeneration, 2021, 16, 18.	10.8	97
196	Heritability Enrichment Implicates Microglia in Parkinson's Disease Pathogenesis. Annals of Neurology, 2021, 89, 942-951.	5.3	35
198	Accumulation of cytotoxic T cells in the aged CNS leads to axon degeneration and contributes to cognitive and motor decline. Nature Aging, 2021, 1, 357-367.	11.6	40
199	Trem2 restrains the enhancement of tau accumulation and neurodegeneration by β-amyloid pathology. Neuron, 2021, 109, 1283-1301.e6.	8.1	137
200	TREM2/PLCÎ ³ 2 signalling in immune cells: function, structural insight, and potential therapeutic modulation. Molecular Neurodegeneration, 2021, 16, 22.	10.8	27
201	Decoding Cell Death: From a Veritable Library of Babel to <i>Vade Mecum</i> ?. Annual Review of Immunology, 2021, 39, 791-817.	21.8	7

#	Article	IF	CITATIONS
202	SIRT1-Dependent Upregulation of BDNF in Human Microglia Challenged with Aβ: An Early but Transient Response Rescued by Melatonin. Biomedicines, 2021, 9, 466.	3.2	16
203	White matter aging drives microglial diversity. Neuron, 2021, 109, 1100-1117.e10.	8.1	208
204	Microglial Function and Regulation during Development, Homeostasis and Alzheimer's Disease. Cells, 2021, 10, 957.	4.1	24
205	Senescent Microglia: The Key to the Ageing Brain?. International Journal of Molecular Sciences, 2021, 22, 4402.	4.1	30
206	MECP2 Increases the Pro-Inflammatory Response of Microglial Cells and Phosphorylation at Serine 423 Regulates Neuronal Gene Expression upon Neuroinflammation. Cells, 2021, 10, 860.	4.1	8
207	MRI-guided histology of TDP-43 knock-in mice implicates parvalbumin interneuron loss, impaired neurogenesis and aberrant neurodevelopment in amyotrophic lateral sclerosis-frontotemporal dementia. Brain Communications, 2021, 3, fcab114.	3.3	11
208	TREM2, microglia, and Alzheimer's disease. Mechanisms of Ageing and Development, 2021, 195, 111438.	4.6	74
209	Validation of Induced Microglia-Like Cells (iMG Cells) for Future Studies of Brain Diseases. Frontiers in Cellular Neuroscience, 2021, 15, 629279.	3.7	26
210	Progranulin in neurodegenerative dementia. Journal of Neurochemistry, 2021, 158, 119-137.	3.9	21
211	Microglia in Neurodegenerative Events—An Initiator or a Significant Other?. International Journal of Molecular Sciences, 2021, 22, 5818.	4.1	19
212	Transcriptional signature in microglia associated with $\hat{A^2}$ plaque phagocytosis. Nature Communications, 2021, 12, 3015.	12.8	142
213	Targeting Impaired Antimicrobial Immunity in the Brain for the Treatment of Alzheimer's Disease. Neuropsychiatric Disease and Treatment, 2021, Volume 17, 1311-1339.	2.2	13
214	Differentially expressed genes in Alzheimer's disease highlighting the roles of microglia genes including OLR1 and astrocyte gene CDK2AP1. Brain, Behavior, & Immunity - Health, 2021, 13, 100227.	2.5	28
215	Personalizing the Care and Treatment of Alzheimer's Disease: An Overview. Pharmacogenomics and Personalized Medicine, 2021, Volume 14, 631-653.	0.7	3
216	Distinct Features of Brain-Resident Macrophages: Microglia and Non-Parenchymal Brain Macrophages. Molecules and Cells, 2021, 44, 281-291.	2.6	36
217	Insulin Resistance as a Common Link Between Current Alzheimer's Disease Hypotheses. Journal of Alzheimer's Disease, 2021, 82, 71-105.	2.6	21
218	The taste of neuroinflammation: Molecular mechanisms linking taste sensing to neuroinflammatory responses. Pharmacological Research, 2021, 167, 105557.	7.1	5
219	Myeloid Arginase 1 Insufficiency Exacerbates Amyloid-β Associated Neurodegenerative Pathways and Glial Signatures in a Mouse Model of Alzheimer's Disease: A Targeted Transcriptome Analysis. Frontiers in Immunology, 2021, 12, 628156.	4.8	6

#	Article	IF	CITATIONS
220	Mitochondrial Dysfunction in Alzheimer's Disease: Opportunities for Drug Development. Current Neuropharmacology, 2022, 20, 675-692.	2.9	29
221	Microglial Exosomes in Neurodegenerative Disease. Frontiers in Molecular Neuroscience, 2021, 14, 630808.	2.9	41
222	The effect of dipeptidyl peptidase IV on disease-associated microglia phenotypic transformation in epilepsy. Journal of Neuroinflammation, 2021, 18, 112.	7.2	13
224	Microglia RAGE exacerbates the progression of neurodegeneration within the SOD1G93A murine model of amyotrophic lateral sclerosis in a sex-dependent manner. Journal of Neuroinflammation, 2021, 18, 139.	7.2	16
225	Astrocytic apoE4 and tau: Deadly combination for neurons. Cell Reports Medicine, 2021, 2, 100316.	6.5	1
228	Construction of IncRNA-Mediated ceRNA Network for Investigating Immune Pathogenesis of Ischemic Stroke. Molecular Neurobiology, 2021, 58, 4758-4769.	4.0	16
229	Aberrant NLRP3 Inflammasome Activation Ignites the Fire of Inflammation in Neuromuscular Diseases. International Journal of Molecular Sciences, 2021, 22, 6068.	4.1	5
230	Metformin, Macrophage Dysfunction and Atherosclerosis. Frontiers in Immunology, 2021, 12, 682853.	4.8	59
231	Role of Neuron and Glia in Alzheimer's Disease and Associated Vascular Dysfunction. Frontiers in Aging Neuroscience, 2021, 13, 653334.	3.4	28
232	Mini-Review: Induced pluripotent stem cells and the search for new cell-specific ALS therapeutic targets. Neuroscience Letters, 2021, 755, 135911.	2.1	20
233	A multifaceted role of progranulin in regulating amyloid-beta dynamics and responses. Life Science Alliance, 2021, 4, e202000874.	2.8	10
234	Phospholipids of APOE lipoproteins activate microglia in an isoform-specific manner in preclinical models of Alzheimer's disease. Nature Communications, 2021, 12, 3416.	12.8	57
235	Traumatic brain injury results in unique microglial and astrocyte transcriptomes enriched for type I interferon response. Journal of Neuroinflammation, 2021, 18, 151.	7.2	40
236	Acute TBK1/IKK-Îμ Inhibition Enhances the Generation of Disease-Associated Microglia-Like Phenotype Upon Cortical Stab-Wound Injury. Frontiers in Aging Neuroscience, 2021, 13, 684171.	3.4	11
237	Diversity of transcriptomic microglial phenotypes in aging and Alzheimer's disease. Alzheimer's and Dementia, 2022, 18, 360-376.	0.8	46
238	GABA-receptive microglia selectively sculpt developing inhibitory circuits. Cell, 2021, 184, 4048-4063.e32.	28.9	142
239	The old guard: Age-related changes in microglia and their consequences. Mechanisms of Ageing and Development, 2021, 197, 111512.	4.6	32
240	Microglia in Alzheimer's disease at single-cell level. Are there common patterns in humans and mice?. Journal of Experimental Medicine, 2021, 218, .	8.5	147

#	Article	IF	CITATIONS
241	Living Proof of Activity of Extracellular Vesicles in the Central Nervous System. International Journal of Molecular Sciences, 2021, 22, 7294.	4.1	12
243	Hippocampal glucose uptake as a surrogate of metabolic change of microglia in Alzheimer's disease. Journal of Neuroinflammation, 2021, 18, 190.	7.2	28
244	The Ageing Brain: Molecular and Cellular Basis of Neurodegeneration. Frontiers in Cell and Developmental Biology, 2021, 9, 683459.	3.7	94
245	The multifactorial roles of microglia and macrophages in the maintenance and progression of glioblastoma. Journal of Neuroimmunology, 2021, 357, 577633.	2.3	16
246	Microglia and Stem-Cell Mediated Neuroprotection after Neonatal Hypoxia-Ischemia. Stem Cell Reviews and Reports, 2022, 18, 474-522.	3.8	5
247	Microglial transcriptome analysis in the rNLS8 mouse model of TDP-43 proteinopathy reveals discrete expression profiles associated with neurodegenerative progression and recovery. Acta Neuropathologica Communications, 2021, 9, 140.	5.2	25
248	Invasion of phagocytic Galectin 3 expressing macrophages in the diabetic brain disrupts vascular repair. Science Advances, 2021, 7, .	10.3	21
249	TREM2-dependent lipid droplet biogenesis in phagocytes is required for remyelination. Journal of Experimental Medicine, 2021, 218, .	8.5	68
250	Sirtuins as Potential Therapeutic Targets for Mitigating Neuroinflammation Associated With Alzheimer's Disease. Frontiers in Cellular Neuroscience, 2021, 15, 746631.	3.7	20
251	Microglial Phenotypic Transition: Signaling Pathways and Influencing Modulators Involved in Regulation in Central Nervous System Diseases. Frontiers in Cellular Neuroscience, 2021, 15, 736310.	3.7	30
253	Should We Open Fire on Microglia? Depletion Models as Tools to Elucidate Microglial Role in Health and Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 9734.	4.1	9
254	PET Imaging of Neuroinflammation in Alzheimer's Disease. Frontiers in Immunology, 2021, 12, 739130.	4.8	58
255	Current tools to interrogate microglial biology. Neuron, 2021, 109, 2805-2819.	8.1	30
256	Inflammatory Cascade in Alzheimer's Disease Pathogenesis: A Review of Experimental Findings. Cells, 2021, 10, 2581.	4.1	42
257	The Effect of Systemic Inflammation on Cognitive Function and Neurodegenerative Disease. , 2021, , 164-189.		0
258	Absence of Apolipoprotein E is associated with exacerbation of prion pathology and promotes microglial neurodegenerative phenotype. Acta Neuropathologica Communications, 2021, 9, 157.	5.2	6
259	Microglia phagocytose oligodendrocyte progenitor cells and synapses during early postnatal development: implications for white versus gray matter maturation. FEBS Journal, 2022, 289, 2110-2127.	4.7	16
260	Potential neurotoxic activity of diverse molecules released by microglia. Neurochemistry International, 2021, 148, 105117.	3.8	21

#	Article	IF	CITATIONS
261	Microglia, TREM2, and Therapeutic Methods of Alzheimerâ \in $^{\mathrm{Ms}}$ s Disease. , 0, , .		0
262	Inflammatory Pathways Are Impaired in Alzheimer Disease and Differentially Associated With Apolipoprotein E Status. Journal of Neuropathology and Experimental Neurology, 2021, 80, 922-932.	1.7	12
263	Roles of microglia in Alzheimer's disease and impact of new findings on microglial heterogeneity as a target for therapeutic intervention. Biochemical Pharmacology, 2021, 192, 114754.	4.4	24
264	Emerging roles of Dectin-1 in noninfectious settings and in the CNS. Trends in Immunology, 2021, 42, 891-903.	6.8	23
265	Microglial functional alteration and increased diversity in the challenged brain: Insights into novel targets for intervention. Brain, Behavior, & Immunity - Health, 2021, 16, 100301.	2.5	15
266	The emerging tale of microglia in psychiatric disorders. Neuroscience and Biobehavioral Reviews, 2021, 131, 1-29.	6.1	53
267	Traumatic Brain Injury Causes Chronic Cortical Inflammation and Neuronal Dysfunction Mediated by Microglia. Journal of Neuroscience, 2021, 41, 1597-1616.	3.6	168
268	Microglial Hyperreactivity Evolved to Immunosuppression in the Hippocampus of a Mouse Model of Accelerated Aging and Alzheimer's Disease Traits. Frontiers in Aging Neuroscience, 2020, 12, 622360.	3.4	9
269	Changing Functional Signatures of Microglia along the Axis of Brain Aging. International Journal of Molecular Sciences, 2021, 22, 1091.	4.1	18
270	Adipose tissue macrophages as a therapeutic target in obesityâ€associated diseases. Obesity Reviews, 2021, 22, e13200.	6.5	24
271	Origins and diversity of macrophages in health and disease. Clinical and Translational Immunology, 2020, 9, e1222.	3.8	40
272	Microglia Reactivity: Heterogeneous Pathological Phenotypes. Methods in Molecular Biology, 2019, 2034, 41-55.	0.9	12
273	QUAKING Regulates Microexon Alternative Splicing of the Rho GTPase Pathway and Controls Microglia Homeostasis. Cell Reports, 2020, 33, 108560.	6.4	19
274	Peripheral nerve resident macrophages share tissue-specific programming and features of activated microglia. Nature Communications, 2020, 11, 2552.	12.8	84
286	Shedding Light on the Dark Side of the Microglia. ASN Neuro, 2020, 12, 175909142092533.	2.7	39
287	Transitions in metabolic and immune systems from pre-menopause to post-menopause: implications for age-associated neurodegenerative diseases. F1000Research, 2020, 9, 68.	1.6	29
288	Disease Progression-Dependent Expression of CD200R1 and CX3CR1 in Mouse Models of Parkinson's Disease. , 2020, 11, 254.		25
289	ApoE4-Induced Cholesterol Dysregulation and Its Brain Cell Type-Specific Implications in the Pathogenesis of Alzheimer's Disease. Molecules and Cells, 2019, 42, 739-746.	2.6	54

#	Article	IF	CITATIONS
290	Loss of <scp>TMEM</scp> 106B and <scp>PGRN</scp> leads to severe lysosomal abnormalities and neurodegeneration in mice. EMBO Reports, 2020, 21, e50219.	4.5	52
291	The persistent impact of adolescent binge alcohol on adult brain structural, cellular, and behavioral pathology: A role for the neuroimmune system and epigenetics. International Review of Neurobiology, 2021, 160, 1-44.	2.0	11
292	Microglia in Neuroinflammation and Neurodegeneration: From Understanding to Therapy. Frontiers in Neuroscience, 2021, 15, 742065.	2.8	171
293	Microglia and CD206+ border-associated mouse macrophages maintain their embryonic origin during Alzheimer's disease. ELife, 2021, 10, .	6.0	16
295	Sphingosine-1-phosphate, a novel TREM2 ligand, promotes microglial phagocytosis to protect against ischemic brain injury. Acta Pharmaceutica Sinica B, 2022, 12, 1885-1898.	12.0	21
296	IKK2/NF-κB Activation in Astrocytes Reduces amyloid β Deposition: A Process Associated with Specific Microglia Polarization. Cells, 2021, 10, 2669.	4.1	13
297	Microglial transcription profiles in mouse and human are driven by APOE4 and sex. IScience, 2021, 24, 103238.	4.1	9
298	Interactions between glial cells and the blood-brain barrier and their role in Alzheimer's disease. Ageing Research Reviews, 2021, 72, 101483.	10.9	37
302	3D profiling of amyloid plaque-associated microglia and neuronal damage on confocal fluorescence images to aid drug discovery in Alzheimer's disease. , 2019, , .		1
304	Introduction to Neuroimmunology. Current Clinical Neurology, 2020, , 3-15.	0.2	1
309	Microglia-specific overexpression of α-synuclein leads to severe dopaminergic neurodegeneration by phagocytic exhaustion and oxidative toxicity. Nature Communications, 2021, 12, 6237.	12.8	74
310	Genomics of Alzheimer's disease implicates the innate and adaptive immune systems. Cellular and Molecular Life Sciences, 2021, 78, 7397-7426.	5.4	32
311	Neuroinflammation in Alzheimer's disease continuum. Neurological Sciences and Neurophysiology, 2020, 37, 155.	0.3	1
312	Remote but not Distant: a Review on Experimental Models and Clinical Trials in Remote Ischemic Conditioning as Potential Therapy in Ischemic Stroke. Molecular Neurobiology, 2022, 59, 294-325.	4.0	8
313	Single-cell Transcriptional Changes in Neurodegenerative Diseases. Neuroscience, 2021, 479, 192-205.	2.3	11
316	Effects of acupuncture on clinical outcome and helper T cell distribution and abundance in patients with convalescent ischemic stroke. American Journal of Translational Research (discontinued), 2021, 13, 8118-8125.	0.0	0
317	Positron Emission Tomography in Animal Models of Alzheimer's Disease Amyloidosis: Translational Implications. Pharmaceuticals, 2021, 14, 1179.	3.8	13

#	Article	IF	CITATIONS
319	Genetic Deletion of <i>Nt5e</i> Does Not Affect Stroke Size and Inflammation Profile in the Transient Middle Cerebral Artery Occlusion Model of Murine Stroke. SSRN Electronic Journal, 0, , .	0.4	0
320	Disruption of the IL-33-ST2-AKT signaling axis impairs neurodevelopment by inhibiting microglial metabolic adaptation and phagocytic function. Immunity, 2022, 55, 159-173.e9.	14.3	52
321	Elevated microglial oxidative phosphorylation and phagocytosis stimulate post-stroke brain remodeling and cognitive function recovery in mice. Communications Biology, 2022, 5, 35.	4.4	33
322	Histamine-4 Receptor: Emerging Target for the Treatment of Neurological Diseases. Current Topics in Behavioral Neurosciences, 2021, , 1.	1.7	2
323	The neuronal retromer can regulate both neuronal and microglial phenotypes of Alzheimer's disease. Cell Reports, 2022, 38, 110262.	6.4	17
324	Knockdown of IncRNA MIAT attenuated lipopolysaccharide-induced microglial cells injury by sponging miR-613. Mammalian Genome, 2022, , 1.	2.2	0
325	Effects of Natural Polyphenols on Oxidative Stress-Mediated Blood-Brain Barrier Dysfunction. Antioxidants, 2022, 11, 197.	5.1	23
327	The Crosstalk Between Neurons and Glia in Methamphetamine-Induced Neuroinflammation. Neurochemical Research, 2022, 47, 872-884.	3.3	23
328	Modulation of retinoid-X-receptors differentially regulates expression of apolipoprotein genes <i>apoc1</i> and <i>apoeb</i> by zebrafish microglia. Biology Open, 2022, 11, .	1.2	6
329	Functional insight into LOAD-associated microglial response genes. Open Biology, 2022, 12, 210280.	3.6	5
331	Necrotic reshaping of the glioma microenvironment drives disease progression. Acta Neuropathologica, 2022, 143, 291-310.	7.7	23
332	Targeting the immune system towards novel therapeutic avenues to fight brain aging and neurodegeneration. European Journal of Neuroscience, 2022, 56, 5413-5427.	2.6	2
333	Crosstalk Between the NLRP3 Inflammasome/ASC Speck and Amyloid Protein Aggregates Drives Disease Progression in Alzheimer's and Parkinson's Disease. Frontiers in Molecular Neuroscience, 2022, 15, 805169.	2.9	15
334	Ganciclovir attenuates the onset and progression of experimental autoimmune uveitis by inhibiting infiltration of Th17 and inflammatory cells into the retina. Biochemical Pharmacology, 2022, 197, 114917.	4.4	4
335	Neuroinflammation in Gaucher disease, neuronal ceroid lipofuscinosis, and commonalities with Parkinson's disease. Brain Research, 2022, 1780, 147798.	2.2	8
336	Persistent DNA damage associated with ATM kinase deficiency promotes microglial dysfunction. Nucleic Acids Research, 2022, 50, 2700-2718.	14.5	17
337	Alzheimer's Disease: From Pathogenesis to Mesenchymal Stem Cell Therapy – Bridging the Missing Link. Frontiers in Cellular Neuroscience, 2021, 15, 811852.	3.7	11
338	Local cholesterol metabolism orchestrates remyelination. Trends in Neurosciences, 2022, 45, 272-283.	8.6	35

#	Article	IF	CITATIONS
339	Microglia and Microglia-Like Cells: Similar but Different. Frontiers in Cellular Neuroscience, 2022, 16, 816439.	3.7	16
340	Evaluation of a 5-HT2B receptor agonist in a murine model of amyotrophic lateral sclerosis. Scientific Reports, 2021, 11, 23582.	3.3	5
341	Disease-associated microglial activation prevents photoreceptor degeneration by suppressing the accumulation of cell debris and neutrophils in degenerating rat retinas. Theranostics, 2022, 12, 2687-2706.	10.0	8
342	Regulation of activated microglia and macrophages by systemically administered DNA/RNA heteroduplex oligonucleotides. Molecular Therapy, 2022, 30, 2210-2223.	8.2	3
343	Increasing Severity of Spinal Cord Injury Results in Microglia/Macrophages With Annular-Shaped Morphology and No Change in Expression of CD40 and Tumor Growth Factor-β During the Chronic Post-injury Stage. Frontiers in Molecular Neuroscience, 2021, 14, 802558.	2.9	3
344	"Cascaded Rocket―Nanosystems with Spatiotemporal Separation for Triple‣ynergistic Therapy of Alzheimer's Disease. Advanced Healthcare Materials, 2022, 11, e2101748.	7.6	10
345	ENT-A010, a Novel Steroid Derivative, Displays Neuroprotective Functions and Modulates Microglial Responses. Biomolecules, 2022, 12, 424.	4.0	2
346	Microglia: Key Players in Retinal Ageing and Neurodegeneration. Frontiers in Cellular Neuroscience, 2022, 16, 804782.	3.7	25
348	Microglial activation in Alzheimer's disease: The role of flavonoids and microRNAs. Journal of Leukocyte Biology, 2022, 112, 47-77.	3.3	7
349	Transmembrane protein 119 is neither a specific nor a reliable marker for microglia. Clia, 2022, 70, 1170-1190.	4.9	33
350	Microglial VPS35 deficiency impairs Aβ phagocytosis and Aβ-induced disease-associated microglia, and enhances Aβ associated pathology. Journal of Neuroinflammation, 2022, 19, 61.	7.2	12
351	TREM2 and CD163 Ameliorate Microglia-Mediated Inflammatory Environment in the Aging Brain. Journal of Molecular Neuroscience, 2022, 72, 1075-1084.	2.3	5
352	Microglia in Alzheimer's Disease: a Key Player in the Transition Between Homeostasis and Pathogenesis. Neurotherapeutics, 2022, 19, 186-208.	4.4	19
353	ApoE Cascade Hypothesis in the pathogenesis of Alzheimer's disease and related dementias. Neuron, 2022, 110, 1304-1317.	8.1	120
354	Localization of Thioredoxin-Interacting Protein in Aging and Alzheimer's Disease Brains. NeuroSci, 2022, 3, 166-185.	1.2	0
355	Bone marrow-derived inducible microglia-like cells ameliorate motor function and survival in a mouse model of amyotrophic lateral sclerosis. Cytotherapy, 2022, 24, 789-801.	0.7	2
356	The role of intracellular calciumâ€storeâ€mediated calcium signals in <i>in vivo</i> sensor and effector functions of microglia. Journal of Physiology, 2023, 601, 4203-4215.	2.9	8
357	Glial Dysfunction and Its Contribution to the Pathogenesis of the Neuronal Ceroid Lipofuscinoses. Frontiers in Neurology, 2022, 13, 886567.	2.4	10

		CITATION R	REPORT	
#	Article		IF	Citations
358	Immune responses in the Parkinson's disease brain. Neurobiology of Disease, 2022, 168	, 105700.	4.4	30
359	Therapeutic potential of ApoE-mimetic peptides in CNS disorders: Current perspective. E Neurology, 2022, 353, 114051.	xperimental	4.1	8
360	MUTYH Actively Contributes to Microglial Activation and Impaired Neurogenesis in the F of Alzheimer's Disease. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-30	'athogenesis).	4.0	17
362	Microglia Heterogeneity in Alzheimer's Disease: Insights From Single-Cell Technolog Synaptic Neuroscience, 2021, 13, 773590.	ies. Frontiers in	2.5	16
363	Biologic TNF- $\hat{1}$ ± inhibitors reduce microgliosis, neuronal loss, and tau phosphorylation in mouse model of tauopathy. Journal of Neuroinflammation, 2021, 18, 312.	a transgenic	7.2	28
366	Microglial TREM2 in amyotrophic lateral sclerosis. Developmental Neurobiology, 2022, 8	2, 125-137.	3.0	16
367	Etiology and management of Alzheimer's disease: Potential role of gut microbiota m probiotics supplementation. Journal of Food Biochemistry, 2022, 46, e14043.	odulation with	2.9	13
368	Microglia and monocytes in inflammatory CNS disease: integrating phenotype and funct Neuropathologica, 2022, 143, 179-224.	ion. Acta	7.7	82
369	Multi-Omics Analysis of Microglial Extracellular Vesicles From Human Alzheimer's Dis Tissue Reveals Disease-Associated Signatures. Frontiers in Pharmacology, 2021, 12, 766	sease Brain 082.	3.5	50
370	Whole genome sequencing–based copy number variations reveal novel pathways and Alzheimer's disease. Alzheimer's and Dementia, 2022, 18, 1846-1867.	targets in	0.8	13
371	Hippocampal Sclerosis in Pilocarpine Epilepsy: Survival of Peptide-Containing Neurons ar and Memory Disturbances in the Adult NMRI Strain Mouse. International Journal of Mole Sciences, 2022, 23, 204.		4.1	6
373	Microglial NF-κB drives tau spreading and toxicity in a mouse model of tauopathy. Natur Communications, 2022, 13, 1969.	e	12.8	103
374	Clausena Harmandiana root extract attenuated cognitive impairments via reducing amy accumulation and neuroinflammation in Al²1-42-induced rats. BMC Complementary Met Therapies, 2022, 22, 108.	loid dicine and	2.7	1
375	Single-nucleus RNA sequencing identified cells with ependymal cell-like features enriched mice after spinal cord injury. Neuroscience Research, 2022, 181, 22-38.	d in neonatal	1.9	2
376	Coupled Neural–Glial Dynamics and the Role of Astrocytes in Alzheimer's Disease. Computational Applications, 2022, 27, 33.	Mathematical and	1.3	1
395	Functional and transcriptional profiling of microglial activation during the chronic phase identifies an age-related driver of poor outcome in old mice. GeroScience, 2022, 44, 140	of TBI 07-1440.	4.6	16
396	Diversity and function of brain-associated macrophages. Current Opinion in Immunology 102181.	y, 2022, 76,	5.5	28
397	Amyloidâ€Î² activates NLRP3 inflammasomes by affecting microglial immunometabolisn Sykâ€AMPK pathway. Aging Cell, 2022, 21, e13623.	n through the	6.7	25

#	Article	IF	CITATIONS
398	Cannabinoid CB2 Receptors Modulate Microglia Function and Amyloid Dynamics in a Mouse Model of Alzheimer's Disease. Frontiers in Pharmacology, 2022, 13, .	3.5	10
399	Nicotinic Acetylcholine Receptors and Microglia as Therapeutic and Imaging Targets in Alzheimer's Disease. Molecules, 2022, 27, 2780.	3.8	10
400	The "Self-Sacrifice―of ImmuneCells in Sepsis. Frontiers in Immunology, 2022, 13, 833479.	4.8	18
401	Immune-mediated neurodegenerative trait provoked by multimodal derepression of long-interspersed nuclear element-1. IScience, 2022, 25, 104278.	4.1	7
402	Frequent Low-Dose Δ9-Tetrahydrocannabinol in Adolescence Disrupts Microglia Homeostasis and Disables Responses to Microbial Infection and Social Stress in Young Adulthood. Biological Psychiatry, 2022, 92, 845-860.	1.3	18
403	Transgenic Mouse Models of Alzheimer's Disease: An Integrative Analysis. International Journal of Molecular Sciences, 2022, 23, 5404.	4.1	36
404	Transcriptional signature in microglia isolated from an Alzheimer's disease mouse model treated with scanning ultrasound. Bioengineering and Translational Medicine, 2023, 8, .	7.1	7
405	Cell death in development, maintenance, and diseases of the nervous system. Seminars in Immunopathology, 2022, 44, 725-738.	6.1	3
406	Current Understanding of Long-Term Cognitive Impairment After Sepsis. Frontiers in Immunology, 2022, 13, .	4.8	19
408	Protective Signature of IFNγ-Stimulated Microglia Relies on miR-124-3p Regulation From the Secretome Released by Mutant APP Swedish Neuronal Cells. Frontiers in Pharmacology, 2022, 13, .	3.5	10
409	The antioxidant enzyme Peroxiredoxin-1 controls stroke-associated microglia against acute ischemic stroke. Redox Biology, 2022, 54, 102347.	9.0	27
411	Brainâ€ŧargeting drug delivery systems. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, .	6.1	13
412	Nt5e deficiency does not affect post-stroke inflammation and lesion size in a murine ischemia/reperfusion stroke model. IScience, 2022, 25, 104470.	4.1	3
413	Inflammatory Animal Models of Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, S165-S182.	2.8	9
414	Different Methods for Evaluating Microglial Activation Using Anti-Ionized Calcium-Binding Adaptor Protein-1 Immunohistochemistry in the Cuprizone Model. Cells, 2022, 11, 1723.	4.1	18
416	TREM2 in the pathogenesis of AD: a lipid metabolism regulator and potential metabolic therapeutic target. Molecular Neurodegeneration, 2022, 17, .	10.8	36
417	CNS-associated T-lymphocytes in a mouse model of Hereditary Spastic Paraplegia type 11 (SPG11) are therapeutic targets for established immunomodulators. Experimental Neurology, 2022, 355, 114119.	4.1	3
418	Microglial mTOR Activation Upregulates Trem2 and Enhances β-Amyloid Plaque Clearance in the <i>5XFAD</i> Alzheimer's Disease Model. Journal of Neuroscience, 2022, 42, 5294-5313.	3.6	34

#	Article	IF	CITATIONS
419	Primary Microglia Dysfunction or Microgliopathy: A Cause of Dementias and Other Neurological or Psychiatric Disorders. Neuroscience, 2022, 497, 324-339.	2.3	4
420	A New Understanding of TMEM119 as a Marker of Microglia. Frontiers in Cellular Neuroscience, 0, 16, .	3.7	24
421	Region-Specific Characteristics of Astrocytes and Microglia: A Possible Involvement in Aging and Diseases. Cells, 2022, 11, 1902.	4.1	10
422	LILRB2-mediated TREM2 signaling inhibition suppresses microglia functions. Molecular Neurodegeneration, 2022, 17, .	10.8	12
423	Central and Peripheral Inflammation: Connecting the Immune Responses of Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, S129-S136.	2.8	9
424	The role of triggering receptor expressed on myeloid cells 2 in Parkinson's disease and other neurodegenerative disorders. Behavioural Brain Research, 2022, 433, 113977.	2.2	4
425	Molecular mechanisms highlighting the potential role of COVID-19 in the development of neurodegenerative diseases. Physiology International, 2022, 109, 135-162.	1.6	4
426	Host immune responses in the central nervous system during fungal infections. Immunological Reviews, 2022, 311, 50-74.	6.0	3
427	Immune response after central nervous system injury. Seminars in Immunology, 2022, 59, 101629.	5.6	19
428	BACE-1 inhibition facilitates the transition from homeostatic microglia to DAM-1. Science Advances, 2022, 8, .	10.3	27
429	Signatures of glial activity can be detected in the CSF proteome. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	12
430	Reparative inflammation in multiple sclerosis. Seminars in Immunology, 2022, 59, 101630.	5.6	2
431	Microglial polarization differentially affects neuronal vulnerability to the β-amyloid protein: Modulation by melatonin. Biochemical Pharmacology, 2022, 202, 115151.	4.4	4
432	Microglia: Friend and foe in tauopathy. Progress in Neurobiology, 2022, 216, 102306.	5.7	13
433	The dual effect of acetate on microglial TNF- $\hat{l}\pm$ production. Clinics, 2022, 77, 100062.	1.5	4
434	Pathophysiology of neurodegenerative diseases: An interplay among axonal transport failure, oxidative stress, and inflammation?. Seminars in Immunology, 2022, 59, 101628.	5.6	13
435	A Dichotomous Role for FABP7 in Sleep and Alzheimer's Disease Pathogenesis: A Hypothesis. Frontiers in Neuroscience, 0, 16, .	2.8	6
436	Protective effects of omega-3 fatty acids in a blood–brain barrier-on-chip model and on postoperative delirium-like behaviour in mice. British Journal of Anaesthesia, 2023, 130, e370-e380.	3.4	15

#	Article	IF	CITATIONS
437	Microglia Phenotypes in Aging and Neurodegenerative Diseases. Cells, 2022, 11, 2091.	4.1	76
439	Single-cell analysis of the aging female mouse hypothalamus. Nature Aging, 2022, 2, 662-678.	11.6	35
440	Melatonin ameliorates Parkinson's disease via regulating microglia polarization in a RORαâ€dependent pathway. Npj Parkinson's Disease, 2022, 8, .	5.3	13
441	Repopulated microglia induce expression of Cxcl13 with differential changes in Tau phosphorylation but do not impact amyloid pathology. Journal of Neuroinflammation, 2022, 19, .	7.2	7
442	Type-I-interferon signaling drives microglial dysfunction and senescence in human iPSC models of Down syndrome and Alzheimer's disease. Cell Stem Cell, 2022, 29, 1135-1153.e8.	11.1	45
443	An overview on microglial origin, distribution, and phenotype in Alzheimer's disease. Journal of Cellular Physiology, 0, , .	4.1	3
444	Profile of TREM2-Derived circRNA and mRNA Variants in the Entorhinal Cortex of Alzheimer's Disease Patients. International Journal of Molecular Sciences, 2022, 23, 7682.	4.1	6
445	Pathogenic neuropsychiatric effect of stress-induced microglial interleukin 12/23 axis in systemic lupus erythematosus. Annals of the Rheumatic Diseases, 2022, 81, 1564-1575.	0.9	9
446	<scp>TREM2</scp> â€induced activation of microglia contributes to synaptic integrity in cognitively intact aged individuals with Alzheimer's neuropathology. Brain Pathology, 2023, 33, .	4.1	18
447	The role of microglia immunometabolism in neurodegeneration: Focus on molecular determinants and metabolic intermediates of metabolic reprogramming. Biomedicine and Pharmacotherapy, 2022, 153, 113412.	5.6	12
448	Transcriptomic and epigenomic landscapes of Alzheimer's disease evidence mitochondrial-related pathways. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119326.	4.1	14
449	Immune-Triggered Forms of Plasticity Across Brain Regions. Frontiers in Cellular Neuroscience, 0, 16, .	3.7	4
450	Probiotic Lactobacillus rhamnosus GR-1 supplementation attenuates Pb-induced learning and memory deficits by reshaping the gut microbiota. Frontiers in Nutrition, 0, 9, .	3.7	13
451	Humulus japonicus attenuates LPS-and scopolamine-induced cognitive impairment in mice. Laboratory Animal Research, 2022, 38, .	2.5	1
452	Transforming growth factor- \hat{l}^21 protects against LPC-induced cognitive deficit by attenuating pyroptosis of microglia via NF- \hat{l}^{e} B/ERK1/2 pathways. Journal of Neuroinflammation, 2022, 19, .	7.2	13
453	The role of genetic risk factors of Alzheimer's disease in synaptic dysfunction. Seminars in Cell and Developmental Biology, 2023, 139, 3-12.	5.0	13
454	MhcII Regulates Transmission of α-Synuclein-Seeded Pathology in Mice. International Journal of Molecular Sciences, 2022, 23, 8175.	4.1	4
456	CD33 isoforms in microglia and Alzheimer's disease: Friend and foe. Molecular Aspects of Medicine, 2023, 90, 101111.	6.4	18

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
457	Brain region- and sex-specific transcriptional profiles of microglia. Frontiers in Psychiatry	v, 0, 13, .	2.6	17
458	Sirtuins promote brain homeostasis, preventing Alzheimer's disease through targeti neuroinflammation. Frontiers in Physiology, 0, 13, .	ing	2.8	8
459	Dual ontogeny of disease-associated microglia and disease inflammatory macrophages i neurodegeneration. Immunity, 2022, 55, 1448-1465.e6.	in aging and	14.3	106
461	Neuropsychiatric lupus erythematosus: Focusing on autoantibodies. Journal of Autoimm 132, 102892.	iunity, 2022,	6.5	2
462	When the infectious environment meets the AD brain. Molecular Neurodegeneration, 20	022, 17, .	10.8	13
463	Fatty acid sensing in the brain: The role of glial-neuronal metabolic crosstalk and horizor flux. Biochimie, 2022, , .	ntal lipid	2.6	3
464	Disease-associated oligodendrocyte responses across neurodegenerative diseases. Cell 40, 111189.	Reports, 2022,	6.4	52
465	Neuroinflammation inhibition by small-molecule targeting USP7 noncatalytic domain fo neurodegenerative disease therapy. Science Advances, 2022, 8, .	r	10.3	23
466	C5aR1 antagonism alters microglial polarization and mitigates disease progression in a of Alzheimer's disease. Acta Neuropathologica Communications, 2022, 10, .	mouse model	5.2	14
467	Pathological tau signatures and nuclear alterations in neurons, astrocytes and microglia Alzheimer's disease, progressive supranuclear palsy, and dementia with Lewy bodies. Bra 2023, 33, .		4.1	14
468	Microglia: Rheostats of space radiation effects in the CNS microenvironment. Life Science Research, 2022, , .	ces in Space	2.3	0
469	Therapies for lysosomal storage diseases: Principles, practice, and prospects for refinem evolving science. Molecular Genetics and Metabolism, 2022, 137, 81-91.	ents based on	1.1	5
470	The heterogeneity of microglial activation and its epigenetic and non-coding RNA regula immunopathogenesis of neurodegenerative diseases. Cellular and Molecular Life Scienc		5.4	12
471	How the immune system shapes neurodegenerative diseases. Trends in Neurosciences,	2022, 45, 733-748.	8.6	17
472	Aged-Related Physiological Changes: CNS Function. Lessons From the ICU, 2022, , 23-4	2.	0.1	0
473	Emerging Roles of TREM2 in Neurodegenerative Diseases. , 2022, , 169-195.			0
474	Sex and APOE Genotype Alter the Basal and Induced Inflammatory States of Primary Mic APOE Targeted Replacement Mice. International Journal of Molecular Sciences, 2022, 23		4.1	6
475	Iron metabolism mediates microglia susceptibility in ferroptosis. Frontiers in Cellular Ner 0, 16, .	uroscience,	3.7	18

#	Article	IF	CITATIONS
476	Elevating microglia TREM2 reduces amyloid seeding and suppresses disease-associated microglia. Journal of Experimental Medicine, 2022, 219, .	8.5	20
477	Single cell and spatial transcriptomic analyses reveal microglia-plasma cell crosstalk in the brain during Trypanosoma brucei infection. Nature Communications, 2022, 13, .	12.8	21
478	A multifaceted evaluation of microgliosis and differential cellular dysregulation of mammalian target of rapamycin signaling in neuronopathic Gaucher disease. Frontiers in Molecular Neuroscience, 0, 15, .	2.9	4
479	Inflammasome activation in traumatic brain injury and Alzheimer's disease. Translational Research, 2023, 254, 1-12.	5.0	17
480	Evaluation of cannabinoid type 2 receptor expression and pyridine-based radiotracers in brains from a mouse model of Alzheimer's disease. Frontiers in Aging Neuroscience, 0, 14, .	3.4	7
481	Innate immune activation: Parallels in alcohol use disorder and Alzheimer's disease. Frontiers in Molecular Neuroscience, 0, 15, .	2.9	8
482	Aberrant energy metabolism in Alzheimer's disease. Journal of Translational Internal Medicine, 2022, 10, 197-206.	2.5	12
483	G protein–biased GPR3 signaling ameliorates amyloid pathology in a preclinical Alzheimer's disease mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	9
484	The multiple faces of extracellular vesicles released by microglia: Where are we 10 years after?. Frontiers in Cellular Neuroscience, 0, 16, .	3.7	13
485	Age-dependent microglial disease phenotype results in functional decline in gut macrophages. , 2022, , .		0
486	APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. Molecular Neurodegeneration, 2022, 17, .	10.8	62
487	Microglial autophagy in cerebrovascular diseases. Frontiers in Aging Neuroscience, 0, 14, .	3.4	1
488	SLAMF7 modulates B cells and adaptive immunity to regulate susceptibility to CNS autoimmunity. Journal of Neuroinflammation, 2022, 19, .	7.2	7
489	The C1q-ApoE complex: A new hallmark pathology of viral hepatitis and nonalcoholic fatty liver disease. Frontiers in Immunology, 0, 13, .	4.8	4
490	Bystanders or not? Microglia and lymphocytes in aging and stroke. Neural Regeneration Research, 2023, 18, 1397.	3.0	6
493	Chronic TREM2 activation exacerbates Aβ-associated tau seeding and spreading. Journal of Experimental Medicine, 2023, 220, .	8.5	43
494	Microglia are SYK of Al 2 and cell debris. Cell, 2022, 185, 4043-4045.	28.9	2
495	TLR4-Pathway-Associated Biomarkers in Subarachnoid Hemorrhage (SAH): Potential Targets for Future Anti-Inflammatory Therapies. International Journal of Molecular Sciences, 2022, 23, 12618.	4.1	7

#	Article	IF	CITATIONS
496	SYK coordinates neuroprotective microglial responses in neurodegenerative disease. Cell, 2022, 185, 4135-4152.e22.	28.9	79
497	Expression level of the reprogramming factor NeuroD1 is critical for neuronal conversion efficiency from different cell types. Scientific Reports, 2022, 12, .	3.3	6
498	Assaying Microglia Functions In Vitro. Cells, 2022, 11, 3414.	4.1	6
499	Different phenotypes of microglia in animal models of Alzheimer disease. Immunity and Ageing, 2022, 19,	4.2	11
500	The Hidden Role of Non-Canonical Amyloid β Isoforms in Alzheimer's Disease. Cells, 2022, 11, 3421.	4.1	3
501	Potential mechanisms underlying the accelerated cognitive decline in people with chronic low back pain: A scoping review. Ageing Research Reviews, 2022, 82, 101767.	10.9	7
502	Neuroinflammation of microglia polarization in intracerebral hemorrhage and its potential targets for intervention. Frontiers in Molecular Neuroscience, 0, 15, .	2.9	8
503	Siponimod Modulates the Reaction of Microglial Cells to Pro-Inflammatory Stimulation. International Journal of Molecular Sciences, 2022, 23, 13278.	4.1	3
504	The protean roles of neuroinflammation in trauma, infections, autoimmunity and neurodegeneration. Seminars in Immunology, 2022, 61-64, 101655.	5.6	1
505	The industrial genomic revolution: A new era in neuroimmunology. Neuron, 2022, 110, 3429-3443.	8.1	2
506	Microglial efferocytosis: Diving into the Alzheimer's disease gene pool. Neuron, 2022, 110, 3513-3533.	8.1	33
507	TREM2 and Microglia Contribute to the Synaptic Plasticity: from Physiology to Pathology. Molecular Neurobiology, 2023, 60, 512-523.	4.0	8
508	CNS remyelination and inflammation: From basic mechanisms to therapeutic opportunities. Neuron, 2022, 110, 3549-3565.	8.1	31
510	Microglia dynamics in aging-related neurobehavioral and neuroinflammatory diseases. Journal of Neuroinflammation, 2022, 19, .	7.2	22
511	BAM! Pathogen control at the brain border. Immunity, 2022, 55, 1969-1971.	14.3	2
512	Microglia and astrocyte activation is regionâ€dependent in the αâ€synuclein mouse model of Parkinson's disease. Glia, 2023, 71, 571-587.	4.9	14
513	CNS Delivery of Nucleic Acid Therapeutics: Beyond the Blood–Brain Barrier and Towards Specific Cellular Targeting. Pharmaceutical Research, 2023, 40, 77-105.	3.5	9
515	Baicalin Mitigates the Neuroinflammation through the TLR4/MyD88/NF-κB and MAPK Pathways in LPS-Stimulated BV-2 Microglia. BioMed Research International, 2022, 2022, 1-15.	1.9	7

#	ARTICLE	IF	CITATIONS
516	Dual Functionalized Liposomes for Selective Delivery of Poorly Soluble Drugs to Inflamed Brain Regions. Pharmaceutics, 2022, 14, 2402.	4.5	4
517	A prebiotic diet modulates microglial states and motor deficits in α-synuclein overexpressing mice. ELife, 0, 11, .	6.0	18
519	Neuronal nuclear calcium signaling suppression of microglial reactivity is mediated by osteoprotegerin after traumatic brain injury. Journal of Neuroinflammation, 2022, 19, .	7.2	3
520	Isolation of Human Microglia from Neuropathologically Diagnosed Cases in the Single-Cell Era. Methods in Molecular Biology, 2023, , 43-62.	0.9	2
521	T cells in the brain inflammation. Advances in Immunology, 2023, , 29-58.	2.2	3
522	δ-opioid Receptor, Microglia and Neuroinflammation. , 2023, 14, 778.		4
523	Immunobiological characteristics of microglial cells and in vitro models for their obtaining. , 2022, , 4-13.		0
524	Focused-ultrasound blood-brain barrier opening promotes neuroprotective microglia. , 2022, , .		1
525	Impact of Aβ40 and Aβ42 Fibrils on the Transcriptome of Primary Astrocytes and Microglia. Biomedicines, 2022, 10, 2982.	3.2	2
526	New Insights into Microglial Mechanisms of Memory Impairment in Alzheimer's Disease. Biomolecules, 2022, 12, 1722.	4.0	9
527	Microglial heterogeneity in amyotrophic lateral sclerosis. Journal of Neuropathology and Experimental Neurology, 2023, 82, 140-149.	1.7	6
528	Deciphering the Genetic Crosstalk between Microglia and Oligodendrocyte Precursor Cells during Demyelination and Remyelination Using Transcriptomic Data. International Journal of Molecular Sciences, 2022, 23, 14868.	4.1	3
529	Microglial activation protects against accumulation of tau aggregates in nondemented individuals with underlying Alzheimer's disease pathology. Nature Aging, 2022, 2, 1138-1144.	11.6	19
530	The Key Drivers of Brain Injury by Systemic Inflammatory Responses after Sepsis: Microglia and Neuroinflammation. Molecular Neurobiology, 2023, 60, 1369-1390.	4.0	15
531	Microglia sequelae: brain signature of innate immunity in schizophrenia. Translational Psychiatry, 2022, 12, .	4.8	9
532	New models of Parkinson's like neuroinflammation in human microglia clone 3: Activation profiles induced by INF-γ plus high glucose and mitochondrial inhibitors. Frontiers in Cellular Neuroscience, 0, 16, .	3.7	4
533	Plaque contact and unimpaired Trem2 is required for the microglial response to amyloid pathology. Cell Reports, 2022, 41, 111686.	6.4	10
534	Microglia and metastases to the central nervous system: victim, ravager, or something else?. Journal of Experimental and Clinical Cancer Research, 2022, 41, .	8.6	11

# 535	ARTICLE TDP-43 condensates and lipid droplets regulate the reactivity of microglia and regeneration after traumatic brain injury. Nature Neuroscience, 2022, 25, 1608-1625.	IF 14.8	CITATIONS
536	Extracellular vesicles, from the pathogenesis to the therapy of neurodegenerative diseases. Translational Neurodegeneration, 2022, 11, .	8.0	24
537	Osteopontin (OPN)/SPP1: from its biochemistry to biological functions in the innate immune system and the central nervous system (CNS). International Immunology, 2023, 35, 171-180.	4.0	13
538	Glial Contributions to Lafora Disease: A Systematic Review. Biomedicines, 2022, 10, 3103.	3.2	0
539	Integrating transcriptomic datasets across neurological disease identifies unique myeloid subpopulations driving diseaseâ€specific signatures. Glia, 2023, 71, 904-925.	4.9	6
540	Structural and functional distinctions of co-resident microglia and monocyte-derived macrophages after retinal degeneration. Journal of Neuroinflammation, 2022, 19, .	7.2	5
541	Aged lipidâ€ l aden microglia display impaired responses to stroke. EMBO Molecular Medicine, 2023, 15, .	6.9	22
542	Deep learning predicts the impact of regulatory variants on cell-type specific enhancers in the brain. Bioinformatics Advances, 0, , .	2.4	0
543	Transcriptional and epigenetic regulation of microglia in maintenance of brain homeostasis and neurodegeneration. Frontiers in Molecular Neuroscience, 0, 15, .	2.9	4
544	Microglia rely on SYK signalling to mount neuroprotective responses in models of Alzheimer's disease and multiple sclerosis. Clinical and Translational Medicine, 2023, 13, .	4.0	5
545	Analysis of Al²-induced neurotoxicity and microglial responses in simple two- and three-dimensional human iPSC-derived cortical culture systems. Tissue and Cell, 2023, 81, 102023.	2.2	2
546	Characterization of microglia behaviour in healthy and pathological conditions with image analysis tools. Open Biology, 2023, 13, .	3.6	9
547	LilrB3 is a putative cell surface receptor of APOE4. Cell Research, 2023, 33, 116-130.	12.0	10
548	The interactions of amyloid \hat{l}^2 aggregates with phospholipid membranes and the implications for neurodegeneration. Biochemical Society Transactions, 2023, 51, 147-159.	3.4	5
549	TREM2 signalling as a multifaceted player in brain homoeostasis and a potential target for Alzheimer's disease treatment. European Journal of Neuroscience, 2023, 57, 718-733.	2.6	5
551	Emerging Roles of Extracellular Vesicles in Alzheimer's Disease: Focus on Synaptic Dysfunction and Vesicle–Neuron Interaction. Cells, 2023, 12, 63.	4.1	6
552	Engineering an inhibitor-resistant human CSF1R variant for microglia replacement. Journal of Experimental Medicine, 2023, 220, .	8.5	15
553	Sulfated Hyperbranched and Linear Polyglycerols Modulate HMGB1 and Morphological Plasticity in Neural Cells. ACS Chemical Neuroscience, 2023, 14, 677-688.	3.5	0

#	Article	IF	CITATIONS
554	Untangling the Role of TREM2 in Conjugation with Microglia in Neuronal Dysfunction: A Hypothesis on a Novel Pathway in the Pathophysiology of Alzheimer's Disease. Journal of Alzheimer's Disease, 2023, 94, S319-S333.	2.6	4
555	Neuronal glutathione loss leads to neurodegeneration involving gasdermin activation. Scientific Reports, 2023, 13, .	3.3	4
556	Regulation of adult hippocampal neurogenesis by microglia in the healthy and injured brain. Scientia Sinica Vitae, 2023, , .	0.3	1
559	Development of an AAV-based model of tauopathy targeting retinal ganglion cells and the mouse visual pathway to study the role of microglia in Tau pathology. Neurobiology of Disease, 2023, 181, 106116.	4.4	1
560	What fungal CNS infections can teach us about neuroimmunology and CNS-specific immunity. Seminars in Immunology, 2023, 67, 101751.	5.6	2
561	Microglia secrete distinct sets of neurotoxins in a stimulus-dependent manner. Brain Research, 2023, 1807, 148315.	2.2	6
562	Neuro-immune crosstalk in depressive symptoms of multiple sclerosis. Neurobiology of Disease, 2023, 177, 106005.	4.4	3
563	Profiling TREM2 expression in amyotrophic lateral sclerosis. Brain, Behavior, and Immunity, 2023, 109, 117-126.	4.1	6
564	Integrative in situ mapping of single-cell transcriptional states and tissue histopathology in a mouse model of Alzheimer's disease. Nature Neuroscience, 0, , .	14.8	21
565	Adult hippocampal neurogenesis in Alzheimer's disease: A roadmap to clinical relevance. Cell Stem Cell, 2023, 30, 120-136.	11.1	25
566	An insight into the TAM system in Alzheimer's disease. International Immunopharmacology, 2023, 116, 109791.	3.8	0
567	Perivascular cells induce microglial phagocytic states and synaptic engulfment via SPP1 in mouse models of Alzheimer's disease. Nature Neuroscience, 2023, 26, 406-415.	14.8	41
568	Microglial motility is modulated by neuronal activity and correlates with dendritic spine plasticity in the hippocampus of awake mice. ELife, 0, 12, .	6.0	13
569	Human striatal glia differentially contribute to AD- and PD-specific neurodegeneration. Nature Aging, 2023, 3, 346-365.	11.6	8
570	Melanin-like polydopamine nanoparticles mediating anti-inflammatory and rescuing synaptic loss for inflammatory depression therapy. Journal of Nanobiotechnology, 2023, 21, .	9.1	11
571	Neurodegeneration cell per cell. Neuron, 2023, 111, 767-786.	8.1	8
572	Microglia C-lectin/selectin' neurons to eat. Immunity, 2023, 56, 227-229.	14.3	1
574	Reverse electron transfer is activated during aging and contributes to aging and ageâ€related disease. EMBO Reports, 2023, 24, .	4.5	11

#	Article	IF	CITATIONS
575	CD11c+ microglia promote white matter repair after ischemic stroke. Cell Death and Disease, 2023, 14, .	6.3	7
576	Microglia as drivers of neurodegeneration: The role of innate-adaptive immune signaling. Neuron, 2023, 111, 597-598.	8.1	1
577	Regulatory role of the endocannabinoid system on glial cells toward cognitive function in Alzheimer's disease: A systematic review and meta-analysis of animal studies. Frontiers in Pharmacology, 0, 14, .	3.5	1
578	Microglia and macrophages in the neuro-glia-vascular unit: From identity to functions. Neurobiology of Disease, 2023, 179, 106066.	4.4	1
580	Inflammasome activation under high cholesterol load triggers a protective microglial phenotype while promoting neuronal pyroptosis. Translational Neurodegeneration, 2023, 12, .	8.0	5
582	Attenuation of Alzheimer's brain pathology in 5XFAD mice by PTH1-34, a peptide of parathyroid hormone. Alzheimer's Research and Therapy, 2023, 15, .	6.2	2
583	Multifaceted microglia during brain development: Models and tools. Frontiers in Neuroscience, 0, 17, .	2.8	3
584	Rab11A Depletion in Microglia-Derived Extracellular Vesicle Proteome upon Beta-Amyloid Treatment. Cell Biochemistry and Biophysics, 2023, 81, 337-347.	1.8	0
585	AXL Expression on Homeostatic Resident Liver Macrophages Is Reduced in Cirrhosis Following GAS6 Production by Hepatic Stellate Cells. Cellular and Molecular Gastroenterology and Hepatology, 2023, 16, 17-37.	4.5	2
586	TREM2 deficiency inhibits microglial activation and aggravates demyelinating injury in neuromyelitis optica spectrum disorder. Journal of Neuroinflammation, 2023, 20, .	7.2	1
587	Modulation of microglial metabolism facilitates regeneration in demyelination. IScience, 2023, 26, 106588.	4.1	1
588	Differences in the post-stroke innate immune response between young and old. Seminars in Immunopathology, 2023, 45, 367-376.	6.1	8
589	The Alzheimer's disease risk factor <i>INPP5D</i> restricts neuroprotective microglial responses in amyloid betaâ€mediated pathology. Alzheimer's and Dementia, 2023, 19, 4908-4921.	0.8	9
590	Peroxisomal defects in microglial cells induce a disease-associated microglial signature. Frontiers in Molecular Neuroscience, 0, 16, .	2.9	4
591	GSDMD in peripheral myeloid cells regulates microglial immune training and neuroinflammation in Parkinson's disease. Acta Pharmaceutica Sinica B, 2023, 13, 2663-2679.	12.0	2
592	The Functions and Phenotypes of Microglia in Alzheimer's Disease. Cells, 2023, 12, 1207.	4.1	4
593	Advances in proteomic phenotyping of microglia in neurodegeneration. Proteomics, 0, , .	2.2	1
594	Microglia modulate <scp>TNFα</scp> â€mediated synaptic plasticity. Glia, 2023, 71, 2117-2136.	4.9	5

#	Article	IF	CITATIONS
595	The triggering receptor expressed on myeloid cells 2–apolipoprotein E signaling pathway in diseases. Chinese Medical Journal, 2023, 136, 1291-1299.	2.3	0
596	Role of NCKAP1 in the Defective Phagocytic Function of Microglia-Like Cells Derived from Rapidly Progressing Sporadic ALS. Molecular Neurobiology, 2023, 60, 4761-4777.	4.0	3
597	Molecular mechanisms underlying the potential neuroprotective effects of <i>Trifolium pratense</i> and its phytoestrogenâ€isoflavones in neurodegenerative disorders. Phytotherapy Research, 2023, 37, 2693-2737.	5.8	1
598	Acute and Chronic Macrophage Differentiation Modulates TREM2 in a Personalized Alzheimer's Patient-Derived Assay. Cellular and Molecular Neurobiology, 0, , .	3.3	0
599	Role of microglial metabolic reprogramming in Parkinson's disease. Biochemical Pharmacology, 2023, 213, 115619.	4.4	2
600	Microglia degrade Tau oligomers deposit via purinergic P2Y12-associated podosome and filopodia formation and induce chemotaxis. Cell and Bioscience, 2023, 13, .	4.8	1
601	Tau polarizes an aging transcriptional signature to excitatory neurons and glia. ELife, 0, 12, .	6.0	3
602	Microglia Exhibit Distinct Heterogeneity Rather than M1/M2 Polarization within the Early Stage of Acute Ischemic Stroke. , 2023, 14, 2284.		5
603	Gene knockout inference with variational graph autoencoder learning single-cell gene regulatory networks. Nucleic Acids Research, 2023, 51, 6578-6592.	14.5	3
604	MICROGLIAL PHAGOCYTOSIS IN RATS WITH DIFFERENT MODELS OF ALZHEIMER'S DISEASE. Biotechnologia Acta, 2023, 16, 57-66.	0.2	1
605	Transplanting Microglia for Treating CNS Injuries and Neurological Diseases and Disorders, and Prospects for Generating Exogenic Microglia. Cell Transplantation, 2023, 32, 096368972311710.	2.5	0
606	Focused Ultrasound-Mediated Blood–Brain Barrier Opening Best Promotes Neuroimmunomodulation through Brain Macrophage Redistribution. Neuroglia (Basel, Switzerland), 2023, 4, 141-157.	0.9	3
607	The Stria Vascularis in Mice and Humans Is an Early Site of Age-Related Cochlear Degeneration, Macrophage Dysfunction, and Inflammation. Journal of Neuroscience, 2023, 43, 5057-5075.	3.6	7
608	Neural cell state shifts and fate loss in ageing and age-related diseases. Nature Reviews Neurology, 2023, 19, 434-443.	10.1	5
609	Modeling brain macrophage biology and neurodegenerative diseases using human iPSC-derived neuroimmune organoids. Frontiers in Cellular Neuroscience, 0, 17, .	3.7	3
610	CARD9 attenuates Al̂² pathology and modifies microglial responses in an Alzheimer's disease mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	3
611	Convergent mechanisms of microgliaâ€mediated synaptic dysfunction contribute to diverse neuropathological conditions. Annals of the New York Academy of Sciences, 0, , .	3.8	1
613	Microglial <scp>LRRK2</scp> â€mediated <scp>NFATc1</scp> attenuates αâ€synuclein immunotoxicity in association with <scp>CX3CR1</scp> â€induced migration and the lysosomeâ€initiated degradation. Glia, 0,	4.9	0

		CITATION REPORT		
#	Article		IF	CITATIONS
614	TREM2-Deficient Microglia Attenuate Tau Spreading In Vivo. Cells, 2023, 12, 1597.		4.1	3
615	Complement C3aR depletion reverses HIF-1α–induced metabolic impairment and er response to Al² pathology. Journal of Clinical Investigation, 2023, 133, .	hances microglial	8.2	4
616	Microglia in Alzheimer's disease: pathogenesis, mechanisms, and therapeutic poter Aging Neuroscience, 0, 15, .	ntials. Frontiers in	3.4	12
618	Cholesterol, Amyloid Beta, Fructose, and LPS Influence ROS and ATP Concentrations a Phagocytic Capacity of HMC3 Human Microglia Cell Line. International Journal of Mole 2023, 24, 10396.	nd the cular Sciences,	4.1	1
622	Age-dependent immune and lymphatic responses after spinal cord injury. Neuron, 202	3, 111, 2155-2169.e9.	8.1	5
623	Microglial P2X4 receptors promote ApoE degradation and contribute to memory defici Alzheimer's disease. Cellular and Molecular Life Sciences, 2023, 80, .	ts in	5.4	3
624	TREM2 Expression and Amyloid-Beta Phagocytosis in Alzheimer's Disease. Internat Molecular Sciences, 2023, 24, 8626.	ional Journal of	4.1	5
626	Immune stimulation recruits a subset of pro-regenerative macrophages to the retina th axonal regrowth of injured neurons. Acta Neuropathologica Communications, 2023, 1		5.2	1
628	Border-associated macrophages mediate the neuroinflammatory response in an alpha- of Parkinson disease. Nature Communications, 2023, 14, .	synuclein model	12.8	18
629	Inconsistent Effects of Glatiramer Acetate Treatment in the 5xFAD Mouse Model of Alz Disease. Pharmaceutics, 2023, 15, 1809.	rheimer's	4.5	0
630	High-resolution omics of vascular ageing and inflammatory pathways in neurodegenera in Cell and Developmental Biology, 2023, , .	ation. Seminars	5.0	1
631	Peripheral immune system modulates Purkinje cell degeneration in Niemann–Pick dis Science Alliance, 2023, 6, e202201881.	sease type C1. Life	2.8	0
634	Inhibitory Neurons in Nucleus Tractus Solitarius Are Involved in Decrease of Heart Rate and Development of Depression-Like Behaviors in Temporal Lobe Epilepsy. Internationa Neuropsychopharmacology, 2023, 26, 669-679.	Variability al Journal of	2.1	0
635	Exploring microglia and their phenomenal concatenation of stress responses in neurod disorders. Life Sciences, 2023, 328, 121920.	egenerative	4.3	5
636	P2Y2 receptor mediates dying cell removal via inflammatory activated microglia. Journa Pharmacological Sciences, 2023, 153, 55-67.	al of	2.5	1
637	Microglia regulation of central nervous system myelin health and regeneration. Nature Immunology, 2024, 24, 49-63.	Reviews	22.7	11
638	Single-cell RNA-seq reveals alterations in peripheral CX3CR1 and nonclassical monocyt tauopathy. Genome Medicine, 2023, 15, .	es in familial	8.2	1
639	The Relationship of Astrocytes and Microglia with Different Stages of Ischemic Stroke. Neuropharmacology, 2023, 21, .	Current	2.9	2

#	Article	IF	CITATIONS
640	Microglial crosstalk with astrocytes and immune cells in amyotrophic lateral sclerosis. Frontiers in Immunology, 0, 14, .	4.8	3
641	Exposure of iPSC-derived human microglia to brain substrates enables the generation and manipulation of diverse transcriptional states in vitro. Nature Immunology, 2023, 24, 1382-1390.	14.5	19
643	Senescent Microglia Represent a Subset of Disease-Associated Microglia in P301S Mice. Journal of Alzheimer's Disease, 2023, 95, 493-507.	2.6	2
644	Hypometabolism, Alzheimer's Disease, and Possible Therapeutic Targets: An Overview. Cells, 2023, 12, 2019.	4.1	3
645	Single-cell analysis reveals region-heterogeneous responses in rhesus monkey spinal cord with complete injury. Nature Communications, 2023, 14, .	12.8	5
646	Disease-associated astrocytes and microglia markers are upregulated in mice fed high fat diet. Scientific Reports, 2023, 13, .	3.3	1
647	Rapamycin Augmentation of Chronic Ketamine as a Novel Treatment for Complex Regional Pain Syndrome. Cureus, 2023, , .	0.5	0
648	Dietary Fiber and Microbiota Metabolite Receptors Enhance Cognition and Alleviate Disease in the 5xFAD Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2023, 43, 6460-6475.	3.6	7
649	Myeloid-specific blockade of notch signaling alleviates dopaminergic neurodegeneration in Parkinson's disease by dominantly regulating resident microglia activation through NF-κB signaling. Frontiers in Immunology, 0, 14, .	4.8	0
650	Microglia-Astrocyte Communication in Alzheimer's Disease. Journal of Alzheimer's Disease, 2023, 95, 785-803.	2.6	3
651	Mast cell deficiency improves cognition and enhances disease-associated microglia in 5XFAD mice. Cell Reports, 2023, 42, 113141.	6.4	1
653	A Distinct Microglial Cell Population Expressing Both CD86 and CD206 Constitutes a Dominant Type and Executes Phagocytosis in Two Mouse Models of Retinal Degeneration. International Journal of Molecular Sciences, 2023, 24, 14236.	4.1	1
654	Aging spinal cord microglia become phenotypically heterogeneous and preferentially target motor neurons and their synapses. Glia, 2024, 72, 206-221.	4.9	0
655	Remibrutinib (LOU064) inhibits neuroinflammation driven by B cells and myeloid cells in preclinical models of multiple sclerosis. Journal of Neuroinflammation, 2023, 20, .	7.2	1
656	Increased microglia activation in late non entral nervous system cancer survivors links to chronic systemic symptomatology. Human Brain Mapping, 0, , .	3.6	0
657	Transforming Growth Factor Î ² 1 Ameliorates Microglial Activation in Perioperative Neurocognitive Disorders. Neurochemical Research, 2023, 48, 3512-3524.	3.3	0
658	Noteworthy perspectives on microglia in neuropsychiatric disorders. Journal of Neuroinflammation, 2023, 20, .	7.2	3
659	Human iPSC-derived glia models for the study of neuroinflammation. Journal of Neuroinflammation, 2023, 20, .	7.2	6

#	Article	IF	CITATIONS
660	A microglial activity state biomarker panel differentiates FTD-granulin and Alzheimer's disease patients from controls. Molecular Neurodegeneration, 2023, 18, .	10.8	0
661	Astrocyte interferon-gamma signaling dampens inflammation during chronic central nervous system autoimmunity via PD-L1. Journal of Neuroinflammation, 2023, 20, .	7.2	1
662	Characterization of the responses of brain macrophages to focused ultrasound-mediated blood–brain barrier opening. Nature Biomedical Engineering, 0, , .	22.5	3
663	Cell-autonomous effects of APOE4 in restricting microglial response in brain homeostasis and Alzheimer's disease. Nature Immunology, 2023, 24, 1854-1866.	14.5	12
664	Activators of neurotoxic microglia in neurodegeneration: is the answer in blood?. Immunology and Cell Biology, 2023, 101, 687-689.	2.3	1
667	Triggering receptor expressed on myeloid cells 2 restricts cardiac inflammation and hypertrophy in hypertensive mice. Cardiovascular Research, 2023, 119, 2257-2258.	3.8	0
668	Clycometabolic Reprogramming of Microglia in Neurodegenerative Diseases: Insights from Neuroinflammation. , 2023, .		0
669	CD8+ T cells pump the brakes on Alzheimer's disease. Nature Immunology, 2023, 24, 1597-1598.	14.5	3
671	Live imaging of microglia during sleeping sickness reveals early and heterogeneous inflammatory responses. Frontiers in Immunology, 0, 14, .	4.8	0
674	The citrus flavonoid, nobiletin inhibits neuronal inflammation by preventing the activation of NF-κB. Neurochemistry International, 2023, 171, 105613.	3.8	1
675	Discrete class I molecules on brain endothelium differentially regulate neuropathology in experimental cerebral malaria. Brain, 0, , .	7.6	3
677	Microglia and Astrocytes in Amyotrophic Lateral Sclerosis: Disease-Associated States, Pathological Roles, and Therapeutic Potential. Biology, 2023, 12, 1307.	2.8	2
679	The Role and Therapeutic Implications of Inflammation in the Pathogenesis of Brain Arteriovenous Malformations. Biomedicines, 2023, 11, 2876.	3.2	0
680	Microglia-mediated demyelination protects against CD8+ T cell-driven axon degeneration in mice carrying PLP defects. Nature Communications, 2023, 14, .	12.8	2
681	Caspaseâ€3 and gasdermin E mediate macrophage pyroptosis in periodontitis. Journal of Periodontal Research, 2024, 59, 140-150.	2.7	0
682	CD300f immune receptor contributes to healthy aging by regulating inflammaging, metabolism, and cognitive decline. Cell Reports, 2023, 42, 113269.	6.4	0
683	Specificity and efficiency of tamoxifen-mediated Cre induction is equivalent regardless of age. IScience, 2023, 26, 108413.	4.1	0
684	Alzheimer's genes in microglia: a risk worth investigating. Molecular Neurodegeneration, 2023, 18, .	10.8	1

#	Article	IF	CITATIONS
685	Leveraging iPSC technology to assess neuro-immune interactions in neurological and psychiatric disorders. Frontiers in Psychiatry, 0, 14, .	2.6	0
686	ATC5 (autophagy related 5) in microglia controls hippocampal neurogenesis in Alzheimer disease. Autophagy, 0, , 1-16.	9.1	0
687	The Î ³ -secretase substrate proteome and its role in cell signaling regulation. Molecular Cell, 2023, 83, 4106-4122.e10.	9.7	1
688	Evaluation of Cell-Specific Alterations in Alzheimer's Disease and Relevance of In Vitro Models. Genes, 2023, 14, 2187.	2.4	0
690	Role of trigger receptor 2 expressed on myeloid cells in neuroinflammationï¼neglected multidimensional regulation of microglia. Neurochemistry International, 2023, 171, 105639.	3.8	0
693	Exploring the Disease-Associated Microglia State in Amyotrophic Lateral Sclerosis. Biomedicines, 2023, 11, 2994.	3.2	Ο
695	Jedi-1/MEGF12-mediated phagocytosis controls the pro-neurogenic properties of microglia in the ventricular-subventricular zone. Cell Reports, 2023, 42, 113423.	6.4	0
696	The role of Nurr1-miR-30e-5p-NLRP3 axis in inflammation-mediated neurodegeneration: insights from mouse models and patients' studies in Parkinson's disease. Journal of Neuroinflammation, 2023, 20, .	7.2	1
697	Microglia dynamic response and phenotype heterogeneity in neural regeneration following hypoxic-ischemic brain injury. Frontiers in Immunology, 0, 14, .	4.8	0
698	Contextualizing the Role of Osteopontin in the Inflammatory Responses of Alzheimer's Disease. Biomedicines, 2023, 11, 3232.	3.2	0
700	Cystatin F (Cst7) drives sex-dependent changes in microglia in an amyloid-driven model of Alzheimer's disease. ELife, 0, 12, .	6.0	1
701	Minding the Gap: Exploring Neuroinflammatory and Microglial Sex Differences in Alzheimer's Disease. International Journal of Molecular Sciences, 2023, 24, 17377.	4.1	0
702	Microglial Senescence and Activation in Healthy Aging and Alzheimer's Disease: Systematic Review and Neuropathological Scoring. Cells, 2023, 12, 2824.	4.1	1
703	Sleep restoration by optogenetic targeting of GABAergic neurons reprograms microglia and ameliorates pathological phenotypes in an Alzheimer's disease model. Molecular Neurodegeneration, 2023, 18, .	10.8	1
704	Spatiotemporal characterization of glial cell activation in an Alzheimer's disease model by spatially resolved transcriptomics. Experimental and Molecular Medicine, 0, , .	7.7	0
705	Translational profiling identifies sex-specific metabolic and epigenetic reprogramming of cortical microglia/macrophages in APPPS1-21 mice with an antibiotic-perturbed-microbiome. Molecular Neurodegeneration, 2023, 18, .	10.8	0
707	Human neural stem cells restore spatial memory in a transgenic Alzheimer's disease mouse model by an immunomodulating mechanism. Frontiers in Aging Neuroscience, 0, 15, .	3.4	1
708	Epigallocatechin Gallate Modulates Microglia Phenotype to Suppress Pro-inflammatory Signalling Cues and Inhibit Phagocytosis. Molecular Neurobiology, 0, , .	4.0	0

#	Article	IF	CITATIONS
709	The Impact of Dipyridamole on Disease-Associated Microglia Phenotypic Transformation in White Matter Lesions Induced by Chronic Cerebral Hypoperfusion. Neurochemical Research, 2024, 49, 744-757.	3.3	0
710	Advances of Genome Editing with CRISPR/Cas9 in Neurodegeneration: The Right Path towards Therapy. Biomedicines, 2023, 11, 3333.	3.2	1
711	New insight on microglia activation in neurodegenerative diseases and therapeutics. Frontiers in Neuroscience, 0, 17, .	2.8	1
712	TREM2″GF1 Mediated Glucometabolic Enhancement Underlies Microglial Neuroprotective Properties During Ischemic Stroke. Advanced Science, 2024, 11, .	11.2	0
713	An exhausted-like microglial population accumulates in aged and APOE4 genotype Alzheimer's brains. Immunity, 2023, , .	14.3	0
714	Trem2 expression in microglia is required to maintain normal neuronal bioenergetics during development. Immunity, 2023, , .	14.3	3
715	Limited contribution of the of P2X4 receptor to LPS-induced microglial reaction in mice. Purinergic Signalling, 0, , .	2.2	0
716	The aging mouse CNS is protected by an autophagy-dependent microglia population promoted by IL-34. Nature Communications, 2024, 15, .	12.8	2
717	Immunological dimensions of neuroinflammation and microglial activation: exploring innovative immunomodulatory approaches to mitigate neuroinflammatory progression. Frontiers in Immunology, 0, 14, .	4.8	0
718	Different inflammatory signatures based on CSF biomarkers relate to preserved or diminished brain structure and cognition. Molecular Psychiatry, 0, , .	7.9	0
719	Glial cells as a promising therapeutic target of glaucoma: beyond the IOP. Frontiers in Ophthalmology, 0, 3, .	0.5	0
720	Novel avenues of tau research. Alzheimer's and Dementia, 2024, 20, 2240-2261.	0.8	0
721	The influence of rs75932628 and rs2234253 polymorphisms of the TREM2 gene and the mTOR signaling pathway in the development of Alzheimer's disease. Reports of Vinnytsia National Medical University, 2023, 27, 662-668.	0.1	0
722	Decoding the spatiotemporal regulation of transcription factors during human spinal cord development. Cell Research, 2024, 34, 193-213.	12.0	1
723	Single-cell sequencing reveals an important role of SPP1 and microglial activation in age-related macular degeneration. Frontiers in Cellular Neuroscience, 0, 17, .	3.7	0
724	DPP-4 inhibition by linagliptin ameliorates age-related mild cognitive impairment by regulating microglia polarization in mice. Experimental Neurology, 2024, 373, 114689.	4.1	2
725	The Traumatic Inoculation Process Affects TSPO Radioligand Uptake in Experimental Orthotopic Glioblastoma. Biomedicines, 2024, 12, 188.	3.2	0
726	Pyruvate maintains and enhances the proâ€inflammatory response of microglia caused by glucose deficiency in early stroke. Journal of Cellular Biochemistry, 2024, 125, .	2.6	0

#	Article	IF	CITATIONS
727	Modulation of Microglial Function by ATP-Gated P2X7 Receptors: Studies in Rat, Mice and Human. Cells, 2024, 13, 161.	4.1	0
728	Using Biological Processes as Prior Knowledge Identifies New Microglial Immune Signatures at Single Cell Level in Alzheimer's Disease. , 2023, , .		0
730	Neuroinflammatory gene expression profiles of reactive glia in the substantia nigra suggest a multidimensional immune response to alpha synuclein inclusions. Neurobiology of Disease, 2024, 191, 106411.	4.4	0
731	TREM2 in Alzheimer's disease: Structure, function, therapeutic prospects, and activation challenges. Molecular and Cellular Neurosciences, 2024, 128, 103917.	2.2	0
732	Virus-induced brain pathology and the neuroinflammation-inflammation continuum: the neurochemists view. Journal of Neural Transmission, 0, , .	2.8	0
733	Transcriptomic Profiling Reveals Neuroinflammation in the Corpus Callosum of a Transgenic Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2024, 97, 1421-1433.	2.6	0
734	Neurodegenerative Disorders. , 2023, , 151-166.		0
736	Oligodendrocyte Progenitors in Schizophrenia: The Role in Pathogenesis and Potential Treatment Target. Psychiatry, 2024, 21, 46-64.	0.7	0
738	Colony Stimulating Factor-1 Receptor: An emerging target for neuroinflammation PET imaging and AD therapy. Bioorganic and Medicinal Chemistry, 2024, 100, 117628.	3.0	0
739	Microglia maintain structural integrity during fetal brain morphogenesis. Cell, 2024, 187, 962-980.e19.	28.9	0
740	Fate mapping of Spp1 expression reveals age-dependent plasticity of disease-associated microglia-like cells after brain injury. Immunity, 2024, 57, 349-363.e9.	14.3	1
742	The role of microglia heterogeneity in synaptic plasticity and brain disorders: Will sequencing shed light on the discovery of new therapeutic targets?. , 2024, 255, 108606.		0
743	The diversity, destiny, and memory of DAMs. Immunity, 2024, 57, 200-202.	14.3	0
744	Established and emerging techniques for the study of microglia: visualization, depletion, and fate mapping. Frontiers in Cellular Neuroscience, 0, 18, .	3.7	0
745	Roles of Microglia in Neurodegenerative Diseases. Yonago Acta Medica, 2024, 67, 1-8.	0.7	0
746	GDI2 deletion alleviates neurodegeneration and memory loss in the 5xFAD mice model of Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2024, 1870, 167093.	3.8	0
747	Emerging role of senescent microglia in brain aging-related neurodegenerative diseases. Translational Neurodegeneration, 2024, 13, .	8.0	0
748	Unveiling macrophage diversity in myocardial ischemia-reperfusion injury: identification of a distinct lipid-associated macrophage subset. Frontiers in Immunology, 0, 15, .	4.8	0

#	Article	IF	CITATIONS
749	Dynamics of N6-methyladenosine modification during Alzheimer's disease development. Heliyon, 2024, 10, e26911.	3.2	0
750	Cholesterol 25-hydroxylase mediates neuroinflammation and neurodegeneration in a mouse model of tauopathy. Journal of Experimental Medicine, 2024, 221, .	8.5	0
751	BHLHE40/41 regulate microglia and peripheral macrophage responses associated with Alzheimer's disease and other disorders of lipid-rich tissues. Nature Communications, 2024, 15, .	12.8	0
752	Highâ€Frequency Spinal Stimulation Suppresses Microglial Kaisoâ€P2X7 Receptor Axisâ€Induced Inflammation to Alleviate Neuropathic Pain in Rats. Annals of Neurology, 2024, 95, 966-983.	5.3	0
753	Microglial Transforming Growth Factor-β Signaling in Alzheimer's Disease. International Journal of Molecular Sciences, 2024, 25, 3090.	4.1	0
754	Border-associated macrophages in the central nervous system. Journal of Neuroinflammation, 2024, 21, .	7.2	0
755	Mitochondrial complex I activity in microglia sustains neuroinflammation. Nature, 2024, 628, 195-203.	27.8	0
757	Beyond Quiescent and Active: Intermediate Microglial Transcriptomic States in a Mouse Model of Down Syndrome. International Journal of Molecular Sciences, 2024, 25, 3289.	4.1	0
759	APOE4 genotype and aging impair injury-induced microglial behavior in brain slices, including toward Aβ, through P2RY12. Molecular Neurodegeneration, 2024, 19, .	10.8	0
760	Brain hypothyroidism silences the immune response of microglia in Alzheimer's disease animal model. Science Advances, 2024, 10, .	10.3	0
761	Deregulation of mitochondrial reverse electron transport alters the metabolism of reactive oxygen species and NAD ⁺ /NADH and presents a therapeutic target in Alzheimer's disease. , 0, 4, .		0
762	Neurotoxic effects of polystyrene nanoplastics on memory and microglial activation: Insights from in vivo and in vitro studies. Science of the Total Environment, 2024, 924, 171681.	8.0	0
763	Hepatic danger signaling triggers TREM2 ⁺ macrophage induction and drives steatohepatitis via MS4A7-dependent inflammasome activation. Science Translational Medicine, 2024, 16, .	12.4	0
764	The emerging neuroimmune hypothesis of bipolar disorder: An updated overview of neuroimmune and microglial findings. Journal of Neurochemistry, 0, , .	3.9	0