<scp>SUPERMAN</scp> regulates floral whorl boundar biosynthesis

EMBO Journal 37, DOI: 10.15252/embj.201797499

Citation Report

CITATION REPORT

#	Article	IF	CITATIONS
1	Chromatin-mediated feed-forward auxin biosynthesis in floral meristem determinacy. Nature Communications, 2018, 9, 5290.	5.8	73
2	Cys2/His2 Zinc-Finger Proteins in Transcriptional Regulation of Flower Development. International Journal of Molecular Sciences, 2018, 19, 2589.	1.8	44
3	The Roles of Plant Hormones and Their Interactions with Regulatory Genes in Determining Meristem Activity. International Journal of Molecular Sciences, 2019, 20, 4065.	1.8	67
4	CRABS CLAW and SUPERMAN Coordinate Hormone-, Stress-, and Metabolic-Related Gene Expression During Arabidopsis Stamen Development. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	5
5	Epigenetic Regulation of Auxin Homeostasis. Biomolecules, 2019, 9, 623.	1.8	29
6	Control of floral stem cell activity in Arabidopsis. Plant Signaling and Behavior, 2019, 14, 1659706.	1.2	17
7	The Roles of Arabidopsis C1-2i Subclass of C2H2-type Zinc-Finger Transcription Factors. Genes, 2019, 10, 653.	1.0	59
8	Integration of Transcriptional Repression and Polycomb-Mediated Silencing of <i>WUSCHEL</i> in Floral Meristems. Plant Cell, 2019, 31, 1488-1505.	3.1	77
9	Comprehensive characterization of a floral mutant reveals the mechanism of hooked petal morphogenesis in <i>Chrysanthemum morifolium</i> . Plant Biotechnology Journal, 2019, 17, 2325-2340.	4.1	35
10	Regulation of meristem maintenance and organ identity during rice reproductive development. Journal of Experimental Botany, 2019, 70, 1719-1736.	2.4	26
11	When to stop: an update on molecular mechanisms of floral meristem termination. Journal of Experimental Botany, 2019, 70, 1711-1718.	2.4	36
12	Gene Expression Profiling of the Shoot Meristematic Tissues in Woodland Strawberry Fragaria vesca. Frontiers in Plant Science, 2019, 10, 1624.	1.7	9
13	Molecular regulation of flower development. Current Topics in Developmental Biology, 2019, 131, 185-210.	1.0	75
14	Local Auxin Biosynthesis Mediates Plant Growth and Development. Trends in Plant Science, 2019, 24, 6-9.	4.3	46
15	An Improved Recombineering Toolset for Plants. Plant Cell, 2020, 32, 100-122.	3.1	23
16	Molecular characterization and expression analysis reveal the roles of Cys2/His2 zinc-finger transcription factors during flower development of Brassica rapa subsp. chinensis. Plant Molecular Biology, 2020, 102, 123-141.	2.0	12
17	The VvSUPERMAN-like Gene Is Differentially Expressed between Bicarpellate and Tricarpellate Florets of Vitis vinifera L. Cv. â€~Xiangfei' and Its Heterologous Expression Reduces Carpel Number in Tomato. Plant and Cell Physiology, 2020, 61, 1760-1774.	1.5	4
18	Molecular Mechanisms of the Floral Biology of Jatropha curcas: Opportunities and Challenges as an Energy Crop. Frontiers in Plant Science, 2020, 11, 609.	1.7	8

#	Article	IF	CITATIONS
19	Imaging flowers: a guide to current microscopy and tomography techniques to study flower development. Journal of Experimental Botany, 2020, 71, 2898-2909.	2.4	25
20	MtSUPERMAN plays a key role in compound inflorescence and flower development in Medicago truncatula. Plant Journal, 2021, 105, 816-830.	2.8	17
21	Auxin Metabolism in Plants. Cold Spring Harbor Perspectives in Biology, 2021, 13, a039867.	2.3	110
22	Transcriptional control of local auxin distribution by the CsDFB1-CsPHB module regulates floral organogenesis in cucumber. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2023942118.	3.3	12
23	AUXIN RESPONSE FACTOR 18–HISTONE DEACETYLASE 6 module regulates floral organ identity in rose (<i>Rosa hybrida</i>). Plant Physiology, 2021, 186, 1074-1087.	2.3	22
24	Comparative transcriptomics and WGCNA reveal candidate genes involved in petaloid stamens in <i>Paeonia lactiflora</i> . Journal of Horticultural Science and Biotechnology, 2021, 96, 588-603.	0.9	10
25	Plant stem cell research is uncovering the secrets of longevity and persistent growth. Plant Journal, 2021, 106, 326-335.	2.8	19
26	EAR domain-containing transcription factors trigger PRC2-mediated chromatin marking in Arabidopsis. Plant Cell, 2021, 33, 2701-2715.	3.1	25
27	One factor, many systems: the floral homeotic protein AGAMOUS and its epigenetic regulatory mechanisms. Current Opinion in Plant Biology, 2021, 61, 102009.	3.5	33
28	Then There Were Plenty-Ring Meristems Giving Rise to Many Stamen Whorls. Plants, 2021, 10, 1140.	1.6	3
29	Do Epigenetic Timers Control Petal Development?. Frontiers in Plant Science, 2021, 12, 709360.	1.7	4
30	Robust control of floral meristem determinacy by position-specific multifunctions of KNUCKLES. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24
32	Auxin and Flower Development: A Blossoming Field. Cold Spring Harbor Perspectives in Biology, 2021, 13, a039974.	2.3	34
33	Meristem Termination and Organ Number Control in Early Stage of Arabidopsis Flower Development. Journal of Cell Signaling, 2018, 03, .	0.3	0
36	In Silico Functional Prediction and Expression Analysis of C2H2 Zinc-Finger Family Transcription Factor Revealed Regulatory Role of ZmZFP126 in Maize Growth. Frontiers in Genetics, 2021, 12, 770427.	1.1	6
37	SMALL REPRODUCTIVE ORGANS, a SUPERMANâ€like transcription factor, regulates stamen and pistil growth in rice. New Phytologist, 2022, 233, 1701-1718.	3.5	11
38	Roles of Polycomb complexes in regulating gene expression and chromatin structure in plants. Plant Communications, 2022, 3, 100267.	3.6	30
39	OUP accepted manuscript. Journal of Experimental Botany, 2022, , .	2.4	4

CITATION REPORT

	Сітатіо	CITATION REPORT		
#	Article	IF	CITATIONS	
40	Gene regulation network analyses of pistil development in papaya. BMC Genomics, 2022, 23, 8.	1.2	8	
41	The Importance of Networking: Plant Polycomb Repressive Complex 2 and Its Interactors. Epigenomes, 2022, 6, 8.	0.8	20	
57	Comparative transcriptome analysis reveals the molecular mechanism underlying lily double flowering. Scientia Horticulturae, 2022, 303, 111221.	1.7	1	
59	The roles of epigenetic modifications in the regulation of auxin biosynthesis. Frontiers in Plant Science, 0, 13, .	1.7	2	
60	Role of Plant Growth Regulators in the Plant-Environment Interaction and Epigenetic Regulation of Auxin. Signaling and Communication in Plants, 2022, , 25-46.	0.5	0	
61	The origin and evolution of carpels and fruits from an evoâ€devo perspective. Journal of Integrative Plant Biology, 2023, 65, 283-298.	4.1	3	
62	Evaluation of the Possible Contribution of Various Regulatory Genes to Determination of Carpel Number as a Potential Mechanism for Optimal Agricultural Yield. International Journal of Molecular Sciences, 2022, 23, 9723.	1.8	0	
63	Cys2/His2-Type Zinc Finger Proteins Regulate Plant Growth and Development. Critical Reviews in Plant Sciences, 2022, 41, 351-363.	2.7	6	
64	Identification of the Karyopherin Superfamily in Maize and Its Functional Cues in Plant Development. International Journal of Molecular Sciences, 2022, 23, 14103.	1.8	2	
65	Research Progress of Plant Nucleotide-Binding Leucine-Rich Repeat Protein. Horticulturae, 2023, 9, 122.	1.2	2	
66	All's well that ends well: the timing of floral meristem termination. New Phytologist, 2023, 238, 500-505.	3.5	1	
67	SUPERMAN strikes again in legumes. Frontiers in Plant Science, 0, 14, .	1.7	1	
74	Hormones and Flower Development in Arabidopsis. Methods in Molecular Biology, 2023, , 111-127.	0.4	1	
75	Flower Development in Arabidopsis. Methods in Molecular Biology, 2023, , 3-38.	0.4	1	
76	Recent advances in auxin biosynthesis and homeostasis. 3 Biotech, 2023, 13, .	1.1	4	