SARA: Sparse Code Multiple Access-Applied Random Ad

IEEE Internet of Things Journal 5, 3160-3174

DOI: 10.1109/jiot.2018.2835828

Citation Report

#	Article	IF	CITATIONS
1	Spectral Efficiency Maximization for D2D Communications Underlaying a Cellular System. , 2018, , .		2
2	Evolution of random access process: From Legacy networks to 5G and beyond. Transactions on Emerging Telecommunications Technologies, 2022, 33, e3776.	3.9	12
3	A systematic review of IoT communication strategies for an efficient smart environment. Transactions on Emerging Telecommunications Technologies, 2022, 33, e3736.	3.9	76
4	Evaluation of Age of Information for LDPC Coded Transmission over AWGN Channels. , 2019, , .		6
5	A Comprehensive Survey of Blockchain: From Theory to IoT Applications and Beyond. IEEE Internet of Things Journal, 2019, 6, 8114-8154.	8.7	197
6	Experimental Study of Wireless Communication Channels with SCMA. , 2019, , .		O
7	Random Pattern Multiplexing for Random Access in IoT-Oriented Satellite Networks. IEEE Systems Journal, 2020, 14, 4089-4100.	4.6	6
8	A recursive learning technique for improving information processing through message classification in loT–cloud storage. Computer Communications, 2020, 150, 719-728.	5.1	3
9	Integrated Grant-Free Scheme for URLLC and mMTC. , 2020, , .		0
10	DMRS-Applied Repetition Transmission (DART): Grant-Free Scheme for mMTC., 2020,,.		4
11	Spatial Group Based Optimal Uplink Power Control for Random Access in Satellite Networks. IEEE Transactions on Vehicular Technology, 2020, 69, 7354-7365.	6.3	10
12	TARA: An Efficient Random Access Mechanism for NB-loT by Exploiting TA Value Difference in Collided Preambles. IEEE Transactions on Mobile Computing, 2022, 21, 1110-1123.	5.8	5
13	Randomly Pre-Coded Packets Based Random Access Scheme for IoT-Oriented Satellite Networks. IEEE Access, 2020, 8, 221148-221161.	4.2	5
14	Toward Tactile Internet in Beyond 5G Era: Recent Advances, Current Issues, and Future Directions. IEEE Access, 2020, 8, 56948-56991.	4.2	114
15	Physical layer security for massive access in cellular Internet of Things. Science China Information Sciences, 2020, 63, 1.	4.3	25
16	Joint Control of Random Access and Dynamic Uplink Resource Dimensioning for Massive MTC in 5G NR Based on SCMA. IEEE Internet of Things Journal, 2020, 7, 5042-5063.	8.7	28
16 17	Joint Control of Random Access and Dynamic Uplink Resource Dimensioning for Massive MTC in 5G NR	8.7	28

#	Article	IF	CITATIONS
19	Throughput Analysis and User Barring Design for Uplink NOMA-Enabled Random Access. IEEE Transactions on Wireless Communications, 2021, 20, 6298-6314.	9.2	19
20	An Improved Random Access Scheme Using Directional Beams for 5G Massive Machine-Type Communications. IEEE Internet of Things Journal, 2022, 9, 8913-8924.	8.7	3
21	Sparse Code Multiple Access: Potentials and Challenges. IEEE Open Journal of the Communications Society, 2021, 2, 1205-1238.	6.9	20
22	Random Power Back-Off for Random Access in 5G Networks. IEEE Access, 2021, 9, 121561-121569.	4.2	3
23	Packet Squeezing of Random Access with 5G Real-Time Services for Internet of Things. Wireless Personal Communications, 2021, 118, 1365-1392.	2.7	0
25	A Survey on Successive Interference Cancellation Schemes in Non-Orthogonal Multiple Access for Future Radio Access. Wireless Personal Communications, 2021, 120, 1057-1078.	2.7	14
26	Aggregate Preamble Sequence Design and Detection for Massive IoT With Deep Learning. IEEE Transactions on Vehicular Technology, 2021, 70, 3800-3816.	6.3	8
27	Enhanced Random Access for Massive-Machine-Type Communications. IEEE Internet of Things Journal, 2021, 8, 7046-7064.	8.7	10
28	Distributed Q-Learning Aided Uplink Grant-Free NOMA for Massive Machine-Type Communications. IEEE Journal on Selected Areas in Communications, 2021, 39, 2029-2041.	14.0	34
29	RAN Slicing for Massive IoT and Bursty URLLC Service Multiplexing: Analysis and Optimization. IEEE Internet of Things Journal, 2021, 8, 14258-14275.	8.7	13
30	Analyzing Uplink Grant-Free Sparse Code Multiple Access System in Massive IoT Networks. IEEE Internet of Things Journal, 2022, 9, 5561-5577.	8.7	6
31	Data Aggregation in UAV-Aided Random Access for Internet of Vehicles. IEEE Internet of Things Journal, 2022, 9, 5755-5764.	8.7	22
32	Age and Energy Analysis for LDPC Coded Status Update With and Without ARQ. IEEE Internet of Things Journal, 2020, 7, 10388-10400.	8.7	51
33	Al-Driven Blind Signature Classification for IoT Connectivity: A Deep Learning Approach. IEEE Transactions on Wireless Communications, 2022, 21, 6033-6047.	9.2	45
34	Downlink SCMA Codebook Design With Low Error Rate by Maximizing Minimum Euclidean Distance of Superimposed Codewords. IEEE Transactions on Vehicular Technology, 2022, 71, 5231-5245.	6.3	15
35	Q-Learning NOMA Random Access for IoT-Satellite Terrestrial Relay Networks. IEEE Wireless Communications Letters, 2022, 11, 1619-1623.	5.0	9
36	Double QoS Guarantee for NOMA-Enabled Massive MTC Networks. IEEE Internet of Things Journal, 2022, 9, 22657-22668.	8.7	2
37	From Random Numbers to Random Objects. Entropy, 2022, 24, 928.	2.2	2

#	Article	IF	CITATIONS
38	A Hybrid Grant NOMA Random Access for Massive MTC Service. IEEE Internet of Things Journal, 2023, 10, 5490-5505.	8.7	3
39	A Design of Low-Projection SCMA Codebooks for Ultra-Low Decoding Complexity in Downlink IoT Networks. IEEE Transactions on Wireless Communications, 2023, 22, 6608-6623.	9.2	2
40	Sum-Rate Maximization of IRS-Aided SCMA System. IEEE Transactions on Vehicular Technology, 2023, 72, 10462-10472.	6.3	2
41	Deep-Reinforcement-Learning-Based NOMA-Aided Slotted ALOHA for LEO Satellite IoT Networks. IEEE Internet of Things Journal, 2023, 10, 17772-17784.	8.7	0
42	A Grant-Based Random Access Scheme With Low Latency for mMTC in IoT Networks. IEEE Internet of Things Journal, 2023, 10, 18211-18224.	8.7	1
43	Chained Packets for Multimedia Random Access in Next Generation Internet of Things. Wireless Personal Communications, 2023, 132, 409-432.	2.7	0
44	Efficient RAN Overload Control Mechanism for NR based mMTC by Dynamic SCMA for RACH. , 2023, , .		0
45	Physical Layer Security for Authentication, Confidentiality, and Malicious Node Detection: A Paradigm Shift in Securing IoT Networks. IEEE Communications Surveys and Tutorials, 2024, 26, 347-388.	39.4	0
46	Resource management for sum-rate maximization in SCMA-assisted UAV system. Vehicular Communications, 2024, 45, 100714.	4.0	О