The next phase of the energy transition and its implicat

Nature Energy 3, 628-633

DOI: 10.1038/s41560-018-0171-7

Citation Report

#	Article	IF	CITATIONS
1	Challenges Ahead: Understanding, Assessing, Anticipating and Governing Foreseeable Societal Tensions to Support Accelerated Low-Carbon Transitions in Europe., 2018,, 145-161.		4
2	Designing car bans for sustainable transportation. Nature Sustainability, 2019, 2, 534-536.	11.5	60
3	Solar Photovoltaic Electricity Generation: A Lifeline for the European Coal Regions in Transition. Sustainability, 2019, 11, 3703.	1.6	38
4	Solar lobby and energy transition in Japan. Energy Policy, 2019, 134, 110950.	4.2	33
5	A contested transition toward a coal-free future: Advocacy coalitions and coal policy in the Czech Republic. Energy Research and Social Science, 2019, 58, 101283.	3.0	33
6	Diffusion of Green Innovations: The Organizational Setup of Pilot Projects and its Influence on Consumer Perceptions. SSRN Electronic Journal, 0, , .	0.4	0
7	A multipurpose ICT platform for supporting energy transition: first results in flexibility profiling. , 2019, , .		1
8	Germany's decision to phase out coal by 2038 lags behind citizens' timing preferences. Nature Energy, 2019, 4, 856-863.	19.8	44
9	An agenda for sustainability transitions research: State of the art and future directions. Environmental Innovation and Societal Transitions, 2019, 31, 1-32.	2.5	1,305
10	Current Status Investigation and Predicting Carbon Dioxide Emission in Latin American Countries by Connectionist Models. Energies, 2019, 12, 1916.	1.6	23
11	Weaknesses and drivers for power-to-X diffusion in Europe. Insights from technological innovation system analysis. International Journal of Hydrogen Energy, 2019, 44, 17411-17430.	3.8	38
12	When democracy meets energy transitions: A typology of social power and energy system scale. Energy Research and Social Science, 2019, 52, 159-168.	3.0	59
13	German voters would prefer a more ambitious timeline to phase out coal. Nature Energy, 2019, 4, 1016-1017.	19.8	5
14	Stability and climate policy? Harnessing insights on path dependence, policy feedback, and transition pathways. Energy Research and Social Science, 2019, 50, 168-178.	3.0	99
15	Opening up the feasibility of sustainability transitions pathways (STPs): Representations, potentials, and conditions. Research Policy, 2019, 48, 775-788.	3.3	35
16	Digital platforms and the future of energy provisioning: Promises and perils for the next phase of the energy transition. Energy Research and Social Science, 2019, 49, 68-73.	3.0	86
17	Innovation networks and green restructuring: Which path development can EU Framework Programmes stimulate in Norway?. Norsk Geografisk Tidsskrift, 2019, 73, 65-78.	0.3	13
18	Policies, actors and sustainability transition pathways: A study of the EU's energy policy mix. Research Policy, 2019, 48, 103668.	3.3	124

#	ARTICLE	IF	CITATIONS
19	Politics of urban energy transitions: new energy vehicle (NEV) development in Shenzhen, China. Environmental Politics, 2020, 29, 524-545.	3.4	9
20	The life cycle of technological innovation systems. Technological Forecasting and Social Change, 2020, 153, 119407.	6.2	116
21	Conceptualising government-market dynamics in socio-technical energy transitions: A comparative case study of smart grid developments in China and Japan. Geoforum, 2020, 108, 148-168.	1.4	17
22	The role of inter-sectoral dynamics in sustainability transitions: A comment on the transitions research agenda. Environmental Innovation and Societal Transitions, 2020, 34, 348-351.	2.5	47
23	Multi-technology interaction in socio-technical transitions: How recent dynamics in HVDC technology can inform transition theories. Technological Forecasting and Social Change, 2020, 151, 119802.	6.2	56
24	Forever stuck in old ways? Pluralising incumbencies in sustainability transitions. Environmental Innovation and Societal Transitions, 2020, 35, 180-184.	2.5	98
25	How deployment policies affect innovation in complementary technologies—evidence from the German energy transition. Technological Forecasting and Social Change, 2020, 161, 120274.	6.2	22
26	Heating in Great Britain: An incumbent discourse coalition resists an electrifying future. Environmental Innovation and Societal Transitions, 2020, 37, 1-17.	2.5	37
27	Socially Equitable Energy System Transitions. Joule, 2020, 4, 1700-1713.	11.7	37
28	Models on the wrong track: Model-based electricity supply scenarios in Switzerland are not aligned with the perspectives of energy experts and the public. Renewable and Sustainable Energy Reviews, 2020, 134, 110297.	8.2	31
30	A Causal Model of the Sustainable Use of Resources: A Case Study on a Woodworking Process. Sustainability, 2020, 12, 9057.	1.6	0
31	Environmental flows or economic woes—Hydropower under global energy market changes. PLoS ONE, 2020, 15, e0236730.	1.1	9
32	Sustainability transitions in the agri-food sector: How ecology affects transition dynamics. Environmental Innovation and Societal Transitions, 2020, 36, 236-249.	2.5	42
33	Mere deployment of renewables or industry formation, too? Exploring the role of advocacy communities for the Argentinean energy policy mix. Environmental Innovation and Societal Transitions, 2020, 36, 345-371.	2.5	10
34	Trade in the Carbon-Constrained Future: Exploiting the Comparative Carbon Advantage of Swedish Trade. Energies, 2020, 13, 3613.	1.6	0
35	Fostering a local energy transition in a post-socialist policy setting. Environmental Innovation and Societal Transitions, 2020, 36, 221-235.	2.5	9
36	A phase model for the low-carbon transformation of energy systems in the MENA region. Energy Transitions, 2020, 4, 127-139.	3.6	0
37	Technology phase-out as unravelling of socio-technical configurations: Cloud seeding case. Environmental Innovation and Societal Transitions, 2020, 37, 302-317.	2.5	16

#	Article	IF	CITATIONS
38	Electricity infrastructure and innovation in the next phase of energy transition—amendments to the technology innovation system framework. Review of Evolutionary Political Economy, 2020, 1, 371-395.	0.8	8
39	A global analysis of the progress and failure of electric utilities to adapt their portfolios of power-generation assets to the energy transition. Nature Energy, 2020, 5, 920-927.	19.8	46
40	Challenges for electricity network governance in whole system change: Insights from energy transition in Norway. Environmental Innovation and Societal Transitions, 2020, 37, 318-331.	2.5	20
41	A holistic view on sector coupling. Energy Policy, 2020, 147, 111913.	4.2	66
42	Open database analysis of scaling and spatio-temporal properties of power grid frequencies. Nature Communications, 2020, 11, 6362.	5.8	22
43	Mapping potentials and bridging regional gaps of renewable resources in China. Renewable and Sustainable Energy Reviews, 2020, 134, 110337.	8.2	30
45	Green innovations: The organizational setup of pilot projects and its influence on consumer perceptions. Energy Policy, 2020, 142, 111474.	4.2	9
46	Guides or gatekeepers? Incumbent-oriented transition intermediaries in a low-carbon era. Energy Research and Social Science, 2020, 66, 101490.	3.0	66
47	Energietransitionen. , 2020, , .		4
48	The justice and equity implications of the clean energy transition. Nature Energy, 2020, 5, 569-577.	19.8	480
48	The justice and equity implications of the clean energy transition. Nature Energy, 2020, 5, 569-577. Political conflict and climate policy: the European emissions trading system as a Trojan Horse for the low-carbon transition?. Climate Policy, 2020, 20, 1092-1111.	19.8	480
	Political conflict and climate policy: the European emissions trading system as a Trojan Horse for the		
49	Political conflict and climate policy: the European emissions trading system as a Trojan Horse for the low-carbon transition?. Climate Policy, 2020, 20, 1092-1111.	2.6	24
49 50	Political conflict and climate policy: the European emissions trading system as a Trojan Horse for the low-carbon transition?. Climate Policy, 2020, 20, 1092-1111. A tale of two crises: COVID-19 and climate. Sustainability: Science, Practice, and Policy, 2020, 16, 53-60. Explaining inclusivity in energy transitions: Local and community energy in Aotearoa New Zealand.	2.6	24
49 50 51	Political conflict and climate policy: the European emissions trading system as a Trojan Horse for the low-carbon transition?. Climate Policy, 2020, 20, 1092-1111. A tale of two crises: COVID-19 and climate. Sustainability: Science, Practice, and Policy, 2020, 16, 53-60. Explaining inclusivity in energy transitions: Local and community energy in Aotearoa New Zealand. Environmental Innovation and Societal Transitions, 2020, 34, 165-182. The Politics of Technology Decline: Discursive Struggles over Coal Phaseâ€Out in the UK. Review of	2.6 1.1 2.5	24 46 37
49 50 51 52	Political conflict and climate policy: the European emissions trading system as a Trojan Horse for the low-carbon transition?. Climate Policy, 2020, 20, 1092-1111. A tale of two crises: COVID-19 and climate. Sustainability: Science, Practice, and Policy, 2020, 16, 53-60. Explaining inclusivity in energy transitions: Local and community energy in Aotearoa New Zealand. Environmental Innovation and Societal Transitions, 2020, 34, 165-182. The Politics of Technology Decline: Discursive Struggles over Coal Phaseâ€Out in the UK. Review of Policy Research, 2020, 37, 342-368.	2.6 1.1 2.5 2.8	24 46 37 37
 49 50 51 52 53 	Political conflict and climate policy: the European emissions trading system as a Trojan Horse for the low-carbon transition?. Climate Policy, 2020, 20, 1092-1111. A tale of two crises: COVID-19 and climate. Sustainability: Science, Practice, and Policy, 2020, 16, 53-60. Explaining inclusivity in energy transitions: Local and community energy in Aotearoa New Zealand. Environmental Innovation and Societal Transitions, 2020, 34, 165-182. The Politics of Technology Decline: Discursive Struggles over Coal Phaseâ€Out in the UK. Review of Policy Research, 2020, 37, 342-368. Phasor-Based Control for Scalable Integration of Variable Energy Resources. Energies, 2020, 13, 190. Experiments and Modeling for Flexible Biogas Production by Co-Digestion of Food Waste and Sewage	2.6 1.1 2.5 2.8 1.6	24 46 37 37

#	Article	IF	CITATIONS
57	Global solar technology optimization for factory rooftop emissions mitigation. Environmental Research Letters, 2020, 15, 044013.	2.2	10
58	An in-depth analysis of the evolution of the policy mix for the sustainable energy transition in China from 1981 to 2020. Applied Energy, 2020, 263, 114611.	5.1	87
59	How weather affects energy demand variability in the transition towards sustainable heating. Energy, 2020, 195, 116947.	4.5	17
60	The innovation and industry dynamics of technology phase-out in sustainability transitions: Insights from diversifying petroleum technology suppliers in Norway. Energy Research and Social Science, 2020, 64, 101447.	3.0	44
61	Historical transitions of Western Australia's electricity system, 1880-2016. Environmental Innovation and Societal Transitions, 2020, 34, 151-164.	2.5	9
62	Intermediating policy for transitions towards net-zero energy buildings. Environmental Innovation and Societal Transitions, 2020, 36, 418-432.	2.5	18
63	Destined for decline? Examining nuclear energy from a technological innovation systems perspective. Energy Research and Social Science, 2020, 67, 101512.	3.0	61
64	Why carbon pricing is not sufficient to mitigate climate changeâ€"and how "sustainability transition policy―can help. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8664-8668.	3.3	149
65	Dielectric Properties of All-Organic Coatings: Comparison of PEDOT and PANI in Epoxy Matrices. Journal of Composites Science, 2020, 4, 26.	1.4	2
66	Heat and electric vehicle flexibility in the European power system: A case study of Norwegian energy communities. International Journal of Electrical Power and Energy Systems, 2021, 125, 106479.	3.3	39
67	Advancing green energy solution with the impetus of COVID-19 pandemic. Journal of Energy Chemistry, 2021, 59, 688-705.	7.1	63
68	Knowledge politics, vulnerability and recognition-based justice: Public participation in renewable energy transitions in India. Energy Research and Social Science, 2021, 71, 101824.	3.0	28
69	Research on China's Energy Transition Strategy in the Context of Carbon Neutrality Based on SWOT. E3S Web of Conferences, 2021, 236, 02004.	0.2	3
70	Energy research and social sciences: thinking outside the box. E3S Web of Conferences, 2021, 250, 07001.	0.2	0
71	Re-Designing GB's Electricity Market Design: A Conceptual Framework Which Recognises the Value of Distributed Energy Resources. Energies, 2021, 14, 1124.	1.6	8
72	Environmental Assessment and Sustainable Development in the United States. Energies, 2021, 14, 1180.	1.6	1
73	Spurring low-carbon electrosynthesis through energy and innovation policy. IScience, 2021, 24, 102045.	1.9	8
74	Evaluation in an Emergency: Assessing Transformative Energy Policy amidst the Climate Crisis. Joule, 2021, 5, 285-289.	11.7	13

#	Article	IF	CITATIONS
75	Investigating the Investments Required to Transition New Zealand's Heavy-Duty Vehicles to Hydrogen. Energies, 2021, 14, 1646.	1.6	10
76	Advanced Edge-Cloud Computing Framework for Automated PMU-Based Fault Localization in Distribution Networks. Applied Sciences (Switzerland), 2021, 11, 3100.	1.3	9
77	From end-users to policy designers: Breaking open the black box of energy technocracy in Thailand. Energy Research and Social Science, 2021, 73, 101912.	3.0	4
78	Examining the Linkages among Carbon Dioxide Emissions, Electricity Production and Economic Growth in Different Income Levels. Energies, 2021, 14, 1682.	1.6	19
79	Locating line and node disturbances in networks of diffusively coupled dynamical agents. New Journal of Physics, 2021, 23, 043037.	1.2	3
80	Blending new and old in sustainability transitions: Technological alignment between fossil fuels and biofuels in Norwegian coastal shipping. Energy Research and Social Science, 2021, 74, 101957.	3.0	47
81	Spatial–Temporal Estimation and Analysis of Japan Onshore and Offshore Wind Energy Potential. Energies, 2021, 14, 2168.	1.6	7
82	The incandescent light bulb phase-out: exploring patterns of framing the governance of discontinuing a socio-technical regime. Energy, Sustainability and Society, 2021, 11, .	1.7	6
83	Energy, history, and the humanities: against a new determinism. History and Technology, 2021, 37, 247-292.	0.3	7
84	Towards Emancipatory Technology Studies. NanoEthics, 2021, 15, 19-27.	0.5	4
85	The role of flexibility in the light of the COVID-19 pandemic and beyond: Contributing to a sustainable and resilient energy future in Europe. Renewable and Sustainable Energy Reviews, 2021, 140, 110743.	8.2	50
86	Communitarians, cosmopolitans, and climate change: why identity matters for EU climate and energy policy. Journal of European Public Policy, 2022, 29, 1072-1091.	2.4	6
87	Review of the Decomposition of Ammonia to Generate Hydrogen. Industrial & Engineering Chemistry Research, 2021, 60, 18560-18611.	1.8	159
88	Bridging granularity gaps to decarbonize largeâ€scale energy systems—The case of power system planning. Energy Science and Engineering, 2021, 9, 1052-1060.	1.9	6
89	When government-led experimentation meets social resistance? A case study of solar policy retreat in Shenzhen, China. Energy Research and Social Science, 2021, 75, 102031.	3.0	9
90	How do incumbent companies' heterogeneous responses affect sustainability transitions? Insights from China's major incumbent power generators. Environmental Innovation and Societal Transitions, 2021, 39, 55-72.	2.5	16
91	Policy mixes to achieve sustainable mobility after the COVID-19 crisis. Renewable and Sustainable Energy Reviews, 2021, 143, 110919.	8.2	67
92	Populism and natureâ€"the nature of populism: New perspectives on the relationship between populism, climate change, and nature protection. Zeitschrift Fur Vergleichende Politikwissenschaft, 2021, 15, 155-164.	1.1	22

#	Article	IF	CITATIONS
93	Liquefied natural gas expansion plans in Germany: The risk of gas lock-in under energy transitions. Energy Research and Social Science, 2021, 76, 102059.	3.0	39
94	A review of dominant sustainable energy narratives. Renewable and Sustainable Energy Reviews, 2021, 144, 110955.	8.2	31
95	National growth dynamics of wind and solar power compared to the growth required for global climate targets. Nature Energy, 2021, 6, 742-754.	19.8	165
96	Hybrid concentrated solar biomass (HCSB) plant for electricity generation in Australia: Design and evaluation of techno-economic and environmental performance. Energy Conversion and Management, 2021, 240, 114244.	4.4	25
97	Green foreign direct investments and the deepening of capabilities for sustainable innovation in multinationals: Insights from renewable energy. Journal of Cleaner Production, 2021, 310, 127381.	4.6	27
98	Stable Positive Current Collectors for Li Sb–Sn Liquid Metal Batteries. ACS Applied Energy Materials, 2021, 4, 9013-9021.	2.5	8
99	Assessing the Relative Climate Impact of Carbon Utilization for Concrete, Chemical, and Mineral Production. Environmental Science & Environmental Scie	4.6	16
100	Explaining the slow progress of coal phase-out: The case of Guangdong-Hong Kong-Macao Greater Bay Region. Energy Policy, 2021, 155, 112331.	4.2	17
101	A machine learning model to investigate factors contributing to the energy transition of utility and independent power producer sectors internationally. IScience, 2021, 24, 102929.	1.9	1
102	Top-down sustainability transitions in action: How do incumbent actors drive electric mobility diffusion in China, Japan, and California?. Energy Research and Social Science, 2021, 79, 102184.	3.0	25
103	Towards a multi-scalar perspective on transition trajectories. Environmental Innovation and Societal Transitions, 2021, 40, 172-188.	2.5	31
104	Are rapid and inclusive energy and climate transitions oxymorons? Towards principles of responsible acceleration. Energy Research and Social Science, 2021, 79, 102164.	3.0	45
105	Navigating institutional complexity in socio-technical transitions. Environmental Innovation and Societal Transitions, 2021, 40, 367-381.	2.5	10
106	Failing the formative phase: The global diffusion of nuclear power is limited by national markets. Energy Research and Social Science, 2021, 80, 102221.	3.0	23
107	Past and prospective electricity scenarios in Madagascar: The role of government energy policies. Renewable and Sustainable Energy Reviews, 2021, 149, 111321.	8.2	4
108	A marriage of convenience or necessity? Research and policy implications for electrifying upstream petroleum production systems with renewables. Energy Research and Social Science, 2021, 80, 102226.	3.0	6
109	Dancing with complexity: Making sense of decarbonisation, decentralisation, digitalisation and democratisation. Energy Research and Social Science, 2021, 80, 102230.	3.0	9
110	Between illegal protests and legitimate resistance. Civil disobedience against energy infrastructures. Utilities Policy, 2021, 72, 101249.	2.1	12

#	Article	IF	CITATIONS
111	The impact of renewable energy and sector coupling on the pathway towards a sustainable energy system in Chile. Renewable and Sustainable Energy Reviews, 2021, 151, 111557.	8.2	49
112	Solar photovoltaic module detection using laboratory and airborne imaging spectroscopy data. Remote Sensing of Environment, 2021, 266, 112692.	4.6	15
113	Stranded Asset Risk and Political Uncertainty: The Impact of the Coal Phase-Out on the German Coal Industry. Energy Journal, 2022, 43, 27-50.	0.9	6
114	Facing transition phase two: Analysing actor strategies in a stagnating acceleration phase. Technological Forecasting and Social Change, 2022, 174, 121221.	6.2	9
115	A District Heating Socio-Technical System Approaching the Energy Transition. Advances in Civil and Industrial Engineering Book Series, 2021, , 61-83.	0.2	0
116	Topic Modeling Uncovers Shifts in Media Framing of the German Renewable Energy Act. Patterns, 2021, 2, 100169.	3.1	25
117	Challenges in the acceleration of sustainability transitions. Environmental Research Letters, 2020, 15, 081001.	2.2	131
118	An ultra-low emission coal power fleet for cleaner but not hotter air. Environmental Research Letters, 2020, 15, 091002.	2.2	4
119	Stochastic properties of the frequency dynamics in real and synthetic power grids. Physical Review Research, 2020, 2, .	1.3	18
120	Stranded Asset Risk and Political Uncertainty: The Impact of the Coal Phase-out on the German Coal Industry. SSRN Electronic Journal, 0, , .	0.4	5
121	The Effects of Policy Design Complexity on Public Support for Climate Policy. SSRN Electronic Journal, 0, , .	0.4	2
122	The interplay of policy and energy retrofit decision-making for real estate decarbonization. Environmental Research: Infrastructure and Sustainability, 2021, 1, 035006.	0.9	3
123	Glimmers of hope: a global <i>Green New Deal</i> is feasible. Gaia, 2021, 30, 150-155.	0.3	3
124	Hydrodeoxygenation of Isoeugenol over Carbon-Supported Pt and Pt–Re Catalysts for Production of Renewable Jet Fuel. Energy & Fuels, 2021, 35, 17755-17768.	2.5	13
125	Transitioning towards a 100% solar-hydro based generation: A system dynamic approach. Energy, 2022, 239, 122360.	4.5	4
126	Pathways to Low Carbon Living. , 2019, , 1-32.		0
127	Consensus on future EU electricity supply among citizens of France, Germany, and Poland: Implications for modeling. Energy Strategy Reviews, 2021, 38, 100742.	3.3	5
128	Cleaning the grid. Nature Sustainability, 2021, 4, 296-297.	11.5	0

#	Article	IF	CITATIONS
129	Modeling investment decisions from heterogeneous firms under imperfect information and risk in wholesale electricity markets. Applied Energy, 2022, 306, 117908.	5.1	29
130	From terminating to transforming: The role of phase-out in sustainability transitions. Environmental Innovation and Societal Transitions, 2021, 41, 27-31.	2.5	31
131	How can green events accelerate urban sustainability transitions? Insights from eight German regional garden shows. Urban Research and Practice, 2023, 16, 189-221.	1.2	4
132	Successful clean energy technology transitions in emerging economies: learning from India, China, and Brazil. Progress in Energy, 2020, 2, 043002.	4.6	1
133	Assessing technology legitimacy with topic models and sentiment analysis – The case of wind power in Germany. Technological Forecasting and Social Change, 2022, 175, 121354.	6.2	24
134	Crosslinked Polymerâ€Brush Electrolytes: An Approach to Safe Allâ€Solidâ€State Lithium Metal Batteries at Room Temperature. Batteries and Supercaps, 2022, 5, .	2.4	7
135	Electric vehicle charging and end-user motivation for flexibility: a case study from Norway. Energy, Sustainability and Society, 2021, 11 , .	1.7	12
136	Carbon Value Assessment of Hydrogen Energy Connected to the Power Grid. IEEE Transactions on Industry Applications, 2022, 58, 2803-2811.	3.3	3
137	From Nuclear to PV and Hydro Storage. Should We Go All the Way?. SSRN Electronic Journal, 0, , .	0.4	0
138	The contribution of energy law to the energy transition and energy research. Global Environmental Change, 2022, 73, 102454.	3.6	17
139	Dialectic tensions driving niche creation $\hat{a}\in$ A case study of a local energy system. Environmental Innovation and Societal Transitions, 2022, 42, 99-111.	2.5	6
141	EU R&D Funding for Electricity Grid Technologies and the Energy Transition: Centralised versus Decentralised Transition Pathways. Energies, 2022, 15, 868.	1.6	4
142	Framing different energy futures? Comparing Fridays for Future and Extinction Rebellion in Germany. Futures, 2022, 137, 102904.	1.4	22
143	Regulation Effect of Smart Grid on Green Transformation of Electric Power Enterprises: Based on the Investigation of "Leader―Trap. Frontiers in Energy Research, 2022, 9, .	1.2	4
144	An actionable understanding of societal transitions: the X-curve framework. Sustainability Science, 2022, 17, 1009-1021.	2.5	37
145	Energy Transition as a Response to Energy Challenges in Post-Pandemic Reality. Energies, 2022, 15, 812.	1.6	9
146	From institutional work to transition work: Actors creating, maintaining and disrupting transition processes. Environmental Innovation and Societal Transitions, 2022, 42, 251-267.	2.5	15
147	Biting the bullet: Addressing the democratic legitimacy of transition management. Environmental Innovation and Societal Transitions, 2022, 42, 201-218.	2.5	11

#	Article	IF	CITATIONS
148	Necessary, welcome or dreaded? Insights on low-carbon transitions from unionized energy workers in the United States. Energy Research and Social Science, 2022, 88, 102511.	3.0	4
149	The European 2030 climate and energy package: do domestic strategy adaptations precede EU policy change?. Policy Sciences, 2022, 55, 161-184.	1.5	7
150	Deconstructing Knowledge and Reconstructing Understanding: Designing a Knowledge Architecture for Transdisciplinary Co-creation of Energy Futures. SSRN Electronic Journal, 0, , .	0.4	0
151	Power and Interest in Sustainability Transitions: Combining Behavioral Insights with Stakeholder Analysis. SSRN Electronic Journal, 0, , .	0.4	0
153	The i-Frame and the s-Frame: How Focusing on the Individual-Level Solutions Has Led Behavioral Public Policy Astray. SSRN Electronic Journal, 0, , .	0.4	31
154	Phases of fossil fuel decline: Diagnostic framework for policy sequencing and feasible transition pathways in resource dependent regions. , 2022, $1, \dots$		9
155	The effects of policy design complexity on public support for climate policy. Behavioural Public Policy, 0, , 1-26.	1.6	13
156	A Comprehensive Planning Method for Low-Carbon Energy Transition in Rapidly Growing Cities. Sustainability, 2022, 14, 2063.	1.6	2
157	Best Practice in Government Use and Development of Long-Term Energy Transition Scenarios. Energies, 2022, 15, 2180.	1.6	7
158	The twofold transition: Framing digital innovations and incumbents' value propositions for sustainability. Business Strategy and the Environment, 2023, 32, 920-935.	8.5	5
159	UV-Cured Semi-Interpenetrating polymer networks of solid electrolytes for rechargeable lithium metal batteries. Chemical Engineering Journal, 2022, 437, 135329.	6.6	14
160	Development of smart energy systems for communities: technologies, policies and applications. Energy, 2022, 248, 123540.	4.5	32
161	Natural gas as a barrier to sustainability transitions? A systematic mapping of the risks and challenges. Energy Research and Social Science, 2022, 89, 102538.	3.0	20
162	The political economy of coal phase-out: Exploring the actors, objectives, and contextual factors shaping policies in eight major coal countries. Energy Research and Social Science, 2022, 90, 102590.	3.0	25
163	Sociotechnical Transitions Towards Sustainability in a Multilevel Perspective: overview and future perspectives. RGSA: Revista De Gestão Social E Ambiental, 0, 15, e02784.	0.5	3
164	Framework conditions for renewable energy: Towards a new era of carbonomics?., 2021,, 254-284.		0
165	Effects of cumulative energy aid projects on renewable energy generation capacity. Environmental Development, 2021, , 100692.	1.8	11
166	Deconstructing knowledge and reconstructing understanding: Designing a knowledge architecture for transdisciplinary coâ€creation of energy futures. Sustainable Development, 2022, 30, 293-308.	6.9	4

#	Article	IF	Citations
167	Green Hydrogen Value Chain in the Sustainability for Port Operations: Case Study in the Region of Valparaiso, Chile. Sustainability, 2021, 13, 13681.	1.6	9
168	Identifying chemically similar multiphase nanoprecipitates in compositionally complex non-equilibrium oxides via machine learning. Communications Materials, 2022, 3, .	2.9	1
169	Revitalizing varieties of capitalism for sustainability transitions research: Review, critique and way forward. Renewable and Sustainable Energy Reviews, 2022, 162, 112432.	8.2	12
170	The energy futures we want: A research and policy agenda for energy transitions. Energy Research and Social Science, 2022, 89, 102639.	3.0	51
171	Delivering an off-grid transition to sustainable energy in Ethiopia and Mozambique. Energy, Sustainability and Society, 2022, 12, .	1.7	10
172	Complementarity formation mechanisms in technology value chains. Research Policy, 2022, 51, 104559.	3.3	17
173	How Do Incumbent Manufacturers Differ from Power Generators in Sustainability Transition?. SSRN Electronic Journal, 0, , .	0.4	0
174	The heterogeneous role of energy policies in the energy transition of Asia–Pacific emerging economies. Nature Energy, 2022, 7, 588-596.	19.8	25
175	Reclaiming the Windy Commons: Landownership, Wind Rights, and the Assetization of Renewable Resources. Energies, 2022, 15, 3744.	1.6	8
176	Bifunctional Pt–Re Catalysts in Hydrodeoxygenation of Isoeugenol as a Model Compound for Renewable Jet Fuel Production. ACS Engineering Au, 2022, 2, 436-449.	2.3	7
177	The impact of digital economy on energy transition across the globe: The mediating role of government governance. Renewable and Sustainable Energy Reviews, 2022, 166, 112620.	8.2	182
178	Microstructural engineering of high-power redox flow battery electrodes via non-solvent induced phase separation. Cell Reports Physical Science, 2022, 3, 100943.	2.8	13
179	Regional capacity to govern the energy transition: The case of two Dutch energy regions. Environmental Innovation and Societal Transitions, 2022, 44, 92-109.	2.5	8
180	Introducing the lens of markets-in-the-making to transition studies: The case of the Danish wind power market agencement. Environmental Innovation and Societal Transitions, 2022, 44, 79-91.	2.5	8
181	Digitalization in the Renewable Energy Sectorâ€"New Market Players. Energies, 2022, 15, 4714.	1.6	7
183	Bioenergy siting for low-carbon electricity supply in Australia. Biomass and Bioenergy, 2022, 163, 106496.	2.9	5
184	Air quality changes in China 2013–2020: Effectiveness of clean coal technology policies. Journal of Cleaner Production, 2022, 366, 132961.	4.6	15
185	A social science perspective on conflicts in the energy transition: An introduction to the special issue. Utilities Policy, 2022, 78, 101396.	2.1	1

#	Article	IF	CITATIONS
186	Building a bridge from solid wastes to solar fuels and chemicals via artificial photosynthesis. EcoMat, 2022, 4, .	6.8	17
187	Policy entry points for facilitating a transition towards a low-carbon electricity future. Frontiers of Engineering Management, 2022, 9, 462-472.	3.3	2
188	Energy transition on the horizon: Highlights and lowlights within the power energy sector for supply chains decarbonization. Proceedings of the International Conference on Business Excellence, 2022, 16, 1145-1158.	0.1	0
189	Complete but Fragmented: Research on Energy in Central and Eastern Europe. Energies, 2022, 15, 6185.	1.6	O
190	Location choice for largeâ€scale battery manufacturing plants: Exploring the role of clean energy, costs, and knowledge on location decisions in Europe. Journal of Industrial Ecology, 2022, 26, 1514-1527.	2.8	4
191	Designing energy futures: a participatory foresight study in Australia. Foresight, 2022, ahead-of-print, .	1.2	1
192	Transitions as a coevolutionary process: The urban emergence of electric vehicle inventions. Environmental Innovation and Societal Transitions, 2022, 44, 205-225.	2.5	4
193	The evolving role of networking organizations in advanced sustainability transitions. Technological Forecasting and Social Change, 2022, 183, 121916.	6.2	9
194	How does the digital economy accelerate global energy justice? Mechanism discussion and empirical test. Energy Economics, 2022, 114, 106315.	5. 6	27
195	"We don't want to be the bad guys― Oil industry's sensemaking of the sustainability transition paradox. Energy Research and Social Science, 2022, 92, 102800.	3.0	6
196	Challenges and opportunities in decarbonizing the U.S. energy system. Renewable and Sustainable Energy Reviews, 2022, 169, 112939.	8.2	35
197	Wind power resources and China's sustainable development roadmap: Evidence from China. Resources Policy, 2022, 79, 103015.	4.2	7
198	System Building: Towards a Conceptualisation of the Third Phase of Transitions. SSRN Electronic Journal, 0, , .	0.4	0
199	Socially Equitable Energy Transitions: Analytical Challenges and Policy Implications. RSC Energy and Environment Series, 2022, , 465-483.	0.2	0
200	Stator Flux-Regulatory Excitation Control in Converter-Fed Synchronous Machines for Pumped-Storage Variable-Speed Hydropower. IEEE Open Access Journal of Power and Energy, 2022, 9, 340-350.	2.5	1
201	Pricing Electricity in Residential Communities Using Game-Theoretical Billings. IEEE Transactions on Smart Grid, 2023, 14, 1621-1631.	6.2	6
202	We're in this together: Sustainable energy and economic competitiveness in the EU. Research Policy, 2023, 52, 104644.	3.3	7
203	Framework for Energy-Averaged Emission Mitigation Technique Adopting Gasoline-Methanol Blend Replacement and Piston Design Exchange. Energies, 2022, 15, 7188.	1.6	1

#	Article	IF	CITATIONS
204	Are renewable energy sources more evenly distributed than fossil fuels?. Renewable Energy, 2022, 200, 379-386.	4.3	39
205	The i-frame and the s-frame: How focusing on individual-level solutions has led behavioral public policy astray. Behavioral and Brain Sciences, 2023, 46, .	0.4	85
206	Civil society, environmental litigation, and Confucian energy justice: A case study of an environmental NGO in China. Energy Research and Social Science, 2022, 93, 102831.	3.0	11
207	Promoting carbon circularity for a sustainable and resilience fashion industry. Current Opinion in Green and Sustainable Chemistry, 2023, 39, 100719.	3.2	7
208	Photovoltaic Materials and Their Path toward Cleaner Energy. Global Challenges, 2023, 7, .	1.8	2
209	Exploring the Dynamics of Technological Decline through the History of a Soviet Computer "Ural― (1955-1990). Science Technology and Human Values, 0, , 016224392211301.	1.7	0
211	Impact of climate change and socioeconomic factors on domestic energy consumption: The case of Hong Kong and Singapore. Energy Reports, 2022, 8, 12886-12904.	2.5	4
212	From energy islands to energy highlands? Political barriers to sustainability transitions in the Baltic region. Energy Research and Social Science, 2022, 93, 102809.	3.0	7
213	The rise of phase-out as a critical decarbonisation approach: a systematic review. Environmental Research Letters, 2022, 17, 123002.	2.2	11
214	Comparing the German exit of nuclear and coal: Assessing historical pathways and energy phase-out dimensions. Energy Research and Social Science, 2022, 94, 102883.	3.0	10
215	The Political Economy of Decarbonising African Petro-cities: Governance Reconfigurations for the Future. Palgrave Studies in Climate Resilient Societies, 2022, , 135-156.	0.3	0
216	Measuring the low-carbon energy transition in Chinese cities. IScience, 2023, 26, 105803.	1.9	22
217	Towards cost-effective osmotic power harnessing: Mass exchanger network synthesis for multi-stream pressure-retarded osmosis systems. Applied Energy, 2023, 330, 120341.	5.1	2
218	Built for net-zero: analysis of long-term greenhouse gas emission pathways for the Nigerian cement sector. Journal of Cleaner Production, 2023, 383, 135446.	4.6	6
219	Untangling the socio-political knots: A systems view on Indonesia's inclusive energy transitions. Energy Research and Social Science, 2023, 95, 102911.	3.0	5
220	"Cooperative is an oxymoron!― A polycentric energy transition perspective on distributed energy deployment in the Upper Midwestern United States. Energy Policy, 2023, 172, 113328.	4.2	3
221	Short-term electricity load forecastingâ€"A systematic approach from system level to secondary substations. Applied Energy, 2023, 332, 120493.	5.1	14
222	Data-driven prediction and evaluation on future impact of energy transition policies in smart regions. Applied Energy, 2023, 332, 120523.	5.1	3

#	Article	IF	CITATIONS
223	Complexity challenges for transition policy: lessons from coastal shipping in Norway. Environmental Innovation and Societal Transitions, 2023, 46, 100687.	2.5	5
224	A Comprehensive Analysis of Strategies, Challenges and Policies on Turkish Sustainable Energy Development. Journal of Engineering Technology and Applied Sciences, 0, , .	0.2	1
225	Realizing a human-centered digitalization of the energy sector. Open Research Europe, 0, 2, 140.	2.0	0
226	Energy transition research: A bibliometric mapping of current findings and direction for future research. Cleaner Production Letters, 2022, 3, 100026.	1.2	19
227	Capacity factors for electrical power generation from renewable and nonrenewable sources. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	15
228	Plasmonic semiconductors for advanced artificial photosynthesis. , 2023, 2, 100047.		3
230	Intercalation of graphite in Li-ion batteries: InÂsitu microscopic characterization of the solid-electrolyte interface (SEI)., 2024,, 369-379.		1
231	Meta-analysis on necessary investment shifts to reach net zero pathways in Europe. Nature Climate Change, 2023, 13, 58-66.	8.1	16
232	Regional energy transition path and the role of government support and resource endowment in China. Renewable and Sustainable Energy Reviews, 2023, 174, 113150.	8.2	21
233	Exploring possible futures or reinforcing the status-quo? The use of model-based scenarios in the Swiss energy industry. Renewable and Sustainable Energy Transition, 2023, 3, 100046.	1.4	1
234	Lattice Oxygen Activation for Enhanced Electrochemical Oxygen Evolution. Journal of Physical Chemistry C, 2023, 127, 2147-2159.	1.5	6
235	Alleviation path III: is the low-carbon reform of energy an excellent strategy to solve energy poverty?. , 2023, , 239-267.		0
236	Green finance: how can it help Chinese power enterprises transition towards carbon neutrality. Environmental Science and Pollution Research, 2023, 30, 46336-46354.	2.7	10
237	Extreme climate, innovative ability and energy efficiency. Energy Economics, 2023, 120, 106586.	5.6	15
238	Making waves: Research to support water and wastewater utilities in the transition to a clean-energy future. Water Research, 2023, 233, 119739.	5.3	5
239	Air pollution modeling to support strategic environmental assessment: case study—National Emission Reduction Plan for coal-fired thermal power plants in Serbia. Environment, Development and Sustainability, 0, , .	2.7	3
240	Towards more robust energy policy metrics: Proposing a dashboard and blueprint to tackle complexity. Energy Research and Social Science, 2023, 99, 103066.	3.0	2
241	A hydrogel electrolyte with ultrahigh ionic conductivity and transference number benefit from Zn2+ "highways―for dendrite-free Zn-MnO2 battery. Chemical Engineering Journal, 2023, 463, 142535.	6.6	20

#	Article	IF	CITATIONS
242	From a promising technological niche to an established market niche: Solar photovoltaic niche formation in Iran. Energy for Sustainable Development, 2023, 74, 50-65.	2.0	4
243	Flickering guiding light from the International Maritime Organisation's policy mix. Environmental Innovation and Societal Transitions, 2023, 47, 100720.	2.5	8
244	Technological Change and the Politics of Decarbonization: A Re-making of Vested Interests?. Environmental Innovation and Societal Transitions, 2023, 47, 100725.	2.5	5
245	Dynamic characterization for artificial photosynthesis through in situ X-ray photoelectron spectroscopy. Current Opinion in Green and Sustainable Chemistry, 2023, 41, 100796.	3.2	0
246	Optimal operation of integrated power and thermal systems for flexibility improvement based on evaluation and utilization of heat storage in district heating systems. Energy, 2023, 274, 127421.	4.5	4
247	Hierarchical Collaborative Planning of County Energy Internet. Journal of Physics: Conference Series, 2023, 2473, 012004.	0.3	0
248	Diagnosis of the implementation of smart grid innovation in The Netherlands and corrective actions. Renewable and Sustainable Energy Reviews, 2023, 175, 113185.	8.2	6
249	Hydropower representation in water and energy system models: a review of divergences and call for reconciliation. Environmental Research: Infrastructure and Sustainability, 2023, 3, 012001.	0.9	3
250	Architectural change in accelerating transitions: Actor preferences, system architectures, and flexibility technologies in the German energy transition. Energy Research and Social Science, 2023, 97, 102945.	3.0	9
251	Drivers of renewable energy transition: The role of ICT, human development, financialization, and R&D investment in China. Renewable Energy, 2023, 206, 441-450.	4.3	29
252	Oil and Gas Companies - Are They Shifting to Renewables? A Study of Policy Mixes for Energy Transition in Brazil. BAR - Brazilian Administration Review, 2023, 20, .	0.4	0
253	Forging Local Energy Transition in the Most Carbon-Intensive European Region of the Western Balkans. Energies, 2023, 16, 2077.	1.6	2
254	Transitionsforschung und Energiewende., 2023,, 1-14.		0
255	Energy management of a hybrid energy system (PV / PEMFC and lithium-ion battery) based on hydrogen minimization modeled by macroscopic energy representation. International Journal of Hydrogen Energy, 2023, 48, 20388-20405.	3.8	6
256	Green innovation, natural extreme events, and energy transition: Evidence from Asia-Pacific economies. Energy Economics, 2023, 121, 106638.	5.6	13
258	CarbonMonitor-Power near-real-time monitoring of global power generation on hourly to daily scales. Scientific Data, 2023, 10 , .	2.4	1
259	A low-carbon electricity sector in Europe risks sustaining regional inequalities in benefits and vulnerabilities. Nature Communications, 2023, 14, .	5.8	10
269	Unlocking and accelerating transformations to the SDGs: a review of existing knowledge. Sustainability Science, 2023, 18, 1939-1960.	2.5	3

CITATION REPORT

#	Article	IF	CITATIONS
278	Socio-Technical Dimensions for a Sustainable Housing Transition. , 2023, , 147-196.		0
308	Scaling up CSP: How long will it take?. AIP Conference Proceedings, 2023, , .	0.3	0
332	Transitionsforschung und Energiewende. , 2024, , 837-850.		0
351	Future of Energy Transition Relies on Prosumer-Based Smart Grid-Integrated Renewable Distributed Generation System. Advances in Geospatial Technologies Book Series, 2024, , 149-166.	0.1	0