Modeling non-stationary urban growth: The SPRAWL n development

Landscape and Urban Planning 177, 178-190 DOI: 10.1016/j.landurbplan.2018.04.018

Citation Report

#	Article	IF	CITATIONS
1	How current and future urban patterns respond to urban planning? An integrated cellular automata modeling approach. Cities, 2019, 92, 247-260.	2.7	20
2	Prefecture-level city shrinkage on the regional dimension in China: Spatiotemporal change and internal relations. Sustainable Cities and Society, 2019, 47, 101490.	5.1	53
3	Modeling urban growth in a metropolitan area based on bidirectional flows, an improved gravitational field model, and partitioned cellular automata. International Journal of Geographical Information Science, 2019, 33, 877-899.	2.2	38
4	Patch-based cellular automata model of urban growth simulation: Integrating feedback between quantitative composition and spatial configuration. Computers, Environment and Urban Systems, 2020, 79, 101402.	3.3	44
5	A minimum-volume oriented bounding box strategy for improving the performance of urban cellular automata based on vectorization and parallel computing technology. GIScience and Remote Sensing, 2020, 57, 91-106.	2.4	13
6	A new cellular automata framework of urban growth modeling by incorporating statistical and heuristic methods. International Journal of Geographical Information Science, 2020, 34, 74-97.	2.2	49
7	A review of assessment methods for cellular automata models of land-use change and urban growth. International Journal of Geographical Information Science, 2020, 34, 866-898.	2.2	94
8	Cellular Automata. , 2020, , 101-104.		2
9	Global and Local Modeling of Land Use Change in the Border Cities of Laredo, Texas, USA and Nuevo Laredo, Tamaulipas, Mexico: A Comparative Analysis. Land, 2020, 9, 347.	1.2	9
10	Forecasting Seasonal Habitat Connectivity in a Developing Landscape. Land, 2020, 9, 233.	1.2	10
11	Analysis of Land Transition Features and Mechanisms in Peripheral Areas of Kyoto (1950–1960). Sustainability, 2020, 12, 4502.	1.6	2
12	A rule-based spectral unmixing algorithm for extracting annual time series of sub-pixel impervious surface fraction. International Journal of Remote Sensing, 2020, 41, 3970-3992.	1.3	12
13	Modelling multi-regional urban growth with multilevel logistic cellular automata. Computers, Environment and Urban Systems, 2020, 80, 101457.	3.3	20
14	What is the influence of landscape metric selection on the calibration of land-use/cover simulation models?. Environmental Modelling and Software, 2020, 129, 104719.	1.9	26
15	Response of female black bears to a highâ€density road network and identification of longâ€ŧerm road mitigation sites. Animal Conservation, 2021, 24, 167-180.	1.5	14
16	A Three Decades Urban Growth Monitoring in Hadejia, Nigeria Using Remote Sensing and Geospatial Techniques. IOP Conference Series: Earth and Environmental Science, 0, 620, 012012.	0.2	1
17	Land use and land cover scenarios: An interdisciplinary approach integrating local conditions and the global shared socioeconomic pathways. Land Use Policy, 2020, 97, 104723.	2.5	34
18	An extended patch-based cellular automaton to simulate horizontal and vertical urban growth under the shared socioeconomic pathways. Computers, Environment and Urban Systems, 2022, 91, 101727.	3.3	19

CITATION REPORT

#	Article	IF	CITATIONS
19	Analysis of the urban growth pattern through spatial metrics; Ankara City. Land Use Policy, 2022, 112, 105812.	2.5	31
20	Spatiotemporal Urban Form Changes in Developing City of Africa: Implications for Sustainable Urban Development. SSRN Electronic Journal, 0, , .	0.4	0
21	Integrating Ecosystem Vulnerability in the Environmental Regulation Plan of Izmir (Turkey)—What Are the Limits and Potentialities?. Urban Science, 2022, 6, 19.	1.1	11
22	Delimitation of urban growth boundaries by integratedly incorporating ecosystem conservation, cropland protection and urban compactness. Ecological Modelling, 2022, 468, 109963.	1.2	6
23	Spatial change and scale dependence of built-up land expansion and landscape pattern evolution—Case study of affected area of the lower Yellow River. Ecological Indicators, 2022, 141, 109123.	2.6	28
24	Driving Forces behind Land Use and Land Cover Change: A Systematic and Bibliometric Review. Land, 2022, 11, 1222.	1.2	17
25	Modeling urban land-use changes using a landscape-driven patch-based cellular automaton (LP-CA). Cities, 2023, 132, 103906.	2.7	29
26	Simulating urban expansion using cellular automata model with spatiotemporally explicit representation of urban demand. Landscape and Urban Planning, 2023, 231, 104640.	3.4	11
27	Assessment of Urban Expansion and Identification of Sprawl Through Delineation of Urban Core Boundary. Journal of Landscape Ecology(Czech Republic), 2022, 15, 102-120.	0.2	1