g(HbF): a genetic model of fetal hemoglobin in sickle cel

Blood Advances

2,235-239

DOI: 10.1182/bloodadvances.2017009811

Citation Report

#	Article	IF	CITATIONS
1	Prognostic factors of disease severity in infants with sickle cell anemia: A comprehensive longitudinal cohort study. American Journal of Hematology, 2018, 93, 1411-1419.	2.0	17
2	Sickle cell disease in the era of precision medicine: looking to the future. Expert Review of Precision Medicine and Drug Development, 2019, 4, 357-367.	0.4	7
3	The association of HBG2 , BCL11A, and HMIP polymorphisms with fetal hemoglobin and clinical phenotype in Iraqi Kurds with sickle cell disease. International Journal of Laboratory Hematology, 2019, 41, 87-93.	0.7	6
4	Genetic Modifiers of Fetal Haemoglobin in Sickle Cell Disease. Molecular Diagnosis and Therapy, 2019, 23, 235-244.	1.6	32
5	Emerging Genetic Therapy for Sickle Cell Disease. Annual Review of Medicine, 2019, 70, 257-271.	5.0	90
6	A gain of function variant in PIEZO1 (E756del) and sickle cell disease. Haematologica, 2019, 104, e91-e93.	1.7	20
7	F cell numbers are associated with an Xâ€linked genetic polymorphism and correlate with haematological parameters in patients with sickle cell disease. British Journal of Haematology, 2020, 191, 888-896.	1.2	10
8	Fetal Hemoglobin in Sickle Hemoglobinopathies: High HbF Genotypes and Phenotypes. Journal of Clinical Medicine, 2020, 9, 3782.	1.0	27
9	Association of HMIP1 C-893A polymorphism and disease severity in patients with sickle cell anemia. Hematology, Transfusion and Cell Therapy, 2020, 43, 243-248.	0.1	2
10	Fetal hemoglobin in sickle cell anemia. Blood, 2020, 136, 2392-2400.	0.6	43
11	Control of fetal globin expression in man: new opportunities to challenge past discoveries. Experimental Hematology, 2020, 92, 43-50.	0.2	5
12	<i>Xmn</i> I Polymorphism in Sickle Cell Disease in North Morocco. Hemoglobin, 2020, 44, 190-194.	0.4	2
13	Sickle cell disease in Sri Lanka: clinical and molecular basis and the unanswered questions about disease severity. Orphanet Journal of Rare Diseases, 2020, 15, 177.	1.2	6
14	Multi-Locus Models to Address Hb F Variability in Portuguese β-Thalassemia Carriers. Hemoglobin, 2020, 44, 113-117.	0.4	2
15	HbF-promoting polymorphisms may specifically reduce the residual risk of cerebral vasculopathy in SCA children with alpha-thalassemia. Clinical Hemorheology and Microcirculation, 2021, 77, 267-272.	0.9	2
16	Non-S Sickling Hemoglobin Variants: Historical, Genetic, Diagnostic, and Clinical Perspectives. Oman Medical Journal, 2021, 36, e261-e261.	0.3	2
17	A Machine Learning Model for Predicting Fetal Hemoglobin Levels in Sickle Cell Disease Patients. Lecture Notes in Networks and Systems, 2022, , 79-91.	0.5	0
18	Sickle cell disease and fetal hemoglobin. Saudi Journal of Medicine and Medical Sciences, 2018, 6, 131.	0.3	Ο

CITATION REPORT

#	Article	IF	CITATIONS
19	Perspective: A novel prognostic for sickle cell disease. Saudi Journal of Medicine and Medical Sciences, 2018, 6, 133.	0.3	2
20	Genetic modifiers of fetal hemoglobin affect the course of sickle cell disease in patients treated with hydroxyurea. Haematologica, 2022, 107, 1577-1588.	1.7	6
21	Genome wide association study of silent cerebral infarction in sickle cell disease (HbSS and HbSC). Haematologica, 2021, 106, 1770-1773.	1.7	10
22	Phenotypic variation in sickle cell disease: the role of beta globin haplotype, alpha thalassemia, and fetal hemoglobin in HbSS. Expert Review of Hematology, 2022, 15, 107-116.	1.0	2
23	The COPILOT Raw Illumina Genotyping QC Protocol. Current Protocols, 2022, 2, e373.	1.3	5
24	Single Nucleotide Polymorphisms in XMN1-HBG2, HBS1L-MYB, and BCL11A and Their Relation to High Fetal Hemoglobin Levels That Alleviate Anemia. Diagnostics, 2022, 12, 1374.	1.3	2
25	Determinants of severity in sickle cell disease. Blood Reviews, 2022, 56, 100983.	2.8	13
26	Single nucleotide polymorphisms in <i>SAR1A</i> coding regions in sickle cell disease and their potential miRNA binding sites. EJHaem, 0, , .	0.4	1
27	Fetal hemoglobin-boosting haplotypes of BCL11A gene and HBS1L-MYB intergenic region in the prediction of clinical and hematological outcomes in a cohort of children with sickle cell anemia. Journal of Human Genetics, 0, , .	1.1	3
28	Variation and impact of polygenic hematologic traits in monogenic sickle cell disease. Haematologica, 2023, 108, 870-881.	1.7	4
29	A Versatile and Efficient Novel Approach for Mendelian Randomization Analysis with Application to Assess the Causal Effect of Fetal Hemoglobin on Anemia in Sickle Cell Anemia. Mathematics, 2022, 10, 3743.	1.1	0
30	Genetic Modifiers of Sickle Cell Disease. Hematology/Oncology Clinics of North America, 2022, 36, 1097-1124.	0.9	4