Plastic Pollution and Potential Solutions

Science Progress 101, 207-260 DOI: 10.3184/003685018x15294876706211

Citation Report

#	Article	IF	CITATIONS
1	Long-term aquaria study suggests species-specific responses of two cold-water corals to macro-and microplastics exposure. Environmental Pollution, 2019, 253, 322-329.	3.7	61
2	Evaluation of single and combined effects of cadmium and micro-plastic particles on biochemical and immunological parameters of common carp (Cyprinus carpio). Chemosphere, 2019, 236, 124335.	4.2	175
3	Microplastics in a Stormwater Pond. Water (Switzerland), 2019, 11, 1466.	1.2	88
4	Solving the plastic problem: From cradle to grave, to reincarnation. Science Progress, 2019, 102, 218-248.	1.0	63
5	Studies on Chemical IR Images of Poly(hydroxybutyrate–co–hydroxyhexanoate)/Poly(ethylene glycol) Blends and Two-Dimensional Correlation Spectroscopy. Polymers, 2019, 11, 507.	2.0	12
6	Global Plastic Waste Pollution Challenges and Management. , 2019, , .		4
7	Training bacteria to produce environmentally friendly polymers of industrial and medical relevance. Microbial Biotechnology, 2020, 13, 14-16.	2.0	9
8	A Call for Collaboration among Water Quality and Fisheries Professionals. Fisheries, 2020, 45, 157-162.	0.6	4
9	Potential health impact of environmental micro―and nanoplastics pollution. Journal of Applied Toxicology, 2020, 40, 4-15.	1.4	165
10	Flash Catalytic Pyrolysis of Polyethylene over (Alumino)silicate Materials. ChemCatChem, 2020, 12, 1109-1116.	1.8	17
11	A Study on Blend Ratio-dependent Far-IR and Low-frequency Raman Spectra and WAXD Patterns of Poly(3-hydroxybutyrate)/ poly(4-vinylphenol) Using Homospectral and Heterospectral Two-dimensional Correlation Spectroscopy. Analytical Sciences, 2020, 36, 731-735.	0.8	9
12	Circular Economy and Economic Development in the European Union: A Review and Bibliometric Analysis. Sustainability, 2020, 12, 7767.	1.6	23
13	Recent advances in starchâ€based films toward food packaging applications: Physicochemical, mechanical, and functional properties. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 3031-3083.	5.9	99
14	Health impacts of environmental contamination of micro- and nanoplastics: a review. Environmental Health and Preventive Medicine, 2020, 25, 29.	1.4	180
15	Enzymatic Remediation of Polyethylene Terephthalate (PET)–Based Polymers for Effective Management of Plastic Wastes: An Overview. Frontiers in Bioengineering and Biotechnology, 2020, 8, 602325.	2.0	79
16	Scalable upcycling of thermoplastic polyolefins into vitrimers through transesterification. Journal of Materials Chemistry A, 2020, 8, 24137-24147.	5.2	68
17	Microplastic exposure interacts with habitat degradation to affect behaviour and survival of juvenile fish in the field. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201947.	1.2	26
18	Systematic Analysis of the Relative Abundance of Polymers Occurring as Microplastics in Freshwaters and Estuaries. International Journal of Environmental Research and Public Health, 2020, 17, 9304.	1.2	34

#	Article	IF	CITATIONS
19	Microbial Polyhydroxyalkanoates (PHAs): Efficient Replacement of Synthetic Polymers. Journal of Polymers and the Environment, 2020, 28, 2301-2323.	2.4	117
20	Engineered microbes and evolving plastic bioremediation technology. , 2020, , 417-443.		14
21	Potent Impact of Plastic Nanomaterials and Micromaterials on the Food Chain and Human Health. International Journal of Molecular Sciences, 2020, 21, 1727.	1.8	94
22	Biodegradation studies of polypropylene/natural fiber composites. SN Applied Sciences, 2020, 2, 1.	1.5	17
23	Learning from plastic waste village in Boyolali Indonesia: SME-based plastic recycling industries. AIP Conference Proceedings, 2020, , .	0.3	1
24	Solid Wastes Provide Breeding Sites, Burrows, and Food for Biological Disease Vectors, and Urban Zoonotic Reservoirs: A Call to Action for Solutions-Based Research. Frontiers in Public Health, 2019, 7, 405.	1.3	92
26	Ecotoxicological effects of organic micro-pollutants on the environment. , 2020, , 481-501.		14
27	Chemical recycling to monomer for an ideal, circular polymer economy. Nature Reviews Materials, 2020, 5, 501-516.	23.3	735
28	Towards the Circular Economy: Converting Aromatic Plastic Waste Back to Arenes over a Ru/Nb ₂ O ₅ Catalyst. Angewandte Chemie - International Edition, 2021, 60, 5527-5535.	7.2	169
29	Towards the Circular Economy: Converting Aromatic Plastic Waste Back to Arenes over a Ru/Nb 2 O 5 Catalyst. Angewandte Chemie, 2021, 133, 5587-5595.	1.6	42
30	Spent coffee waste as a renewable source for the production of sustainable poly(butylene succinate) biocomposites from a circular economy perspective. RSC Advances, 2021, 11, 18580-18589.	1.7	25
31	The exposome paradigm to predict environmental health in terms of systemic homeostasis and resource balance based on NMR data science. RSC Advances, 2021, 11, 30426-30447.	1.7	10
32	Bioplastics from Biopolymers: An Eco-Friendly and Sustainable Solution of Plastic Pollution. Polymer Science - Series C, 2021, 63, 47-63.	0.8	31
33	Remediation of Water Pollution by Plastics. Environmental Chemistry for A Sustainable World, 2021, , 89-117.	0.3	3
34	Preparation and Characterization of Composite from Poly(vinyl chloride) Hydrochar and Hydrolyzate of Keratin from Chicken Feather by Hydrothermal Carbonization. Asian Journal of Chemistry, 2021, 33, 2483-2488.	0.1	0
35	Polystyrene micro- and nanoplastics affect locomotion and daily activity of <i>Drosophila melanogaster </i> . Environmental Science: Nano, 2021, 8, 110-121.	2.2	26
37	Impact of COVID-19 pandemic on plastic surge and environmental effects. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-7.	1.2	12
38	Preliminary study and first evidence of presence of microplastics in terrestrial herpetofauna from Southwestern Paraguay. Studies on Neotropical Fauna and Environment, 2023, 58, 16-24.	0.5	8

#	Article	IF	CITATIONS
39	Food Plastic Packaging Transition towards Circular Bioeconomy: A Systematic Review of Literature. Sustainability, 2021, 13, 3896.	1.6	30
40	Are controlled release scientists doing enough for our environment?. Journal of Controlled Release, 2021, 332, 620-622.	4.8	3
41	DOPO-Decorated Two-Dimensional MXene Nanosheets for Flame-Retardant, Ultraviolet-Protective, and Reinforced Polylactide Composites. ACS Applied Materials & Interfaces, 2021, 13, 21876-21887.	4.0	78
42	The Kidney-Related Effects of Polystyrene Microplastics on Human Kidney Proximal Tubular Epithelial Cells HK-2 and Male C57BL/6 Mice. Environmental Health Perspectives, 2021, 129, 57003.	2.8	126
43	Measurement, quantification, and potential risk of microplastics in the mainstream of the Pearl River (Xijiang River) and its estuary, Southern China. Environmental Science and Pollution Research, 2021, 28, 53127-53140.	2.7	25
44	Microplastics in Urban Stormwater: Sampling and Separation Method. , 2021, , .		0
45	A Roadmap for Environmental Sustainability of Plastic Use in Anesthesia and the Perioperative Arena. Anesthesiology, 2021, 135, 729-737.	1.3	12
46	Integrated approach in LDPE degradation – An application using Winogradsky column, computational modeling, and pathway prediction. Journal of Hazardous Materials, 2021, 412, 125336.	6.5	4
47	Strategies for mitigating plastic wastes management problem: A lifecycle assessment study in Hong Kong. Waste Management, 2021, 131, 412-422.	3.7	29
48	Vitrimers: Current research trends and their emerging applications. Materials Today, 2021, 51, 586-625.	8.3	135
49	Estimating the Cost of the Spanish Sustainable Food Basket through the Reference Budgets Approach. Sustainability, 2021, 13, 9401.	1.6	3
50	Isolation and identification of low-density polyethylene degrading novel bacterial strains. Archives of Microbiology, 2021, 203, 5417-5423.	1.0	17
51	The Unsustainability of Long-Lasting Insecticidal Nets. American Journal of Tropical Medicine and Hygiene, 2021, , .	0.6	0
52	Upcycling of Polystyrene Waste Plastics to High Value Carbon by Thermal Decomposition. Key Engineering Materials, 0, 897, 103-108.	0.4	11
53	Intergenerational learning: A recommendation for engaging youth to address marine debris challenges. Marine Pollution Bulletin, 2021, 170, 112648.	2.3	12
54	Microplastic degradation as a sustainable concurrent approach for producing biofuel and obliterating hazardous environmental effects: A state-of-the-art review. Journal of Hazardous Materials, 2021, 418, 126381.	6.5	63
56	Durability Assessment and Microstructure of High-Strength Performance Bricks Produced from PET Waste and Foundry Sand. Materials, 2021, 14, 5635.	1.3	8
57	Utilization of waste chicken feather for the preparation of eco-friendly and sustainable composite. Cleaner Engineering and Technology, 2021, 4, 100190.	2.1	7

#	Article	IF	CITATIONS
58	Evidence from in vitro and in vivo studies on the potential health repercussions of micro- and nanoplastics. Chemosphere, 2021, 280, 130826.	4.2	42
59	Toxicity of nanoplastics for zebrafish embryos, what we know and where to go next. Science of the Total Environment, 2021, 797, 149125.	3.9	44
60	The macro-debris pollution in the shorelines of Lake Tana: First report on abundance, assessment, constituents, and potential sources. Science of the Total Environment, 2021, 797, 149235.	3.9	27
61	Legislation to limit the environmental plastic and microplastic pollution and their influence on human exposure. Environmental Pollution, 2021, 288, 117708.	3.7	46
62	Microplastics induced developmental toxicity with microcirculation dysfunction in zebrafish embryos. Chemosphere, 2022, 286, 131868.	4.2	18
63	Plastic pollution threat in Africa: current status and implications for aquatic ecosystem health. Environmental Science and Pollution Research, 2021, 28, 7636-7651.	2.7	31
64	Engineering Strategies for Efficient and Sustainable Production of Medium-Chain Length Polyhydroxyalkanoates in Pseudomonads. , 2021, , 581-660.		0
65	Solid Waste—Sources, Toxicity, and Their Consequences to Human Health. , 2021, , 205-213.		24
66	Seawaterâ€Ðegradable Polymers—Fighting the Marine Plastic Pollution. Advanced Science, 2021, 8, 2001121.	5.6	157
68	Review of Microplastic Distribution, Toxicity, Analysis Methods, and Removal Technologies. Water (Switzerland), 2021, 13, 2736.	1.2	40
69	Potential one-step strategy for PET degradation and PHB biosynthesis through co-cultivation of two engineered microorganisms. Engineering Microbiology, 2021, 1, 100003.	2.2	36
70	From waste to wealth: upcycling of plastic and lignocellulosic wastes to <scp>PHAs</scp> . Journal of Chemical Technology and Biotechnology, 2022, 97, 3217-3240.	1.6	11
71	Fluorescent Polyethylene by In Situ Facile Synthesis of Carbon Quantum Dots Facilitated by Silica Nanoparticle Agglomerates. ACS Applied Polymer Materials, 2021, 3, 5517-5526.	2.0	13
72	Environmental Impacts of Personal Protective Clothing Used to Combat COVID―19. Advanced Sustainable Systems, 2022, 6, 2100176.	2.7	48
73	Plastic Marine Waste and its Potential for Indonesian Indigenous Communities. ETropic, 2020, 19, .	0.2	2
74	Study of the Degradation of Biobased Plastic after Stress Tests in Water. Coatings, 2021, 11, 1330.	1.2	7
75	Ecobrick as a smart solution for utilizing plastic and cloth waste in Jakarta. Journal of Community Service and Empowerment, 2020, 1, 114-120.	0.1	0
76	Photocatalytic materials immobilized on recycled supports and their role in the degradation of water contaminants: A timely review. Science of the Total Environment, 2022, 807, 150820.	3.9	20

	Charlow R		
#	ARTICLE The Circular Economy of Plastics. Advances in Finance, Accounting, and Economics, 2020, , 276-301.	IF 0.3	CITATIONS
78	Multicycling of Epoxy Thermoset Through a Twoâ€Step Strategy of Alcoholysis and Hydrolysis using a Selfâ€Separating Catalysis System. ChemSusChem, 2022, 15, .	3.6	15
79	BREAK FREE FROM PLASTICS: ENVIRONMENTAL PERSPECTIVES AND EVIDENCE FROM RWANDA. Environment & Ecosystem Science, 2020, 5, 27-36.	0.3	4
80	Fat on plastic: Metabolic consequences of an LDPE diet in the fat body of the greater wax moth larvae (Galleria mellonella). Journal of Hazardous Materials, 2022, 425, 127862.	6.5	18
83	The Menace of Single Use Plastics: Management and Challenges in the African Context. , 2022, , 1-21.		1
85	Scalable, Strong and Water-Stable Wood-Derived Bioplastic. SSRN Electronic Journal, 0, , .	0.4	0
86	Polystyrene nano/microplastics induce microbiota dysbiosis, oxidative damage, and innate immune disruption in zebrafish. Microbial Pathogenesis, 2022, 163, 105387.	1.3	32
87	Novel nano-ferromagnetic activated graphene adsorbent extracted from waste for dye decolonization. Journal of Water Process Engineering, 2022, 45, 102512.	2.6	33
88	Predicting the Mechanical Response of Polyhydroxyalkanoate Biopolymers Using Molecular Dynamics Simulations. Polymers, 2022, 14, 345.	2.0	7
89	Environmental Toxicants and Carcinogenicity: Role of Oxidative Stress. , 2022, , 437-449.		0
90	Screening for polystyrene nanoparticle toxicity on kidneys of adult male albino rats using histopathological, biochemical, and molecular examination results. Cell and Tissue Research, 2022, 388, 149-165.	1.5	11
91	Dealing with Plastic Waste from Agriculture Activity. Agronomy, 2022, 12, 134.	1.3	11
92	A review of the cost and effectiveness of solutions to address plastic pollution. Environmental Science and Pollution Research, 2022, 29, 24547-24573.	2.7	71
93	Factors that influence the trajectories of charged insulating particles in roll-type electrostatic separators. Journal of Electrostatics, 2022, 115, 103672.	1.0	3
94	Toxicity Study and Quantitative Evaluation of Polyethylene Microplastics in ICR Mice. Polymers, 2022, 14, 402.	2.0	23
95	Microplastic Pollution: An Emerging Threat to Terrestrial Plants and Insights into Its Remediation Strategies. Plants, 2022, 11, 340.	1.6	25
96	Impact of nanomaterials on the intestinal mucosal barrier and its application in treating intestinal diseases. Nanoscale Horizons, 2021, 7, 6-30.	4.1	13
98	Dhaka Sitting on a Plastic Bomb: Issues and Concerns around Waste Governance, Water Quality, and Public Health. Earth, 2022, 3, 18-30.	0.9	8

#	Article	IF	CITATIONS
99	Impact of recycled plastic biocomposites on the economy and socioenvironment. , 2022, , 247-259.		0
100	Resources and energy recovery with recycled plastic biocomposites. , 2022, , 261-280.		0
101	Plastic accumulation during COVID-19: call for another pandemic; bioplastic a step towards this challenge?. Environmental Science and Pollution Research, 2022, 29, 11039-11053.	2.7	29
102	Effect of eggshell/N,N-dimethylformamide (DMF) mixing ratios on the sonochemical production of CaCO3 nanoparticles. Journal of Engineering and Applied Science, 2022, 69, .	0.8	3
103	Trickily designed copolyesters degraded in both land and sea - confirmed by the successful capture of degradation end product CO2. Polymer Degradation and Stability, 2022, 196, 109817.	2.7	9
104	The COVID-19 pandemic reshapes the plastic pollution research – A comparative analysis of plastic pollution research before and during the pandemic. Environmental Research, 2022, 208, 112634.	3.7	21
105	Microplastics waste in environment: A perspective on recycling issues from PPE kits and face masks during the COVID-19 pandemic. Environmental Technology and Innovation, 2022, 26, 102290.	3.0	71
107	Direct carbon capture for the production of high-performance biodegradable plastics by cyanobacterial cell factories. Green Chemistry, 2022, 24, 4470-4483.	4.6	18
109	The Influence of Additives and Environment on Biodegradation of PHBV Biocomposites. Polymers, 2022, 14, 838.	2.0	9
110	Ferrocene-Based Porous Organic Polymer (FPOP): Synthesis, Characterization and an Electrochemical Study. Electrochem, 2022, 3, 184-197.	1.7	Ο
111	Investigating the Effect of Polyethylene Terephthalate Recycled from Waste Plastics bottles on Asphalt Binder Under UAE's Climate Conditions. , 2022, , .		1
112	Drying characteristics and kinetics of rice flour biodegradable film under different drying temperatures. Materials Today: Proceedings, 2022, , .	0.9	1
113	A Review on Biological Synthesis of the Biodegradable Polymers Polyhydroxyalkanoates and the Development of Multiple Applications. Catalysts, 2022, 12, 319.	1.6	64
114	Biobased Seawater-Degradable Poly(butylene succinate- <scp>l</scp> -lactide) Copolyesters: Exploration of Degradation Performance and Degradation Mechanism in Natural Seawater. ACS Sustainable Chemistry and Engineering, 2022, 10, 3191-3202.	3.2	28
115	Electrically Conductive and All-Weather Materials from Waste Cross-Linked Polyethylene Cables for Electromagnetic Interference Shielding. Industrial & Engineering Chemistry Research, 2022, 61, 3610-3619.	1.8	7
116	Extending biopolyesters circularity by using natural stabilizers: A review on the potential of polyphenols to enhance Poly(hydroxyalkanoates) thermal stability while preserving its biodegradability. Polymer Testing, 2022, 110, 107561.	2.3	12
117	A marine fungus Alternaria alternata FB1 efficiently degrades polyethylene. Journal of Hazardous Materials, 2022, 431, 128617.	6.5	56
118	Scalable, strong and water-stable wood-derived bioplastic. Chemical Engineering Journal, 2022, 439, 135680.	6.6	19

#	Article	IF	CITATIONS
119	Biotechnological production of polyhydroxyalkanoates from glycerol: A review. Biocatalysis and Agricultural Biotechnology, 2022, 42, 102333.	1.5	10
120	Modification of poly(butylene succinate) with biodegradable glycolic acid: Significantly improved hydrolysis rate retaining high toughness property. Journal of Applied Polymer Science, 2022, 139, .	1.3	15
121	Dermatopathology Laboratory Green Initiatives. American Journal of Clinical Pathology, 2022, 158, 372-377.	0.4	3
122	Soil Pollution with Microplastic in the Impact Area of a Plant Producing Expanded Polystyrene. Eurasian Soil Science, 2022, 55, 377-386.	0.5	3
123	Production and waste treatment of polyesters: application of bioresources and biotechniques. Critical Reviews in Biotechnology, 2023, 43, 503-520.	5.1	7
124	Polyhydroxybutyrate: a review of experimental and simulation studies of the effect of fillers on crystallinity and mechanical properties. Polymer International, 2022, 71, 1398-1408.	1.6	16
125	The academic interest for bioplastics - a bibliometric analysis. , 2022, 80, 65-82.		3
126	Economic feasibility of plastic waste conversion to fuel using pyrolysis. Sustainable Chemistry and Pharmacy, 2022, 27, 100683.	1.6	10
127	Functionalized Waste Plastic Granules to Enhance Sustainability of Bituminous Composites. Resources, Conservation and Recycling, 2022, 183, 106353.	5.3	17
130	Raman technology application for plastic waste management aligned with FAIR principle to support the forthcoming plastic and environment initiatives. Waste Management, 2022, 144, 479-489.	3.7	4
131	Fate and occurrence of micro- and nano-plastic pollution in industrial wastewater. , 2022, , 27-38.		2
132	Soil and water pollution and human health: what should cardiologists worry about?. Cardiovascular Research, 2023, 119, 440-449.	1.8	30
133	Reducing Food Waste and Packaging. , 2022, , 57-72.		1
134	Photocatalytic Conversion of Plastic Waste: From Photodegradation to Photosynthesis. Advanced Energy Materials, 2022, 12, .	10.2	64
135	Quantitative analysis of factors determining the enzymatic degradation of poly(lactic acid). International Journal of Biological Macromolecules, 2022, 209, 1703-1709.	3.6	10
136	Green and sustainable production of waste styrofoam-modified bitumen: a laboratory-based investigation on physical, rheological properties, and storage stability. Polymer Bulletin, 2022, 79, 7989-8008.	1.7	1
137	Chronic Microplastic Exposure and Cadmium Accumulation in Blue Crabs. International Journal of Environmental Research and Public Health, 2022, 19, 5631.	1.2	1
138	Associations between bacterial communities and microplastics from surface seawater of the Northern Patagonian area of Chile. Environmental Pollution, 2022, 306, 119313.	3.7	9

#	Article	IF	CITATIONS
139	Microplastic Pollution Focused on Sources, Distribution, Contaminant Interactions, Analytical Methods, and Wastewater Removal Strategies: A Review. International Journal of Environmental Research and Public Health, 2022, 19, 5610.	1.2	21
140	Biobased plastic: A plausible solution toward carbon neutrality in plastic industry?. Journal of Hazardous Materials, 2022, 435, 129037.	6.5	18
141	Bioconversion of apple peels (Malus domestica) to polyhydroxybutyrate using statistical design to optimize process parameters through Bacillus thuringiensis via solid-state fermentation. Biomass Conversion and Biorefinery, 2024, 14, 4273-4281.	2.9	5
142	Compatibilization strategies and analysis of morphological features of poly(butylene) Tj ETQq1 1 0.784314 rgBT J Journal, 2022, 173, 111304.	Overlock 2.6	10 Tf 50 62 56
143	Packaging design for the circular economy: A systematic review. Sustainable Production and Consumption, 2022, 32, 817-832.	5.7	31
144	Sustainable management of plastic wastes in COVID-19 pandemic: The biochar solution. Environmental Research, 2022, 212, 113495.	3.7	31
145	Food and cosmetic applications of the avocado seed: a review. Food and Function, 2022, 13, 6894-6901.	2.1	8
146	Promoting sustainable packaging applications in the circular economy by exploring and advancing molded pulp materials for food products: a review. Critical Reviews in Food Science and Nutrition, 2023, 63, 11010-11025.	5.4	11
147	Study of the Potential Impact of Microplastics and Additives on Human Health. Health Information Systems and the Advancement of Medical Practice in Developing Countries, 2022, , 128-147.	0.1	1
148	A small deposit for plastic packaging waste could improve sorting habits in rural areas. Alue Ja YmpĀ ¤ st¶, 2022, 51, .	0.1	0
149	Cyto–Genotoxic Effect Causing Potential of Polystyrene Micro-Plastics in Terrestrial Plants. Nanomaterials, 2022, 12, 2024.	1.9	10
150	Analysis of Microplastics. Health Information Systems and the Advancement of Medical Practice in Developing Countries, 2022, , 284-305.	0.1	0
151	Exposure to Polystyrene nanoparticles induces liver damage in rat via induction of oxidative stress and hepatocyte apoptosis. Environmental Toxicology and Pharmacology, 2022, 94, 103911.	2.0	12
152	Size-dependent neurotoxicity of micro- and nanoplastics in flowing condition based on an in vitro microfluidic study. Chemosphere, 2022, 303, 135280.	4.2	10
153	Chironomus Riparius Molecular Response to Polystyrene Primary Microplastics. SSRN Electronic Journal, 0, , .	0.4	0
154	Molecular Modeling Approaches Can Reveal the Molecular Interactions Established between a Biofilm and the Bioactive Compounds of the Essential Oil of Piper divaricatum. Molecules, 2022, 27, 4199.	1.7	4
155	Initiator enhancement of mandrel degradation for ICF target fabrication. IScience, 2022, , 104733.	1.9	0
156	Influence of Gelatin-Based Coatings Crosslinked with Phenolic Acids on PLA Film Barrier Properties. Coatings, 2022, 12, 993.	1.2	6

#	Article	IF	CITATIONS
157	Polystyrene microplastics induce apoptosis and necroptosis in swine testis cells via <scp>ROS</scp> / <scp>MAPK</scp> / <scp>HIF1α</scp> pathway. Environmental Toxicology, 2022, 37, 2483-2492.	2.1	21
158	Chitosan-functionalized silica nanoparticles as a multifunctional coating material for improved water repellency, antimicrobial activity and mechanical strength of degradable bioplastics. Cellulose, 2022, 29, 7691-7701.	2.4	7
159	Solar-driven catalytic plastic upcycling. Trends in Chemistry, 2022, 4, 822-834.	4.4	29
160	The (Mis)Understanding of the Symbol Associated with Recycling on Plastic Containers in the US: A Brief Report. Sustainability, 2022, 14, 9636.	1.6	3
161	Biodegradability of bioplastic blown film in a marine environment. Frontiers in Marine Science, 0, 9, .	1.2	6
162	Circularly Recyclable Polymers Featuring Topochemically Weakened Carbon–Carbon Bonds. Journal of the American Chemical Society, 2022, 144, 16588-16597.	6.6	18
163	An alternative to discarded plastic: A report of polymer optical fiber made from recycled materials for the development of biosensors. Optical Fiber Technology, 2022, 72, 103001.	1.4	3
164	Biodegradation of poly(lactic acid)/regenerated cellulose nanocomposites prepared by the Pickering emulsion approach. Industrial Crops and Products, 2022, 187, 115411.	2.5	4
165	Microplastics in ASEAN region countries: A review on current status and perspectives. Marine Pollution Bulletin, 2022, 184, 114118.	2.3	12
166	Spent-coffee grounds as a zero-burden material blended with bio-based poly(butylene succinate) for production of bio-composites: Findings from a Life Cycle Assessment application experience. Environmental Impact Assessment Review, 2022, 97, 106919.	4.4	4
167	On Dimensions ofÂPlausibility forÂNarrative Information Access toÂDigital Libraries. Lecture Notes in Computer Science, 2022, , 433-441.	1.0	1
168	Study on composting and seawater degradation properties of diethylene glycol-modified poly(butylene succinate) copolyesters. E-Polymers, 2022, 22, 615-626.	1.3	5
169	Revalorization of Microalgae Biomass for Synergistic Interaction and Sustainable Applications: Bioplastic Generation. Marine Drugs, 2022, 20, 601.	2.2	3
170	Toxic effects on enzymatic activity, gene expression and histopathological biomarkers in organisms exposed to microplastics and nanoplastics: a review. Environmental Sciences Europe, 2022, 34, .	2.6	18
171	Climate change and the water quality threats posed by the emerging contaminants per- and polyfluoroalkyl substances (PFAS) and microplastics. Water International, 0, , 1-23.	0.4	5
172	Derivatives of Plastics as Potential Carcinogenic Factors: The Current State of Knowledge. Cancers, 2022, 14, 4637.	1.7	9
173	A comparative cradle-to-grave life cycle assessment of single-use plastic shopping bags and various alternatives available in South Africa. International Journal of Life Cycle Assessment, 2022, 27, 1213-1227.	2.2	3
174	Plastic Waste Recycling, Applications, and Future Prospects for a Sustainable Environment. Sustainability, 2022, 14, 11637.	1.6	17

#	Article	IF	CITATIONS
175	Biodegradation of renewable polyurethane foams in marine environments occurs through depolymerization by marine microorganisms. Science of the Total Environment, 2022, 850, 158761.	3.9	16
176	Impacts of Biodegradable Plastic on the Environment. , 2022, , 1-27.		0
177	Microbial cell factories for bio-based biodegradable plastics production. IScience, 2022, 25, 105462.	1.9	5
178	Local order parameter that distinguishes crystalline and amorphous portions in polymer crystal lamellae. Journal of Chemical Physics, 0, , .	1.2	2
180	Microplastics in urban waters and its effects on microbial communities: a critical review. Environmental Science and Pollution Research, 2022, 29, 88410-88431.	2.7	4
181	Potential of microplastics participate in selective bioaccumulation of low-ring polycyclic aromatic hydrocarbons depending on the biological habits of fishes. Science of the Total Environment, 2023, 858, 159939.	3.9	3
182	Molecular effects of polystyrene nanoplastics toxicity in zebrafish embryos (Danio rerio). Chemosphere, 2023, 312, 137077.	4.2	11
183	Bioplastics: known effects and potential consequences to marine and estuarine ecosystem services. Chemosphere, 2022, 309, 136810.	4.2	9
184	Emerging contaminants related to plastic and microplastic pollution. , 2023, , 270-280.		0
185	Influence of Chemical Treatments on the Physical and Mechanical Properties of <i>Furcraea Foetida</i> Fiber for Polymer Reinforcement Applications. Journal of Natural Fibers, 2023, 20, .	1.7	5
186	Rapid adsorption of sulfamethazine on mesoporous graphene produced from plastic waste: optimization, mechanism, isotherms, kinetics, and thermodynamics. International Journal of Environmental Science and Technology, 2023, 20, 9717-9732.	1.8	7
187	Single-Use Plastics: An Escalating Global Environmental Problem. , 2022, , 215-243.		1
188	High incidence of plastic debris in Andean condors from remote areas: Evidence for marine-terrestrial trophic transfer. Environmental Pollution, 2023, 317, 120742.	3.7	8
189	Superporous nanocarbon materials upcycled from polyethylene terephthalate waste for scalable energy storage. Journal of Energy Storage, 2023, 58, 106329.	3.9	1
190	The complete genome sequence of Pseudomonas chengduensis BC1815 for genome mining of PET degrading enzymes. Marine Genomics, 2023, 67, 101008.	0.4	3
191	Rapid seawaterâ€degradable <scp>PBSG</scp> / <scp>PVA</scp> blends: Easy water solubility and easy hydrolysis dualâ€promoting degradation. Journal of Applied Polymer Science, 2023, 140, .	1.3	0
192	Enhanced degradation of poly(ethylene terephthalate) by the addition of lactic acid / glycolic acid: composting degradation, seawater degradation behavior and comparison of degradation mechanism. Journal of Hazardous Materials, 2023, 446, 130670.	6.5	13
193	Catalytic Pyrolysis of Plastic Waste and Molecular Symmetry Effects: A Review. Symmetry, 2023, 15, 38.	1.1	8

#	Article	IF	Citations
194	Aquatic Microplastic Pollution Control Strategies: Sustainable Degradation Techniques, Resource Recovery, and Recommendations for Bangladesh. Water (Switzerland), 2022, 14, 3968.	1.2	7
195	Continuous Sizing and Identification of Microplastics in Water. Sensors, 2023, 23, 781.	2.1	3
196	Wistar Rats Hippocampal Neurons Response to Blood Low-Density Polyethylene Microplastics: A Pathway Analysis of SOD, CAT, MDA, 8-OHdG Expression in Hippocampal Neurons and Blood Serum Aβ42 Levels. Neuropsychiatric Disease and Treatment, 0, Volume 19, 73-83.	1.0	3
197	Discovering untapped microbial communities through metagenomics for microplastic remediation: recent advances, challenges, and way forward. Environmental Science and Pollution Research, 2023, 30, 81450-81473.	2.7	17
198	Chironomus riparius molecular response to polystyrene primary microplastics. Science of the Total Environment, 2023, 868, 161540.	3.9	4
199	Using Factor Analysis to Understand the Influence of Individual Perception on Plastic Waste Disposal. Indonesian Journal of Social and Environmental Issues, 2022, 3, 194-204.	0.1	0
200	Endocytosis, Distribution, and Exocytosis of Polystyrene Nanoparticles in Human Lung Cells. Nanomaterials, 2023, 13, 84.	1.9	10
201	Sustainable plastics waste management framework based on the analysis of people's awareness, knowledge, attitude, skills, and action: development of sustainable plastics waste management approaches. International Journal of Environmental Science and Technology, 2023, 20, 10217-10228.	1.8	1
202	Natural Materials for Sustainable Organic Solar Cells: Status and Challenge. Advanced Functional Materials, 2023, 33, .	7.8	8
203	The role of nanomaterials in plastics biodegradability. , 2023, , 283-308.		0
204	Recovery of epoxy thermosets and their composites. Materials Today, 2023, 64, 72-97.	8.3	35
205	The Mutual Effect of Microparticles and Antidepressants on the Protozoan Spirostomum ambiguum (Müller, 1786) Ehrenberg, 1835. Water (Switzerland), 2023, 15, 552.	1.2	3
206	Small-Scale Mechanical Recycling of Solid Thermoplastic Wastes: A Review of PET, PEs, and PP. Energies, 2023, 16, 1406.	1.6	4
207	Impacts of marine debris on coral reef ecosystem: A review for conservation and ecological monitoring of the coral reef ecosystem. Marine Pollution Bulletin, 2023, 189, 114755.	2.3	9
208	Cholesteric Liquid Crystals Sensors Based on Nanocellulose Derivatives for Improvement of Quality of Human Life: A Review. , 2023, 2, .		5
209	Biopolymer production from biomass produced by Nordic microalgae grown in wastewater. Bioresource Technology, 2023, 376, 128901.	4.8	9
210	Neurotoxicity and endocrine disruption caused by polystyrene nanoparticles in zebrafish embryo. Science of the Total Environment, 2023, 874, 162406.	3.9	15
211	Exposure to polypropylene microplastics via diet and water induces oxidative stress in Cyprinus carpio. Aquatic Toxicology, 2023, 259, 106540.	1.9	9

#	Article	IF	CITATIONS
212	Current research progress of physical and biological methods for disposing waste plastics. Journal of Cleaner Production, 2023, 408, 137199.	4.6	2
213	Upcycling of waste epoxy thermosets to robust polyurethane foams via an in situ degradation-foaming process. Journal of Environmental Chemical Engineering, 2023, 11, 109363.	3.3	2
214	Plastic and sustainability: aÂbibliometric analysis using VOSviewer and CiteSpace. Arab Gulf Journal of Scientific Research, 2024, 42, 44-67.	0.3	8
215	Rapid combinatorial rewiring of metabolic networks for enhanced poly(3-hydroxybutyrate) production in Corynebacterium glutamicum. Microbial Cell Factories, 2023, 22, .	1.9	2
216	Research progress on the cellular toxicity caused by microplastics and nanoplastics. Journal of Applied Toxicology, 2023, 43, 1576-1593.	1.4	4
217	Microplastic pollution: An emerging contaminant in aquaculture. Aquaculture and Fisheries, 2023, 8, 603-616.	1.2	13
218	Impacts of Biodegradable Plastic on the Environment. , 2023, , 811-837.		0
219	Photoelectrochemical conversion of plastic waste into high-value chemicals coupling hydrogen production. Chemical Engineering Journal, 2023, 462, 142247.	6.6	13
220	Plastic waste management for sustainable environment: techniques and approaches. Waste Disposal & Sustainable Energy, 2023, 5, 205-222.	1.1	13
221	Nanoplastics Weathering and Polycyclic Aromatic Hydrocarbon Mobilization. ACS Nano, 2023, 17, 5773-5784.	7.3	2
222	Analysis of the Scale of Global Human Needs and Opportunities for Sustainable Catalytic Technologies. Topics in Catalysis, 2023, 66, 338-374.	1.3	6
223	The role of Drosophila melanogaster in neurotoxicology studies: Responses to different harmful substances. Advances in Neurotoxicology, 2023, , .	0.7	0
224	Organic Pollutants Associated with Plastic Debris in Marine Environment: A Systematic Review of Analytical Methods, Occurrence, and Characteristics. International Journal of Environmental Research and Public Health, 2023, 20, 4892.	1.2	1
225	Heavy metal risk of disposable food containers on human health. Ecotoxicology and Environmental Safety, 2023, 255, 114797.	2.9	3
226	Scientometric analysis of the development of plastic packaging considering the circular economy and clean technologies: A review. Waste Management and Research, 2023, 41, 1188-1202.	2.2	1
227	Host–Guest Complexes HP-β-CD/Citrus Antioxidants: Exploratory Evaluations of Enhanced Properties in Biodegradable Film Packaging. Antioxidants, 2023, 12, 763.	2.2	1
228	Effect of corn husk fibre loading on thermal and biodegradable properties of kenaf/cornhusk fibre reinforced corn starch-based hybrid composites. Heliyon, 2023, 9, e15153.	1.4	4
229	Bioplastics from waste biomass of marine and poultry industries. Journal of Biosciences, 2023, 48, .	0.5	9

		CITATION REPORT		
#	Article	IF	Сітатіо	NS
230	Polymer composition optimization approach based on feature extraction of bound and free using time-domain nuclear magnetic resonance. Journal of Magnetic Resonance, 2023, 351,	water 1.2 107438.	2	
231	A Path to a Reduction in Micro and Nanoplastics Pollution. International Journal of Environm Research and Public Health, 2023, 20, 5555.	ental 1.2	9	
232	A Novel Combined Design of Vessel and Resonant Cavity for Microwave Multi-frequency Hea Chemical Reactor Using Antennas as Applicators. IEEE Access, 2023, , 1-1.	iting 2.6	1	
233	Healable and degradable bifunctional intrinsic polymers via integration of hierarchical hydrogonding groups and polycaprolactone segments. Polymers for Advanced Technologies, 2022 2463-2470.	gen 8, 34, 1.6	0	
234	Sea Pollution: Analysis and Monitoring using Unmanned Vehicles. , 2023, , .		0	
250	The genus Artemia, the nanoplastics, the microplastics, and their toxic effects: a review. Environmental Science and Pollution Research, 2023, 30, 83025-83050.	2.7	3	
252	Microplastics in water: types, detection, and removal strategies. Environmental Science and Research, 2023, 30, 84933-84948.	Pollution 2.7	4	
253	Biodegradation: The biology. , 2023, , 95-126.		0	
264	Application of Magnetic Surfactants in the Removal of Pollutants and Microbes. ACS Sympo Series, 0, , 65-83.	sium 0.5	6 O	
269	Enzymatic Recycling of Polyurethanes. ACS Symposium Series, 0, , 71-87.	0.5	0	
276	Friction stir welding of ABS-carbon fiber sandwich structure. , 2023, , .		0	
284	Seaweed derived sustainable packaging. , 2024, , 263-287.		0	
288	Distribution of Microplastics in Man-made Water Bodies. , 2023, , 197-220.		0	
290	Water pollution in rural areas: Primary sources and associated health issues. , 2024, , 29-44.		0	
298	The Vertical Distribution of Riverine Microplastics: The Role of Turbulence. Springer Water, 2 213-220.	023, , 0.2	2 0	
301	Reshaping the Mindset of Halal Entrepreneurs Toward Sustainable Business: The Case of Ind 2023, , 207-221.	onesia. ,	0	
304	Effect of Temperature on the Thermolysis of Waste Polyethylene Terephthalate (PET) and Its Application in Methylene Blue Removal. Environmental Science and Engineering, 2023, , 439	0.1	. 0	
316	Sustainable Synthesis of Green Novel Materials for Water Purification. , 2024, , 24-48.		0	

#	Article	IF	CITATIONS
324	Bisphenols and Their Interaction with GPER-1: The Invisible Enemy Behind Breast Cancer and Its Societal Impact. , 0, , .		0