Stepwise cis-Regulatory Changes in ZCN8 Contribute to

Current Biology 28, 3005-3015.e4 DOI: 10.1016/j.cub.2018.07.029

Citation Report

#	Article	IF	Citations
1	Plant Genetics: Two Steps on the Path to Maize Adaptation. Current Biology, 2018, 28, R1098-R1101.	1.8	1
2	A key variant in the cis-regulatory element of flowering gene Ghd8 associated with cold tolerance in rice. Scientific Reports, 2019, 9, 9603.	1.6	16
3	Revolutions in agriculture chart a course for targeted breeding of old and new crops. Science, 2019, 366, .	6.0	197
4	Evolutionary Metabolomics Identifies Substantial Metabolic Divergence between Maize and Its Wild Ancestor, Teosinte. Plant Cell, 2019, 31, 1990-2009.	3.1	69
5	Largeâ€scale metabolite quantitative trait locus analysis provides new insights for highâ€quality maize improvement. Plant Journal, 2019, 99, 216-230.	2.8	37
6	Over-expression of the photoperiod response regulator ZmCCT10 modifies plant architecture, flowering time and inflorescence morphology in maize. PLoS ONE, 2019, 14, e0203728.	1.1	30
7	The Genomic Basis for Short-Term Evolution of Environmental Adaptation in Maize. Genetics, 2019, 213, 1479-1494.	1.2	23
8	<i>Zm<scp>MADS</scp>69</i> functions as a flowering activator through the <i>ZmRap2.7â€<scp>ZCN</scp>8</i> regulatory module and contributes to maize flowering time adaptation. New Phytologist, 2019, 221, 2335-2347.	3.5	100
9	Evolutionary processes from the perspective of flowering time diversity. New Phytologist, 2020, 225, 1883-1898.	3.5	70
10	Genetic basis of kernel nutritional traits during maize domestication and improvement. Plant Journal, 2020, 101, 278-292.	2.8	25
11	Adaptive introgression from maize has facilitated the establishment of teosinte as a noxious weed in Europe. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25618-25627.	3.3	54
12	Interaction Between Induced and Natural Variation at <i>oil yellow1</i> Delays Reproductive Maturity in Maize. G3: Genes, Genomes, Genetics, 2020, 10, 797-810.	0.8	3
13	Maize adaptation across temperate climates was obtained via expression of two florigen genes. PLoS Genetics, 2020, 16, e1008882.	1.5	23
14	Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nature Genetics, 2020, 52, 428-436.	9.4	229
15	Disentangling group specific QTL allele effects from genetic background epistasis using admixed individuals in GWAS: An application to maize flowering. PLoS Genetics, 2020, 16, e1008241.	1.5	44
16	Make it bloom! CONSTANS contributes to day neutrality in rose. Journal of Experimental Botany, 2020, 71, 3923-3926.	2.4	4
17	<i>dlf1</i> promotes floral transition by directly activating <i>ZmMADS4</i> and <i>ZmMADS67</i> in the maize shoot apex. New Phytologist, 2020, 228, 1386-1400.	3.5	26
18	Adaptation to novel environments during crop diversification. Current Opinion in Plant Biology, 2020, 56, 203-217.	3.5	22

ATION RED

2

#	Article	IF	CITATIONS
19	High-Throughput CRISPR/Cas9 Mutagenesis Streamlines Trait Gene Identification in Maize. Plant Cell, 2020, 32, 1397-1413.	3.1	148
20	Phenotypic Plasticity Contributes to Maize Adaptation and Heterosis. Molecular Biology and Evolution, 2021, 38, 1262-1275.	3.5	32
21	Harnessing Knowledge from Maize and Rice Domestication for New Crop Breeding. Molecular Plant, 2021, 14, 9-26.	3.9	58
22	Mapping QTL for flowering time-related traits under three plant densities in maize. Crop Journal, 2021, 9, 372-379.	2.3	6
25	Joint analysis of days to flowering reveals independent temperate adaptations in maize. Heredity, 2021, 126, 929-941.	1.2	4
26	Molecular Parallelism Underlies Convergent Highland Adaptation of Maize Landraces. Molecular Biology and Evolution, 2021, 38, 3567-3580.	3.5	35
28	Ancient relaxation of an obligate short-day requirement in common bean through loss of CONSTANS-like gene function. Current Biology, 2021, 31, 1643-1652.e2.	1.8	11
29	Phosphorylationâ€mediated signalling in flowering: prospects and retrospects of phosphoproteomics in crops. Biological Reviews, 2021, 96, 2164-2191.	4.7	6
30	Forecasting rice latitude adaptation through a daylength-sensing-based environment adaptation simulator. Nature Food, 2021, 2, 348-362.	6.2	16
31	The genetic mechanism of heterosis utilization in maize improvement. Genome Biology, 2021, 22, 148.	3.8	69
32	Natural Variation in Crops: Realized Understanding, Continuing Promise. Annual Review of Plant Biology, 2021, 72, 357-385.	8.6	73
33	Natural variation and artificial selection of photoperiodic flowering genes and their applications in crop adaptation. ABIOTECH, 2021, 2, 156-169.	1.8	23
34	An integrated framework reinstating the environmental dimension for GWAS and genomic selection in crops. Molecular Plant, 2021, 14, 874-887.	3.9	56
36	Combined QTL mapping and association study reveals candidate genes for leaf number and flowering time in maize. Theoretical and Applied Genetics, 2021, 134, 3459-3472.	1.8	7
37	Reinventing the wheel? Reassessing the roles of gene flow, sorting and convergence in repeated evolution. Molecular Ecology, 2021, 30, 4162-4172.	2.0	26
38	A natural singleâ€nucleotide polymorphism variant in <i>sulfite reductase</i> influences sulfur assimilation in maize. New Phytologist, 2021, 232, 692-704.	3.5	2
39	A gene regulatory network for tiller development mediated by <i>Tin8</i> in maize. Journal of Experimental Botany, 2022, 73, 110-122.	2.4	1
40	Identification of <i>ZmNF-YC2</i> and its regulatory network for maize flowering time. Journal of Experimental Botany, 2021, 72, 7792-7807.	2.4	17

#	Article	IF	CITATIONS
42	Genomic basis underlying the metabolome-mediated drought adaptation of maize. Genome Biology, 2021, 22, 260.	3.8	44
43	Genetic basis and adaptation trajectory of soybean from its temperate origin to tropics. Nature Communications, 2021, 12, 5445.	5.8	64
45	TeoNAM: A Nested Association Mapping Population for Domestication and Agronomic Trait Analysis in Maize. Genetics, 2019, 213, 1065-1078.	1.2	42
46	ZmCCT regulates photoperiod-dependent flowering and response to stresses in maize. BMC Plant Biology, 2021, 21, 453.	1.6	19
47	The arches and spandrels of maize domestication, adaptation, and improvement. Current Opinion in Plant Biology, 2021, 64, 102124.	3.5	2
54	A Daylength Recognition Model of Photoperiodic Flowering. Frontiers in Plant Science, 2021, 12, 778515.	1.7	12
55	Genome Assembly of Alfalfa Cultivar Zhongmu-4 and Identification of SNPs Associated with Agronomic Traits. Genomics, Proteomics and Bioinformatics, 2022, 20, 14-28.	3.0	26
56	Modeling allelic diversity of multiparent mapping populations affects detection of quantitative trait loci. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	4
57	A B73×Palomero Toluqueño mapping population reveals local adaptation in Mexican highland maize. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	11
59	Photoperiod Control of Plant Growth: Flowering Time Genes Beyond Flowering. Frontiers in Plant Science, 2021, 12, 805635.	1.7	38
60	A Heterochromatic Knob Reducing the Flowering Time in Maize. Frontiers in Genetics, 2021, 12, 799681.	1.1	0
61	Population genomics of Zea species identifies selection signatures during maize domestication and adaptation. BMC Plant Biology, 2022, 22, 72.	1.6	9
63	Plant clock modifications for adapting flowering time to local environments. Plant Physiology, 2022, 190, 952-967.	2.3	17
64	A functionally divergent SOC1 homolog improves soybean yield and latitudinal adaptation. Current Biology, 2022, 32, 1728-1742.e6.	1.8	46
65	The genetic architecture of flowering time changes in pea from wild to crop. Journal of Experimental Botany, 2022, 73, 3978-3990.	2.4	7
66	The vegetable SNP database: An integrated resource for plant breeders and scientists. Genomics, 2022, 114, 110348.	1.3	3
67	Genetic mapping and prediction of flowering time and plant height in a maize Stiff Stalk MAGIC population. Genetics, 2022, 221, .	1.2	5
68	Putting the pea in photoPEAriod. Journal of Experimental Botany, 2022, 73, 3825-3827.	2.4	2

#	Article	IF	CITATIONS
69	Flowering time: Soybean adapts to the tropics. Current Biology, 2022, 32, R360-R362.	1.8	0
70	Photoperiod-Dependent Mechanisms of Flowering Initiation in Arabidopsis thaliana L. and Zea mays L Russian Journal of Plant Physiology, 2022, 69, 1.	0.5	0
71	Genome-Wide Association Studies Provide Insights Into the Genetic Architecture of Seed Germination Traits in Maize. Frontiers in Plant Science, 0, 13, .	1.7	4
72	An adaptive teosinte <i>mexicana</i> introgression modulates phosphatidylcholine levels and is associated with maize flowering time. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	21
73	De Novo Domestication in the Multi-Omics Era. Plant and Cell Physiology, 0, , .	1.5	4
74	Linkage mapping combined with GWAS revealed the genetic structural relationship and candidate genes of maize flowering time-related traits. BMC Plant Biology, 2022, 22, .	1.6	6
76	SDG102, a H3K36-Methyltransferase-Encoding Gene, Plays Pleiotropic Roles in Growth and Development of Maize (Zea mays L.). International Journal of Molecular Sciences, 2022, 23, 7458.	1.8	2
77	A singleâ€nucleotide polymorphism in <i>WRKY33</i> promoter is associated with the cold sensitivity in cultivated tomato. New Phytologist, 2022, 236, 989-1005.	3.5	18
78	<i>cis</i> â€regulatory variation affecting gene expression contributes to the improvement of maize kernel size. Plant Journal, 0, , .	2.8	2
79	Advances in research and utilization of maize wild relatives. Chinese Science Bulletin, 2022, 67, 4370-4387.	0.4	1
80	Linkage Mapping Reveals QTL for Flowering Time-Related Traits under Multiple Abiotic Stress Conditions in Maize. International Journal of Molecular Sciences, 2022, 23, 8410.	1.8	8
81	A Pleiotropic Flowering Time QTL Exhibits Gene-by-Environment Interaction for Fitness in a Perennial Grass. Molecular Biology and Evolution, 2022, 39, .	3.5	2
82	The evening complex promotes maize flowering and adaptation to temperate regions. Plant Cell, 2023, 35, 369-389.	3.1	16
83	Dissecting the Regulatory Network of Maize Phase Change in ZmEPC1 Mutant by Transcriptome Analysis. Genes, 2022, 13, 1713.	1.0	0
84	The genome of Aechmea fasciata provides insights into the evolution of tank epiphytic habits and ethylene-induced flowering. Communications Biology, 2022, 5, .	2.0	4
85	Gradual daylength sensing coupled with optimum cropping modes enhances multi-latitude adaptation of rice and maize. Plant Communications, 2023, 4, 100433.	3.6	5
86	The role of transposon inverted repeats in balancing drought tolerance and yield-related traits in maize. Nature Biotechnology, 2023, 41, 120-127.	9.4	22
88	Temperature-mediated flower size plasticity in Arabidopsis. IScience, 2022, 25, 105411.	1.9	6

#	Article	IF	CITATIONS
89	Allele-specific expression reveals multiple paths to highland adaptation in maize. Molecular Biology and Evolution, 0, , .	3.5	2
90	On the role of transposons in balancing drought tolerance and yield. Trends in Plant Science, 2022, , .	4.3	0
91	Leaves and stolons transcriptomic analysis provide insight into the role of <i>phytochrome F</i> in potato flowering and tuberization. Plant Journal, 2023, 113, 402-415.	2.8	4
92	De novo genome assembly and analyses of 12 founder inbred lines provide insights into maize heterosis. Nature Genetics, 2023, 55, 312-323.	9.4	29
93	Altered regulation of flowering expands growth ranges and maximizes yields in major crops. Frontiers in Plant Science, 0, 14, .	1.7	3
94	Environmentâ€specific selection alters floweringâ€time plasticity and results in pervasive pleiotropic responses in maize. New Phytologist, 2023, 238, 737-749.	3.5	4
95	A common resequencingâ€based genetic marker data set for global maize diversity. Plant Journal, 2023, 113, 1109-1121.	2.8	10
97	Photoperiod Genes Contribute to Daylength-Sensing and Breeding in Rice. Plants, 2023, 12, 899.	1.6	1
98	Natural variation of <i>FKF1</i> controls flowering and adaptation during soybean domestication and improvement. New Phytologist, 2023, 238, 1671-1684.	3.5	7
99	The Allele Catalog Tool: a web-based interactive tool for allele discovery and analysis. BMC Genomics, 2023, 24, .	1.2	3
100	Embracing diversity: a genetic marker dataset with increased marker density facilitates association studies in maize. Plant Journal, 2023, 113, 1107-1108.	2.8	0
101	Diurnal transcriptome dynamics reveal the photoperiod response of <i>Pyrus</i> . Physiologia Plantarum, 2023, 175, .	2.6	0
102	Integration of GWAS, linkage analysis and transcriptome analysis to reveal the genetic basis of flowering time-related traits in maize. Frontiers in Plant Science, 0, 14, .	1.7	2
103	Divergent selection of <i>KNR6</i> maximizes grain production by balancing the floweringâ€ŧime adaptation and ear size in maize. Plant Biotechnology Journal, 0, , .	4.1	2