Combining Sentinel-1 and Sentinel-2 data for improved monsoon regions

International Journal of Applied Earth Observation and Geoinfo 73, 595-604

DOI: 10.1016/j.jag.2018.08.011

Citation Report

#	Article	IF	CITATIONS
1	Use of Sentinel-2 and LUCAS Database for the Inventory of Land Use, Land Use Change, and Forestry in Wallonia, Belgium. Land, 2018, 7, 154.	1.2	22
2	Evaluating the feasibility of using Sentinel-2 imagery for water clarity assessment in a reservoir. Journal of South American Earth Sciences, 2019, 95, 102265.	0.6	26
3	Initial Results on Landuse/Landcover Classification Using Pixel-Based Random Forest Algorithm on Sentinel-2 Imagery over Enrekang Region. IOP Conference Series: Earth and Environmental Science, 2019, 280, 012036.	0.2	2
4	Long-Term Changes of Open-Surface Water Bodies in the Yangtze River Basin Based on the Google Earth Engine Cloud Platform. Remote Sensing, 2019, 11, 2213.	1.8	90
5	Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for land cover mapping via a multi-source deep learning architecture. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 158, 11-22.	4.9	177
6	A random forest-based framework for crop mapping using temporal, spectral, textural and polarimetric observations. International Journal of Remote Sensing, 2019, 40, 7221-7251.	1.3	36
7	Evaluating the utilization of the red edge and radar bands from sentinel sensors for wetland classification. Catena, 2019, 178, 109-119.	2.2	45
8	Mapping Winter Wheat Planting Area and Monitoring Its Phenology Using Sentinel-1 Backscatter Time Series. Remote Sensing, 2019, 11, 449.	1.8	57
9	Application of deep learning with stratified K-fold for vegetation species discrimation in a protected mountainous region using Sentinel-2 image. Geocarto International, 2022, 37, 142-162.	1.7	32
10	Evaluation of Using Sentinel-1 and -2 Time-Series to Identify Winter Land Use in Agricultural Landscapes. Remote Sensing, 2019, 11, 37.	1.8	59
11	Discrimination of species composition types of a grazed pasture landscape using Sentinel-1 and Sentinel-2 data. International Journal of Applied Earth Observation and Geoinformation, 2020, 84, 101978.	1.4	16
12	Comparing Sentinel-1 and -2 Data and Indices for Agricultural Land Use Monitoring. Remote Sensing, 2020, 12, 2919.	1.8	44
13	A Multi Sensor Approach to Forest Type Mapping for Advancing Monitoring of Sustainable Development Goals (SDG) in Myanmar. Remote Sensing, 2020, 12, 3220.	1.8	19
14	Open-Surface Water Bodies Dynamics Analysis in the Tarim River Basin (North-Western China), Based on Google Earth Engine Cloud Platform. Water (Switzerland), 2020, 12, 2822.	1.2	19
15	Sentinel-2 imagery utilization for small-plot agricultural studies. IOP Conference Series: Materials Science and Engineering, 2020, 725, 012078.	0.3	0
16	Land Cover Classification of Huixian Wetland Based on SAR and Optical Image Fusion. , 2020, , .		1
17	Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sensing, 2020, 12, 2291.	1.8	283
18	Object-Based Multi-Temporal and Multi-Source Land Cover Mapping Leveraging Hierarchical Class Relationships Remote Sensing 2020, 12, 2814	1.8	21

CITATION REPORT

#	Article	IF	CITATIONS
19	Fishpond Mapping by Spectral and Spatial-Based Filtering on Google Earth Engine: A Case Study in Singra Upazila of Bangladesh. Remote Sensing, 2020, 12, 2692.	1.8	17
20	Recent Applications of Landsat 8/OLI and Sentinel-2/MSI for Land Use and Land Cover Mapping: A Systematic Review. Remote Sensing, 2020, 12, 3062.	1.8	146
21	Earth Observation Data Cubes for Brazil: Requirements, Methodology and Products. Remote Sensing, 2020, 12, 4033.	1.8	39
22	Garlic and Winter Wheat Identification Based on Active and Passive Satellite Imagery and the Google Earth Engine in Northern China. Remote Sensing, 2020, 12, 3539.	1.8	111
23	Mapping wetland using the object-based stacked generalization method based on multi-temporal optical and SAR data. International Journal of Applied Earth Observation and Geoinformation, 2020, 92, 102164.	1.4	48
24	Synergistic use of Sentinel-1 and Sentinel-2 for improved LULC mapping with special reference to bad land class: a case study for Yamuna River floodplain, India. Spatial Information Research, 2020, 28, 669-681.	1.3	26
25	Improving the accuracy of land cover classification in cloud persistent areas using optical and radar satellite image time series. Methods in Ecology and Evolution, 2020, 11, 532-541.	2.2	27
26	Sentinel-1 and -2 Based near Real Time Inland Excess Water Mapping for Optimized Water Management. Sustainability, 2020, 12, 2854.	1.6	14
27	A new approach to quantify grazing pressure under mediterranean pastoral systems using GIS and remote sensing. International Journal of Remote Sensing, 2020, 41, 5371-5387.	1.3	10
28	A classifier-combined method based on D-S evidence theory for the land cover classification of the Tibetan Plateau. Environmental Science and Pollution Research, 2021, 28, 16152-16164.	2.7	1
29	Assessing SAR C-band data to effectively distinguish modified land uses in a heavily disturbed Amazon forest. International Journal of Applied Earth Observation and Geoinformation, 2021, 94, 102214.	1.4	32
30	Statistical features for land use and land cover classification in Google Earth Engine. Remote Sensing Applications: Society and Environment, 2021, 21, 100459.	0.8	16
31	Towards nationwide mapping of bamboo resources in the Philippines: testing the pixel-based and fractional cover approaches. International Journal of Remote Sensing, 2021, 42, 3380-3404.	1.3	6
32	Machine Learning Classification of Mediterranean Forest Habitats in Google Earth Engine Based on Seasonal Sentinel-2 Time-Series and Input Image Composition Optimisation. Remote Sensing, 2021, 13, 586.	1.8	109
33	Speckle filtering impact on land use/land cover classification area using the combination of Sentinel-1A and Sentinel-2B (a case study of Kirkuk city, Iraq). Arabian Journal of Geosciences, 2021, 14, 1.	0.6	5
34	Delineating fragmented grassland patches in the tropical region using multi-seasonal synthetic aperture radar (SAR) and optical satellite images. International Journal of Remote Sensing, 2021, 42, 3938-3954.	1.3	6
35	Multispektral ve Birleştirilmiş Uydu Görüntüleri Kullanılarak Arazi Örtüsü Sınıflandırılma: Sınıflandırma Yaklaşımlarının Karşılaştırılması: Ören Orman İşletme Şefliği Örne Dergisi, 2021, 23, 1-1.	sında Fa Äö.æartÄ	rklı ±r₿Orman Fa

36	Spatial Analysis of Urbanization Patterns in Four Rapidly Growing South Asian Cities Using Sentinel-2 Data. Remote Sensing, 2021, 13, 1531.	1.8	18	
----	---	-----	----	--

#	Article	IF	CITATIONS
37	Optimization of land cover mapping through improvements in Sentinel-1 and Sentinel-2 image dimensionality and data mining feature selection for hydrological modeling. Stochastic Environmental Research and Risk Assessment, 2021, 35, 2493-2519.	1.9	2
38	From Land Cover Map to Land Use Map: A Combined Pixel-Based and Object-Based Approach Using Multi-Temporal Landsat Data, a Random Forest Classifier, and Decision Rules. Remote Sensing, 2021, 13, 1700.	1.8	13
39	Improved differentiation classification of variable precision artificial intelligence higher education management. Journal of Intelligent and Fuzzy Systems, 2021, , 1-10.	0.8	7
40	Multispectral Sentinel-2 and SAR Sentinel-1 Integration for Automatic Land Cover Classification. Land, 2021, 10, 611.	1.2	16
41	Reviewing the Potential of Sentinel-2 in Assessing the Drought. Remote Sensing, 2021, 13, 3355.	1.8	25
42	Mapping smallholder forest plantations in Andhra Pradesh, India using multitemporal harmonized landsat sentinelâ€2Â <scp>S10</scp> data. Land Degradation and Development, 2021, 32, 4212-4226.	1.8	3
43	Impervious Surfaces Mapping at City Scale by Fusion of Radar and Optical Data through a Random Forest Classifier. Remote Sensing, 2021, 13, 3040.	1.8	24
44	CBERS data cubes for land use and land cover mapping in the Brazilian Cerrado agricultural belt. International Journal of Remote Sensing, 2021, 42, 8398-8432.	1.3	13
45	Remote sensing-based estimation of rice yields using various models: A critical review. Geo-Spatial Information Science, 2021, 24, 580-603.	2.4	38
46	Rapid in-season mapping of corn and soybeans using machine-learned trusted pixels from Cropland Data Layer. International Journal of Applied Earth Observation and Geoinformation, 2021, 102, 102374.	1.4	20
47	Mapping regional surface water volume variation in reservoirs in northeastern Brazil during 2009–2017 using high-resolution satellite images. Science of the Total Environment, 2021, 789, 147711.	3.9	5
48	A novel cotton mapping index combining Sentinel-1 SAR and Sentinel-2 multispectral imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 181, 148-166.	4.9	34
49	Twenty years of change: Land and water resources in the Chindwin catchment, Myanmar between 1999 and 2019. Science of the Total Environment, 2021, 798, 148766.	3.9	16
50	Input imagery, classifiers, and cloud computing: Insights from multi-temporal LULC mapping in the Cambodian Mekong Delta. European Journal of Remote Sensing, 2021, 54, 398-416.	1.7	18
51	Detecting Seasonal Extent of Inundated Area of River Body in Banyuasin Regency Using Radar Data of Sentinel-1A. Lecture Notes in Civil Engineering, 2020, , 771-784.	0.3	1
52	Automatic conversion of OSM data into LULC maps: comparing FOSS4G based approaches towards an enhanced performance. Open Geospatial Data, Software and Standards, 2019, 4, .	4.3	6
53	Refining and densifying the water inundation area and storage estimates of Poyang Lake by integrating Sentinel-1/2 and bathymetry data. International Journal of Applied Earth Observation and Geoinformation, 2021, 105, 102601.	1.4	3
54	Integrating Sentinel-1/2 Data and Machine Learning to Map Cotton Fields in Northern Xinjiang, China. Remote Sensing, 2021, 13, 4819.	1.8	10

#	Article	IF	CITATIONS
55	Self-Supervised SAR-Optical Data Fusion of Sentinel-1/-2 Images. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-11.	2.7	23
56	Systematic method for mapping fine-resolution water cover types in China based on time series Sentinel-1 and 2 images. International Journal of Applied Earth Observation and Geoinformation, 2022, 106, 102656.	1.4	11
57	Evaluation and comparison of the earth observing sensors in land cover/land use studies using machine learning algorithms. Ecological Informatics, 2022, 68, 101522.	2.3	24
58	Mapping fallow fields using Sentinel-1 and Sentinel-2 archives over farming-pastoral ecotone of Northern China with Google Earth Engine. ClScience and Remote Sensing, 2022, 59, 333-353.	2.4	12
59	Prediction of paddy cultivation using deep learning on land cover variation for sustainable agriculture. , 2022, , 325-355.		1
60	Exploiting time series of Sentinel-1 and Sentinel-2 to detect grassland mowing events using deep learning with reject region. Scientific Reports, 2022, 12, 983.	1.6	12
61	Mapping Ecological Focus Areas within the EU CAP Controls Framework by Copernicus Sentinel-2 Data. Agronomy, 2022, 12, 406.	1.3	11
62	Can a Hierarchical Classification of Sentinel-2 Data Improve Land Cover Mapping?. Remote Sensing, 2022, 14, 989.	1.8	9
63	Multi-modal temporal attention models for crop mapping from satellite time series. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 187, 294-305.	4.9	24
64	Synergy of Sentinel-1 and Sentinel-2 Imagery for Early Seasonal Agricultural Crop Mapping. Remote Sensing, 2021, 13, 4891.	1.8	14
65	The Application of Sentinel-2 Data for Automatic Forest Cover Changes Assessment – BiaÅ,owieża Primeval Forest Case Study. Civil and Environmental Engineering Reports, 2021, 31, 148-166.	0.2	0
66	Land Use and Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Comparison of Two Composition Methods. Remote Sensing, 2022, 14, 1977.	1.8	52
67	Dense Adaptive Grouping Distillation Network for Multimodal Land Cover Classification With Privileged Modality. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-14.	2.7	5
68	Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data towards Mapping Fruit Plantations in Highly Heterogenous Landscapes. Remote Sensing, 2022, 14, 2621.	1.8	18
69	Can Remote Sensing Fill the United States' Monitoring Gap for Watershed Management?. Water (Switzerland), 2022, 14, 1985.	1.2	3
70	Mapping Crop Types of Germany by Combining Temporal Statistical Metrics of Sentinel-1 and Sentinel-2 Time Series with LPIS Data. Remote Sensing, 2022, 14, 2981.	1.8	19
71	Fusing Landsat-8, Sentinel-1, and Sentinel-2 Data for River Water Mapping Using Multidimensional Weighted Fusion Method. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-12.	2.7	0
72	OBJECT-BASED APPROACHES FOR LAND USE-LAND COVER CLASSIFICATION USING HIGH RESOLUTION QUICK BIRD SATELLITE IMAGERY (A CASE STUDY: KERBELA, IRAQ). Geodesy and Cartography, 2022, 48, 85-91.	0.2	2

 ARTICLE
 IF
 CITATIONS

 Crop Identification Based on Multi-Temporal Active and Passive Remote Sensing Images. ISPRS
 1.4
 6

- Operational Use of EO Data for National Land Cover Official Statistics in Lesotho. Remote Sensing, 1.8 1
 2022, 14, 3294.
- High Resolution Land Cover Mapping and Crop Classification in the Loukkos Watershed (Northern) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

76	Structural lineament mapping of Central-Eastern high atlas, Morocco, using ASAR/Envisat and SAR/sentinel 1B data. Geocarto International, 2024, 37, 15568-15603.	1.7	1
77	Monitoring Surface Water Inundation of Poyang Lake and Dongting Lake in China Using Sentinel-1 SAR Images. Remote Sensing, 2022, 14, 3473.	1.8	4
78	Evaluation of urban green space per capita with new remote sensing and geographic information system techniques and the importance of urban green space during the COVID-19 pandemic. Environmental Monitoring and Assessment, 2022, 194, .	1.3	7
79	Spatiotemporal impacts of climate change and human activities on water resources and ecological sensitivity in the Mekong subregion in Cambodia. Environmental Science and Pollution Research, 2023, 30, 4023-4043.	2.7	6
80	Monitoring Cropland Abandonment in Hilly Areas with Sentinel-1 and Sentinel-2 Timeseries. Remote Sensing, 2022, 14, 3806.	1.8	8
81	Evaluation of typhoon-induced inundation losses associated with LULC using multi-temporal SAR and optical images. Geomatics, Natural Hazards and Risk, 2022, 13, 2227-2251.	2.0	1
82	Land use change and climate dynamics in the Rift Valley Lake Basin, Ethiopia. Environmental Monitoring and Assessment, 2022, 194, .	1.3	16
83	SDCAFNet: A Deep Convolutional Neural Network for Land-Cover Semantic Segmentation With the Fusion of PolSAR and Optical Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 8928-8942.	2.3	5
84	Ứng dụng dá»⁻ liệu ảnh vệ tinh SAR (Sentinel-1A) Ä'a thá»i gian thÀnh láºp bản đồ hiện trạng sá Hoc = Journal of Science, 2022, 58, 45-54.	»-dụng 0.1	Äʻá⁰¥t tá»
85	DeepForest: Novel Deep Learning Models for Land Use and Land Cover Classification Using Multi-Temporal and -Modal Sentinel Data of the Amazon Basin. Remote Sensing, 2022, 14, 5000.	1.8	7
86	Detection and counting of meadow cuts by copernicus sentinel-2 imagery in the framework of the common agricultural policy (CAP). European Journal of Remote Sensing, 2023, 56, .	1.7	2
87	Optimized Software Tools to Generate Large Spatio-Temporal Data Using the Datacubes Concept: Application to Crop Classification in Cap Bon, Tunisia. Remote Sensing, 2022, 14, 5013.	1.8	2
88	A guideline for spatioâ€ŧemporal consistency in water quality modelling in rural areas. Hydrological Processes, 2022, 36, .	1.1	0
89	Yeni nesil multispektral ve hiperspektral uydu görüntülerinin arazi örtüsü / arazi kullanımı sınıflandırma performanslarının karşılaştırılması: Sentinel-2 ve PRISMA Uydusu. Geomatik, 2	0 ¹ 23, 8, 79	9-90.

#

73

⁹⁰Evaluation of land use/land cover datasets in hydrological modelling using the SWAT model. H2Open
Journal, 2023, 6, 63-74.0.83

#	Article	IF	CITATIONS
91	SVM-based classification of multi-temporal Sentinel-2 imagery of dense urban land cover of Delhi-NCR region. Earth Science Informatics, 2023, 16, 1765-1777.	1.6	0
98	Land use and land cover classification using machine learning algorithms in google earth engine. Earth Science Informatics, 2023, 16, 3057-3073.	1.6	2
103	Landcover Classification of VHRS Imagery Using Support Vector Machine. , 2023, , .		0

CITATION REPORT