Phosphine-Catalyzed Asymmetric Organic Reactions

Chemical Reviews 118, 9344-9411 DOI: 10.1021/acs.chemrev.8b00261

Citation Report

#	Article	IF	CITATIONS
1	Phosphine-mediated enantioselective [1 + 4]-annulation of Morita–Baylis–Hillman carbonates with 2-enoylpyridines. RSC Advances, 2018, 8, 41620-41623.	3.6	13
2	Enantioselective Coupling of Dienes and Phosphine Oxides. Journal of the American Chemical Society, 2018, 140, 16450-16454.	13.7	131
3	Organophosphine-Catalyzed [4C+X] Annulations. Molecules, 2018, 23, 3022.	3.8	8
4	A Concise Stereoselective Route to <i>Câ€</i> and <i>P</i> ―Chirogenic Hydroxypropyl Phosphines by Ringâ€Opening of Optically Active Oxaphospholaneâ€2â€oxide. ChemistrySelect, 2018, 3, 13619-13623.	1.5	3
5	Phosphineâ€Catalyzed Enantioselective [1+4] Annulation of Moritaâ€Baylisâ€Hillman Carbonates with α,βâ€Unsaturated Imines. Asian Journal of Organic Chemistry, 2019, 8, 242-245.	2.7	21
6	Access to Arylâ€Naphthaquinone Atropisomers by Phosphineâ€Catalyzed Atroposelective (4+2) Annulations of δâ€Acetoxy Allenoates with 2â€Hydroxyquinone Derivatives. Angewandte Chemie, 2019, 131, 15478-15482.	2.0	14
7	Access to Arylâ€Naphthaquinone Atropisomers by Phosphineâ€Catalyzed Atroposelective (4+2) Annulations of δâ€Acetoxy Allenoates with 2â€Hydroxyquinone Derivatives. Angewandte Chemie - International Edition, 2019, 58, 15334-15338.	13.8	41
8	Phosphine-Catalyzed Divergent [4+3] Domino Annulations of CF3-Containing Imines with MBH Carbonates: Construction of Perfluoroalkylated Benzazepines. Organic Letters, 2019, 21, 7060-7064.	4.6	27
9	Synthesis of 1,4,5,6-tetrahydropyridazines and pyridazines <i>via</i> transition-metal-free (4 + 2) cycloaddition of alkoxyallenes with 1,2-diaza-1,3-dienes. RSC Advances, 2019, 9, 21507-21512.	3.6	14
10	Enantioselective Nâ€Heterocyclic Carbene Catalyzed Bis(enoate) Rauhut–Currier Reaction. Angewandte Chemie - International Edition, 2019, 58, 13370-13374.	13.8	17
11	Phosphineâ€Catalyzed [3+2] Cycloaddition and Vinylation of Indoleâ€Derived α,αâ€Dicyanoolefins with γ‣ubstituted Allenoates. Asian Journal of Organic Chemistry, 2019, 8, 1893-1902.	2.7	3
12	Catalystâ€Free Synthesis of Novel Dimeric Tetrahydroisoquinoline Derivatives through [2+2+2] Annulation. European Journal of Organic Chemistry, 2019, 2019, 4941-4950.	2.4	9
13	Scandium catalysed stereoselective thio-allylation of allenyl-imidates. Chemical Communications, 2019, 55, 9669-9672.	4.1	3
14	Enantioselective Nâ€Heterocyclic Carbene Catalyzed Bis(enoate) Rauhut–Currier Reaction. Angewandte Chemie, 2019, 131, 13504-13508.	2.0	4
15	Phosphine-catalyzed regiodivergent annulations of Î ³ -substituted allenoates with conjugated dienes. Chemical Communications, 2019, 55, 10120-10123.	4.1	18
16	Chiral bifunctional bisphosphine enabled enantioselective tandem Michael addition of tryptamine-derived oxindoles to ynones. Chemical Communications, 2019, 55, 9176-9179.	4.1	16
17	Organocatalytic Asymmetric Annulation of <i>ortho</i> â€Alkynylanilines: Synthesis of Axially Chiral Naphthyl 2â€indoles. Angewandte Chemie - International Edition, 2019, 58, 17199-17204.	13.8	128
18	Phosphineâ€Catalyzed [4+2] Cycloadditions of Allenic Ketones: Enantioselective Synthesis of Functionalized Tetrahydropyridines. Chemistry - an Asian Journal, 2019, 14, 3409-3413.	3.3	18

#		IF	
19	Asymmetric Three-Component Cyclizations toward Structurally Spiro Pyrrolidines via Bifunctional Phosphonium Salt Catalysis. Organic Letters, 2019, 21, 8667-8672.	4.6	36
20	Rh-Catalyzed Asymmetric Hydrogenation of (Z)-β-Phosphorylated Enamides: Highly Enantioselective Access to β-Aminophosphines. Organic Letters, 2019, 21, 8921-8924.	4.6	17
21	Organocatalytic Asymmetric Annulation of ortho â€Alkynylanilines: Synthesis of Axially Chiral Naphthylâ€C2â€indoles. Angewandte Chemie, 2019, 131, 17359-17364.	2.0	38
22	Phosphineâ€Catalyzed βâ€5elective Conjugate Addition of αâ€Fluoroâ€Î²â€ketoamides to Allenic Esters. Europ Journal of Organic Chemistry, 2019, 2019, 6138-6142.	ean 2.4	13
23	Phosphine-Catalyzed Asymmetric Cycloaddition Reaction of Diazenes: Enantioselective Synthesis of Chiral Dihydropyrazoles. Organic Letters, 2019, 21, 7519-7523.	4.6	25
24	Design, synthesis and application of a new type of bifunctional Le-Phos in highly enantioselective γ-addition reactions of N-centered nucleophiles to allenoates. Chemical Science, 2019, 10, 10510-10515.	7.4	21
25	Bifunctional Phosphonium Salt Directed Enantioselective Formal [4 + 1] Annulation of Hydroxyl-Substituted <i>para</i> -Quinone Methides with α-Halogenated Ketones. Organic Letters, 2019, 21, 7298-7302.	4.6	72
26	Catalyst-free hydrophosphination of alkenes in presence of 2-methyltetrahydrofuran: a green and easy access to a wide range of tertiary phosphines. RSC Advances, 2019, 9, 27250-27256.	3.6	18
27	Phosphine-Catalyzed Chemo- and Diastereoselective [2 + 2 + 2] and [3 + 2] Annulations of Î ³ -Methyl Allenoates with Doubly Activated Olefins: Syntheses of Highly Substituted Cyclohexanes and Cyclopentenes. Journal of Organic Chemistry, 2019, 84, 12490-12498.	3.2	23
28	Divergent synthesis of spirocyclopentene-pyrazolones and pyrano[2,3-c]-pyrazoles via Lewis base controlled annulation reactions. Tetrahedron Letters, 2019, 60, 151206.	1.4	17
29	Ni-Catalyzed Asymmetric Allylation of Secondary Phosphine Oxides. Journal of the American Chemical Society, 2019, 141, 16584-16589.	13.7	93
30	Cyclohexyl-Fused, Spirobiindane-Derived, Phosphine-Catalyzed Synthesis of Tricyclic Î ³ -Lactams and Kinetic Resolution of Î ³ -Substituted Allenoates. Journal of the American Chemical Society, 2019, 141, 16362-16373.	13.7	47
31	Phosphine Sequentially Catalyzed Domino 1,6-Addition/Annulation: Access to Functionalized Chromans and Tetrahydroquinolines with an Ethynyl-Substituted All-Carbon Quaternary Center. Organic Letters, 2019, 21, 908-912.	4.6	51
32	Intramolecular hydrogen-bonding-assisted phosphine-catalysed [3 + 2] cyclisation of ynones with o-hydroxy/amino benzaldehydes. Organic and Biomolecular Chemistry, 2019, 17, 2187-2191.	2.8	10
33	Phosphine- and water-promoted pentannulative aldol reaction. Organic and Biomolecular Chemistry, 2019, 17, 1547-1551.	2.8	7
34	Phosphine-promoted [4 + 3] annulation of allenoate with aziridines for synthesis of tetrahydroazepines: phosphine-dependent [3 + 3] and [4 + 3] pathways. RSC Advances, 2019, 9, 1214-1221.	3.6	9
35	Proton-Coupled Electron Transfer Enables Tandem Radical Relay for Asymmetric Copper-Catalyzed Phosphinoylcyanation of Styrenes. Organic Letters, 2019, 21, 5015-5020.	4.6	64
36	Phosphine-Catalyzed α-Umpolung–Aldol Reaction for the Synthesis of Benzo[b]azapin-3-ones. Organic Letters, 2019, 21, 5143-5146.	4.6	33

#	Article	IF	CITATIONS
37	Phosphine-catalyzed dearomative [3+2] annulation of 3-nitroindoles and allenoates. Tetrahedron Letters, 2019, 60, 1885-1890.	1.4	12
38	Efficient synthesis of (<i>E</i>)-2-nitromethylcinnamates <i>via</i> phosphine-catalyzed tandem α-addition and 1,3-rearrangement. Organic Chemistry Frontiers, 2019, 6, 2872-2876.	4.5	11
39	Prediction on the origin of chemoselectivity in Lewis base-mediated competition cyclizations between allenoates and chalcones: a computational study. Organic Chemistry Frontiers, 2019, 6, 2692-2700.	4.5	23
40	Allylic Phosphorus Ylides Directly Generated from Alcohols with Water as the Only Byproduct. Organic Letters, 2019, 21, 4168-4172.	4.6	18
41	Catalytic Enantioselective Transannular Morita–Baylis–Hillman Reaction. Journal of the American Chemical Society, 2019, 141, 9495-9499.	13.7	30
42	Phosphineâ€Catalyzed Activation of Alkylidenecyclopropanes: Rearrangement to Form Polysubstituted Furans and Dienones. Angewandte Chemie, 2019, 131, 10808-10812.	2.0	8
43	Cascade Reaction of Diethylâ€(2â€Phenylacetyl) Phosphonate with Benzylideneâ€Malononitrile: Access to Functionalized and Fully Substituted 4Hâ€Pyrans Containing Phosphonate Motif. ChemistrySelect, 2019, 4, 6484-6487.	1.5	3
44	Direct Activation of Unmodified Morita–Baylis–Hillman Alcohols through Phosphine Catalysis for Rapid Construction of Three-Dimensional Heterocyclic Compounds. Organic Letters, 2019, 21, 4882-4886.	4.6	28
45	Catalytic and Asymmetric Process via P ^{III} /P ^V â•O Redox Cycling: Access to (Trifluoromethyl)cyclobutenes via a Michael Addition/Wittig Olefination Reaction. Journal of the American Chemical Society, 2019, 141, 10142-10147.	13.7	40
46	Phosphane-Catalyzed [3+2] Annulation of Allenoates with 3-Nitro-2H -chromenes: Synthesis of Tetrahydrocyclopenta[c]chromenes. European Journal of Organic Chemistry, 2019, 2019, 5441-5451.	2.4	15
47	Phosphine-catalyzed dearomative (3 + 2) annulation of 2-nitrobenzofurans and nitrobenzothiophenes with allenoates. Organic and Biomolecular Chemistry, 2019, 17, 5294-5304.	2.8	26
48	Phosphineâ€Catalyzed Activation of Alkylidenecyclopropanes: Rearrangement to Form Polysubstituted Furans and Dienones. Angewandte Chemie - International Edition, 2019, 58, 10698-10702.	13.8	52
49	Asymmetric Library Synthesis of P-Chiral t-Butyl-Substituted Secondary and Tertiary Phosphine Oxides. Journal of Organic Chemistry, 2019, 84, 7291-7302.	3.2	16
50	DMAP-catalyzed [4+2] annulation of α-substituded allenoates with unsaturated pyrazolones. Tetrahedron, 2019, 75, 3609-3616.	1.9	5
51	Highly Regio- and Enantioselective Dienylation of p-Quinone Methides Enabled by an Organocatalyzed Isomerization/Addition Cascade of Allenoates. Organic Letters, 2019, 21, 3963-3967.	4.6	40
52	Phosphine-Catalyzed Stereoselective Dearomatization of 3-NO ₂ -Indoles with Allenoates. Journal of Organic Chemistry, 2019, 84, 6347-6355.	3.2	32
53	TEMPO-Catalyzed Aminophosphinoylation of Ethers via Tandem C(sp ³)–H and C(sp ³)–O Bond Cleavage. Organic Letters, 2019, 21, 3332-3336.	4.6	28
54	Creation of bispiro[pyrazolone-3,3′-oxindoles] <i>via</i> a phosphine-catalyzed enantioselective [3 + 2] annulation of the Morita–Baylis–Hillman carbonates with pyrazoloneyldiene oxindoles. Organic Chemistry Frontiers, 2019, 6, 2210-2214.	4.5	39

#	Article	IF	CITATIONS
55	Phosphine-Promoted Divergent Annulations of δ-Acetoxy Allenoates with α-Hydroxy-β-carbonyl Ester Derivatives: Synthesis of Tetrasubstituted Cyclopentadienes and Benzenes. Organic Letters, 2019, 21, 1944-1947.	4.6	27
56	Phosphine-Catalyzed Domino [3 + 3] Cyclization of para-Quinamines with Morita–Baylis–Hillman Carbonates: Access to Hydroquinoline Derivatives. Organic Letters, 2019, 21, 2843-2846.	4.6	40
57	Highly Enantioselective Synthesis of Fused Tri―and Tetrasubstituted Aziridines: azaâ€Darzens Reaction of Cyclic Imines with αâ€Halogenated Ketones Catalyzed by Bifunctional Phosphonium Salt. Angewandte Chemie, 2019, 131, 7503-7508.	2.0	18
58	Highly Enantioselective Synthesis of Fused Tri―and Tetrasubstituted Aziridines: azaâ€Darzens Reaction of Cyclic Imines with αâ€Halogenated Ketones Catalyzed by Bifunctional Phosphonium Salt. Angewandte Chemie - International Edition, 2019, 58, 7425-7430.	13.8	76
59	Chiral aminophosphines derived from hydroxyproline and their application in allene–imine [4 + 2] annulation. Journal of Antibiotics, 2019, 72, 389-396.	2.0	3
60	Organocatalytic Asymmetric Synthesis of Cyclic Compounds Bearing a Trifluoromethylated Stereogenic Center: Recent Developments. Advanced Synthesis and Catalysis, 2019, 361, 1923-1957.	4.3	71
61	Dearomatization of 3â€Nitroindoles by a Phosphineâ€Catalyzed Enantioselective [3+2] Annulation Reaction. Angewandte Chemie - International Edition, 2019, 58, 5427-5431.	13.8	105
62	Phosphineâ€Catalyzed Enantioselective Dearomative [3+2]â€Cycloaddition of 3â€Nitroindoles and 2â€Nitrobenzofurans. Angewandte Chemie - International Edition, 2019, 58, 5422-5426.	13.8	144
63	Phosphineâ€Catalyzed (3+2) Annulation of Isoindigos with Allenes: Enantioselective Formation of Two Vicinal Quaternary Stereogenic Centers. Angewandte Chemie - International Edition, 2019, 58, 6260-6264.	13.8	76
64	Sequential Phosphine-Catalyzed [4 + 2] Annulation of β′-Acetoxy Allenoates: Enantioselective Synthesis of 3-Ethynyl-Substituted Tetrahydroquinolines. Organic Letters, 2019, 21, 1407-1411.	4.6	31
65	Dearomatization of 3â€Nitroindoles by a Phosphineâ€Catalyzed Enantioselective [3+2] Annulation Reaction. Angewandte Chemie, 2019, 131, 5481-5485.	2.0	22
66	Phosphineâ€Catalyzed Enantioselective Dearomative [3+2]â€Cycloaddition of 3â€Nitroindoles and 2â€Nitrobenzofurans. Angewandte Chemie, 2019, 131, 5476-5480.	2.0	29
67	Phosphineâ€Catalyzed (3+2) Annulation of Isoindigos with Allenes: Enantioselective Formation of Two Vicinal Quaternary Stereogenic Centers. Angewandte Chemie, 2019, 131, 6326-6330.	2.0	22
68	Phosphine-catalysed asymmetric dearomative formal [4+2] cycloadditions of 3-benzofuranyl vinyl ketones. Chemical Communications, 2019, 55, 3097-3100.	4.1	22
69	Divergent Access to Imidazopyrazinones and Imidazodiazepinones by Regioswitchable Postâ€Ugi Heteroannulation. European Journal of Organic Chemistry, 2019, 2019, 7678-7685.	2.4	4
70	Phosphine-catalyzed $(3+2)/(2+3)$ sequential annulation involving a triple nucleophilic addition reaction of \hat{I}^3 -vinyl allenoates. Chemical Communications, 2019, 55, 14011-14014.	4.1	19
71	Silver-promoted cascade radical cyclization of γ,Ĩ´-unsaturated oxime esters with P(O)H compounds: synthesis of phosphorylated pyrrolines. Chemical Communications, 2019, 55, 14697-14700.	4.1	34
72	Enantioselective aryl–aryl coupling facilitated by chiral binuclear gold complexes. Chemical Communications, 2019, 55, 12988-12991.	4.1	18

#	Article	IF	CITATIONS
73	Phosphine-Catalyzed [3+2] Annulation of β-Sulfonamido-Substituted Enones with Sulfamate-Derived Cyclic Imines. Journal of Organic Chemistry, 2019, 84, 679-686.	3.2	25
74	Copper-Catalyzed Direct Twofold C–P Cross-Coupling of Unprotected Propargylic 1,4-Diols: Access to 2,3-Bis(diarylphosphynyl)-1,3-butadienes. Organic Letters, 2019, 21, 579-583.	4.6	18
75	Enantioselective Construction of Pyridine <i>N</i> -Oxides Featuring 2,3-Dihydrofuran Motifs via Phosphine-Catalyzed [4 + 1]-Annulation of 2-Enoylpyridine <i>N</i> -Oxides with Morita–Baylis–Hillman Carbonates. Organic Letters, 2019, 21, 152-155.	4.6	41
76	Enantioselective γâ€Addition of Pyrazole and Imidazole Heterocycles to Allenoates Catalyzed by Chiral Phosphine. Angewandte Chemie, 2019, 131, 2880-2884.	2.0	13
77	Copper-Catalyzed Borylative Multicomponent Synthesis of Quaternary α-Amino Esters. ACS Catalysis, 2019, 9, 1655-1661.	11.2	49
78	Enantioselective γâ€Addition of Pyrazole and Imidazole Heterocycles to Allenoates Catalyzed by Chiral Phosphine. Angewandte Chemie - International Edition, 2019, 58, 2854-2858.	13.8	36
79	Aliphatic Aldehydes: Novel Radical Alkylating Reagents. Advanced Synthesis and Catalysis, 2019, 361, 1700-1709.	4.3	67
80	Phosphineâ€Catalyzed Chemoselective [4+3] Cycloaddition of Alminine Esters and β′â€acetoxy Allenoates for Divergent Synthesis of Azepines. Advanced Synthesis and Catalysis, 2020, 362, 545-551.	4.3	28
81	Halide Anion Triggered Reactions of Michael Acceptors with Tropylium Ion. Angewandte Chemie, 2020, 132, 1471-1475.	2.0	4
82	Halide Anion Triggered Reactions of Michael Acceptors with Tropylium Ion. Angewandte Chemie - International Edition, 2020, 59, 1455-1459.	13.8	22
83	Novel Oneâ€Pot Access to Diastereoisomeric Tertiary Phospholanes Oxides by Using Enantiomerically Pure Phospholane Oxides Under Catalystâ€Free Conditions. ChemistrySelect, 2020, 5, 379-383.	1.5	8
84	Chemoselective Synthesis and Evaluation of β-Oxovinylarsines as an Arsenic Synthetic Precursor. Organometallics, 2020, 39, 271-278.	2.3	2
85	Recent advances in phosphine catalysis involving Î ³ -substituted allenoates. Chemical Communications, 2020, 56, 680-694.	4.1	131
86	Enantioselective Synthesis of Multifunctionalized 4 <i>H</i> -Pyrans via Formal [4 + 2] Annulation Process by Bifunctional Phosphonium Salt Catalysis. Organic Letters, 2020, 22, 395-399.	4.6	24
87	Phosphine-Catalyzed (3 + 2)/(3 + 2) Sequential Annulation of γ-Vinyl Allenoates: Access to Fused Carbocycles. Organic Letters, 2020, 22, 433-437.	4.6	29
88	Phosphineâ€Catalyzed [4+1] Cycloadditions of Allenes with Methyl Ketimines, Enamines, and a Primary Amine. Angewandte Chemie - International Edition, 2020, 59, 1884-1890.	13.8	30
89	Catalyst Repurposing Sequential Catalysis by Harnessing Regenerated Prolinamide Organocatalysts as Transfer Hydrogenation Ligands. Organic Letters, 2020, 22, 110-115.	4.6	9
90	Mechanisms of 1,4â€dipolar cycloaddition between propaâ€1,2â€diene and imines catalyzed by PBu3: A DFT investigation. Journal of Physical Organic Chemistry, 2020, 33, e4035.	1.9	1

#	Article	IF	CITATIONS
91	Phosphine atalyzed [4+1] Cycloadditions of Allenes with Methyl Ketimines, Enamines, and a Primary Amine. Angewandte Chemie, 2020, 132, 1900-1906.	2.0	1
92	Phosphineâ€Catalyzed [3+2] and [2+4] Annulations of γâ€Methyl Allenoates with Aryl αâ€Keto Esters: Stereoselective Syntheses of Functionalized Tetrahydrofurans and 4â€Chromanols. Asian Journal of Organic Chemistry, 2020, 9, 86-93.	2.7	5
93	Enantioselective Construction of Spiro[chromanâ€thiazolones]: Bifunctional Phosphonium Saltâ€Catalyzed [2+4] Annulation between 5â€Alkenyl Thiazolones and <i>ortho</i> â€Hydroxyphenylâ€Substituted <i>paraâ€</i> Quinone Methides. Advanced Synthesis and Catalysis, 2020, 362, 1058-1063.	4.3	38
94	Synthesis of heterocyclic compounds through nucleophilic phosphine catalysis. Chemical Communications, 2020, 56, 15235-15281.	4.1	80
95	Sterically Encumbered 2,3â€Ðihydrophosphindole and Its Chalcogenides. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1812-1819.	1.2	1
96	Regioselectivity witchable Intramolecular Hydroarylation of Ynone. Advanced Synthesis and Catalysis, 2020, 362, 5632-5638.	4.3	14
97	A phosphine-mediated domino sequence of salicylaldehyde with but-3-yn-2-one: rapid access to chromanone. Organic and Biomolecular Chemistry, 2020, 18, 8916-8920.	2.8	9
98	Vinylogous Elimination/C–H Functionalization/Allylation Cascade Reaction of Allenoate Adducts: Synthesis of Ring-Fused Dihydropyridinones. Organic Letters, 2020, 22, 8313-8319.	4.6	8
99	Progresses in organocatalytic asymmetric dearomatization reactions of indole derivatives. Organic Chemistry Frontiers, 2020, 7, 3967-3998.	4.5	175
100	Phosphine Catalyzed Enantioselective Cascade Reaction Initiated by Intermolecular Cross Rauhutâ€Currier Reaction of Electronâ€Deficient <i>ortho</i> â€Formyl Styrenes. ChemCatChem, 2020, 12, 5374-5377.	3.7	8
101	Catalytic Enantiodivergent Michael Addition by Subtle Adjustment of Achiral Amino Moiety of Dipeptide Phosphines. IScience, 2020, 23, 101138.	4.1	15
102	Recent Advances in the Cycloaddition Reactions of 2â€Benzylideneâ€1â€benzofuranâ€3â€ones, and Their Sulfur, Nitrogen and Methylene Analogues. Chemistry - an Asian Journal, 2020, 15, 2838-2853.	3.3	34
103	Trialkylphosphines Having a Bulky Phosphacyclopentane Backbone: Structural and Redox Properties Depending on the Exocyclic Alkyl Groups and EPR Observation of a Persistent Trialkylphosphine Radical Cation. Journal of Organic Chemistry, 2020, 85, 14634-14642.	3.2	6
104	Direct Access to Highly Enantioenriched α-Branched Acrylonitriles through a One-Pot Sequential Asymmetric Michael Addition/Retro-Dieckmann/Retro-Michael Fragmentation Cascade. Organic Letters, 2020, 22, 5995-6000.	4.6	8
105	Phosphine-catalyzed conjugate cyanation of β-trifluoromethyl enones: access to α-trifluoromethyl γ-carbonyl nitriles. Organic Chemistry Frontiers, 2020, 7, 2644-2648.	4.5	11
106	Construction of Pâ€Chiral Alkenylphosphine Oxides through Highly Chemoâ€, Regioâ€, and Enantioselective Hydrophosphinylation of Alkynes. Angewandte Chemie, 2020, 132, 20826-20831.	2.0	18
107	Construction of Pâ€Chiral Alkenylphosphine Oxides through Highly Chemoâ€, Regioâ€, and Enantioselective Hydrophosphinylation of Alkynes. Angewandte Chemie - International Edition, 2020, 59, 20645-20650.	13.8	79
108	Construction of CF ₃ -Containing Tetrahydropyrano[3,2- <i>b</i>]indoles through DMAP-Catalyzed [4+1]/[3+3] Domino Sequential Annulation. Organic Letters, 2020, 22, 6750-6755.	4.6	17

#	Article	IF	CITATIONS
109	Synthesis of <i>P</i> -chiral phosphine compounds by palladium-catalyzed C–P coupling reactions. Chemical Communications, 2020, 56, 11775-11778.	4.1	12
110	Access to <i>P</i> -chiral <i>sec</i> - and <i>tert</i> -phosphine oxides enabled by Le-Phos-catalyzed asymmetric kinetic resolution. Chemical Science, 2020, 11, 9983-9988.	7.4	53
111	Enantioselective Formal Arylation of (7â€Aza)isatylidene Malononitriles with α′â€Alkylideneâ€2â€cyclohexenones. Advanced Synthesis and Catalysis, 2020, 362, 4438-4443.	4.3	10
112	Chiral Naphthyl-C2-Indole as Scaffold for Phosphine Organocatalysis: Application in Asymmetric Formal [4 + 2] Cycloaddition Reactions. Organic Letters, 2020, 22, 6966-6971.	4.6	41
113	2-Activated 1,3-enynes in enantioselective synthesis. Organic and Biomolecular Chemistry, 2020, 18, 7977-7986.	2.8	36
114	Phosphine-Catalyzed Stereoselective Tandem Annulation Reaction for the Synthesis of Chromeno[4,3- <i>b</i>]pyrroles. Organic Letters, 2020, 22, 7008-7012.	4.6	28
115	Chemically triggered crosslinking with bioorthogonal cyclopropenones. Chemical Communications, 2020, 56, 10883-10886.	4.1	10
116	Phosphine catalyzed [3+2] cyclization/Michael addition of allenoate with CS ₂ to form 2-thineyl vinyl sulfide. Chemical Communications, 2020, 56, 11669-11672.	4.1	11
117	Palladium-Catalyzed Enantioselective Cycloaddition of Carbonylogous 1,4-Dipoles: Efficient Access to Chiral Cyclohexanones. Journal of the American Chemical Society, 2020, 142, 21645-21650.	13.7	35
118	All-carbon [3 + 2] cycloaddition in natural product synthesis. Beilstein Journal of Organic Chemistry, 2020, 16, 3015-3031.	2.2	15
119	Base-Mediated Cyclopentannulation of Ynones with Amino Crotonates for Regio- and Stereoselective Synthesis of Pentafulvenes and Cyclopenta[c]quinolines. Journal of Organic Chemistry, 2020, 85, 6970-6980.	3.2	11
120	Design of P-Chirogenic Aminophosphine–Phosphinite Ligands at Both Phosphorus Centers: Origin of Enantioselectivities in Pd-Catalyzed Allylic Reactions. Journal of Organic Chemistry, 2020, 85, 14391-14410.	3.2	7
121	Asymmetric Reactions Catalyzed by Chiral Tertiary Phosphines. Chinese Journal of Chemistry, 2020, 38, 1395-1421.	4.9	20
122	Construction of [6-5-5-6-6] Pentacyclic Skeleton via a Phosphine-Catalyzed Domino Reaction and Mechanism Study. Journal of Organic Chemistry, 2020, 85, 7884-7895.	3.2	9
124	Air-stable phosphine organocatalysts for the hydroarsination reaction. Journal of Organometallic Chemistry, 2020, 914, 121216.	1.8	4
125	Î ³ -Substituted Allenic Amides in the Phosphine-Catalyzed Enantioselective Higher Order Cycloaddition with Azaheptafulvenes. Organic Letters, 2020, 22, 4721-4725.	4.6	19
126	Highly enantioselective [3+2] cycloadditions of terminal allenoates with β-trifluoromethyl α,β-enones. Chemical Communications, 2020, 56, 8842-8845.	4.1	10
127	Radical reactions promoted by trivalent tertiary phosphines. Organic Chemistry Frontiers, 2020, 7, 2349-2371.	4.5	52

#	Article	IF	CITATIONS
128	Phosphine-Catalyzed Cascade Michael Addition/[4+2] Cycloaddition Reaction of Allenoates and 2-Arylidene-1,3-indanediones. Organic Letters, 2020, 22, 2675-2680.	4.6	33
129	Highly Enantioselective [3 + 2] Annulation of 3-Butynoates with β-Trifluoromethyl Enones Promoted by an Amineâ°'Phosphine Binary Catalytic System. Organic Letters, 2020, 22, 2460-2463.	4.6	24
130	H-bond donor-directed switching of diastereoselectivity in the Michael addition of α-azido ketones to nitroolefins. Chemical Science, 2020, 11, 3852-3861.	7.4	29
131	Construction of spirooxindole-fused spiropyrazolones containing contiguous three stereogenic centres <i>via</i> [3 + 2] annulation utilizing a ferrocene derived bifunctional phosphine catalyst. Organic Chemistry Frontiers, 2020, 7, 1016-1021.	4.5	34
132	Efficient Oxidative Resolution of 1-Phenylphosphol-2-Ene and Diels–Alder Synthesis of Enantiopure Bicyclic and Tricyclic P-Stereogenic C-P Heterocycles. Symmetry, 2020, 12, 346.	2.2	5
133	Multicomponent benzannulation of allylic P-ylides with isocyanates or aldehydes for construction of anilines and biaryls. Chemical Communications, 2020, 56, 8865-8868.	4.1	3
134	Palladium-catalyzed asymmetric hydrophosphorylation of alkynes: facile access to <i>P</i> -stereogenic phosphinates. Chemical Science, 2020, 11, 7451-7455.	7.4	76
135	A molecular electron density theory study of the [3 + 2] cycloaddition reaction of 1,4-diphosphorinium-3-olates with methyl acrylate and methyl methacrylate. Theoretical Chemistry Accounts, 2020, 139, 1.	1.4	1
136	Unraveling the Selectivity Patterns in Phosphine-Catalyzed Annulations of Azomethine Imines and Allenoates. Journal of Organic Chemistry, 2020, 85, 9272-9280.	3.2	12
137	Scalable Enantiomeric Separation of Dialkylâ€Arylphosphine Oxides Based on Host–Guest Complexation with TADDOLâ€Đerivatives, and their Recovery. European Journal of Organic Chemistry, 2020, 2020, 1840-1852.	2.4	10
138	Transition Metalâ€Free Synthesis of αâ€Aminophosphine Oxides through C(<i>sp</i> ³)â^P Coupling of 2â€Azaallyls. Advanced Synthesis and Catalysis, 2020, 362, 2268-2273.	4.3	14
139	Asymmetric Construction of Bispiro yclopropaneâ€Pyrazolones via a [2+1] Cyclization Reaction by Dipeptideâ€Based Phosphonium Salt Catalysis. Advanced Synthesis and Catalysis, 2020, 362, 1966-1971.	4.3	20
140	Recent Advances in Phosphineâ€Promoted (4 + 1) Annulation Reactions. European Journal of Organic Chemistry, 2020, 2020, 4098-4107.	2.4	26
141	Rapid Synthesis of Chiral 1,2â€Bisphosphine Derivatives through Copper(I) atalyzed Asymmetric Conjugate Hydrophosphination. Angewandte Chemie, 2020, 132, 7123-7128.	2.0	22
142	Phosphine-Catalyzed Remote 1,7-Addition for Synthesis of Diene Carboxylates. ACS Catalysis, 2020, 10, 3541-3547.	11.2	34
143	Enantioselective [4+2] Annulation to the Concise Synthesis of Chiral Dihydrocarbazoles. IScience, 2020, 23, 100840.	4.1	16
144	Rapid Synthesis of Chiral 1,2â€Bisphosphine Derivatives through Copper(I) atalyzed Asymmetric Conjugate Hydrophosphination. Angewandte Chemie - International Edition, 2020, 59, 7057-7062.	13.8	89
145	Asymmetric catalysis in direct nitromethane-free Henry reactions. RSC Advances, 2020, 10, 2313-2326.	3.6	28

#	Article	IF	CITATIONS
146	Palladiumâ€Catalyzed Direct Decarbonylative Phosphorylation of Benzoic Acids with P(O)–H Compounds. European Journal of Organic Chemistry, 2020, 2020, 1148-1153.	2.4	31
147	Enantioselective synthesis of mixed 3,3′-bisindoles via a phosphine-catalyzed umpolung γ-addition of 3′-indolyl-3-oxindoles to allenoates. Science Bulletin, 2020, 65, 557-563.	9.0	12
148	Enantiopure Chiral Phosphines Bearing a Sulfinyl Group and their Application in Catalytic Enantiodivergent Synthesis of Polysubstituted Pyrrolines. Advanced Synthesis and Catalysis, 2020, 362, 2760-2766.	4.3	6
149	1,2â€Diamineâ€Derived (thio)Phosphoramide Organocatalysts in Asymmetric Michael Additions. Advanced Synthesis and Catalysis, 2020, 362, 2444-2458.	4.3	17
150	Lewis Base-Catalyzed Amino-Acylation of Arylallenes via C–N Bond Cleavage: Reaction Development and Mechanistic Studies. ACS Catalysis, 2020, 10, 5419-5429.	11.2	20
151	Highly Enantioselective Construction of Fully Substituted Stereocenters Enabled by <i>In Situ</i> Phosphonium-Containing Organocatalysis. ACS Catalysis, 2020, 10, 5698-5706.	11.2	33
152	Asymmetric Catalytic 1,2â€Dihydrophosphination of Secondary 1,2â€Diphosphines – Direct Access to Free <i>P</i> *―and <i>P</i> *, <i>C</i> *â€Diphosphines. Advanced Synthesis and Catalysis, 2020, 362, 2373-2378.	4.3	19
153	Organophosphine bearing multiple hydrogen-bond donors for asymmetric Michael addition reaction of 1-oxoindane-2-carboxylic acid ester via dual-reagent catalysis. Chinese Chemical Letters, 2021, 32, 708-712.	9.0	7
154	Asymmetric allylic substitution by chiral palladium catalysts: Which is more reactive, major π-allyl Pd(II) species or minor π-allyl species?. Molecular Catalysis, 2021, 499, 111221.	2.0	0
155	Visible-light-induced denitrogenative phosphorylation of benzotriazinones: a metal- and additive-free method for accessing <i>ortho</i> -phosphorylated benzamide derivatives. Green Chemistry, 2021, 23, 296-301.	9.0	21
156	Remote methylene C(sp ³)–H functionalization enabled by organophosphine-catalyzed alkyne isomerization. Organic Chemistry Frontiers, 2021, 8, 1125-1131.	4.5	6
157	Enantioselective Cyclopropanation/[1,5]-Hydrogen Shift to Access Rauhut–Currier Product. Organic Letters, 2021, 23, 213-217.	4.6	8
158	Metal-free visible-light-induced photoredox-catalyzed intermolecular pyridylation/phosphinoylation of alkenes. Organic Chemistry Frontiers, 2021, 8, 901-907.	4.5	23
159	Discovery of Annulating Reagents Enabling the One-Step and Highly Stereoselective Synthesis of Cyclopentyl and Cyclohexyl Cores. Organic Letters, 2021, 23, 60-65.	4.6	3
160	Recent Advances in Asymmetric Organomulticatalysis. Advanced Synthesis and Catalysis, 2021, 363, 352-387.	4.3	37
161	The Total Synthesis of Diquinaneâ€Containing Natural Products. Chemistry - A European Journal, 2021, 27, 4839-4858.	3.3	8
162	Self-cyclization <i>vs</i> . dimerization of <i>o</i> -alkenyl arylisocyanides: chemodivergent synthesis of quinolines and pyrrolo-fused diindoles. Organic Chemistry Frontiers, 2021, 8, 2595-2600.	4.5	12
163	Synthesis of 2-chromanone-fused [3.2.0] bicycles through a phosphine-mediated tandem [3 + 2] cyclization/intramolecular Wittig reaction. Organic Chemistry Frontiers, 0, , .	4.5	3

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
164	Phosphine-catalyzed enantioselective [4 + 1] annulation of oxindoles with allenic ketones for the construction of spirocyclopentene oxindoles. Organic Chemistry Frontiers, 2021, 8, 4485-4489.	4.5	10
165	Chapter 11. Stabilising and Characterising Homogeneous Catalysts in MOFs. Monographs in Supramolecular Chemistry, 2021, , 340-369.	0.2	0
166	Organocatalytic enantioselective [2 + 4]-annulation of γ-substituted allenoates with <i>N</i> -acyldiazenes for the synthesis of optically active 1,3,4-oxadiazines. Organic and Biomolecular Chemistry, 2021, 19, 1727-1731.	2.8	11
167	Organoiodine-Catalyzed Enantioselective Intermolecular Oxyamination of Alkenes. Journal of the American Chemical Society, 2021, 143, 1745-1751.	13.7	33
168	Direct access to tetrasubstituted cyclopentenyl scaffolds through a diastereoselective isocyanide-based multicomponent reaction. Chemical Science, 2021, 12, 15862-15869.	7.4	2
169	Facile synthesis of α-aminophosphine oxides from diarylphosphine oxides, arynes and formamides. Chemical Communications, 2021, 57, 9578-9581.	4.1	11
170	Phosphine-catalyzed sequential (2+3)/(2+4) annulation of γ-vinyl allenoates: access to the synthesis of chromeno[4,3- <i>b</i>]pyrroles. Chemical Communications, 2021, 57, 9934-9937.	4.1	9
171	Conjugated ynones in catalytic enantioselective reactions. Organic and Biomolecular Chemistry, 2021, 19, 2110-2145.	2.8	19
172	Recent advances in multi-component reactions and their mechanistic insights: a triennium review. Organic Chemistry Frontiers, 2021, 8, 4237-4287.	4.5	158
173	Phosphine-catalyzed \hat{I}^3 -addition of nitroacetates to allenoates for enantioselective creation of $\hat{I}_{\pm}, \hat{I}_{\pm}$ -disubstituted \hat{I}_{\pm} -amino acid precursors. Organic Chemistry Frontiers, 2021, 8, 6114-6118.	4.5	5
174	Dielectrophilic Allenic Ketone-Enabled [4 + 2] Annulation with 3,3'-Bisoxindoles: Enantioselective Creation of Two Contiguous Quaternary Stereogenic Centers. ACS Catalysis, 2021, 11, 1361-1367.	11.2	20
175	Enantioselective synthesis of functionalized 1,4-dihydropyrazolo-[4′,3′:5,6]pyrano[2,3- <i>b</i>]quinolines through ferrocenyl-phosphine-catalyzed annulation of modified MBH carbonates and pyrazolones. Chemical Communications, 2021, 57, 4690-4693	4.1	13
176	Advances in organocatalytic asymmetric reactions of vinylindoles: powerful access to enantioenriched indole derivatives. Organic Chemistry Frontiers, 2021, 8, 2643-2672.	4.5	82
177	The chemistry of phosphines in constrained, well-defined microenvironments. Chemical Society Reviews, 2021, 50, 4411-4431.	38.1	27
178	Ruthenium-Catalyzed PIII-Directed Remote ε-C–H Alkylation of Phosphines. Organic Letters, 2021, 23, 2052-2056.	4.6	21
179	Chiral Graphene Hybrid Materials: Structures, Properties, and Chiral Applications. Advanced Science, 2021, 8, 2003681.	11.2	43
180	Et3N-catalyzed direct cycloaddition reaction of allenoates with acceptor diazo compounds. Tetrahedron, 2021, 81, 131922.	1.9	10
181	De Novo Construction of Substituted Terephthalates via Phosphine Catalyzed Domino Benzannulation Reactions. Advanced Synthesis and Catalysis, 2021, 363, 1873-1877.	4.3	6

#	Articif	IF	Citations
182	Origins of catalyst-controlled enantiodivergent hydroamination of enones with pyridazinones: A computational study. Chinese Chemical Letters, 2021, 32, 2769-2772.	9.0	4
183	Phosphine-Catalyzed Asymmetric Allylic Alkylation of Achiral MBH Carbonates with 3,3′-Bisindolines: Enantioselective Construction of Quaternary Stereogenic Centers. Organic Letters, 2021, 23, 1787-1792.	4.6	18
184	Chiral phosphine-catalyzed asymmetric [4Â+Â1] annulation of polar dienes with allylic derivatives: Enantioselective synthesis of substituted cyclopentenes. Tetrahedron Letters, 2021, 67, 152863.	1.4	4
185	Base-Mediated Intramolecular Cyclization of α-Nitroethylallenic Esters as a Synthetic Route to 5-Hydroxy-3-pyrrolin-2-ones. Journal of Organic Chemistry, 2021, 86, 5630-5638.	3.2	2
186	Ru-Catalyzed [3 + 2] Cycloaddition of Nitrile Oxides and Electron-Rich Alkynes with Reversed Regioselectivity. Organic Letters, 2021, 23, 2431-2436.	4.6	21
187	Phosphorus-Based Catalysis. ACS Central Science, 2021, 7, 536-558.	11.3	157
188	Diverse C–P Cross-Couplings of Arylsulfonium Salts with Diarylphosphines via Selective C–S Bond Cleavage. Organic Letters, 2021, 23, 2386-2391.	4.6	35
189	Group-assisted purification chemistry principles to access highly substituted zwitterionic furans via fast, concise, and efficient one-pot three-component assembly. Chemistry of Heterocyclic Compounds, 2021, 57, 239-244.	1.2	5
190	DMAP Mediated Efficient Construction of Functionalized Chromenes through Oneâ€Pot Reaction of para â€Quinone Methides with Allenoates. European Journal of Organic Chemistry, 2021, 2021, 1942-1948.	2.4	8
191	Phosphorus Ligands in Hydroformylation and Hydrogenation: A Personal Account. Chemical Record, 2021, 21, 1182-1198.	5.8	14
192	Stereo- and Regioselective <i>cis</i> -Hydrophosphorylation of 1,3-Enynes Enabled by the Visible-Light Irradiation of NiCl ₂ (PPh ₃) ₂ . Organic Letters, 2021, 23, 2981-2987.	4.6	24
193	Recent Advances in Organocatalytic Asymmetric Cycloaddition Reactions Through <i>Ortho</i> â€Quinone Methide Scaffolds. Asian Journal of Organic Chemistry, 2021, 10, 1233-1250.	2.7	30
194	Theoretical insights into phosphineâ€catalyzed [4 + 2] annulation of allenoates with thiazoloneâ€derived alkenes. Journal of Physical Organic Chemistry, 2021, 34, e4215.	d 1.9	0
195	Design of 1-Phosphanorbornene Derivatives as Chiral Organocatalysts for Enantioselective (4 + 2) Annulation Reactions of Î ³ -Benzyl Allenoates. Organic Letters, 2021, 23, 3337-3342.	4.6	20
196	Ruthenium atalyzed Enantioselective Propargylic Phosphinylation of Propargylic Alcohols with Phosphine Oxides. Angewandte Chemie - International Edition, 2021, 60, 11231-11236.	13.8	32
197	Desymmetrization Approach to the Synthesis of Optically Active P-Stereogenic Phosphin-2-en-4-ones. Journal of Organic Chemistry, 2021, 86, 6195-6206.	3.2	5
198	Phosphine-Catalyzed (4 + 2) Cycloaddition of Conjugated Dienes with Enones and Its Asymmetric Variant. Organic Letters, 2021, 23, 3094-3099.	4.6	11
199	Rutheniumâ€Catalyzed Enantioselective Propargylic Phosphinylation of Propargylic Alcohols with Phosphine Oxides. Angewandte Chemie, 2021, 133, 11331-11336.	2.0	7

Cı	tation Report	
Article	IF	CITATIONS
Catalytic chemodivergent annulations between α-diketones and alkynyl α-diketones. Science China Chemistry, 2021, 64, 991-998.	8.2	7
The Tritylâ€Cation Mediated Phosphine Oxides Reduction. Advanced Synthesis and Catalysis, 2021, 3 3035-3043.	63, <u>4.</u> 3	16
Phosphine-Catalyzed Cross-Coupling of Benzyl Halides and Fumarates. Organic Letters, 2021, 23, 4570-4574.	4.6	12
A Bifunctional N-Heterocyclic Carbene as a Noncovalent Organocatalyst for Enantioselective Aza-Michael Addition Reactions. ACS Catalysis, 2021, 11, 6316-6324.	11.2	23
Asymmetric Catalytic Ketimine Mannich Reactions and Related Transformations. Catalysts, 2021, 11,	712. 3.5	16
Silverâ€Catalyzed Direct Regioselective C3 Phosphonation of 4 <i>H</i> â€pyrido[1,2â€ <i>a</i>]pyrin With <i>H</i> â€phosphites. Asian Journal of Organic Chemistry, 2021, 10, 1660-1664.	nidinâ€4â€ones 2.7	7
Ni-Catalyzed Asymmetric Hydrophosphination of Unactivated Alkynes. Journal of the American Chemical Society, 2021, 143, 11309-11316.	13.7	76
Phosphine-Catalyzed Cascade Annulation of MBH Carbonates and Diazenes: Synthesis of Hexahydrocyclopenta[c]pyrazole Derivatives. Organic Letters, 2021, 23, 5571-5575.	4.6	18
Construction of Bulky Ligand Libraries by Ru(II)-Catalyzed P(III)-Assisted ortho-C–H Secondary Alkylation. Journal of Organic Chemistry, 2021, 86, 11915-11925.	3.2	7
Divergent Reactivity of Î′- and β′-Acetoxy Allenoates with 2-Sulfonamidoindoles via Phosphine Cata Entry to Dihydro-α-carboline, α-Carboline, and Spiro-cyclopentene Motifs. Journal of Organic Chemist 2021, 86, 11583-11598.	alysis: try, 3.2	26
Enantioselective Phosphine-Catalyzed Trimerization of Î ³ -Aryl-3-butynoates via Isomerization/[3 + 2] Cyclization/Michael Addition Cascade. Organic Letters, 2021, 23, 6377-6381.	4.6	6
Asymmetric Access of Î ³ -Amino Acids and Î ³ -Amino Phosphonic Acid Derivatives via Copper-Catalyzed Enantioselective and Regioselective Hydroamination. CCS Chemistry, 2022, 4, 1901-1911.	7.8	18
Catalyst-Controlled Diastereoselectivity Switch in the Asymmetric [3 + 2] Annulation of Isatin-Derived MBH Carbonates and 5-Alkenylthiazol-4(5 <i>H</i>)-ones. Organic Letters, 2021, 23, 7336-7341.	4.6	18
Phosphineâ€Catalyzed Substitution of Allenoates with Oxindoles: An Approach to 3â€Allenic or 3â€D Oxindoles. ChemistrySelect, 2021, 6, 9709-9713.	ienoic 1.5	2
Enantioselective Palladium atalyzed Hydrophosphinylation of Allenes with Phosphine Oxides: Acce to Chiral Allylic Phosphine Oxides. Angewandte Chemie - International Edition, 2021, 60, 27288-2729	25S 13.8 12.	58
Enantioselective Palladiumâ€Catalyzed Hydrophosphinylation of Allenes with Phosphine Oxides: Facil Access to Chiral Allylic Phosphine Oxides. Angewandte Chemie, 0, , .	e 2.0	14

217	Nucleophilic Phosphine Catalysis: The Untold Story. Asian Journal of Organic Chemistry, 2021, 10, 2699-2708.	2.7	26

218Redox Isomerization/(3+2) Allenoate Annulation by Autoâ€Tandem Phosphine Catalysis. Chemistry - A
European Journal, 2021, 27, 16232-16236.3.310

#

#	Article	IF	CITATIONS
219	The conversion of ether bonds to hydroxyl <i>via</i> a base-promoted rearrangement of cyclic phosphine oxides. Organic Chemistry Frontiers, 2021, 8, 5693-5698.	4.5	2
220	Phosphine-catalysed (4+1) annulations of β′-acetoxy allenoate with β,γ-unsaturated carbonyl compounds. Chemical Communications, 2021, 57, 3488-3491.	4.1	7
221	Chiral magnetic hybrid materials constructed from macromolecules and their chiral applications. Nanoscale, 2021, 13, 11765-11780.	5.6	11
222	Copper/Lewis base cooperatively catalyzed asymmetric allylic alkylation of Morita–Baylis–Hillman carbonates with azomethine ylides. Chemical Communications, 2021, 57, 8059-8062.	4.1	11
223	Metal-free access to 3-allyl-2-alkoxychromanones <i>via</i> phosphine-catalyzed alkoxy allylation of chromones with MBH carbonates and alcohols. Organic and Biomolecular Chemistry, 2021, 19, 2663-2667.	2.8	4
224	<i>In situ</i> generation of highly reactive allenes from nitrocyclopropanes: controllable synthesis of enynes and enesters. Chemical Communications, 2021, 57, 6424-6427.	4.1	7
225	Phosphine-Catalyzed [3 + 2] Annulation of Morita–Baylis–Hillman Carbonates with Isoxazole-Based Alkenes. Journal of Organic Chemistry, 2021, 86, 2090-2099.	3.2	13
226	Phosphineâ€Catalyzed (4+1) Annulation: Rearrangement of Allenylic Carbamates to 3â€Pyrrolines through Phosphonium Diene Intermediates. ChemCatChem, 2020, 12, 4352-4372.	3.7	8
227	Phosphine-catalyzed [3 + 2] cycloadditions of trifluoromethyl enynes/enediynes with allenoates: access to cyclopentenes containing a CF ₃ -substituted quaternary carbon center. Organic Chemistry Frontiers, 2020, 7, 3399-3405.	4.5	18
228	1,3-Dipolar Cycloadditions Involving Allenes: Synthesis of Five-Membered Rings. Current Organic Chemistry, 2020, 23, 3064-3134.	1.6	16
229	Preparation of Enantiomerically Enriched P-Stereogenic Dialkyl-Arylphosphine Oxides via Coordination Mediated Optical Resolution. Symmetry, 2020, 12, 215.	2.2	4
230	β-Keto acids in asymmetric metal catalysis and organocatalysis. Organic and Biomolecular Chemistry, 2021, 19, 10030-10046.	2.8	7
231	Dual roles of bisphosphines and epoxides: Rh-catalyzed highly chemoselective and diastereoselective (3 + 2) transannulations of 1,2,3-thiadiazoles with cyanoepoxides. Organic Chemistry Frontiers, 2021, 8, 6687-6698.	4.5	13
232	Phosphine-Catalyzed (4 + 2) Annulation of Î-Sulfonamido-Substituted Enones with 1,1-Dicyanoalkenes: Synthesis of Piperidine Derivatives. Organic Letters, 2021, 23, 7703-7707.	4.6	16
233	Enantioseparation of <i>P</i> -Stereogenic Secondary Phosphine Oxides and Their Stereospecific Transformation to Various Tertiary Phosphine Oxides and a Thiophosphinate. Journal of Organic Chemistry, 2021, 86, 14493-14507.	3.2	11
234	Catalytic Asymmetric Dearomative 1,3-Dipolar Cycloaddition of 2-Nitrobenzothiophenes and Isatin-Derived Azomethine Ylides. Organic Letters, 2021, 23, 8600-8605.	4.6	34
235	Phosphine-Catalyzed Annulations Based on [3+3] and [3+2] Trapping of Ketene Intermediates with Thioamides. Organic Letters, 2021, 23, 8147-8152.	4.6	8
236	Palladium/Xiaoâ€Phosâ€CatalyzedÂKinetic Resolution of secâ€Phosphine Oxides by Pâ€Benzylation. Angewandte Chemie, 0, , .	2.0	11

#	Article	IF	CITATIONS
237	Palladium/Xiaoâ€Phosâ€Catalyzed Kinetic Resolution of <i>sec</i> â€Phosphine Oxides by <i>P</i> â€Benzylation. Angewandte Chemie - International Edition, 2021, 60, 27247-27252.	13.8	51
238	Reaction Parameterization as a Tool for Development in Organometallic Catalysis. , 2021, , .		2
239	Ni-Catalyzed Enantioselective Allylic Alkylation of <i>H</i> -Phosphinates. Organic Letters, 2021, 23, 8683-8687.	4.6	31
240	Cobaltâ€Catalysed Asymmetric Addition and Alkylation of Secondary Phosphine Oxides for the Synthesis of <i>P</i> â€Stereogenic Compounds. Angewandte Chemie, 2021, 133, 27447-27452.	2.0	8
241	Cobaltâ€Catalysed Asymmetric Addition and Alkylation of Secondary Phosphine Oxides for the Synthesis of <i>P</i> â€Stereogenic Compounds. Angewandte Chemie - International Edition, 2021, 60, 27241-27246.	13.8	48
242	Organic photoredox catalytic α-C(sp ³)–H phosphorylation of saturated <i>aza</i> -heterocycles. Chemical Communications, 2021, 57, 13158-13161.	4.1	12
243	PPh3-catalyzed β-selective addition of α-fluoro β-dicarbonyl compounds to allenoates. Tetrahedron, 2022, 103, 132577.	1.9	5
244	<i>In situ</i> phosphonium-containing Lewis base-catalyzed 1,6-cyanation reaction: a facile way to obtain α-diaryl and α-triaryl acetonitriles. Organic Chemistry Frontiers, 2021, 9, 156-162.	4.5	6
245	Synthesis of 1-Substituted Cyclopropylamines via Formal Tertiary C _{sp³} –H Amination of Cyclopropanes. Organic Letters, 2021, 23, 9309-9314.	4.6	5
246	Resolution of P-Sterogenic 1-Phenylphosphin-2-en-4-one 1-Oxide into Two Enantiomers by (R,R)-TADDOL and Conformational Diversity of the Phosphinenone Ring and TADDOL in the Crystal State. Molecules, 2021, 26, 6873.	3.8	0
247	Manganese(I) Catalyzed Alkenylation of Phosphine Oxides Using Alcohols with Liberation of Hydrogen and Water. Journal of Organic Chemistry, 2021, 86, 17848-17855.	3.2	6
248	Phosphine-Catalyzed Internal Redox [4 + 2] Annulation between 1,4-Enynoates and Electron-Deficient Alkenes. Organic Letters, 2021, 23, 9030-9035.	4.6	8
249	The Application of Biocatalysis in the Preparation and Resolution of Moritaâ€Baylisâ€Hillman Adducts and Their Derivatives. ChemBioChem, 2022, 23, .	2.6	5
250	Enantioselective Rauhut–Currier Reaction with β-Substituted Acrylamides Catalyzed by N-Heterocyclic Carbenes. Organic Letters, 2021, 23, 9413-9418.	4.6	7
251	Phosphine-Catalyzed Asymmetric Tandem Isomerization/Annulation of Allyl Amines with Allenoates: Enantioselective Annulation of a Saturated C–N Bond. Organic Letters, 2021, 23, 9173-9178.	4.6	14
252	Nickel-Catalyzed Asymmetric Synthesis of P-Stereogenic Vinyl Phosphines. Synlett, 2022, 33, 301-306.	1.8	1
253	Chiral Ligands in Hypervalent Iodine Compounds: Synthesis and Structures of Binaphthylâ€Based λ ³ â€Iodanes. Chemistry - A European Journal, 2022, 28, e202103623.	3.3	4
254	Formal (3 + 1 + 1) Carboannulation of Morita–Baylis–Hillman Carbonates with Pyridinium Ylides: Access to Spiro-Cyclopentadiene Oxindoles. Organic Letters, 2021, 23, 8937-8941.	4.6	20

#	Article	IF	CITATIONS
255	Phosphine-catalyzed [3 + 2] annulation of β-sulfonamido-substituted enones with <i>trans</i> -α-cyano-α,β-unsaturated ketones for the synthesis of highly substituted pyrrolidines. RSC Advances, 2021, 11, 40136-40139.	3.6	5
256	Conjugate addition of 1,3-dicarbonyl compounds to maleimides using bifunctional primary amine‒(thio)phosphoramide organocatalysts. Molecular Catalysis, 2022, 518, 112089.	2.0	7
257	The Morita–Baylis–Hillman reaction for non-electron-deficient olefins enabled by photoredox catalysis. Chemical Science, 2022, 13, 1478-1483.	7.4	14
258	Synthesis of oxindoles bearing a stereogenic 3-fluorinated carbon center from 3-fluorooxindoles. Organic and Biomolecular Chemistry, 2022, 20, 538-552.	2.8	11
259	Modular access to chiral cyclopentanes via formal [2+2+1] annulation enabled by palladium/chiral squaramide relay catalysis. , 2022, 1, 100002.		2
260	[3+2] regioselective annulation reaction of 2-arylidene-1,3-indandiones towards synthesis of spirocyclopentenes: understanding the mechanism of γ-attack <i>vs.</i> l̂±-attack using DFT studies. RSC Advances, 2021, 11, 38648-38653.	3.6	10
261	4â€(Dimethylamino)pyridineâ€Catalyzed (3+2) Annulation of Pyrazoledioneâ€Derived Morita–Baylis–Hillman Carbonates with 2â€Arylideneindaneâ€1,3â€Diones: An Access to Dispirocyclic Compounds. Advanced Synthesis and Catalysis, 2022, 364, 1074-1079.	4.3	10
262	Nickel/BrÃ,nsted acid dual-catalyzed regio- and enantioselective hydrophosphinylation of 1,3-dienes: access to chiral allylic phosphine oxides. Chemical Science, 2022, 13, 1390-1397.	7.4	35
263	Amplifying inorganic chirality using liquid crystals. Nanoscale, 2022, 14, 592-601.	5.6	10
264	Pyridine vs DABCO vs TBAB in Annulations of Î-Acetoxy Allenoates with Thioamides Leading to Dihydrothiophene, Thiopyran, and Thiazole Scaffolds. Journal of Organic Chemistry, 2022, 87, 1285-1301.	3.2	9
265	Organic Polymer-Constructed Chiral Particles: Preparation and Chiral Applications. Polymer Reviews, 2022, 62, 826-859.	10.9	10
266	The synthesis of a copper metalâ€organic framework Cu 3 TDPAT and its application in a Moritaâ€Baylisâ€Hillman (MBH) reaction. Applied Organometallic Chemistry, 0, , .	3.5	1
267	Phosphine-catalyzed divergent domino processes between Î ³ -substituted allenoates and carbonyl-activated alkenes. Chemical Science, 2022, 13, 3161-3168.	7.4	15
268	Ni-catalyzed asymmetric hydrophosphinylation of conjugated enynes and mechanistic studies. Chemical Science, 2022, 13, 4095-4102.	7.4	31
269	Research Progress of Vinyl/Aryl Phosphonium Salts in Organic Synthesis. Chinese Journal of Organic Chemistry, 2022, 42, 471.	1.3	1
270	Organocatalyzed trifunctionalization of alkynyl 1,2-diones for the concise synthesis of acyloxy allylidene malonates and γ-alkylidenebutenolides. Green Chemistry, 2022, 24, 3623-3628.	9.0	3
271	Resolution of aryl-H-phosphinates applied in the synthesis of P-stereogenic compounds including a BrĄ̃,nsted acid NMR solvating agent. Organic Chemistry Frontiers, 0, , .	4.5	1
272	Rh-Catalyzed Regio- and Enantioselective Allylic Phosphinylation. Journal of the American Chemical Society, 2022, 144, 2893-2898.	13.7	28

#	Article	IF	CITATIONS
273	Visible-Light-Promoted Aerobic Oxyphosphorylation of α-Diazoesters with H-Phosphine Oxides. Organic Letters, 2022, 24, 1530-1535.	4.6	15
274	Catalytic Cleavage of Unactivated C(aryl)–P Bonds by Chromium. Organic Letters, 2022, 24, 1581-1586.	4.6	4
275	Phosphineâ€Catalyzed Enantioselective (3+2) Annulation of Vinylcyclopropanes with Imines for the Synthesis of Chiral Pyrrolidines. Angewandte Chemie - International Edition, 2022, 61, .	13.8	21
276	Catalytic Substrateâ€Selective Silylation of Primary Alcohols via Remote Functionalâ€Group Discrimination. Angewandte Chemie, 0, , .	2.0	0
277	Chiral Phosphoric Acid-Catalyzed Asymmetric Arylation of Indolizines: Atroposelective Access to Axially Chiral 3-Arylindolizines. Organic Letters, 2022, 24, 2315-2320.	4.6	10
278	Catalytic Substrateâ€Selective Silylation of Primary Alcohols via Remote Functionalâ€Group Discrimination. Angewandte Chemie - International Edition, 2021, , .	13.8	4
279	Efficient Construction of 3â€Fluoroalkylated Oxindoles Enabled by Zwitterion Catalysis. Asian Journal of Organic Chemistry, 0, , .	2.7	0
280	Iron(II)-Catalyzed Bisphosphorylation Cascade Cycloisomerization of γ-Hydroxyl Ynones and Diphenylphosphine Oxides: Synthesis of Highly Substituted Bisphosphorylated Dihydrofuran Derivatives. Organic Letters, 2022, 24, 2264-2268.	4.6	10
281	Phosphineâ€Catalyzed Enantioselective (3+2) Annulation of Vinylcyclopropanes with Imines for the Synthesis of Chiral Pyrrolidines. Angewandte Chemie, 2022, 134, .	2.0	3
282	Highly Efficient Asymmetric Morita–Baylis–Hillman Reaction Promoted by Chiral Aziridine-Phosphines. Catalysts, 2022, 12, 394.	3.5	3
283	Dearomatization of Nitro(hetero)arenes through Annulation. European Journal of Organic Chemistry, 2022, 2022, .	2.4	12
284	Regio- and Stereoselective Addition of Secondary Phosphine Oxides to Allenoates Catalyzed by Main-Group Lewis Pairs. ACS Catalysis, 2022, 12, 212-218.	11.2	7
285	Recent Advances in Lewis Baseâ€Catalysed Chemoâ€, Diastereo―and Enantiodivergent Reactions of Electronâ€Deficient Olefins and Alkynes. Chemical Record, 2022, 22, e202100276.	5.8	11
286	An isatin aldol adduct as a precursor to α,α'-difunctionalized methyl vinyl ketones. Results in Chemistry, 2022, 4, 100339.	2.0	0
287	Organocatalytic atroposelective N-alkylation: divergent synthesis of axially chiral sulfonamides and biaryl amino phenols. Organic Chemistry Frontiers, 0, , .	4.5	8
288	Density Functional Theory Study on the Mechanism of Organophosphine-Catalyzed [4+2] Cycloaddition Reaction. Chinese Journal of Organic Chemistry, 2022, 42, 830.	1.3	3
289	Mechanism and Catalyst Design in Ru-Catalyzed Alkene Hydrophosphination. ACS Catalysis, 2022, 12, 5247-5262.	11.2	9
290	Phosphine-Mediated [4 + 3] Annulation of Diynoates and 2-Arylidene Indane-1,3-diones: Access of Indeno[1,2- <i>b</i>) oxepin-4-ylidenes and Beyond. Organic Letters, 2022, 24, 2993-2997.	4.6	5

#	Article	IF	CITATIONS
291	Extraction and Coordination Properties of 2,3-Bis(diphenylphosphinyl)buta-1,3-diene and 3,4-Bis(diphenylphosphinyl)-2,5-dimethylhexa-2,4-diene. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2022, 48, 201-209.	1.0	2
292	Enantioselective Synthesis of Pyrrolidines by a Phosphine-Catalyzed γ-Umpolung/β-Umpolung Cascade. Organic Letters, 2022, 24, 2847-2852.	4.6	10
293	DABCO-Catalyzed [4 + 2] Annulation of 5-Methylenehex-2-ynedioates with Electron-Deficient Alkenes. Journal of Organic Chemistry, 2022, 87, 6362-6370.	3.2	4
294	[3+2] vs [4+1] Annulation: Revisiting mechanism studies on phosphine-catalysed domino sequence of alkynoates and activated methylenes. Organic and Biomolecular Chemistry, 2022, , .	2.8	0
295	Atom- and step-economic 1,3-thiosulfonylation of activated allenes with thiosulfonates to access vinyl sulfones/sulfides. Chemical Communications, 2022, 58, 6765-6768.	4.1	11
296	Rhodium catalyzed asymmetric synthesis of Chiraphos derivatives. Chinese Chemical Letters, 2022, 33, 5084-5087.	9.0	4
297	Oneâ€Pot Synthesis of 2,3,6â€Trisubstituted Pyridines by Phosphineâ€Catalyzed Annulation of γâ€Vinyl Allenoates with Enamino Esters Followed by DDQâ€Promoted Oxidative Aromatization. Advanced Synthesis and Catalysis, 2022, 364, 1879-1883.	4.3	7
298	9-Phosphatriptycene Derivatives: From Their Weak Basicity to Their Application in Frustrated Lewis Pair Chemistry. Journal of Physical Chemistry A, 2022, 126, 2794-2801.	2.5	4
299	Recent Advances in C–F Bond Activation of Acyl Fluorides Directed toward Catalytic Transformation by Transition Metals, N-Heterocyclic Carbenes, or Phosphines. Synthesis, 2022, 54, 3667-3697.	2.3	17
300	Phosphine-Catalyzed (4 + 2) Annulation of Allenoates with Benzofuran-Derived Azadienes and Subsequent Thio-Michael Addition. Organic Letters, 2022, 24, 3747-3752.	4.6	6
301	Pyridinylidenaminophosphines as Versatile Organocatalysts for CO2 Transformations into Valueâ€Added Chemicals. Asian Journal of Organic Chemistry, 0, , .	2.7	0
302	Acidic Hydrogenâ€Tethered Allylic Carbonates for Phosphineâ€Catalyzed (4+2) Annulation of Sulfamateâ€Derived Cyclic Imines. Advanced Synthesis and Catalysis, 2022, 364, 2146-2151.	4.3	9
303	Phosphine-Catalyzed Sequential [3 + 2]/[3 + 2] Annulation between Allenoates and Arylidenemalononitriles for the Enantioselective Construction of Bicyclo[3,3,0]octenes and Cyclopenta[<i>c</i>]quinolinones. Organic Letters, 2022, 24, 3712-3716.	4.6	10
304	Design, Synthesis and Application of Multifunctional Chiral Amiâ€nophosphine Catalyst for Highly Efficient Catalyst for Asymmetric Intermolecular Cross <scp>Rauhutâ€Currier</scp> Reaction. Chinese Journal of Chemistry, 0, , .	4.9	3
305	Rhodium-catalyzed selective direct arylation of phosphines with aryl bromides. Nature Communications, 2022, 13, .	12.8	22
306	Design and Application of Chiral Bifunctional 4-Pyrrolidinopyridines: Powerful Catalysts for Asymmetric Cycloaddition of Allylic <i>N</i> -Ylide. ACS Catalysis, 2022, 12, 7221-7232.	11.2	31
307	Ï€-Delocalization in phosphaphthalimide and its ambident reactivity (O/P) toward main-group electrophiles. Dalton Transactions, 0, , .	3.3	0
308	Chiral Polymer-Mediated Pd@MOF-808 for Efficient Sequential Asymmetric Reaction. Catalysis Letters, 2023, 153, 1193-1204.	2.6	5

#	Article	IF	CITATIONS
309	Highly efficient synthesis of chiral \hat{l}^2 -amino phosphine derivatives via direct asymmetric reductive amination with ammonium salts and H2. Green Synthesis and Catalysis, 2022, , .	6.8	6
310	Asymmetric Synthesis of Cyclopentene Compounds Containing All-Carbon Quaternary Stereocenters by (3 + 2) Cycloaddition and Its Application in the Formal Synthesis of (<i>R</i>)-(â~)-Puraquinonic Acid. Journal of Organic Chemistry, 0, , .	3.2	3
311	Phosphine-Catalyzed Divergent Reactivity of Alkynoates with Acid Anhydrides: Chemo- and Stereoselective Synthesis of Polysubstituted Olefins and Dienes. Organic Chemistry Frontiers, 0, , .	4.5	0
312	Bimetallic ruthenium–rhodium particles supported on carbon nanotubes for the hydrophosphinylation of alkenes and alkynes. Catalysis Science and Technology, 2022, 12, 4983-4987.	4.1	4
313	Enzyme Immobilization in Porphyrinic Covalent Organic Frameworks for Photoenzymatic Asymmetric Catalysis. ACS Catalysis, 2022, 12, 8259-8268.	11.2	35
314	Lewis Baseâ€catalyzed βâ€Addition of (Arylsulfonyl) fluoromethane Derivatives to Allenoates. ChemistrySelect, 2022, 7, .	1.5	0
315	Access to Phosphine-Containing Quinazolinones Enabled by Photo-Induced Radical Phosphorylation/Cyclization of Unactivated Alkenes. Journal of Organic Chemistry, 2022, 87, 10146-10157.	3.2	13
316	Asymmetric cross Rauhut–Currier reactions of vinyl ketones with carbonyl <i>para</i> -quinone methides <i>via</i> phosphine catalysis. Organic Chemistry Frontiers, 2022, 9, 4840-4845.	4.5	8
317	Phosphine-catalysed intermolecular cyclopropanation reaction between benzyl bromides and activated alkenes. New Journal of Chemistry, 2022, 46, 16382-16386.	2.8	3
318	Effects of Anchimeric Assistance in Phosphonium Enolates Chemistry. Russian Journal of General Chemistry, 2022, 92, 1173-1183.	0.8	2
319	Indane-Based Chiral Aryl Chalcogenide Catalysts: Development and Applications in Asymmetric Electrophilic Reactions. Accounts of Chemical Research, 2022, 55, 2439-2453.	15.6	32
320	Palladacycle-Catalyzed Olefinic C–P Cross-Coupling of Alkenylsulfonium Salts with Diarylphosphines to Access Alkenylphosphines. Organometallics, 2022, 41, 2342-2348.	2.3	14
321	Visible-Light-Induced [1+5] Annulation of Phosphoryl Diazomethylarenes and Pyridinium 1,4-Zwitterionic Thiolates. Organic Letters, 2022, 24, 6024-6030.	4.6	19
322	Synthetic and Computational Study of the Enantioselective [3+2]-Cycloaddition of Chromones with MBH Carbonates. Organic Letters, 2022, 24, 5890-5895.	4.6	7
323	Phosphine atalyzed (4+2) Annulation of Alkenes with Acidic Hydrogenâ€Tethered Allylic Carbonates. Advanced Synthesis and Catalysis, 2022, 364, 3283-3288.	4.3	6
324	Metalâ€Free Siteâ€Selective Direct Oxidative Phosphorylation of Pyrazolones. Advanced Synthesis and Catalysis, 2022, 364, 3066-3073.	4.3	2
325	C–C Bond Activation of Cyclopropanes Enabled by Phosphine-Catalyzed <i>In Situ</i> Formation of High-Strain Methylenecycopropane Intermediate. Organic Letters, 2022, 24, 6489-6493.	4.6	5
326	Recent advances in catalytic asymmetric [1,3]-rearrangement reactions. Organic Chemistry Frontiers, 2022, 9, 4744-4756.	4.5	2

#	Article	IF	CITATIONS
327	Prediction on chemoselectivity for selected organocatalytic reactions by the DFT version of the Hückel-defined free valence index. Catalysis Science and Technology, 2022, 12, 6486-6494.	4.1	2
328	Synthesis of <i>trans</i> -stilbenes <i>via</i> phosphine-catalyzed coupling reactions of benzylic halides. Organic and Biomolecular Chemistry, 2022, 20, 6869-6878.	2.8	1
329	Tris(2,4,6-trimethoxyphenyl)phosphine – a Lewis base able to compete with phosphazene bases in catalysing oxa-Michael reactions. Catalysis Science and Technology, 2022, 12, 6204-6212.	4.1	4
330	Visible light-induced phosphine-catalyzed perfluoroalkylation of indoles. Organic Chemistry Frontiers, 2022, 9, 5790-5797.	4.5	8
331	BF ₃ •Et ₂ O Promoted Dienone-Phenol Type Rearrangement to Synthesize Phosphepine with Aggregation Induced Luminescence (AIE) Effect. Chinese Journal of Organic Chemistry, 2022, 42, 2481.	1.3	0
332	Palladiumâ€Catalyzed Stereoselective Cleavage of Câ€P Bond: Enantioselective Construction of Atropisomers Containing a Pâ€Stereogenic Center. Angewandte Chemie, 0, , .	2.0	1
333	Palladium-catalyzed diastereo- and enantioselective desymmetric hydrophosphination of cyclopropenes. Chem Catalysis, 2022, 2, 3163-3173.	6.1	18
334	Synthesis of Fluoroalkyl Cyclopentenes: Highly Diastereoselective Phosphineâ€Catalyzed [3+2] Annulation of βâ€Fluoroalkylvinyl Arylsulfones with Moritaâ€Baylisâ€Hillman Carbonates. ChemistrySelect, 2022, 7, .	1.5	1
335	A novel and efficient magnetically recoverable copper catalyst [MNPs-guanidine-bis(ethanol)-Cu] for Pd-free Sonogashira coupling reaction. Synthetic Communications, 2022, 52, 1856-1866.	2.1	4
336	Catalytic Chemodivergent Annulations of <i>o</i> â€Aminotrifluoroacetophenone and Allenyl Imide through β'â€Câ^'H Functionalization or β/γâ€Bisfunctionalization. Advanced Synthesis and Catalysis, 2022, 3 3690-3696.	36443	3
337	Palladium-catalyzed asymmetric hydrophosphination of internal alkynes: Atroposelective access to phosphine-functionalized olefins. CheM, 2022, 8, 3346-3362.	11.7	41
338	Organocatalytic Atroposelective Synthesis of Indole Derivatives Bearing Axial Chirality: Strategies and Applications. Accounts of Chemical Research, 2022, 55, 2562-2580.	15.6	156
339	Phosphine-Catalyzed Atroposelective Formal [3 + 2] Cycloaddition Desymmetrization of <i>N</i> -Arylmaleimides. Organic Letters, 2022, 24, 6494-6498.	4.6	4
340	Palladiumâ€Catalyzed Stereoselective Cleavage of Câ^'P Bond: Enantioselective Construction of Atropisomers Containing a Pâ€Stereogenic Center. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
341	Synthesis of Axially Chiral CF3â€Substituted 2â€Arylpyrroles by Sequential Phosphineâ€Catalyzed Asymmetric [3+2] Annulation and Oxidative Centralâ€toâ€Axial Chirality Transfer. Angewandte Chemie, 0, ,	2.0	0
342	Allenoates in organic synthesis. Tetrahedron, 2022, 126, 133053.	1.9	4
343	Synthesis of Axially Chiral CF ₃ â€Substituted 2â€Arylpyrroles by Sequential Phosphineâ€Catalyzed Asymmetric [3+2] Annulation and Oxidative Centralâ€toâ€Axial Chirality Transfer. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15
344	Asymmetric Pd(II) atalyzed Câ^'O, Câ^'N, Câ^'C Bond Formation Using Alkenes as Substrates: Insight into Recent Enantioselective Developments. European Journal of Organic Chemistry, 2023, 26, .	2.4	6

<u> </u>			<u>_</u>
(† 17	ΓΑΤΙ	ION	REDUBL
<u> </u>			

#	Article	IF	CITATIONS
345	Recent Progress of Electronâ€Withdrawingâ€Groupâ€Tethered Arenes Involved Asymmetric Nucleophilic Aromatic Functionalizations. Advanced Synthesis and Catalysis, 2022, 364, 3630-3650.	4.3	8
346	Phosphine-catalyzed activation of cyclopropenones: a versatile C ₃ synthon for (3+2) annulations with unsaturated electrophiles. Chemical Science, 2022, 13, 12769-12775.	7.4	12
347	Synthesis of Chiral αâ€5ubstituted βâ€Aminophosphine Derivatives through Asymmetric Hydrophosphinylation Utilizing Secondary Phosphine Sulfides. Chemistry - an Asian Journal, 2022, 17, .	3.3	1
348	Copper-Catalyzed Stereoselective Radical Phosphono-hydrazonation of Alkynes. Journal of Organic Chemistry, 2022, 87, 14555-14564.	3.2	3
349	Ni-catalyzed regiodivergent hydrophosphorylation of enynes. Chinese Chemical Letters, 2023, 34, 107914.	9.0	2
350	Phosphine-Mediated Redox Cyclization of 1-(2-Nitroaryl)prop-2-ynones to 3-Hydroxyquinolin-4-ones: Formal Intramolecular Oxyamination of α,β-Ynones. Organic Letters, 2022, 24, 7665-7670.	4.6	5
351	Advances in catalytic enantioselective synthesis of chiral helicenes and helicenoids. Chem Catalysis, 2022, 2, 3077-3111.	6.1	24
352	Enantioselective [3 + 2] cycloadditions of terminal allenoates with β-sulfonyl-α,β-unsaturated ketones. Green Synthesis and Catalysis, 2023, 4, 54-57.	6.8	1
353	Cobalt-catalyzed asymmetric phospha-Michael reaction of diarylphosphine oxides for the synthesis of chiral organophosphorus compounds. Organic Chemistry Frontiers, 2022, 10, 133-139.	4.5	3
354	Silver-catalysed [3 + 2] annulation reaction of aryldiazonium salts with allenes enabled by boronate direction. Organic Chemistry Frontiers, 2022, 10, 74-82.	4.5	2
355	Progress in Synthesis of Nitrogen Heterocycles Catalyzed by Chiral Phosphine. Chinese Journal of Organic Chemistry, 2022, 42, 3129.	1.3	1
356	Exploring Molecular Complexity by Nâ€Heterocyclic Carbene Organocatalysis: New Activation and Reaction Diversity. Chemical Record, 2023, 23, .	5.8	7
357	Lewisâ€Base Dependent (3+3) Annulations of Acetoxy Allenoates with Iminoindolines: <i>α</i> â€Carboline Scaffolds with Varied Substituents. Advanced Synthesis and Catalysis, 2022, 364, 4316-4332.	4.3	7
358	Access to Polysubstituted Halophosphorylated Dihydrofurans via Halotrimethylsilane-Promoted Cascade Cyclization of γ-Hydroxyl Ynones with Diphenylphosphine Oxides. Organic Letters, 2022, 24, 8609-8614.	4.6	4
359	Miscellaneous (3 + 2) Cycloadditions. , 2022, , .		0
360	Phosphine-catalysed denitrative rearomatising (3 + 2) annulation of α,β-ynones and 3-nitroindoles. Organic and Biomolecular Chemistry, 2023, 21, 738-742.	2.8	1
361	Microwave-mediated stereocontrolled annulations of diazo(aryl)methyl(diaryl)phosphine oxides with pyridinium 1,4-zwitterionic thiolates. Chemical Communications, 2022, 59, 239-242.	4.1	9
362	Synthesis of Chromoneâ€Spiroindolinoneâ€Cyclopentene Derivatives through Phosphineâ€Catalyzed (3+2) Annulation of Moritaâ€Baylisâ€Hillman Carbonates with Oxindoleâ€Chromones. ChemistrySelect, 2022, 7,	1.5	3

#	Article	IF	CITATIONS
363	Asymmetric Inverse-Electron-Demand Oxa-Diels–Alder Reaction with Morita–Baylis–Hillman Carbonates of 2-Cyclopentenone via a Palladium-Catalyzed Umpolung Strategy. Journal of Organic Chemistry, 2023, 88, 7800-7809.	3.2	6
364	Photocatalyzed Formal All-Carbon [3+2] Cycloaddition of Aromatic Aldehydes with Arylethynyl Silanes. Organic Letters, 2022, 24, 9413-9418.	4.6	4
365	Asymmetric Hydrophosphinylation of Alkynes: Facile Access to Axially Chiral Styreneâ€₽hosphines. Angewandte Chemie - International Edition, 2023, 62, .	13.8	16
366	Light-induced phosphine-catalyzed asymmetric functionalization of benzylic C-H bonds. Science China Chemistry, 2023, 66, 127-132.	8.2	7
367	Visibleâ€Lightâ€Driven Hydrophosphorylation of Azobenzenes Enabled by <i>trans</i> â€ŧoâ€ <i>cis</i> Photoisomerization. Advanced Synthesis and Catalysis, 2022, 364, 4275-4280.	4.3	6
368	Asymmetric Hydrophosphinylation of Alkynes: Facile Access to Axially Chiral Styreneâ€Phosphines. Angewandte Chemie, 2023, 135, .	2.0	Ο
369	Phosphineâ€Catalyzed [3+2] Cycloaddition of Azaâ€aurones and Allenoates: Enantioselective Synthesis of 2â€Spirocyclopentylâ€indolinâ€3â€ones. European Journal of Organic Chemistry, 0, , .	2.4	0
370	Investigation of the Asymmetric Addition Reactions Induced by Pentacoordinated Hydrospirophosphorane Substrate. Journal of Organic Chemistry, 2023, 88, 1385-1402.	3.2	3
371	Copper-Catalyzed Asymmetric Boroprotonation of Phosphinylallenes. Organic Letters, 2023, 25, 488-493.	4.6	2
372	Advances in Organocatalytic Asymmetric Reactions Involving Thioesters. Acta Chimica Sinica, 2023, 81, 64.	1.4	6
373	Polymerâ€Based Circularly Polarized Luminescent Materials. Advanced Optical Materials, 2023, 11, .	7.3	29
374	Asymmetric Organocatalysis Under Mechanochemical Conditions. Chemical Record, 0, , .	5.8	2
375	Acyl Transfer-Driven Rauhut–Currier Dimerization of Morita–Baylis–Hillman Ketones. Journal of Organic Chemistry, 2023, 88, 2023-2033.	3.2	0
376	Synthesis of P-stereogenic cyclicphosphinic amides <i>via</i> electrochemically enabled cobalt-catalyzed enantioselective C–H annulation. Green Chemistry, 2023, 25, 3606-3614.	9.0	18
377	Chiral phosphoric acid-catalyzed enantioselective phosphinylation of 3,4-dihydroisoquinolines with diarylphosphine oxides. Communications Chemistry, 2023, 6, .	4.5	4
378	Phosphine-Mediated [3+2] Cyclization for the Synthesis of Coumarin-Based CF3-Containing Furanones. Synlett, 0, , .	1.8	0
379	(3Â+ 2) Cycloadditions by Nucleophilic Organocatalysis. , 2022, , .		0
380	Enantioseparation of P-Stereogenic 1-Adamantyl Arylthiophosphonates and Their Stereospecific Transformation to 1-Adamantyl Aryl-H-phosphinates, Molecules, 2023, 28, 1584.	3.8	0

<u></u>		D	_
	ON	NEDC	ND T
CHAH	UN.	NLPU	VIC I

#	Article	IF	CITATIONS
381	A general copper-catalysed enantioconvergent radical Michaelis–Becker-type C(sp3)–P cross-coupling. , 2023, 2, 430-438.		14
382	Recent Advances in Catalytic Systems for the Mechanistically Complex Morita–Baylis–Hillman Reaction. ACS Catalysis, 2023, 13, 3864-3895.	11.2	10
383	Recent Advances of the Atherton-Todd Reaction. Chinese Journal of Organic Chemistry, 2023, 43, 1069.	1.3	0
384	[4 + 2] Cycloadditions Catalyzed by Nucleophilic Catalysts. , 2022, , .		0
385	Nickel-catalysed enantioselective reaction of secondary phosphine oxides and activated vinylcyclopropanes. Organic and Biomolecular Chemistry, 2023, 21, 3096-3100.	2.8	5
386	Visible-Light-Induced Carbene Insertion into P–H Bonds between Acylsilanes and <i>H</i> -Phosphorus Oxides. Organic Letters, 2023, 25, 2338-2343.	4.6	5
387	Copper atalyzed Dynamic Kinetic Asymmetric P Coupling of Secondary Phosphine Oxides and Aryl iodides. Angewandte Chemie, 0, , .	2.0	0
388	Copper atalyzed Dynamic Kinetic Asymmetric Pâ^'C Coupling of Secondary Phosphine Oxides and Aryl Iodides. Angewandte Chemie - International Edition, 2023, 62, .	13.8	10
389	Palladiumâ€Catalyzed Enantio―and Regioselective Ringâ€Opening Hydrophosphinylation of Methylenecyclopropanes. Angewandte Chemie - International Edition, 2023, 62, .	13.8	9
390	Palladium atalyzed Enantio―and Regioselective Ringâ€Opening Hydrophosphinylation of Methylenecyclopropanes. Angewandte Chemie, 2023, 135, .	2.0	0
391	Radical Coupling Initiated by Organophosphine Addition to Ynoates. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
392	Radical coupling initiated by organophosphine addition to ynoates. Angewandte Chemie, 0, , .	2.0	0
394	Enantioselective Catalysis by the Umpolung of Conjugate Acceptors Involving N-Heterocyclic Carbene or Organophosphine 1,4-Addition. Accounts of Chemical Research, 2023, 56, 1190-1203.	15.6	7
395	Planar Chirality for Acid/Base Responsive Macrocyclic Pillararenes Induced by Amino Acid Derivatives: Molecular Dynamics Simulations and Machine Learning. Journal of Chemical Theory and Computation, 2023, 19, 4364-4376.	5.3	1
396	Organocatalytic (1+4)â€Annulations of MBH Adducts with Electronâ€Đeficient Systems. Chemical Record, 0, , .	5.8	2
397	Iridium-Catalyzed Enantioselective Formal α-Allylic Alkylation of Acrylonitrile. Organic Letters, 2023, 25, 4520-4524.	4.6	2
398	Phosphine-Catalyzed Stereoselective Ring-Opening Addition of Cyclopropenones with Nucleophiles. Journal of Organic Chemistry, 2023, 88, 8722-8737.	3.2	2
399	Copperâ€Phosphido Catalysis: Enantioselective Addition of Phosphines to Cyclopropenes. Angewandte Chemie, 0, , .	2.0	0

#	Article	IF	CITATIONS
400	Copperâ€Phosphido Catalysis: Enantioselective Addition of Phosphines to Cyclopropenes**. Angewandte Chemie - International Edition, 2023, 62, .	13.8	9
401	Synthesis of 1,2-Fused Benzimidazoles by Amine-Initiated [3 + 3] Annulations of β′-Acetoxy Allenoates with 1C,3N-Bisnucleophiles. Journal of Organic Chemistry, 2023, 88, 8937-8945.	3.2	3
402	Asymmetric (4+n) Cycloadditions of Indolyldimethanols for the Synthesis of Enantioenriched Indoleâ€Fused Rings. Angewandte Chemie, 2023, 135, .	2.0	0
403	Asymmetric (4+n) Cycloadditions of Indolyldimethanols for the Synthesis of Enantioenriched Indoleâ€Fused Rings. Angewandte Chemie - International Edition, 2023, 62, .	13.8	18
404	Trivalent Phosphineâ€Catalyzed Reactions Using Fluorinated Building Blocks. Advanced Synthesis and Catalysis, 2023, 365, 2487-2510.	4.3	2
405	Phosphine-Catalyzed Tandem Annulation of Allenylic Alcohols with 1,1-Dicyanoalkenes. Organic Letters, 2023, 25, 3298-3302.	4.6	5
406	Access to 3-Aminomethylated Maleimides via a Phosphine-Catalyzed Aza-Morita–Baylis–Hillman Type Coupling. Journal of Organic Chemistry, 2023, 88, 7489-7497.	3.2	2
407	Stereospecific [3+2] Cycloaddition of Chiral Arylallenes with C,N-Cyclic Azomethine Imines. Organic Letters, 2023, 25, 3249-3253.	4.6	1
408	Phosphine-catalyzed acyl-transfer of heteroaryl ketones for the construction of N-fused heterocycles. Chinese Chemical Letters, 2024, 35, 108529.	9.0	1
409	Ni ^{II} -Catalyzed Enantioselective <i>Anti</i> Markovnikov Hydrophosphination of Unactivated Alkynes. ACS Catalysis, 2023, 13, 6994-7001.	11.2	8
410	Ligand Promoted and Cobalt Catalyzed Electrochemical Câ^'H Annulation of Arylphosphinamide and Alkyne. Advanced Synthesis and Catalysis, 2023, 365, 1877-1882.	4.3	2
411	Phosphine ligands based on the ferrocenyl platform: Advances in catalytic cross-couplings. Coordination Chemistry Reviews, 2023, 491, 215250.	18.8	5
412	(3 + 3) Annulation of acetoxy allenoates with enolisable carbonyl substrates leading to fused pyrans. Organic and Biomolecular Chemistry, 2023, 21, 5021-5032.	2.8	2
413	Chemo- and Diastereoselective Synthesis of Spirooxindole-pyrazolines and Pyrazolones via P(NMe ₂) ₃ -Mediated Substrate-Controlled Annulations of Azoalkenes with α-Dicarbonyl Compounds. Organic Letters, 2023, 25, 4776-4781.	4.6	2
414	Arylideneisoxazole-5(4 <i>H</i>)-One Synthesis by Organocatalytic Three-Component Hetero-Cyclization. Polycyclic Aromatic Compounds, 0, , 1-22.	2.6	3
415	Chemodivergent annulations of allenyl imides and \hat{l}^2 , \hat{l}^3 -enones switched by nucleophilic phosphine and amine catalysts. Chinese Chemical Letters, 2024, 35, 108777.	9.0	2
416	Deoxygenation of Phosphine Oxides by P ^{III} /P ^V â•O Redox Catalysis via Successive Isodesmic Reactions. Journal of the American Chemical Society, 2023, 145, 15589-15599.	13.7	4
417	Radical Phosphorylation of Aliphatic C–H Bonds via Iron Photocatalysis. Organic Letters, 2023, 25, 5279-5284	4.6	9

#	Article	IF	CITATIONS
418	Nickel-catalyzed direct methylation of arylphosphines <i>via</i> carbon–phosphorus bond cleavage using AlMe ₃ . Chemical Communications, 0, , .	4.1	2
419	Amino Acid-Derived Ionic Chiral Catalysts Enable Desymmetrizing Cross-Coupling to Remote Acyclic Quaternary Stereocenters. Journal of the American Chemical Society, 2023, 145, 16796-16811.	13.7	6
420	Diversity-oriented synthesis of P-stereogenic and axially chiral monodentate biaryl phosphines enabled by C-P bond cleavage. Nature Communications, 2023, 14, .	12.8	8
421	Catalyst-controlled Stereoselective Carbon‒heteroatom Bond Formations by N-Heterocyclic Carbene (NHC) Organocatalysis. Organic Chemistry Frontiers, 0, , .	4.5	1
422	Nickel-Catalyzed Enantioselective Hydrophosphinylation of 2-Azadienes to Access Enantioenriched α-Aminophosphine Oxides. ACS Catalysis, 2023, 13, 10887-10894.	11.2	0
423	Photoinduced synthesis of C2-linked phosphine oxides <i>via</i> radical difunctionalization of acetylene. Green Chemistry, 2023, 25, 7253-7258.	9.0	1
424	Ni-Catalyzed Asymmetric C–P Cross-Coupling Reaction for the Synthesis of Chiral Heterocyclic Phosphine Oxides. Organic Letters, 2023, 25, 6139-6142.	4.6	2
425	Catalytic Asymmetric P–H Insertion Reactions. Journal of the American Chemical Society, 2023, 145, 20031-20040.	13.7	1
426	Highly Regio- and Diastereoselective Phosphine-Catalyzed [2 + 4] Annulation of Benzofuran-Derived Azadienes with Allyl Carbonates: Access to Spiro[benzofuran-cyclohexanes]. Journal of Organic Chemistry, 0, , .	3.2	1
427	Phosphine-catalyzed asymmetric aza-Morita–Baylis–Hillman reaction of endocyclic ketimines and activated alkenes. Organic Chemistry Frontiers, 2023, 10, 5076-5082.	4.5	0
428	Phosphine-catalyzed ring-opening reaction of cyclopropenones with dicarbonyl compounds. Organic and Biomolecular Chemistry, 2023, 21, 7712-7716.	2.8	1
429	Unexpected rapid <i>P</i> -stereomutation of phosphine oxides catalysed by chlorophosphonium salts. Chemical Communications, 2023, 59, 11696-11699.	4.1	1
430	Elucidating the mechanism and regioselectivity of phosphine-catalyzed transformation of MBH carbonate. New Journal of Chemistry, 2023, 47, 16636-16642.	2.8	1
431	Conceptual advances in nucleophilic organophosphine-promoted transformations. Chemical Communications, 2023, 59, 11045-11056.	4.1	0
432	β-Trifluoromethylated enones as trifluoromethylated synthons in asymmetric catalysis. Organic Chemistry Frontiers, 2023, 10, 5519-5537.	4.5	0
433	Phosphine-catalyzed [5+1] annulation of $\hat{l}^2 \hat{a} \in 2$ -acetoxy allenoates: straightforward access to tetrahydroquinoline derivatives. Chemical Communications, 2023, 59, 11712-11715.	4.1	3
434	Direct covalent immobilizaion of chiral phosphines to hollow mesoporous polystyrene nanospheres (HMPNs) for efficient heterogeneous enantioselective [2+3] cycloaddition. Applied Catalysis A: General, 2023, 666, 119413.	4.3	0
435	Crossâ€Electrophile Câ^'P ^{III} Coupling of Chlorophosphines with Organic Halides: Photoinduced P ^{III} and Aminoalkyl Radical Generation Enabled by Pnictogen Bonding. Angewandte Chemie - International Edition, 2023, 62, .	13.8	1

#	Article	IF	CITATIONS
436	Recent progress on chiral extractants for enantioselective liquid-liquid extraction. Journal of Chromatography A, 2023, 1709, 464389.	3.7	2
437	Phosphine-Catalyzed (3 + 2) Annulation of γ-Substituted Cinnamic Aldehyde-Derived Morita–Baylis–Hillman Carbonates through Remote Activation. Organic Letters, 2023, 25, 7374-7379.	4.6	0
438	Photo-induced imino functionalizations of alkenes <i>via</i> intermolecular charge transfer. Chemical Science, 2023, 14, 11170-11179.	7.4	2
439	Palladium-Catalyzed Regio- and Enantioselective Hydrophosphination of <i>gem</i> -Difluoroallenes. Organic Letters, 2023, 25, 5957-5962.	4.6	5
440	Enantioselective Vinylogous Allylic Alkylation of Coumarins with Morita-Baylis-Hillman Carbonates Catalyzed by Chiral Phosphine-Amide. Chinese Journal of Organic Chemistry, 2023, 43, 3188.	1.3	0
441	Conjugate Aminocyclization Catalyzed by a Bismuthinidene. Advanced Synthesis and Catalysis, 2024, 366, 740-744.	4.3	3
442	A Direct Route to Tetrahydropyridazine Derivatives via DMAP atalyzed [4+2] Annulation of Allenoates with Arylazosulfones. Chinese Journal of Chemistry, 2023, 41, 3031-3036.	4.9	1
443	Phosphine-Catalyzed Allylic Alkylation of (Hetero)Aryl Alkynes with Pronucleophiles: Concise Total Synthesis of (±)-Esermethole. Organic Letters, 2023, 25, 6172-6177.	4.6	1
444	Crossâ€Electrophile Câ^'P ^{III} Coupling of Chlorophosphines with Organic Halides: Photoinduced P ^{III} and Aminoalkyl Radical Generation Enabled by Pnictogen Bonding. Angewandte Chemie, 2023, 135, .	2.0	0
445	Phosphineâ€Catalyzed [4+3] Annulation Reaction of Indole Derivatives with MBH Carbonates: A Facile Access to Indoleâ€1,2â€fused 1,4â€Diazepinones and Azepines. Chinese Journal of Chemistry, 2024, 42, 271-275	. 4.9	0
446	Catalytic Asymmetric Oxidation of Amines to Hydroxylamines. Journal of the American Chemical Society, 2023, 145, 22276-22283.	13.7	5
447	Phosphine-Catalyzed Domino Regio- and Stereo-Selective Hexamerization of 2-(Bromomethyl)acrylates to 1,2-Bis(cyclohexenyl)ethenyl Derivatives. Organic Letters, 2023, 25, 7380-7384.	4.6	0
448	Eightâ€Membered Palladacycle Intermediate Enabled Synthesis of Cyclic Biarylphosphonates. Chemistry - A European Journal, 2024, 30, .	3.3	1
449	Phosphineâ€Catalyzed (3+2) Annulation of Moritaâ€Baylisâ€Hillman Carbonates with Pyrazolinoneâ€Derived Ketimines: Synthesis of Spirodihydropyrroleâ€Dihydropyrazolones. European Journal of Organic Chemistry, 2023, 26, .	2.4	0
450	Phosphine-catalyzed formal Buchner [6+1] annulation: <i>de novo</i> construction of cycloheptatrienes. Chemical Communications, 2023, 59, 13215-13218.	4.1	1
451	Sequential <i>In Situ</i> -Formed Kukhtin–Ramirez Adduct and P(NMe ₂) ₃ -Catalyzed <i>O</i> -Phosphination of α-Dicarbonyls with P(O)–H. Organic Letters, 2023, 25, 7595-7600.	4.6	3
452	Modular Diastereoselective Construction of Polysubstituted Cyclopentanes Enabled by Cobalt-Catalyzed Arylfluoroalkylation of Cyclopentenes. ACS Catalysis, 0, , 14090-14102.	11.2	0
453	New conformationally flexible and recyclable aryl iodine catalysts from inexpensive chiral source for asymmetric oxidations. Green Chemistry, 0, , .	9.0	0

#	Article	IF	CITATIONS
454	Desilylationâ€Promoted Phosphine Catalysis: Intramolecular Annulation/Nucleophilic Addition Sequence of Trimethylsilylethynyl Benzoxazinanones with Nâ€Tosyl Imines. Advanced Synthesis and Catalysis, 0, , .	4.3	0
455	Direct Synthesis of Phosphoryltriacetates from White Phosphorus via Visible Light Catalysis. Chemistry - A European Journal, 0, , .	3.3	0
456	(3+2) Annulation of 4â€Acetoxy Allenoate with Aldimine Enabled by AgFâ€Assisted P(III)/P(V) Catalysis. Angewandte Chemie - International Edition, 0, , .	13.8	0
457	Distinct reactivities of <i>ortho</i> -chalcone-substituted organophosphines with activated alkynes: skeletal editing or periphery modification. Green Chemistry, 2023, 25, 10587-10595.	9.0	1
458	(3+2) Annulation of 4â€Acetoxy Allenoate with Aldimine Enabled by AgFâ€Assisted P(III)/P(V) Catalysis. Angewandte Chemie, 0, , .	2.0	0
459	Copper-Catalyzed Umpolung Reactivity of Propargylic Carbonates in the Presence of Diboronates: One Stone Four Birds. Journal of the American Chemical Society, 0, , .	13.7	0
460	Experimental and Theoretical Study of Phosphine atalyzed Reaction Modes in the Reaction of α‧ubstituted Allenes with Aryl Imines. Angewandte Chemie - International Edition, 2023, 62, .	13.8	0
461	Experimental and Theoretical Study of Phosphine atalyzed Reaction Modes in the Reaction of α‧ubstituted Allenes with Aryl Imines. Angewandte Chemie, 2023, 135, .	2.0	0
462	Diastereoselective Synthesis of Allenes through Phosphine-Catalyzed Cascade Isomerization/Annulation. Organic Letters, 2023, 25, 8547-8552.	4.6	0
463	Synthesis of Pâ€Stereogenic Compounds by Transition Metalâ€Catalyzed Asymmetric Transformation of Hâ€P(O) Compounds: Progress, Challenges, and Prospects. European Journal of Organic Chemistry, 0, , .	2.4	0
464	A Powerful P–N Connection: Preparative Approaches, Reactivity, and Applications of P tereogenic Aminophosphines. Chemistry - A European Journal, 0, , .	3.3	0
465	Uracil-Cu(I) Catalyst: Allylation of Cyclopropanols with Morita-Baylis-Hillman Alcohols under Water-tolerant Conditions. Chemical Science, 0, , .	7.4	0
466	Straight-chain ω-amino-α,β-unsaturated carbonyl compounds: versatile synthons for the synthesis of nitrogen-containing heterocycles <i>via</i> organocatalytic reactions. Organic Chemistry Frontiers, 2023, 11, 236-253.	4.5	1
467	Tandem Isomerization/α,β-Site-Selective and Enantioselective Addition Reactions of <i>N</i> -(3-Butynoyl)-3,5-dimethylpyrazole Induced by Chiral π–Cu(II) Catalysts. Journal of the American Chemical Society, 2023, 145, 27080-27088.	13.7	0
468	Atroposelective hydroarylation of biaryl phosphines directed by phosphorus centres. Nature Communications, 2023, 14, .	12.8	0
469	Hydrated [3+2] Cyclotelomerization of Butafulvenes to Create Multiple Contiguous Fully Substituted Carbon Centers. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
470	Hydrated [3+2] Cyclotelomerization of Butafulvenes to Create Multiple Contiguous Fully Substituted Carbon Centers. Angewandte Chemie, 2024, 136, .	2.0	0
471	Recent Advances in Visible-Light-Induced Organic Phosphine- Promoted Deoxygenative Functionalization Reactions. Chinese Journal of Organic Chemistry, 2023, 43, 4036.	1.3	0

#	Article	IF	CITATIONS
472	Enantioselective cross-dehydrogenative coupling enabled by organocatalysis. Green Chemistry, 2024, 26, 1846-1875.	9.0	1
473	Enantioselective Rhodium atalyzed Câ^'H Arylation Enables Direct Synthesis of Atropisomeric Phosphines. Angewandte Chemie, 2024, 136, .	2.0	0
474	Enantioselective Rhodium atalyzed Câ^'H Arylation Enables Direct Synthesis of Atropisomeric Phosphines. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
475	Towards tetrasubstituted furans through rearrangement and cyclodimerization of acetylenic ketones. Organic and Biomolecular Chemistry, 2024, 22, 1172-1175.	2.8	0
476	DBU-catalyzed selective β-addition of α-fluoro nitroalkanes to allenoates. Journal of Fluorine Chemistry, 2024, 274, 110255.	1.7	0
477	Tertiaryâ€Amine Controlled (3+3) or (4+2) Annulations of β′â€Acetoxy Allenoates with <i>N</i> ulfonyl Ketimines: An Entry to <i>m</i> â€Teraryl and Fused Dihydropyridines. Advanced Synthesis and Catalysis, 2024, 366, 1165-1175.	4.3	0
478	Acidic Hydrogen-Tethered Electron-Deficient Acceptors for Phosphine-Catalyzed Annulations. Synlett, 0, , .	1.8	0
479	A highly diastereoselective (5+1) annulation of allenoates and pyrazolones catalyzed by CH ₃ OK. Chemical Communications, 2024, 60, 2066-2069.	4.1	0
480	Beyond Triphenylphosphine: Advances on the Utilization of Triphenylphosphine Oxide. Journal of Organic Chemistry, 2024, 89, 2090-2103.	3.2	0
481	Catalytic Synthesis of Carbonyl Compounds Using Acyl Fluorides, Carbamoyl Fluorides, and Fluoroformates: An Overview. Asian Journal of Organic Chemistry, 0, , .	2.7	0
482	Iron-catalyzed C(sp ³)–H phosphorylation <i>via</i> photoinduced LMCT. Organic Chemistry Frontiers, 2024, 11, 2027-2032.	4.5	0
483	Direct Synthesis of Tertiary Phosphines via Alkoxide-Mediated Deborylative Phosphination of Organoboronates. Organic Letters, 2024, 26, 1618-1622.	4.6	0
484	Zn-Catalyzed Dehydroxylative Phosphorylation of Allylic Alcohols with P(III)-Nucleophiles. Journal of Organic Chemistry, 2024, 89, 3033-3048.	3.2	0
485	Palladium(0) π-Lewis Base Catalysis: Concept and Development. Journal of the American Chemical Society, 2024, 146, 6422-6437.	13.7	0
486	Cobalt- or rhodium-catalyzed synthesis of 1,2-dihydrophosphete oxides <i>via</i> C–H activation and formal phosphoryl migration. Chemical Science, 2024, 15, 6012-6021.	7.4	0
487	Phosphine-Catalyzed [4 + 3] Annulation of β′-Acetoxy Allenoates with 1C,3N-Dinucleophiles: Access to Functionalized Azepine Derivatives. Journal of Organic Chemistry, 2024, 89, 4784-4791.	3.2	0
488	Ionic-molecular organocatalysis enabling allylic amination reactions. Cell Reports Physical Science, 2024, 5, 101868.	5.6	0
489	Late-Stage Diversification of Phosphines by C–H Activation: A Robust Strategy for Ligand Design and Preparation. Accounts of Chemical Research, 2024, 57, 1057-1072.	15.6	0

#	Article	IF	CITATIONS
490	Asymmetric synthesis of P-stereogenic phosphindane oxides via kinetic resolution and their biological activity. Nature Communications, 2024, 15, .	12.8	0
491	Phosphine-Promoted Ring Opening/Recyclization of Cyclopropyl Ketones to Access Hydrofluorenones. Organic Letters, 2024, 26, 2282-2286.	4.6	0