Opportunities and Challenges for the Estimation of Aqu Earth Observation Data

Remote Sensing 10, 1076 DOI: 10.3390/rs10071076

Citation Report

#	Article	IF	CITATIONS
1	Spatio-Temporal Patterns of Coastal Aquaculture Derived from Sentinel-1 Time Series Data and the Full Landsat Archive. Remote Sensing, 2019, 11, 1707.	4.0	37
2	Remote Sensing for the Quantification of Land Surface Dynamics in Large River Delta Regions—A Review. Remote Sensing, 2019, 11, 1985.	4.0	20
3	Evaluation of Land Cover Change and Agricultural Protection Sites: A GIS and Remote Sensing Approach for Ho Chi Minh City, Vietnam. Heliyon, 2019, 5, e01773.	3.2	40
4	Monitoring and Mapping of Rice Cropping Pattern in Flooding Area in the Vietnamese Mekong Delta Using Sentinel-1A Data: A Case of An Giang Province. ISPRS International Journal of Geo-Information, 2019, 8, 211.	2.9	61
5	Assessing the water spread area available for fish culture and fish production potential in inland lentic waterbodies using remote sensing: A case study from Chhattisgarh State, India. Remote Sensing Applications: Society and Environment, 2020, 17, 100273.	1.5	5
6	Effects of temperature and stocking density on intensive culture of Pacific white shrimp in freshwater. Journal of Thermal Biology, 2020, 94, 102756.	2.5	11
7	Nation-Scale Mapping of Coastal Aquaculture Ponds with Sentinel-1 SAR Data Using Google Earth Engine. Remote Sensing, 2020, 12, 3086.	4.0	41
8	Automatic extraction of aquaculture ponds based on Google Earth Engine. Ocean and Coastal Management, 2020, 198, 105348.	4.4	40
9	Remote sensing of fish-processing in the Sundarbans Reserve Forest, Bangladesh: an insight into the modern slavery-environment nexus in the coastal fringe. Maritime Studies, 2020, 19, 429-444.	2.2	8
10	Satellite-based monitoring and statistics for raft and cage aquaculture in China's offshore waters. International Journal of Applied Earth Observation and Geoinformation, 2020, 91, 102118.	2.8	25
11	The benthic environmental footprint of aquaculture in the Eastern Mediterranean: Organic vs conventional fish farming. Aquaculture Research, 2020, 51, 2698-2710.	1.8	3
12	Freshwater Biome of the World. , 2020, , 16-30.		0
13	Detecting spatiotemporal changes of large-scale aquaculture ponds regions over 1988–2018 in Jiangsu Province, China using Google Earth Engine. Ocean and Coastal Management, 2020, 188, 105144.	4.4	42
15	OPTIMIZATION OF STAGES OF PRE-SPAWNING AND SPAWNING PERIODS OF TILAPIA IN COMMERCIAL GROWING. Vestnik of Astrakhan State Technical University Series Fishing Industry, 2021, 2021, 120-126.	0.3	0
16	Monitoring sustainable development by means of earth observation data and machine learning: a review. Environmental Sciences Europe, 2020, 32, .	5.5	32
17	An overview of the Brazilian frog farming. Aquaculture, 2022, 548, 737623.	3.5	11
18	Mapping Aquaculture Areas with Multi-Source Spectral and Texture Features: A Case Study in the Pearl River Basin (Guangdong), China. Remote Sensing, 2021, 13, 4320.	4.0	18
19	Land Cover Dynamics on the Lower Ganges–Brahmaputra Delta: Agriculture–Aquaculture Transitions, 1972–2017. Remote Sensing, 2021, 13, 4799.	4.0	2

CITATION REPORT

#	Article	IF	CITATIONS
20	Ecoregion-wide, multi-sensor biomass mapping highlights a major underestimation of dry forests carbon stocks. Remote Sensing of Environment, 2022, 269, 112849.	11.0	15
21	Piecing together the data of the U.S. marine aquaculture puzzle. Journal of Environmental Management, 2022, 308, 114623.	7.8	7
22	Monitoring Marine Aquaculture and Implications for Marine Spatial Planning—An Example from Shandong Province, China. Remote Sensing, 2022, 14, 732.	4.0	9
23	Mapping of Greek Marine Finfish Farms and Their Potential Impact on the Marine Environment. Journal of Marine Science and Engineering, 2022, 10, 286.	2.6	3
24	Automatic extraction of large-scale aquaculture encroachment areas using Canny Edge Otsu algorithm in Google earth engine – the case study of Kolleru Lake, South India. Geocarto International, 2022, 37, 11173-11189.	3.5	12
25	Mapping the spatial distribution of global mariculture production. Aquaculture, 2022, 553, 738066.	3.5	20
26	Harnessing Machine Learning Techniques for Mapping Aquaculture Waterbodies in Bangladesh. Remote Sensing, 2021, 13, 4890.	4.0	7
27	Mapping Aquaculture Ponds for the Coastal Zone of Asia with Sentinel-1 and Sentinel-2 Time Series. Remote Sensing, 2022, 14, 153.	4.0	27
28	Rapid expansion of coastal aquaculture ponds in Southeast Asia: Patterns, drivers and impacts. Journal of Environmental Management, 2022, 315, 115100.	7.8	26
29	Marine floating raft aquaculture extraction of hyperspectral remote sensing images based decision tree algorithm. International Journal of Applied Earth Observation and Geoinformation, 2022, 111, 102846.	1.9	15
30	Analysis of Land Use and Land Cover Changes through the Lens of SDGs in Semarang, Indonesia. Sustainability, 2022, 14, 7592.	3.2	8
31	The Impact of Multiple Pond Conditions on the Performance of Dike-Pond Extraction. Fishes, 2022, 7, 144.	1.7	2
32	Improving Satellite Retrieval of Coastal Aquaculture Pond by Adding Water Quality Parameters. Remote Sensing, 2022, 14, 3306.	4.0	11
33	A review of Google Earth Engine application in mapping aquaculture ponds. IOP Conference Series: Earth and Environmental Science, 2022, 1064, 012011.	0.3	1
34	Mapping China's offshore mariculture based on dense time-series optical and radar data. International Journal of Digital Earth, 2022, 15, 1326-1349.	3.9	13
35	Earth Observation Satellite Imagery Information Based Decision Support Using Machine Learning. Remote Sensing, 2022, 14, 3776.	4.0	5
36	Performance of Sentinel-1 and 2 imagery in detecting aquaculture waterbodies in Bangladesh. Environmental Modelling and Software, 2022, 157, 105534.	4.5	0
37	Global mapping of the landside clustering of aquaculture ponds from dense time-series 10Âm Sentinel-2 images on Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation, 2022, 115, 103100.	1.9	4

CITATION REPORT

#	Article	IF	CITATIONS
38	Policy-driven opposite changes of coastal aquaculture ponds between China and Vietnam: Evidence from Sentinel-1 images. Aquaculture, 2023, 571, 739474.	3.5	1
39	An Object-Oriented Method for Extracting Single-Object Aquaculture Ponds from 10 m Resolution Sentinel-2 Images on Google Earth Engine. Remote Sensing, 2023, 15, 856.	4.0	8
40	Estimating Reed Bed Cover in Hungarian Fish Ponds Using NDVI-Based Remote Sensing Technique. Water (Switzerland), 2023, 15, 1554.	2.7	0
41	Coastal Aquaculture Extraction Using GF-3 Fully Polarimetric SAR Imagery: A Framework Integrating UNet++ with Marker-Controlled Watershed Segmentation. Remote Sensing, 2023, 15, 2246.	4.0	2
43	Mapping Shrimp Pond Dynamics: A Spatiotemporal Study Using Remote Sensing Data and Machine Learning. AgriEngineering, 2023, 5, 1432-1447.	3.2	1
44	Mapping of land-based aquaculture regions in Southeast Asia and its Spatiotemporal change from 1990 to 2020 using time-series remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 2023, 124, 103518.	1.9	0
45	HROF: a high-resolution remote sensing dataset for segmentation of offshore farms. , 2024, , .		0
46	Exacerbating water shortage induced by continuous expansion of surface artificial water bodies in the Yellow River Basin. Journal of Hydrology, 2024, 633, 130979.	5.4	0
47	Ocean sprawl: The global footprint of shellfish and algae aquaculture and its implications for production, environmental impact, and biosecurity. Aquaculture, 2024, 586, 740747.	3.5	0