Recent intensification of Amazon flooding extremes drice circulation

Science Advances 4, eaat8785 DOI: 10.1126/sciadv.aat8785

Citation Report

#	Article	IF	CITATIONS
1	Macrohabitat studies in large Brazilian floodplains to support sustainable development in the face of climate change. Ecohydrology and Hydrobiology, 2018, 18, 334-344.	2.3	27
2	Amazonian trees show increased edge effects due to Atlantic Ocean warming and northward displacement of the Intertropical Convergence Zone since 1980. Science of the Total Environment, 2019, 693, 133515.	8.0	3
3	Seasonal and Inter-annual Variation of Evapotranspiration in Amazonia Based on Precipitation, River Discharge and Gravity Anomaly Data. Frontiers in Earth Science, 2019, 7, .	1.8	8
4	Retrieving Total and Inorganic Suspended Sediments in Amazon Floodplain Lakes: A Multisensor Approach. Remote Sensing, 2019, 11, 1744.	4.0	27
5	The Role of the Amazon River Plume on the Intensification of the Hydrological Cycle. Geophysical Research Letters, 2019, 46, 12221-12229.	4.0	24
6	Flood Inundation Generation Mechanisms and Their Changes in 1953–2004 in Global Major River Basins. Journal of Geophysical Research D: Atmospheres, 2019, 124, 11672-11692.	3.3	18
7	Tropical Atlantic Variability: Observations and Modeling. Atmosphere, 2019, 10, 502.	2.3	22
8	Investigating the Role of the Relative Humidity in the Coâ€Occurrence of Temperature and Heat Stress Extremes in CMIP5 Projections. Geophysical Research Letters, 2019, 46, 11435-11443.	4.0	27
9	Interaction between extreme weather events and megaâ€dams increases tree mortality and alters functional status of Amazonian forests. Journal of Applied Ecology, 2019, 56, 2641-2651.	4.0	13
10	Conservación de la biota acuática de la Amazonia. Revista De Estudios Brasileños, 2019, 6, 79.	0.2	4
11	Hydrological reanalysis across the 20th century: A case study of the Amazon Basin. Journal of Hydrology, 2019, 570, 755-773.	5.4	27
12	Impact of climatic and hydrological disturbances on blackwater floodplain forests in Central Amazonia. Biotropica, 2019, 51, 484-489.	1.6	9
13	Spatial and seasonal patterns of flood change across Brazil. Hydrological Sciences Journal, 2019, 64, 1071-1079.	2.6	21
14	Fire Responses to the 2010 and 2015/2016 Amazonian Droughts. Frontiers in Earth Science, 2019, 7, .	1.8	46
15	The Tropical Atlantic Observing System. Frontiers in Marine Science, 2019, 6, .	2.5	80
16	The fate of Amazonia. Nature Climate Change, 2019, 9, 355-356.	18.8	7
17	Long-Term Annual Surface Water Change in the Brazilian Amazon Biome: Potential Links with Deforestation, Infrastructure Development and Climate Change. Water (Switzerland), 2019, 11, 566.	2.7	28
18	Significance of Spatial Variability in Precipitation for Stream Flow Modeling in Maha Oya River Basin, Sri Lanka. , 2019, , .		0

#	Article	IF	CITATIONS
19	Regional hydro-climatic changes in the Southern Amazon Basin (Upper Madeira Basin) during the 1982–2017 period. Journal of Hydrology: Regional Studies, 2019, 26, 100637.	2.4	42
20	What is a bad flood? Local perspectives of extreme floods in the Peruvian Amazon. Ambio, 2020, 49, 1423-1436.	5.5	20
21	Pacific and Atlantic multidecadal variability relations to the El Niño events and their effects on the South American rainfall. International Journal of Climatology, 2020, 40, 2183-2200.	3.5	29
22	ENSO-driven reverse coupling in interannual variability of pantropical water availability and global atmospheric CO ₂ growth rate. Environmental Research Letters, 2020, 15, 034006.	5.2	4
23	Hydrological processes interconnecting the two largest watersheds of South America from multiâ€decadal to interâ€annual time scales: A critical review. International Journal of Climatology, 2020, 40, 4006-4038.	3.5	13
24	Implications of CMIP6 Projected Drying Trends for 21st Century Amazonian Drought Risk. Earth's Future, 2020, 8, e2020EF001608.	6.3	43
25	Climate regime shift and forest loss amplify fire in Amazonian forests. Global Change Biology, 2020, 26, 5874-5885.	9.5	62
26	Climatic aspects and vertical structure circulation associated with the severe drought in Northeast Brazil (2012–2016). Climate Dynamics, 2020, 55, 2327-2341.	3.8	18
28	Spatially coherent regional changes in seasonal extreme streamflow events in the United States and Canada since 1950. Science Advances, 2020, 6, .	10.3	31
29	Exploring multidecadal changes in climate and reservoir storage for assessing nonstationarity in flood peaks and risks worldwide by an integrated frequency analysis approach. Water Research, 2020, 185, 116265.	11.3	21
30	El Niño–Southern Oscillation Evolution Modulated by Atlantic Forcing. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016318.	2.6	27
31	Atmospheric dynamics of extreme discharge events from 1979 to 2016 in the southern Central Andes. Climate Dynamics, 2020, 55, 3485-3505.	3.8	6
32	Mapping of diffuse attenuation coefficient in optically complex waters of amazon floodplain lakes. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 170, 72-87.	11.1	11
33	Spatial and temporal variability of soil N ₂ O and CH ₄ fluxes along a degradation gradient in a palm swamp peat forest in the Peruvian Amazon. Global Change Biology, 2020, 26, 7198-7216.	9.5	26
34	The growing importance of oceanic moisture sources for continental precipitation. Npj Climate and Atmospheric Science, 2020, 3, .	6.8	31
35	Two Centuries of Hydroclimatic Variability Reconstructed From Treeâ€Ring Records Over the Amazonian Andes of Peru. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032565.	3.3	10
36	Amplified seasonal cycle in hydroclimate over the Amazon river basin and its plume region. Nature Communications, 2020, 11, 4390.	12.8	29
37	Predictive Modeling of Envelope Flood Extents Using Geomorphic and Climaticâ€Hydrologic Catchment Characteristics. Water Resources Research, 2020, 56, e2019WR026453.	4.2	16

#	Article	IF	CITATIONS
38	Attribution of Amazon floods to modes of climate variability: A review. Meteorological Applications, 2020, 27, e1949.	2.1	18
39	Floodâ€pulse disturbances as a threat for longâ€living Amazonian trees. New Phytologist, 2020, 227, 1790-1803.	7.3	28
40	Variability of Trends in Precipitation across the Amazon River Basin Determined from the CHIRPS Precipitation Product and from Station Records. Water (Switzerland), 2020, 12, 1244.	2.7	50
41	Assessing the skill of all-season diverse Madden–Julian oscillation indices for the intraseasonal Amazon precipitation. Climate Dynamics, 2020, 54, 3729-3749.	3.8	11
42	Future Meteorological Droughts in Ecuador: Decreasing Trends and Associated Spatio-Temporal Features Derived From CMIP5 Models. Frontiers in Earth Science, 2020, 8, .	1.8	21
43	Hydroclimate of the Andes Part I: Main Climatic Features. Frontiers in Earth Science, 2020, 8, .	1.8	92
44	Observed and Projected Hydroclimate Changes in the Andes. Frontiers in Earth Science, 2020, 8, .	1.8	70
45	The Rise of Climate-Driven Sediment Discharge in the Amazonian River Basin. Atmosphere, 2020, 11, 208.	2.3	10
46	The Influence of the Atlantic Multidecadal Oscillation on the Choco Low-Level Jet and Precipitation in Colombia. Atmosphere, 2020, 11, 174.	2.3	19
47	Dissolved methane concentrations and fluxes to the atmosphere from a tropical floodplain lake. Biogeochemistry, 2020, 148, 129-151.	3.5	27
48	Palm distribution patterns in the southwestern Brazilian Amazon: Impact of a large hydroelectric dam. Forest Ecology and Management, 2020, 463, 118032.	3.2	11
49	Seasonal changes of the South American monsoon system during the Mid-Holocene in the CMIP5 simulations. Climate Dynamics, 2020, 54, 2697-2712.	3.8	11
50	Evaluating spatial patterns in precipitation trends across the Amazon basin driven by land cover and global scale forcings. Theoretical and Applied Climatology, 2020, 140, 411-427.	2.8	47
51	Streamflow Intensification Driven by the Atlantic Multidecadal Oscillation (AMO) in the Atrato River Basin, Northwestern Colombia. Water (Switzerland), 2020, 12, 216.	2.7	15
52	Pathogen-Specific Impacts of the 2011–2012 La Niña-Associated Floods on Enteric Infections in the MAL-ED Peru Cohort: A Comparative Interrupted Time Series Analysis. International Journal of Environmental Research and Public Health, 2020, 17, 487.	2.6	26
53	Recent changes in the precipitation-driving processes over the southern tropical Andes/western Amazon. Climate Dynamics, 2020, 54, 2613-2631.	3.8	62
54	Effects of Amazon basin deforestation on regional atmospheric circulation and water vapor transport towards tropical South America. Climate Dynamics, 2020, 54, 4169-4189.	3.8	71
55	Multidecadal Changes in Wet Season Precipitation Totals Over the Eastern Amazon. Geophysical Research Letters, 2020, 47, e2020GL087478.	4.0	14

#	Article	IF	CITATIONS
56	Tough fishing and severe seasonal food insecurity in Amazonian flooded forests. People and Nature, 2020, 2, 468-482.	3.7	28
57	Golden carbon of Sargassum forests revealed as an opportunity for climate change mitigation. Science of the Total Environment, 2020, 729, 138745.	8.0	68
58	Environmental dynamics of the JuruÃ; watershed in the Amazon. Environment, Development and Sustainability, 2021, 23, 6769-6785.	5.0	6
59	Evaluation of multiple indices of the South American monsoon. International Journal of Climatology, 2021, 41, E2801.	3.5	14
60	The other side of droughts: wet extremes and topography as buffers of negative drought effects in an Amazonian forest. New Phytologist, 2021, 229, 1995-2006.	7.3	46
61	Technology and Collapse. , 2021, , 99-141.		0
62	Wetland Plants: Adaptations, Classification, Ecology and Distribution. , 2021, , .		1
63	Increased Amazon Basin wet-season precipitation and river discharge since the early 1990s driven by tropical Pacific variability. Environmental Research Letters, 2021, 16, 034033.	5.2	5
64	Carbon and Beyond: The Biogeochemistry of Climate in a Rapidly Changing Amazon. Frontiers in Forests and Global Change, 2021, 4, .	2.3	21
65	Review: Can temperature be used to inform changes to flood extremes with global warming?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190551.	3.4	19
66	Rainfall variability and adverse birth outcomes in Amazonia. Nature Sustainability, 2021, 4, 583-594.	23.7	12
67	Attribution of the accelerating increase in atmospheric methane during 2010–2018 by inverse analysis of GOSAT observations. Atmospheric Chemistry and Physics, 2021, 21, 3643-3666.	4.9	68
68	Assessing precipitation extremes (1981–2018) and deep convective activity (2002–2018) in the Amazon region with CHIRPS and AMSU data. Climate Dynamics, 2021, 57, 827-849.	3.8	15
69	Unveiling water security in Brazil: current challenges and future perspectives. Hydrological Sciences Journal, 2021, 66, 759-768.	2.6	12
70	Impacts of land use and land cover changes on hydrological processes and sediment yield determined using the SWAT model. International Journal of Sediment Research, 2022, 37, 54-69.	3.5	47
71	Improved representation of river runoff in Estimating the Circulation and Climate of the Ocean Version 4 (ECCOv4) simulations: implementation, evaluation, and impacts to coastal plume regions. Geoscientific Model Development, 2021, 14, 1801-1819.	3.6	8
72	Modeling the Ecological Responses of Tree Species to the Flood Pulse of the Amazon Negro River Floodplains. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	13
73	Minimum temperature and evapotranspiration in Central Amazonian floodplains limit tree growth of Nectandra amazonum (Lauraceae). Trees - Structure and Function, 2021, 35, 1367-1384.	1.9	6

#	Article	IF	CITATIONS
74	Flood Monitoring in Rural Areas of the Pearl River Basin (China) Using Sentinel-1 SAR. Remote Sensing, 2021, 13, 1384.	4.0	38
75	Planned relocation in Peru: advancing from well-meant legislation to good practice. Journal of Environmental Studies and Sciences, 2021, 11, 365-375.	2.0	8
76	Sustainable Management, Conservation, and Restoration of the Amazon River Delta and Amazon-Influenced Guianas Coast: A Review. Water (Switzerland), 2021, 13, 1371.	2.7	12
77	Nutrient content and stoichiometry of pelagic Sargassum reflects increasing nitrogen availability in the Atlantic Basin. Nature Communications, 2021, 12, 3060.	12.8	65
78	Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon. Nature Communications, 2021, 12, 2591.	12.8	122
79	Robust Amazon precipitation projections in climate models that capture realistic land–atmosphere interactions. Environmental Research Letters, 2021, 16, 074002.	5.2	21
81	Large and increasing methane emissions from eastern Amazonia derived from satellite data, 2010–2018. Atmospheric Chemistry and Physics, 2021, 21, 10643-10669.	4.9	13
82	A relação entre eventos climáticos extremos e desastres ambientais fluviais no Amazonas. Research, Society and Development, 2021, 10, e25510917882.	0.1	0
83	Influence of ENSO and tropical Atlantic climate variability on flood characteristics in the Amazon basin. Hydrology and Earth System Sciences, 2021, 25, 3875-3895.	4.9	13
84	The joint impacts of Atlantic and Pacific multidecadal variability on South American precipitation and temperature. Journal of Climate, 2021, , 1-55.	3.2	7
85	Accelerating methane growth rate from 2010 to 2017: leading contributions from the tropics and East Asia. Atmospheric Chemistry and Physics, 2021, 21, 12631-12647.	4.9	23
86	Recent changes in the atmospheric circulation patterns during the dry-to-wet transition season in south tropical South America (1979-2020): Impacts on precipitation and fire season. Journal of Climate, 2021, , 1-56.	3.2	16
87	Pacific and Atlantic Multidecadal Variability Relations with the Choco and Caribbean Low-Level Jets during the 1900–2015 Period. Atmosphere, 2021, 12, 1120.	2.3	7
88	Historical flooding regime along the Amur River and its links to East Asia summer monsoon circulation. Geomorphology, 2021, 388, 107782.	2.6	12
89	Large Methane Emissions From the Pantanal During Rising Water‣evels Revealed by Regularly Measured Lower Troposphere CH ₄ Profiles. Global Biogeochemical Cycles, 2021, 35, e2021GB006964.	4.9	8
90	On the sensitivity of the Amazon surface climate to two landâ€surface hydrology schemes using a highâ€resolution regional climate model (<scp>RegCM4</scp>). International Journal of Climatology, 2022, 42, 2311-2327.	3.5	6
91	Analysis of the interannual variability in satellite gravity solutions: detection of climate modes fingerprints in water mass displacements across continents and oceans. Climate Dynamics, 2022, 58, 1065-1084.	3.8	10
92	Small-scale environmental variations drive vegetation structure and diversity in Amazon riverine forests. Flora: Morphology, Distribution, Functional Ecology of Plants, 2021, 283, 151916.	1.2	4

		CITATION REPORT		
#	Article		IF	CITATIONS
93	Climate influence on the 2019 fires in Amazonia. Science of the Total Environment, 2021, 794, 2	48718.	8.0	14
94	Amazonian biogenic volatile organic compounds under global change. Global Change Biology, 2 26, 4722-4751.	020,	9.5	38
95	Changes in Normalized Difference Vegetation Index in the Orinoco and Amazon River Basins: Lir Tropical Atlantic Surface Temperatures. Journal of Climate, 2020, 33, 8537-8559.	ks to	3.2	19
96	CONSERVACIÓN DE INSECTOS EN LA AMAZONIA. EcologÃa Aplicada, 2019, 18, 189.		0.2	2
97	Community based actions save Yellow-spotted river turtle (<i>Podocnemis unifilis</i>) eggs and hatchlings flooded by rapid river level rises. PeerJ, 2020, 8, e9921.		2.0	10
98	Adaptive Management Strategies of Local Communities in Two Amazonian Floodplain Ecosyster Face of Extreme Climate Events. Journal of Ethnobiology, 2021, 41, 409-427.	ns in the	2.1	7
99	The Role of Intensifying Precipitation on Coastal River Flooding and Compound Riverâ€&torm Su Events, Northeast Gulf of Mexico. Water Resources Research, 2021, 57, .	Irge	4.2	21
100	Forecasting annual maximum water level for the Negro River at Manaus. Climate Resilience and Sustainability, 0, , e18.		2.3	5
101	Impact of tropical Atlantic Warming on the Pacific Walker circulation with numerical experiment CGCM. Advances in Climate Change Research, 2021, 12, 757-757.	s of	5.1	1
102	Hydraulic Planning in Insular Urban Territories: The Case of Madeira Island—Ribeira Brava. Wat (Switzerland), 2021, 13, 2951.	er	2.7	12
103	Amazon Hydrology From Space: Scientific Advances and Future Challenges. Reviews of Geophys 2021, 59, e2020RG000728.	ics,	23.0	53
104	Tropische WĀĦer und Gebirge. , 2019, , 323-358.			0
105	Fluvial environmental disasters: risk perception and evaluation of government responses by river populations in Cacau Pirêra, Iranduba/AM. Sustentabilidade Em Debate, 2019, 10, 236-275.	ine	0.2	0
107	Pan American interactions of Amazon precipitation, streamflow, and tree growth extremes. Environmental Research Letters, 2020, 15, 104092.		5.2	6
109	A regional view of the linkages between hydro limatic changes and deforestation in the South Amazon. International Journal of Climatology, 2022, 42, 3757-3775.	iern	3.5	8
110	Precipitation patterns over northern Brazil basins: climatology, trends, and associated mechanis Theoretical and Applied Climatology, 2022, 147, 767-783.	ms.	2.8	8
111	Tree-ring oxygen isotopes record a decrease in Amazon dry season rainfall over the past 40Âyea Climate Dynamics, 2022, 59, 1401-1414.	[°] S.	3.8	10
112	From the One Health Perspective: Schistosomiasis Japonica and Flooding. Pathogens, 2021, 10,	1538.	2.8	9

#	Article	IF	CITATIONS
113	Assessing the representation of South American monsoon features in Brazil and U.K. climate model simulations. Climate Resilience and Sustainability, 2022, 1, .	2.3	13
114	Hydraulic Planning in Insular Urban Territories: The Case of Madeira Island—São Vicente. Water (Switzerland), 2022, 14, 112.	2.7	10
115	The new historical flood of 2021 in the Amazon River compared to major floods of the 21st century: Atmospheric features in the context of the intensification of floods. Weather and Climate Extremes, 2022, 35, 100406.	4.1	28
116	Does the El Niño-Southern Oscillation Affect the Combined Impact of the Atlantic Multidecadal Oscillation and Pacific Decadal Oscillation on the Precipitation and Surface Air Temperature Variability over South America?. Atmosphere, 2022, 13, 231.	2.3	8
117	Deforestation triggering irreversible transition in Amazon hydrological cycle. Environmental Research Letters, 2022, 17, 034037.	5.2	22
118	Applications and Challenges of GRACE and GRACE Follow-On Satellite Gravimetry. Surveys in Geophysics, 2022, 43, 305-345.	4.6	65
119	Amazonian runâ€ofâ€river dam reservoir impacts underestimated: Evidence from a before–after control–impact study of freshwater turtle nesting areas. Aquatic Conservation: Marine and Freshwater Ecosystems, 2022, 32, 508-522.	2.0	5
120	Tropical methane emissions explain large fraction of recent changes in global atmospheric methane growth rate. Nature Communications, 2022, 13, 1378.	12.8	31
121	Interpreting extreme climate impacts from large ensemble simulations—are they unseen or unrealistic?. Environmental Research Letters, 2022, 17, 044052.	5.2	13
122	Reconciling historical changes in the hydrological cycle over land. Npj Climate and Atmospheric Science, 2022, 5, .	6.8	7
123	Local meridional circulation changes contribute to a projected slowdown of the Indian Ocean Walker circulation. Npj Climate and Atmospheric Science, 2022, 5, .	6.8	4
124	The Influence of Shallow Cloud Populations on Transitions to Deep Convection in the Amazon. Journals of the Atmospheric Sciences, 2022, 79, 723-743.	1.7	2
125	Hybrid Semi-Analytical Algorithm for Estimating Chlorophyll-A Concentration in Lower Amazon Floodplain Waters. Frontiers in Remote Sensing, 2022, 3, .	3.5	4
126	MODELING OF AN EXTREME FLOODING EVENT IN THE AMAZON BASIN USING THE WRF-HYDRO MODEL. , 0, , .		0
127	Nonstationary Bayesian Modeling of Extreme Flood Risk and Return Period Affected by Climate Variables for Xiangjiang River Basin, in South-Central China. Water (Switzerland), 2022, 14, 66.	2.7	2
128	Fires in Amazonian Blackwater Floodplain Forests: Causes, Human Dimension, and Implications for Conservation. Frontiers in Forests and Global Change, 2021, 4, .	2.3	3
129	Intensification of Pacific Trade Wind and Related Changes in the Relationship Between Sea Surface Temperature and Sea Level Pressure. Geophysical Research Letters, 2022, 49, .	4.0	4
137	Effects of Climate Change on Hydrology in the Most Relevant Mining Basin in the Eastern Legal Amazon. Water (Switzerland), 2022, 14, 1416.	2.7	6

#	Article	IF	CITATIONS
138	Spatioâ€ŧemporal, ontogenetic and sexâ€related patterns in resource use of Amazonian manatees across floodplains and estuaries as inferred by <i>δ</i> ¹³ C and <i>δ</i> ¹⁵ N isotopic values. Aquatic Conservation: Marine and Freshwater Ecosystems, 0, , .	2.0	0
139	Anthropogenic impacts on lowland tropical peatland biogeochemistry. Nature Reviews Earth & Environment, 2022, 3, 426-443.	29.7	28
140	Global change and physiological challenges for fish of the Amazon today and in the near future. Journal of Experimental Biology, 2022, 225, .	1.7	2
141	Challenges Regionalizing Methane Emissions Using Aquatic Environments in the Amazon Basin as Examples. Frontiers in Environmental Science, 2022, 10, .	3.3	4
142	Sediment Infill of Tropical Floodplain Lakes: Rates, Controls, and Implications for Ecosystem Services. Frontiers in Earth Science, 2022, 10, .	1.8	2
143	Rising Above the Flood: Modifications in Agricultural Practices and Livelihood Systems in Central Amazonia – Perspectives from Ribeirinho and Indigenous Communities. , 2022, , 233-246.		2
145	How much inundation occurs in the Amazon River basin?. Remote Sensing of Environment, 2022, 278, 113099.	11.0	18
146	In a changing climate Hadley cell induces a record flood in amazon and another recorded drought across South Brazil in 2021. Natural Hazards, 2022, 114, 1549-1561.	3.4	5
147	Influence of the Amazonâ€Orinoco Discharge Interannual Variability on the Western Tropical Atlantic Salinity and Temperature. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	3
148	Climate Change Impacts on Coastal and Offshore Petroleum Infrastructure and the Associated Oil Spill Risk: A Review. Journal of Marine Science and Engineering, 2022, 10, 849.	2.6	20
149	Rapid changes to global river suspended sediment flux by humans. Science, 2022, 376, 1447-1452.	12.6	102
150	Hydraulic Planning in Insular Urban Territories. Impact of Meat Consumption on Health and Environmental Sustainability, 2022, , 81-103.	0.4	0
151	Analyzing the Evolution of Land-Use Changes Related to Vegetation, in the Galicia Region, Spain: From 1990 to 2018. , 0, , .		0
152	Integrated multi-scalar analysis of vulnerability to environmental hazards: Assessing extreme flooding in western Amazonia. Global Environmental Change, 2022, 76, 102585.	7.8	3
153	Interdecadal variability of the austral summer precipitation over the Central Andes. Frontiers in Earth Science, 0, 10, .	1.8	4
154	Editorial: The role of rivers in the origins, evolution, adaptation, and distribution of biodiversity. Frontiers in Ecology and Evolution, 0, 10, .	2.2	2
155	Climate and land management accelerate the Brazilian water cycle. Nature Communications, 2022, 13, .	12.8	38
156	Regime shifts of the wet and dry seasons in the tropics under global warming. Environmental Research Letters, 2022, 17, 104028.	5.2	1

#	ARTICLE	IF	CITATIONS
157	The presence of peat and variation in tree species composition are under different hydrological controls in Amazonian wetland forests. Hydrological Processes, 2022, 36, .	2.6	4
158	The Changing Amazon Hydrological Cycle—Inferences From Over 200ÂYears of Treeâ€Ring Oxygen Isotope Data. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	2
161	Effects of Amazonian flying rivers on frog biodiversity and populations in the Atlantic rainforest. Conservation Biology, 2023, 37, .	4.7	3
162	Shifting in the global flood timing. Scientific Reports, 2022, 12, .	3.3	13
164	Greenhouse gas fluxes in mangrove forest soil in an Amazon estuary. Biogeosciences, 2022, 19, 5483-5497.	3.3	1
165	Seasonal flooding decreases fruitâ€feeding butterfly species dominance and increases spatial turnover in floodplain forests of central Amazonia. Ecology and Evolution, 2023, 13, .	1.9	2
166	Human impacts outpace natural processes in the Amazon. Science, 2023, 379, .	12.6	32
167	Climate variability of the southern Amazon inferred by a multi-proxy tree-ring approach using Cedrela fissilis Vell Science of the Total Environment, 2023, 871, 162064.	8.0	3
168	Carbon sink potential and environmental benefits of seaweed: A case study of the seaweed cultivation industry on China coast. Aquaculture, 2023, 572, 739494.	3.5	5
169	Will climate change favor exotic grasses over native ecosystem engineer species in the Amazon Basin?. Ecological Informatics, 2023, 75, 102102.	5.2	1
170	Forecasting annual maximum water level for the Negro River at Manaus using dynamical seasonal predictions. Climate Services, 2023, 30, 100342.	2.5	1
171	Increased floodplain inundation in the Amazon since 1980. Environmental Research Letters, 2023, 18, 034024.	5.2	5
172	Indices of Pacific Walker Circulation Strength. Atmosphere, 2023, 14, 397.	2.3	1
173	Long- and short-term impacts of climate and dry-season on wood traits of Cedrela fissilis Vell. in southern Brazilian Amazon. Agricultural and Forest Meteorology, 2023, 333, 109392.	4.8	1
174	A high-resolution satellite-based map of global methane emissions reveals missing wetland, fossil fuel, and monsoon sources. Atmospheric Chemistry and Physics, 2023, 23, 3325-3346.	4.9	4
175	Recent intensification of wetland methane feedback. Nature Climate Change, 2023, 13, 430-433.	18.8	22
176	Climate Variability and Change in Tropical South America. The Latin American Studies Book Series, 2023, , 15-44.	0.2	0
177	The Evolution of Land-Use Changes in the Alto Tâmega Region, Portugal: From 1990 to 2018 - A Vision of Sustainable Planning. , 0, , .		0

#	Article	IF	CITATIONS
179	More intense and longer torrential rain and flood events during the recent past decade in Eurasia. Water Resources Research, 0, , .	4.2	1
180	Decadal variations of Pacific Walker circulation tied to tropical Atlantic–Pacific trans-basin SST gradients. Environmental Research Letters, 2023, 18, 064016.	5.2	0
181	Impacts of land-surface heterogeneities and Amazonian deforestation on the wet season onset in southern Amazon. Climate Dynamics, 2023, 61, 4867-4898.	3.8	4
182	Implications of Warm Pool Bias in CMIP6 Models on the Northern Hemisphere Wintertime Subtropical Jet and Precipitation. Geophysical Research Letters, 2023, 50, .	4.0	1
184	RELAÇÃO ENTRE OS INDICADORES DO ENOS E OS AEROSSÓIS ATMOSFÉRICOS EM UM SITE DA AMAZÔN Revista Foco, 2023, 16, e2680.	^{IA} 0.0	0
185	Variation in Food and Nutritional Stability Among Amazonian Populations Living in a Context of Dramatic Seasonal Flooding. Human Ecology, 2023, 51, 907-922.	1.4	0
186	Wetlands Ecosystems. , 2024, , 581-599.		0
187	Future increases in Amazonia water stress from CO2 physiology and deforestation. , 0, , .		0
188	â€~From the sky to the ground': fishers' knowledge, landscape analysis and hydrological data indicate long-term environmental changes in Amazonian clear water rivers. Science of the Total Environment, 2023, 904, 166763.	8.0	1
189	Asymmetric response of Amazon forest water and energy fluxes to wet and dry hydrological extremes reveals onset of a local droughtâ€induced tipping point. Global Change Biology, 2023, 29, 6077-6092.	9.5	2
190	Drivers of δ ¹⁸ 0 Variability Preserved in Ice Cores From Earth's Highest Tropical Mountain. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	3.3	0
191	Co-developing pathways to protect nature, land, territory, and well-being in Amazonia. Communications Earth & Environment, 2023, 4, .	6.8	1
192	A global streamflow indices time series dataset for large-sample hydrological analyses on streamflow regime (until 2022). Earth System Science Data, 2023, 15, 4463-4479.	9.9	2
193	The influence of Amazon River connectivity to littoral meanders on long-term carbon accumulation: A case study of Lake Yahuarcaca. Science of the Total Environment, 2023, 905, 167873.	8.0	0
194	Groundwater dominates terrestrial hydrological processes in the Amazon at the basin and subbasin scales. Journal of Hydrology, 2024, 628, 130312.	5.4	0
195	Patterns and drivers of evapotranspiration in South American wetlands. Nature Communications, 2023, 14, .	12.8	0
196	Combining UAV thermography, point cloud analysis and machine learning for assessing smallâ€scale evapotranspiration patterns in a tropical rainforest. Ecohydrology, 0, , .	2.4	0
198	Intra-annual stable isotopes in the tree rings of Hymenaea courbaril as a proxy for hydroclimate variations in southern Amazonia. Dendrochronologia, 2024, 83, 126151.	2.2	0

#	Article	IF	CITATIONS
199	Tree growth performance and xylem functional arrangements of Macrolobium Schreb. (Fabaceae) in different wetland forests in the Central Amazon basin. Trees - Structure and Function, 2024, 38, 115-126.	1.9	0
200	Evaluation of the management potential of timber resources in clearwater floodplain forests in the Amazon using growth models. Journal of Environmental Management, 2024, 351, 119781.	7.8	0
201	Globalized Climate Precarity: Environmental Degradation, Disasters, and the International Brick Trade. Annals of the American Association of Geographers, 2024, 114, 520-535.	2.2	0
202	A drier Orinoco basin during the twenty-first century: the role of the Orinoco low-level jet. Climate Dynamics, 2024, 62, 2369-2398.	3.8	0
203	Seasonal types in homogeneous rainfall regions of the Amazon basin. International Journal of Climatology, 2024, 44, 1224-1244.	3.5	0
204	Recovery of local agrobiodiversity after an extreme flood in Amazon floodplains. Biological Conservation, 2024, 292, 110536.	4.1	Ο
205	One sixth of Amazonian tree diversity is dependent on river floodplains. Nature Ecology and Evolution, 0, , .	7.8	0