Liquid, glass and amorphous solid states of coordination frameworks

Nature Reviews Materials 3, 431-440

DOI: 10.1038/s41578-018-0054-3

Citation Report

#	Article	IF	CITATIONS
1	Resonance Energy Transfer in Arbitrary Media: Beyond the Point Dipole Approximation. Journal of Physical Chemistry C, 2018, 122, 29445-29456.	1.5	21
2	Subwavelength Spatially Resolved Coordination Chemistry of Metal–Organic Framework Glass Blends. Journal of the American Chemical Society, 2018, 140, 17862-17866.	6.6	23
3	Prediction of the Glass Transition Temperatures of Zeolitic Imidazolate Glasses through Topological Constraint Theory. Journal of Physical Chemistry Letters, 2018, 9, 6985-6990.	2.1	29
4	Versatile Amorphous Structures of Phosphonate Metalâ [^] Organic Framework/Alginate Composite for Tunable Sieving of Ions. Advanced Functional Materials, 2019, 29, 1904016.	7.8	20
5	Meltable Mixed-Linker Zeolitic Imidazolate Frameworks and Their Microporous Glasses: From Melting Point Engineering to Selective Hydrocarbon Sorption. Journal of the American Chemical Society, 2019, 141, 12362-12371.	6.6	143
6	Broad Mid-Infrared Luminescence in a Metal–Organic Framework Glass. ACS Omega, 2019, 4, 12081-12087.	1.6	41
7	A fluorescent pillarene coordination polymer. Polymer Chemistry, 2019, 10, 2980-2985.	1.9	38
8	Facile Synthesis and Accelerated Combustion Effect of Micro-/Nanostructured Amorphous and Crystalline Metal Coordination Compounds Based on <i>N</i> , <i>N</i> ,-Bis[1 <i>H</i> -tetrazol-5-yl]amine. ACS Applied Energy Materials, 2019, 2, 8319-8327.	2.5	6
9	Unraveling the thermodynamic criteria for size-dependent spontaneous phase separation in soft porous crystals. Nature Communications, 2019, 10, 4842.	5.8	47
10	Controlling the Packing of Metal–Organic Layers by Inclusion of Polymer Guests. Journal of the American Chemical Society, 2019, 141, 14549-14553.	6.6	17
11	Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture. Nature Reviews Materials, 2019, 4, 708-725.	23.3	214
12	Phase diagrams of liquid-phase mixing in multi-component metal-organic framework glasses constructed by quantitative elemental nano-tomography. APL Materials, 2019, 7, .	2.2	18
13	Porous purple glass – a cobalt imidazolate glass with accessible porosity from a meltable cobalt imidazolate framework. Journal of Materials Chemistry A, 2019, 7, 985-990.	5.2	109
14	Toward Green Production of Water-Stable Metal–Organic Frameworks Based on High-Valence Metals with Low Toxicities. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	21
15	Amorphous (Fe)Ni-MOF-derived hollow (bi)metal/oxide@N-graphene polyhedron as effectively bifunctional catalysts in overall alkaline water splitting. Electrochimica Acta, 2019, 318, 430-439.	2.6	55
16	X-ray radiation-induced amorphization of metal–organic frameworks. Physical Chemistry Chemical Physics, 2019, 21, 12389-12395.	1.3	30
17	Crystal Structures and Melting Behaviors of 2D and 3D Anionic Coordination Polymers Containing Organometallic Ionic Liquid Components. Chemistry - A European Journal, 2019, 25, 10111-10117.	1.7	17
18	Novel metal–organic framework materials: blends, liquids, glasses and crystal–glass composites. Chemical Communications, 2019, 55, 8705-8715.	2.2	72

#	Article	IF	CITATIONS
19	The effect of amorphization on the molecular motion of the 2-methylimidazolate linkers in ZIF-8. Chemical Communications, 2019, 55, 5906-5909.	2.2	14
20	Scalable, room temperature, and water-based synthesis of functionalized zirconium-based metal–organic frameworks for toxic chemical removal. CrystEngComm, 2019, 21, 2409-2415.	1.3	67
21	Waterâ€Induced Breaking of the Coulombic Ordering in a Roomâ€Temperature Ionic Liquid Metal Complex. Chemistry - A European Journal, 2019, 25, 7521-7525.	1.7	6
22	Crystal melting and glass formation in copper thiocyanate based coordination polymers. Chemical Communications, 2019, 55, 5455-5458.	2.2	57
23	Impressive Proton Conductivities of Two Highly Stable Metal–Organic Frameworks Constructed by Substituted Imidazoledicarboxylates. Inorganic Chemistry, 2019, 58, 5173-5182.	1.9	60
24	Templated growth of vertically aligned 2D metal–organic framework nanosheets. Journal of Materials Chemistry A, 2019, 7, 5811-5818.	5.2	40
25	Flux melting of metal–organic frameworks. Chemical Science, 2019, 10, 3592-3601.	3.7	67
26	General Way To Construct Micro- and Mesoporous Metal–Organic Framework-Based Porous Liquids. Journal of the American Chemical Society, 2019, 141, 19708-19714.	6.6	111
27	Mechanical Properties and Processing Techniques of Bulk Metal–Organic Framework Glasses. Journal of the American Chemical Society, 2019, 141, 1027-1034.	6.6	93
28	Structural, electronic, and dielectric properties of a large random network model of amorphous zeolitic imidazolate frameworks and its analogues. Journal of the American Ceramic Society, 2019, 102, 4602-4611.	1.9	13
29	Chance-constrained stochastic congestion management of power systems considering uncertainty of wind power and demand side response. International Journal of Electrical Power and Energy Systems, 2019, 107, 703-714.	3.3	47
30	A New Dimension for Coordination Polymers and Metal–Organic Frameworks: Towards Functional Glasses and Liquids. Angewandte Chemie - International Edition, 2020, 59, 6652-6664.	7.2	146
31	Eine neue Dimension von Koordinationspolymeren und Metallâ€organischen Gerüsten: hin zu funktionellen GlÃsern und Flüssigkeiten. Angewandte Chemie, 2020, 132, 6716-6729.	1.6	17
32	Amorphous-to-crystalline transition and photoluminescence switching in guest-absorbing metal–organic network thin films. Chemical Communications, 2020, 56, 241-244.	2.2	20
33	A MOF Glass Membrane for Gas Separation. Angewandte Chemie - International Edition, 2020, 59, 4365-4369.	7.2	325
34	The mechanochemical conversion of potassium coordination polymer nanostructures to interpenetrated sodium coordination polymers with halogen bond, metal–carbon and metal–metal interactions. CrystEngComm, 2020, 22, 888-894.	1.3	6
35	Relating structural disorder and melting in complex mixed ligand zeolitic imidazolate framework glasses. Dalton Transactions, 2020, 49, 850-857.	1.6	25
36	Ultrafast Melting of Metal–Organic Frameworks for Advanced Nanophotonics. Advanced Functional Materials, 2020, 30, 1908292.	7.8	31

#	ARTICLE	IF	CITATIONS
37	Amorphous Metal–Organic Frameworkâ€Dominated Nanocomposites with Both Compositional and Structural Heterogeneity for Oxygen Evolution. Angewandte Chemie - International Edition, 2020, 59, 3630-3637.	7.2	143
38	Amorphous Metal–Organic Frameworkâ€Dominated Nanocomposites with Both Compositional and Structural Heterogeneity for Oxygen Evolution. Angewandte Chemie, 2020, 132, 3659-3666.	1.6	21
39	Destruction of Metal–Organic Frameworks: Positive and Negative Aspects of Stability and Lability. Chemical Reviews, 2020, 120, 13087-13133.	23.0	294
40	Electronic Structure Modeling of Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8641-8715.	23.0	149
41	Fabricating nano-lrO ₂ @amorphous Ir-MOF composites for efficient overall water splitting: a one-pot solvothermal approach. Journal of Materials Chemistry A, 2020, 8, 25687-25695.	5.2	26
42	Metal-organic framework and inorganic glass composites. Nature Communications, 2020, 11, 5800.	5.8	35
43	Design of Targeted Nanostructured Coordination Polymers (NCPs) for Cancer Therapy. Molecules, 2020, 25, 3449.	1.7	14
44	Facile Synthesis of Enzyme-Embedded Metal–Organic Frameworks for Size-Selective Biocatalysis in Organic Solvent. Frontiers in Bioengineering and Biotechnology, 2020, 8, 714.	2.0	15
45	Metal–Organic Phase-Change Materials for Thermal Energy Storage. Journal of the American Chemical Society, 2020, 142, 19170-19180.	6.6	42
46	Soft Mode Metal-Linker Dynamics in Carboxylate MOFs Evidenced by Variable-Temperature Infrared Spectroscopy. Journal of the American Chemical Society, 2020, 142, 19291-19299.	6.6	38
47	Atoms and the void: modular construction of ordered porous solids. Nature Communications, 2020, 11, 4652.	5.8	17
48	Enhanced Photocatalytic Degradation of MB Under Visible Light Using the Modified MIL-53(Fe). Topics in Catalysis, 2020, 63, 1227-1239.	1.3	12
49	Structural features of proton-conducting metal organic and covalent organic frameworks. CrystEngComm, 2020, 22, 6425-6443.	1.3	23
50	Structure of Metal–Organic Framework Glasses by <i>Ab Initio</i> Molecular Dynamics. Chemistry of Materials, 2020, 32, 8004-8011.	3.2	24
51	A new route to porous metal–organic framework crystal–glass composites. Chemical Science, 2020, 11, 9910-9918.	3.7	21
52	Hierarchically Nanoporous Titanium-Based Coordination Polymers for Photocatalytic Synthesis of Benzimidazole. ACS Applied Nano Materials, 2020, 3, 10720-10731.	2.4	8
53	Nonlinear-Optical Response in Zeolitic Imidazolate Framework Glass. Inorganic Chemistry, 2020, 59, 8380-8386.	1.9	35
54	<i>Ex Machina</i> Determination of Structural Correlation Functions. Journal of Physical Chemistry Letters, 2020, 11, 4372-4378.	2.1	7

#	ARTICLE	IF	Citations
55	Investigating the melting behaviour of polymorphic zeolitic imidazolate frameworks. CrystEngComm, 2020, 22, 3627-3637.	1.3	37
56	A method to quantify crystallinity in amorphous metal alloys: A differential scanning calorimetry study. PLoS ONE, 2020, 15, e0234774.	1.1	20
57	Molecule-based nonlinear optical switch with highly tunable on-off temperature using a dual solid solution approach. Nature Communications, 2020, 11, 2752.	5.8	57
58	Luminescent ionic liquid formed from a melted rhenium(<scp>v</scp>) cluster. Chemical Communications, 2020, 56, 7957-7960.	2.2	22
59	Transparent and luminescent glasses of gold thiolate coordination polymers. Chemical Science, 2020, 11, 6815-6823.	3.7	36
60	The thermal stability of metal-organic frameworks. Coordination Chemistry Reviews, 2020, 419, 213388.	9.5	197
61	Mitigation of Pressure-Induced Amorphization in Metal–Organic Framework ZIF-8 upon EPR Control. ACS Applied Materials & Diterfaces, 2020, 12, 16655-16661.	4.0	36
62	Interfacial engineering of a polymer–MOF composite by <i>in situ</i> ivitrification. Chemical Communications, 2020, 56, 3609-3612.	2.2	43
63	A highly permeable zinc-based MOF/polyphenylsulfone composite membrane with elevated antifouling properties. Chemical Communications, 2020, 56, 5231-5234.	2.2	21
64	Mechanochemical synthesis of mixed metal, mixed linker, glass-forming metal–organic frameworks. Green Chemistry, 2020, 22, 2505-2512.	4.6	58
65	Metal–Organic Framework for Transparent Electronics. Advanced Science, 2020, 7, 1903003.	5.6	59
66	Fishnet-like superstructures constructed from ultrafine and ultralong Ni-MOF nanowire arrays directionally grown on highly rough and conductive scaffolds: synergistic activating effect for efficient and robust alkaline water oxidation activity. Applied Surface Science, 2020, 529, 147030.	3.1	8
67	How to create MOF glasses and take advantage of emerging opportunities. Science Bulletin, 2020, 65, 1432-1435.	4.3	21
68	Stable melt formation of 2D nitrile-based coordination polymer and hierarchical crystal–glass structuring. Chemical Communications, 2020, 56, 8980-8983.	2.2	27
69	Sodium Ion Conductivity in Superionic IL-Impregnated Metal-Organic Frameworks: Enhancing Stability Through Structural Disorder. Scientific Reports, 2020, 10, 3532.	1.6	35
70	Coordination cages as permanently porous ionic liquids. Nature Chemistry, 2020, 12, 270-275.	6.6	151
71	Halogenated Metal–Organic Framework Glasses and Liquids. Journal of the American Chemical Society, 2020, 142, 3880-3890.	6.6	83
72	Functional Group Mapping by Electron Beam Vibrational Spectroscopy from Nanoscale Volumes. Nano Letters, 2020, 20, 1272-1279.	4.5	28

#	Article	IF	Citations
73	A MOF Glass Membrane for Gas Separation. Angewandte Chemie, 2020, 132, 4395-4399.	1.6	57
74	Exploring the Scope of Macrocyclic "Shoe-last―Templates in the Mechanochemical Synthesis of RHO Topology Zeolitic Imidazolate Frameworks (ZIFs). Molecules, 2020, 25, 633.	1.7	3
75	State-of-the-art and future perspectives of MOFs in medicine. , 2020, , 525-551.		0
76	Impact of dehydration and mechanical amorphization on the magnetic properties of Ni(<scp>ii</scp>)-MOF-74. Journal of Materials Chemistry C, 2020, 8, 7132-7142.	2.7	21
77	Coordination polymer glass from a protic ionic liquid: proton conductivity and mechanical properties as an electrolyte. Chemical Science, 2020, 11, 5175-5181.	3.7	47
78	Crystal melting and vitrification behaviors of a three-dimensional nitrile-based metal–organic framework. Faraday Discussions, 2021, 225, 403-413.	1.6	21
79	Identifying the liquid and glassy states of coordination polymers and metal–organic frameworks. Faraday Discussions, 2021, 225, 210-225.	1.6	25
80	Pressure-induced amorphous zeolitic imidazole frameworks with reduced toxicity and increased tumor accumulation improves therapeutic efficacy In vivo. Bioactive Materials, 2021, 6, 740-748.	8.6	22
81	Synthesis of a novel amorphous metal organic framework with hierarchical porosity for adsorptive gas separation. Microporous and Mesoporous Materials, 2021, 310, 110600.	2.2	27
82	Topologicalâ€Distortionâ€Driven Amorphous Spherical Metalâ€Organic Frameworks for Highâ€Quality Singleâ€Mode Microlasers. Angewandte Chemie - International Edition, 2021, 60, 6362-6366.	7.2	23
83	Scalable crystalline porous membranes: current state and perspectives. Chemical Society Reviews, 2021, 50, 1913-1944.	18.7	47
84	Nanoarchitectonics for Coordination Asymmetry and Related Chemistry. Bulletin of the Chemical Society of Japan, 2021, 94, 839-859.	2.0	88
85	Templateâ€Mediated Control over Polymorphism in the Vaporâ€Assisted Formation of Zeolitic Imidazolate Framework Powders and Films. Angewandte Chemie - International Edition, 2021, 60, 7553-7558.	7.2	20
86	Direct X-ray and electron-beam lithography of halogenated zeolitic imidazolate frameworks. Nature Materials, 2021, 20, 93-99.	13.3	112
87	Structural flexibility in crystalline coordination polymers: a journey along the underlying free energy landscape. Dalton Transactions, 2021, 50, 3759-3768.	1.6	12
88	Anion and solvent controlled growth of crystalline and amorphous zinc(<scp>ii</scp>) coordination polymers and a molecular complex. Dalton Transactions, 2021, 50, 3979-3989.	1.6	2
89	Heterometallic coordination polymers as heterogeneous electrocatalysts. Inorganic Chemistry Frontiers, 2021, 8, 2634-2649.	3.0	38
90	Bond switching is responsible for nanoductility in zeolitic imidazolate framework glasses. Dalton Transactions, 2021, 50, 6126-6132.	1.6	11

#	Article	IF	Citations
91	Melt-quenched porous organic cage glasses. Journal of Materials Chemistry A, 2021, 9, 19807-19816.	5.2	15
92	Metal–organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses. Journal of Materials Chemistry A, 2021, 9, 10562-10611.	5 . 2	250
93	Concluding remarks: current and next generation MOFs. Faraday Discussions, 2021, 231, 397-417.	1.6	17
94	Porous Coordination Polymers/Metal-Organic Frameworks. , 2021, , 314-327.		O
95	Proton-conductive coordination polymer glass for solid-state anhydrous proton batteries. Chemical Science, 2021, 12, 5818-5824.	3.7	47
96	Multi-purpose heterogeneous catalyst material from an amorphous cobalt metal–organic framework. Materials Advances, 2021, 2, 4009-4015.	2.6	6
97	Metal–organic frameworks as proton conductors: strategies for improved proton conductivity. Dalton Transactions, 2021, 50, 10655-10673.	1.6	36
98	Porous liquids – Future for CO2 capture and separation?. Current Research in Green and Sustainable Chemistry, 2021, 4, 100070.	2.9	23
99	Zinc(<scp>ii</scp>) and cadmium(<scp>ii</scp>) amorphous metalâ€"organic frameworks (aMOFs): study of activation process and high-pressure adsorption of greenhouse gases. RSC Advances, 2021, 11, 20137-20150.	1.7	16
100	Topologicalâ€Distortionâ€Driven Amorphous Spherical Metalâ€Organic Frameworks for Highâ€Quality Singleâ€Mode Microlasers. Angewandte Chemie, 2021, 133, 6432-6436.	1.6	2
101	Network-Forming Liquids from Metal–Bis(acetamide) Frameworks with Low Melting Temperatures. Journal of the American Chemical Society, 2021, 143, 2801-2811.	6.6	60
102	Templateâ€Mediated Control over Polymorphism in the Vaporâ€Assisted Formation of Zeolitic Imidazolate Framework Powders and Films. Angewandte Chemie, 2021, 133, 7631-7636.	1.6	2
103	Gas Adsorption Enhancement in Partially Amorphized Metal–Organic Frameworks. Journal of Physical Chemistry C, 2021, 125, 4509-4518.	1.5	11
105	Weak Coordination Bond of Chloromethane: A Unique Way to Activate Metal Node Within an Unstable Metal–Organic Framework <scp>DUT</scp> â€34. Bulletin of the Korean Chemical Society, 2021, 42, 658-666.	1.0	22
106	A dual-functional fluorescent Co(II) coordination polymer sensor for the selective sensing of ascorbic acid and acetylacetone. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 411, 113204.	2.0	11
107	Proton conduction and luminescent sensing property of two newly constructed positional isomer-dependent redox-active Mn(II)-organic frameworks. Polyhedron, 2021, 200, 115139.	1.0	8
108	From n- to p-Type Material: Effect of Metal Ion on Charge Transport in Metal–Organic Materials. ACS Applied Materials & Diterfaces, 2021, 13, 52055-52062.	4.0	10
109	Coordination Polymer Glasses with Lava and Healing Ability for Highâ€Performance Gas Sieving. Angewandte Chemie, 2021, 133, 21474-21479.	1.6	3

#	Article	IF	CITATIONS
110	Stretchable and Multi-Metal–Organic Framework Fabrics Via High-Yield Rapid Sorption-Vapor Synthesis and Their Application in Chemical Warfare Agent Hydrolysis. ACS Applied Materials & Discrete Representation of the Agent Hydrolysis. ACS Applied Materials & Discrete Representation of the Strete Representation of the Representation of the Strete Representation of the Representation of the Strete Representation of the	4.0	13
111	Coordination Polymer Glasses with Lava and Healing Ability for Highâ€Performance Gas Sieving. Angewandte Chemie - International Edition, 2021, 60, 21304-21309.	7.2	33
112	Ammonia Capture via an Unconventional Reversible Guest-Induced Metal-Linker Bond Dynamics in a Highly Stable Metal–Organic Framework. Chemistry of Materials, 2021, 33, 6186-6192.	3.2	26
113	Frustrated flexibility in metal-organic frameworks. Nature Communications, 2021, 12, 4097.	5.8	55
114	Ambient synthesis of iron-nickel amorphous coordination polymer nanosheet arrays for highly efficient oxygen evolution electrocatalysis. Journal of Alloys and Compounds, 2021, 868, 159218.	2.8	8
115	Molecular Siting of C1–C6 <i>n</i> -Alkanes in ZIF-4: A Hybrid Monte Carlo Study. Journal of Physical Chemistry C, 2021, 125, 16256-16267.	1.5	3
116	Double-Layer Nitrogen-Rich Two-Dimensional Anionic Uranyl–Organic Framework for Cation Dye Capture and Catalytic Fixation of Carbon Dioxide. Inorganic Chemistry, 2021, 60, 11485-11495.	1.9	12
117	High Proton Conduction in Two Highly Water-Stable Lanthanide Coordination Polymers from a Triazole Multicarboxylate Ligand. Inorganic Chemistry, 2021, 60, 13242-13251.	1.9	9
118	Glassy Metal–Organicâ€Frameworkâ€Based Quasiâ€Solidâ€State Electrolyte for Highâ€Performance Lithiumâ€Metal Batteries. Advanced Functional Materials, 2021, 31, 2104300.	7.8	69
119	Cellulose acetate-based membranes by interfacial engineering and integration of ZIF-62 glass nanoparticles for CO2 separation. Journal of Hazardous Materials, 2021, 415, 125639.	6.5	75
120	A Covalent Organic–Inorganic Hybrid Superlattice Covered with Organic Functional Groups for Highly Sensitive and Selective Gas Sensing. Angewandte Chemie, 2021, 133, 19862-19866.	1.6	7
121	Boosting Catalytic Efficiency of Metalâ€Organic Frameworks with Electronâ€Withdrawing Effect for Lewisâ€Acid Catalysis. ChemistrySelect, 2021, 6, 7732-7735.	0.7	5
122	Facile Exfoliation of Two-Dimensional Crystalline Monolayer Nanosheets from an Amorphous Metal–Organic Framework. CCS Chemistry, 2022, 4, 1879-1888.	4.6	12
123	A Covalent Organic–Inorganic Hybrid Superlattice Covered with Organic Functional Groups for Highly Sensitive and Selective Gas Sensing. Angewandte Chemie - International Edition, 2021, 60, 19710-19714.	7.2	32
124	Fabrication of Integrated Copperâ€Based Nanoparticles/Amorphous Metal–Organic Framework by a Facile Sprayâ€Drying Method: Highly Enhanced CO 2 Hydrogenation Activity for Methanol Synthesis. Angewandte Chemie, 2021, 133, 22457-22462.	1.6	4
125	Fabrication of Integrated Copperâ€Based Nanoparticles/Amorphous Metal–Organic Framework by a Facile Sprayâ€Drying Method: Highly Enhanced CO ₂ Hydrogenation Activity for Methanol Synthesis. Angewandte Chemie - International Edition, 2021, 60, 22283-22288.	7.2	29
126	The future directions of synthetic chemistry. Pure and Applied Chemistry, 2021, 93, 1463-1472.	0.9	0
127	"Shake â€`n Bake―Route to Functionalized Zr-UiO-66 Metal–Organic Frameworks. Inorganic Chemistry, 2021, 60, 14294-14301.	1.9	20

#	Article	IF	CITATIONS
128	Shining Light on Porous Liquids: From Fundamentals to Syntheses, Applications and Future Challenges. Advanced Functional Materials, 2022, 32, 2104162.	7.8	40
129	Short- to long-term deformation behavior, failure, and service life of amorphous polymers under cyclic torsional and multiaxial loadings. International Journal of Plasticity, 2021, 147, 103106.	4.1	9
130	Multiscale structural control of linked metal–organic polyhedra gel by aging-induced linkage-reorganization. Chemical Science, 2021, 12, 12556-12563.	3.7	24
131	A chromotropic PtIIPdIICoII coordination polymer with dual electrocatalytic activity for water reduction and oxidation. Dalton Transactions, 2021, 50, 14730-14737.	1.6	3
132	Flexible amorphous metal–organic frameworks with π Lewis acidic pore surface for selective adsorptive separations. Dalton Transactions, 2021, 50, 3145-3154.	1.6	9
133	A Tunable Amorphous Heteronuclear Iron and Cobalt Imidazolate Framework Analogue for Efficient Oxygen Evolution Reactions. European Journal of Inorganic Chemistry, 2021, 2021, 702-707.	1.0	7
134	Novel 3D-networked melamine–naphthalene–polyamic acid nanofillers doped in vinyl ester resin for higher flame retardancy. Materials Advances, 2021, 2, 4339-4351.	2.6	4
135	Revisiting the MIL-101 metal–organic framework: design, synthesis, modifications, advances, and recent applications. Journal of Materials Chemistry A, 2021, 9, 22159-22217.	5.2	100
136	Poly(lauryl methacrylate)-Grafted Amino-Functionalized Zirconium-Terephthalate Metal–Organic Framework: Efficient Adsorbent for Extraction of Polycyclic Aromatic Hydrocarbons from Water Samples. ACS Omega, 2020, 5, 12202-12209.	1.6	9
137	Applications of pair distribution function analyses to the emerging field of ⟨i⟩non-ideal⟨/i⟩ metal–organic framework materials. Nanoscale, 2020, 12, 15577-15587.	2.8	42
138	Structural integrity, meltability, and variability of thermal properties in the mixed-linker zeolitic imidazolate framework ZIF-62. Journal of Chemical Physics, 2020, 153, 204501.	1.2	14
139	Synthetic amorphous calcium phosphates (ACPs): preparation, structure, properties, and biomedical applications. Biomaterials Science, 2021, 9, 7748-7798.	2.6	47
140	Mixed-Metal Cu–Zn Thiocyanate Coordination Polymers with Melting Behavior, Glass Transition, and Tunable Electronic Properties. Inorganic Chemistry, 2021, 60, 16149-16159.	1.9	2
141	ResponZIF Structures: Zeolitic Imidazolate Frameworks as Stimuli-Responsive Materials. ACS Applied Materials & Stimuli-Responsive Materials. ACS Applied Materials & Stimuli-Responsive Materials. ACS Applied Materials & Stimuli-Responsive Materials.	4.0	20
142	Mechanochemically Synthesised Flexible Electrodes Based on Bimetallic Metal–Organic Framework Glasses for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	41
143	Mechanochemically Synthesised Flexible Electrodes based on Bimetallic Metalâ€organic Framework Glasses for the Oxygen Evolution Reaction. Angewandte Chemie, 0, , .	1.6	7
145	Viologenâ€Based Uranyl Coordination Polymers: Anionâ€Induced Structural Diversity and the Potential as a Fluorescent Probe. European Journal of Inorganic Chemistry, 2021, 2021, 5077-5084.	1.0	8
146	The chemistry and applications of flexible porous coordination polymers. EnergyChem, 2021, 3, 100067.	10.1	66

#	Article	IF	CITATIONS
147	Structural Analysis of Molecular Materials Using the Pair Distribution Function. Chemical Reviews, 2022, 122, 1208-1272.	23.0	105
148	Conductive Hybrid Cuâ€HHTPâ€TCNQ Metal–Organic Frameworks for Chemiresistive Sensing. Advanced Electronic Materials, 2022, 8, 2100871.	2.6	5
149	A review on adsorbents for the remediation of wastewater: Antibacterial and adsorption study. Journal of Environmental Chemical Engineering, 2021, 9, 106907.	3.3	25
150	Thin film composite membranes for postcombustion carbon capture: Polymers and beyond. Progress in Polymer Science, 2022, 126, 101504.	11.8	32
151	Gas adsorption in the topologically disordered Fe-BTC framework. Journal of Materials Chemistry A, 2021, 9, 27019-27027.	5.2	7
152	Vapor linker exchange of partially amorphous metal–organic framework membranes for ultraâ€selective gas separation. AICHE Journal, 2022, 68, .	1.8	15
153	Sensitivity of the glass transition and melting in a metal–organic framework to ligand chemistry. Chemical Communications, 2022, 58, 823-826.	2.2	8
154	Metal–Organic Network-Forming Glasses. Chemical Reviews, 2022, 122, 4163-4203.	23.0	121
155	Amorphization of hybrid framework materials. , 2022, , .		0
156	Principles of melting in hybrid organic–inorganic perovskite and polymorphic ABX ₃ structures. Chemical Science, 2022, 13, 2033-2042.	3.7	9
157	Mechanochemical synthesis of mechanical bonds in M12L8 poly-[n]-catenanes. Dalton Transactions, 2021, 51, 53-58.	1.6	7
158	Correlation between fragility and free volume void size at glass transition temperature. AIP Advances, 2022, 12, .	0.6	4
159	Cyclic Solidâ€State Multiple Phase Changes with Tuned Photoemission in a Gold Thiolate Coordination Polymer. Angewandte Chemie, 0, , .	1.6	2
160	Cyclic Solidâ€State Multiple Phase Changes with Tuned Photoemission in a Gold Thiolate Coordination Polymer. Angewandte Chemie - International Edition, 2022, , .	7.2	2
161	Additive manufacturing of ceramic materials for energy applications: Road map and opportunities. Journal of the European Ceramic Society, 2022, 42, 3049-3088.	2.8	62
162	Advancing the Mechanical Performance of Glasses: Perspectives and Challenges. Advanced Materials, 2022, 34, e2109029.	11.1	50
163	Mixed metal node effect in zeolitic imidazolate frameworks. RSC Advances, 2022, 12, 10815-10824.	1.7	6
164	Amorphous zirconium metal–organic frameworks assembled from mixed porphyrins as solvent-free catalysts for Knoevenagel condensation. Dalton Transactions, 2022, 51, 6631-6637.	1.6	3

#	Article	IF	CITATIONS
165	Thermal crystal phase transition in zeolitic imidazolate frameworks induced by nanosizing the crystal. Chemical Communications, 2022, 58, 4588-4591.	2.2	2
166	State- and water repellency-controllable molecular glass of pillar[5]arenes with fluoroalkyl groups by guest vapors. Chemical Science, 2022, 13, 4082-4087.	3.7	5
167	Syntheses of Coordination Polymer Glass Membranes and Their Gas Separation Performance Research. Journal of Physics: Conference Series, 2022, 2194, 012041.	0.3	0
168	Metal Inorganic–Organic Complex Glass and Fiber for Photonic Applications. Chemistry of Materials, 2022, 34, 2476-2483.	3.2	21
169	Post-Synthetic Modification of a Metal–Organic Framework Glass. Chemistry of Materials, 2022, 34, 2187-2196.	3.2	27
170	Xâ€ray Electron Density Study of the Chemical Bonding Origin of Glass Formation in Metal–Organic Frameworks**. Angewandte Chemie, 0, , .	1.6	0
171	Xâ€ray Electron Density Study of the Chemical Bonding Origin of Glass Formation in Metal–Organic Frameworks**. Angewandte Chemie - International Edition, 2022, , .	7.2	7
172	Heteroatom-Doped Amorphous Cobalt–Molybdenum Oxides as a Promising Catalyst for Robust Hydrogen Evolution. Inorganic Chemistry, 2022, 61, 5033-5039.	1.9	10
173	Colorless Magnetic Colloidal Particles Based on an Amorphous Metalâ€Organic Framework Using Holmium as the Metal Species ChemNanoMat, 2022, 8, .	1.5	2
174	Plasticity of Metal–Organic Framework Glasses. Journal of the American Chemical Society, 2021, 143, 20717-20724.	6.6	21
175	Atomistic Models of Amorphous Metal–Organic Frameworks. Journal of Physical Chemistry C, 2022, 126, 6905-6914.	1.5	14
176	Covalent Organic Framework for Rechargeable Batteries: Mechanisms and Properties of Ionic Conduction. Advanced Energy Materials, 2022, 12, .	10.2	72
178	Pyrolysis of a metal–organic framework followed by <i>in situ</i> X-ray absorption spectroscopy, powder diffraction and pair distribution function analysis. Dalton Transactions, 2022, 51, 10740-10750.	1.6	2
179	The deformation of short-range order leading to rearrangement of topological network structure in zeolitic imidazolate framework glasses. IScience, 2022, 25, 104351.	1.9	11
180	A long-lasting TIF-4 MOF glass membrane for selective CO2 separation. Journal of Membrane Science, 2022, 655, 120611.	4.1	28
181	lonic liquid-containing coordination polymer: solvent-free synthesis, incongruent melting, and glass formation. Chemical Communications, 2022, 58, 6725-6728.	2.2	4
182	First-row transition metal-based materials derived from bimetallic metal–organic frameworks as highly efficient electrocatalysts for electrochemical water splitting. Energy and Environmental Science, 2022, 15, 3119-3151.	15.6	125
183	Hypersensitivity of the Glass Transition to Pressure History in a Metal–Organic Framework Glass. Chemistry of Materials, 2022, 34, 5030-5038.	3.2	12

#	Article	IF	CITATIONS
184	Controlled assemblies of conjugated polymers in metalâ^'organic frameworks. Polymer Journal, 2022, 54, 1045-1053.	1.3	2
185	Photochemistry of Metal-Organic Frameworks. Springer Handbooks, 2022, , 691-732.	0.3	2
186	Band Bending Induced Charge Redistribution on the Amorphous Mil-53(Al)/Co-Ldh Conjunction to Boost the Supercapacitive and Oxygen Evolution Performance. SSRN Electronic Journal, 0, , .	0.4	0
187	Carbon-efficient conversion of natural gas and natural-gas condensates to chemical products and intermediate feedstocks ⟨i>via⟨ i> catalytic metal–organic framework (MOF) chemistry. Energy and Environmental Science, 2022, 15, 2819-2842.	15.6	6
188	Transport tuning strategies in MOF film synthesis – a perspective. Journal of Materials Chemistry A, 2022, 10, 14641-14654.	5.2	6
189	Network Size Control in Coordination Polymer Glasses and Its Impact on Viscosity and H ⁺ Conductivity. Chemistry of Materials, 2022, 34, 5832-5841.	3.2	14
190	Liquid and Glass Phases of an Alkylguanidinium Sulfonate Hydrogen-Bonded Organic Framework. Journal of the American Chemical Society, 2022, 144, 11064-11068.	6.6	21
191	Synergistic Stimulation of Metal–Organic Frameworks for Stable Super-cooled Liquid and Quenched Glass. Journal of the American Chemical Society, 2022, 144, 13021-13025.	6.6	45
192	Highlighting Recent Crystalline Engineering Aspects of Luminescent Coordination Polymers Based on F-Elements and Ditopic Aliphatic Ligands. Molecules, 2022, 27, 3830.	1.7	2
193	Recent progress of amorphous and glassy coordination polymers. Coordination Chemistry Reviews, 2022, 469, 214646.	9.5	15
194	One-dimensional amorphous cobalt(<scp>ii</scp>) metal–organic framework nanowire for efficient hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2022, 9, 4184-4193.	3.0	6
195	Lowâ∈Temperature Melting and Glass Formation of the Zeolitic Imidazolate Frameworks ZIFâ∈62 and ZIFâ∈76 through Ionic Liquid Incorporation. Advanced Materials Technologies, 2022, 7, .	3.0	14
196	The construction of a ratiometric dual-emitting amorphous europium-organic frameworks for sensitive detection of water in white spirit. Dyes and Pigments, 2022, 206, 110602.	2.0	3
197	Amorphous NH2-MIL-68 as an efficient electro- and photo-catalyst for CO2 conversion reactions. Nano Research, 2023, 16, 181-188.	5.8	10
198	Investigating the chemical sensitivity of melting in zeolitic imidazolate frameworks. Dalton Transactions, 2022, 51, 13636-13645.	1.6	4
199	A hybrid ZIF-8/ZIF-62 glass membrane for gas separation. Chemical Communications, 2022, 58, 9548-9551.	2.2	27
200	A Hollow Amorphous Bimetal Organic Framework for Synergistic Cuproptosis/Ferroptosis/Apoptosis Anticancer Therapy via Disrupting Intracellular Redox Homeostasis and Copper/Iron Metabolisms. Advanced Functional Materials, 2022, 32, .	7.8	72
201	Incongruent Melting and Vitrification Behaviors of Anionic Coordination Polymers Incorporating Ionic Liquid Cations. Inorganic Chemistry, 0, , .	1.9	2

#	Article	IF	CITATIONS
202	The development of molecule-based porous material families and their future prospects. Nature Materials, 2022, 21, 983-985.	13.3	25
203	Large breathing effect in ZIF-65(Zn) with expansion and contraction of the SOD cage. Nature Communications, 2022, 13 , .	5.8	6
204	Insights into Solid-To-Solid Transformation of MOF Amorphous Phases. Inorganic Chemistry, 2022, 61, 13992-14003.	1.9	10
205	Band bending induced charge redistribution on the amorphous MIL-53(Al)/Co-LDH conjunction to boost the supercapacitive and oxygen evolution performance. Electrochimica Acta, 2022, 429, 141057.	2.6	3
206	Structure- and phase-transformable coordination polymers/metal complexes with fluorinated anions. Coordination Chemistry Reviews, 2022, 471, 214728.	9.5	7
207	One-dimensional coordination polymers based on metal–nitrogen linkages. Coordination Chemistry Reviews, 2022, 471, 214735.	9.5	23
208	Core-shell nanosheets@MIL-101(Fe) heterostructures with enhanced photocatalytic activity promoted by peroxymonosulfate. Journal of the Taiwan Institute of Chemical Engineers, 2022, 139, 104524.	2.7	2
209	A review on the vitrification of metal coordination compounds and their photonic applications. Journal of Non-Crystalline Solids, 2022, 597, 121936.	1.5	9
210	Metal organic frameworks-derived nanoarchitectures for the detection of phenolic compounds., 2023,, 271-296.		0
211	Nanocellulose-based polymeric nanozyme as bioinspired spray coating for fruit preservation. Food Hydrocolloids, 2023, 135, 108138.	5.6	46
212	Coordination polymer-forming liquid Cu(2-isopropylimidazolate). Chemical Science, 2022, 13, 11422-11426.	3.7	11
213	Locating Hydrogen Atoms Using Fast-MAS Solid-state NMR and microED. New Developments in NMR, 2022, , 449-495.	0.1	0
214	Melt-Quenched Glass Films of Coordination Polymers as Impermeable Barrier Layers and Protective Anticorrosion Coatings. Chemistry of Materials, 2022, 34, 7878-7885.	3.2	9
215	Three-Dimensional Metal–Organic Network Glasses from Bridging MF ₆ ^{2–} Anions and Their Dynamic Insights by Solid-State NMR. Inorganic Chemistry, 2022, 61, 16103-16109.	1.9	3
216	Switchable Metal Sites in Metal–Organic Framework MFMâ€300(Sc): Lewis Acid Catalysis Driven by Metal–Hemilabile Linker Bond Dynamics. Angewandte Chemie, 2022, 134, .	1.6	3
217	Switchable Metal Sites in Metal–Organic Framework MFMâ€300(Sc): Lewis Acid Catalysis Driven by Metal–Hemilabile Linker Bond Dynamics. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
219	Vibration assisted glass-formation in zeolitic imidazolate framework. Journal of Chemical Physics, 2022, 157, 104501.	1.2	7
220	Future perspective on MOF glass composite thin films as selective and functional membranes for molecular separation., 2022, 2, 100036.		1

#	Article	IF	CITATIONS
221	Mapping short-range order at the nanoscale in metal–organic framework and inorganic glass composites. Nanoscale, 2022, 14, 16524-16535.	2.8	4
222	Schiff Base-Modified Nanomaterials for Ion Detection: A Review. ACS Applied Nano Materials, 2022, 5, 13998-14020.	2.4	16
223	Modeling the Effect of Defects and Disorder in Amorphous Metal–Organic Frameworks. Chemistry of Materials, 2022, 34, 9042-9054.	3.2	15
224	Challenges in Molecular Dynamics of Amorphous ZIFs Using Reactive Force Fields. Journal of Physical Chemistry C, 2022, 126, 19532-19541.	1.5	6
225	Roadmap of amorphous metal-organic framework for electrochemical energy conversion and storage. Nano Research, 2023, 16, 4107-4118.	5.8	10
226	Direct Sintering Behavior of Metal Organic Frameworks/Coordination Polymers. ACS Omega, 0, , .	1.6	1
227	Vitrification and Luminescence Properties of Metal–Organic Complexes. , 2022, 4, 2613-2621.		13
228	Formation of a meltable purinate metal–organic framework and its glass analogue. Chemical Communications, 2023, 59, 732-735.	2.2	6
229	Designing Glass and Crystalline Phases of Metal–Bis(acetamide) Networks to Promote High Optical Contrast. Journal of the American Chemical Society, 2022, 144, 22262-22271.	6.6	10
230	Crystallization Kinetics of a Liquid-Forming 2D Coordination Polymer. Nano Letters, 2022, 22, 9372-9379.	4.5	9
231	Quantification of gas-accessible microporosity in metal-organic framework glasses. Nature Communications, 2022, 13, .	5.8	27
232	Composite with a Glassy Nonporous Coordination Polymer Enhances Gas Adsorption Selectivity. Inorganic Chemistry, 2023, 62, 1257-1263.	1.9	0
233	Nonlinear Optical Glassâ€Ceramic From a New Polar Phaseâ€Transition Organicâ€Inorganic Hybrid Crystal. Angewandte Chemie - International Edition, 2023, 62, .	7.2	11
234	Nonlinear Optical Glassâ€Ceramic From a New Polar Phaseâ€Transition Organicâ€Inorganic Hybrid Crystal. Angewandte Chemie, 0, , .	1.6	1
235	Microorganisms@ <i>a</i> MIL-125 (Ti): An Amorphous Metal–Organic Framework Induced by Microorganisms and Their Applications. ACS Omega, 2023, 8, 2164-2172.	1.6	0
236	Metal-Organic Framework Materials for Oil/Water Separation. ACS Symposium Series, 0, , 245-282.	0.5	2
237	Glass Formation in Hybrid Organicâ€Inorganic Perovskites. Angewandte Chemie - International Edition, 2023, 62, .	7.2	11
238	Thermal treatment optimization of porous MOF glass and polymer for improving gas permeability and selectivity of mixed matrix membranes. Chemical Engineering Journal, 2023, 465, 142873.	6.6	4

#	Article	IF	CITATIONS
239	Fabrication of Superâ€Sized Metal Inorganicâ€Organic Hybrid Glass with Supramolecular Network via Crystallizationâ€Suppressing Approach. Angewandte Chemie, 2023, 135, .	1.6	2
240	Fabrication of Superâ€Sized Metal Inorganicâ€Organic Hybrid Glass with Supramolecular Network via Crystallizationâ€Suppressing Approach. Angewandte Chemie - International Edition, 2023, 62, .	7.2	15
241	X-Ray Crystallography, Spectral Analysis, DFT Studies, and Molecular Docking of (C ₉ H) Tj ETQq0 O <i>Staphylococcus aureus</i> (MRSA). Polycyclic Aromatic Compounds, 2024, 44, 178-200.	0 rgBT /C 1.4	verlock 10 Tf 9
242	Highâ€Porosity Metalâ€Organic Framework Glasses. Angewandte Chemie - International Edition, 2023, 62, .	7.2	19
243	Highâ€Porosity Metalâ€Organic Framework Glasses. Angewandte Chemie, 2023, 135, .	1.6	0
244	Strategy for the improvement of electrical conductivity of a 3D Zn(<scp>ii</scp>)-coordination polymer doubly bridged by mesaconato and pyridyl-isonicotinoyl hydrazide based Schottky diode device. New Journal of Chemistry, 2023, 47, 5922-5929.	1.4	3
245	Direct synthesis of amorphous coordination polymers and metal–organic frameworks. Nature Reviews Chemistry, 2023, 7, 273-286.	13.8	40
246	Computational Modelling of MOF Mechanics: From Elastic Behaviour to Phase Transformations. , 2023, , 113-204.		O
247	Li(C ₂ N ₃) as eutectic forming modifier in the melting process of the molecular perovskite [(C ₃ H ₇) ₃ N(C ₄ H ₉)]Mn(C ₂ N <sub 031119.<="" 11,="" 2023,="" apl="" materials,="" td=""><td>>3<i>²/s</i>ub>)</td><td>₃</td></sub>	>3 <i>²/s</i> ub>)	₃
248	Glass Formation in Hybrid Organicâ€Inorganic Perovskites. Angewandte Chemie, 0, , .	1.6	O
249	Entropy driven disorder–order transition of a metal–organic framework with frustrated flexibility. APL Materials, 2023, 11, .	2,2	1
250	Fabrication of amorphous metal-organic framework in deep eutectic solvent for boosted organophosphorus pesticide adsorption. Journal of Environmental Chemical Engineering, 2023, 11, 109963.	3.3	2
251	Modulating Liquid–Liquid Transitions and Glass Formation in Zeolitic Imidazolate Frameworks by Decoration with Electron-Withdrawing Cyano Groups. Journal of the American Chemical Society, 2023, 145, 9273-9284.	6.6	8
260	Heterogeneity in enzyme/metal–organic framework composites for CO ₂ transformation reactions. Green Chemistry, 2023, 25, 4196-4221.	4.6	2
266	Recent Progress of Amorphous Nanomaterials. Chemical Reviews, 2023, 123, 8859-8941.	23.0	29
276	Coarse-grained <i>versus </i> fully atomistic machine learning for zeolitic imidazolate frameworks. Chemical Communications, 2023, 59, 11405-11408.	2.2	2
287	Creating glassy states of dicarboxylate-bridged coordination polymers. Chemical Communications, 2023, 59, 14317-14320.	2,2	3
288	Forging links in molecular glasses. , 2024, 3, 150-151.		1

Article IF Citations

303 Introduction to metal-organic frameworks and their derivatives. , 2024, , 19-36.