Exploring How Changing Monsoonal Dynamics and Humanitireservoir Management for Flood Protection, Hydragricultural Water Supply

Water Resources Research 54, 4638-4662

DOI: 10.1029/2018wr022743

Citation Report

#	Article	IF	CITATIONS
1	A Weatherâ€Regimeâ€Based Stochastic Weather Generator for Climate Vulnerability Assessments of Water Systems in the Western United States. Water Resources Research, 2019, 55, 6923-6945.	4.2	38
2	Deeply uncertain pathways: Integrated multi-city regional water supply infrastructure investment and portfolio management. Advances in Water Resources, 2019, 134, 103442.	3.8	50
3	Identifying Actionable Compromises: Navigating Multiâ€City Robustness Conflicts to Discover CooperativeÂSafe Operating Spaces for RegionalÂWaterÂSupply Portfolios. Water Resources Research, 2019, 55, 9024-9050.	4.2	39
4	What Is Controlling Our Control Rules? Opening the Black Box of Multireservoir Operating Policies Using Timeâ€Varying Sensitivity Analysis. Water Resources Research, 2019, 55, 5962-5984.	4.2	40
5	Contemporary Decision Methods for Agricultural, Environmental, and Resource Management and Policy. Annual Review of Resource Economics, 2019, 11, 19-41.	3.7	12
6	On the Value of ENSO State for Urban Water Supply System Operators: Opportunities, Tradeâ€Offs, and Challenges. Water Resources Research, 2019, 55, 2856-2875.	4.2	19
7	Discovering Dependencies, Tradeâ€Offs, and Robustness in Joint Dam Design and Operation: An Exâ€Post Assessment of the Kariba Dam. Earth's Future, 2019, 7, 1367-1390.	6.3	30
8	Optimization method for joint operation of a double-reservoir-and-double-pumping-station system: a case study of Nanjing, China. Journal of Water Supply: Research and Technology - AQUA, 2019, 68, 803-815.	1.4	8
9	Structuring and evaluating decision support processes to enhance the robustness of complex human–natural systems. Environmental Modelling and Software, 2020, 123, 104551.	4.5	53
10	Climate Adaptation as a Control Problem: Review and Perspectives on Dynamic Water Resources Planning Under Uncertainty. Water Resources Research, 2020, 56, e24389.	4.2	110
11	Assessing the reliability, resilience and vulnerability of water supply system under multiple uncertain sources. Journal of Cleaner Production, 2020, 252, 119806.	9.3	50
12	Coupled annual and daily multivariate and multisite stochastic weather generator to preserve lowand high-frequency variability to assess climate vulnerability. Journal of Hydrology, 2020, 581, 124443.	5.4	9
13	Water pathways: An open source stochastic simulation system for integrated water supply portfolio management and infrastructure investment planning. Environmental Modelling and Software, 2020, 132, 104772.	4.5	24
14	Implications of climate change on water storage and filling time of a multipurpose reservoir in India. Journal of Hydrology, 2020, 590, 125542.	5.4	13
15	Exploratory modeling for analyzing coupled human-natural systems under uncertainty. Global Environmental Change, 2020, 65, 102186.	7.8	65
16	Can Exploratory Modeling of Water Scarcity Vulnerabilities and Robustness Be Scenario Neutral?. Earth's Future, 2020, 8, e2020EF001650.	6.3	30
17	Impact of Scenario Selection on Robustness. Water Resources Research, 2020, 56, e2019WR026515.	4.2	25
18	An active learning approach for identifying the smallest subset of informative scenarios for robust planning under deep uncertainty. Environmental Modelling and Software, 2020, 127, 104681.	4.5	24

#	ARTICLE	IF	CITATIONS
19	Feedback Between Reservoir Operation and Floodplain Development: Implications for Reservoir Benefits and Beneficiaries. Water Resources Research, 2020, 56, e24524.	4.2	10
20	Developing a sustainability science approach for water systems. Ecology and Society, 2020, 25, .	2.3	19
21	Defining Robustness, Vulnerabilities, and Consequential Scenarios for Diverse Stakeholder Interests in Institutionally Complex River Basins. Earth's Future, 2020, 8, e2020EF001503.	6.3	30
22	Do Design Storms Yield Robust Drainage Systems? How Rainfall Duration, Intensity, and Profile Can Affect Drainage Performance. Journal of Water Resources Planning and Management - ASCE, 2020, 146, .	2.6	9
23	A risk-based analytical framework for quantifying non-stationary flood risks and establishing infrastructure design standards in a changing environment. Journal of Hydrology, 2020, 584, 124575.	5.4	18
24	Innovations in Land, Water and Energy for Vietnam's Sustainable Development. UNIPA Springer Series, 2021, , .	0.1	2
25	Identifying critical climate conditions for use in scenario-neutral climate impact assessments. Environmental Modelling and Software, 2021, 136, 104948.	4.5	21
26	Research on Digital Economy and Human Resources Based on Fuzzy Clustering and Edge Computing. Security and Communication Networks, 2021, 2021, 1-8.	1.5	2
27	Toward Dataâ€Driven Generation and Evaluation of Model Structure for Integrated Representations of Human Behavior in Water Resources Systems. Water Resources Research, 2021, 57, e2020WR028148.	4.2	8
28	Designing With Information Feedbacks: Forecast Informed Reservoir Sizing and Operation. Water Resources Research, 2021, 57, e2020WR028112.	4.2	12
29	Spatial planning for water sustainability projects under climate uncertainty: balancing human and environmental water needs. Environmental Research Letters, 2021, 16, 034050.	5.2	8
30	How do the properties of training scenarios influence the robustness of reservoir operating policies to climate uncertainty?. Environmental Modelling and Software, 2021, 141, 105047.	4.5	5
31	Deriving Reservoir Cascade Operation Rules for Variable Streamflows by Optimizing Hydropower Generation and Irrigation Water Delivery. Journal of Water Resources Planning and Management - ASCE, 2021, 147, .	2.6	4
32	Evaluation of Data-Driven and Process-Based Real-Time Flow Forecasting Techniques for Informing Operation of Surface Water Abstraction. Journal of Water Resources Planning and Management - ASCE, 2021, 147, .	2.6	6
33	Improving the Robustness of Reservoir Operations with Stochastic Dynamic Programming. Journal of Water Resources Planning and Management - ASCE, 2021, 147, .	2.6	12
34	Guidance framework and software for understanding and achieving system robustness. Environmental Modelling and Software, 2021, 142, 105059.	4.5	10
35	Optimal Design and Operation of River Basin Storage under Hydroclimatic Uncertainty. Journal of Water Resources Planning and Management - ASCE, 2021, 147, 04021055.	2.6	2
36	Improving Information-Based Coordinated Operations in Interbasin Water Transfer Megaprojects: Case Study in Southern India. Journal of Water Resources Planning and Management - ASCE, 2021, 147, .	2.6	7

#	ARTICLE	IF	Citations
37	Multiobjective Direct Policy Search Using Physically Based Operating Rules in Multireservoir Systems. Journal of Water Resources Planning and Management - ASCE, 2020, 146, .	2.6	8
38	Bias Correction of Hydrologic Projections Strongly Impacts Inferred Climate Vulnerabilities in Institutionally Complex Water Systems. Journal of Water Resources Planning and Management - ASCE, 2022, 148, .	2.6	8
39	Exploring a Direct Policy Search Framework for Multiobjective Optimization of a Microgrid Energy Management System. , 2020, , .		5
40	Water Resources Planning and Management in a Changing Climate and Society. UNIPA Springer Series, 2021, , 197-215.	0.1	0
41	Policy Representation Learning for Multiobjective Reservoir Policy Design With Different Objective Dynamics. Water Resources Research, 2021, 57, e2020WR029329.	4.2	8
42	Exploring future vulnerabilities of subalpine Italian regulated lakes under different climate scenarios: bottomâ€up vs top-down and CMIP5 vs CMIP6. Journal of Hydrology: Regional Studies, 2021, 38, 100973.	2.4	3
43	Overview of hydropower resources and development in Uganda. AIMS Energy, 2021, 9, 1299-1320.	1.9	7
44	Attention to values helps shape convergence research. Climatic Change, 2022, 170, 1.	3.6	2
45	From Stream Flows to Cash Flows: Leveraging Evolutionary Multiâ€Objective Direct Policy Search to Manage Hydrologic Financial Risks. Water Resources Research, 2022, 58, .	4.2	6
46	Power and Pathways: Exploring Robustness, Cooperative Stability, and Power Relationships in Regional Infrastructure Investment and Water Supply Management Portfolio Pathways. Earth's Future, 2022, 10, .	6.3	7
47	Impact of Interâ€Utility Agreements on Cooperative Regional Water Infrastructure Investment and Management Pathways. Water Resources Research, 2022, 58, .	4.2	7
48	Representing Socioâ€Economic Uncertainty in Human System Models. Earth's Future, 2022, 10, .	6.3	19
49	Unveiling uncertainties to enhance sustainability transformations in infrastructure decision-making. Current Opinion in Environmental Sustainability, 2022, 55, 101172.	6.3	7
50	Possibilistic response surfaces: incorporating fuzzy thresholds into bottom-up flood vulnerability analysis. Hydrology and Earth System Sciences, 2021, 25, 6421-6435.	4.9	1
51	Optimized economic operation of energy storage integration using improved gravitational search algorithm and dual stage optimization. Journal of Energy Storage, 2022, 50, 104591.	8.1	14
52	Post-Mordm: Mapping Policies to Synthesize Optimization and Robustness Results for Decision-Maker Compromise. SSRN Electronic Journal, 0, , .	0.4	0
53	Advancing Reservoir Operations Modelling in Swat to Reduce Socio-Ecological Tradeoffs. SSRN Electronic Journal, 0, , .	0.4	0
54	Participatory design of robust and sustainable development pathways in the Omo-Turkana river basin. Journal of Hydrology: Regional Studies, 2022, 41, 101116.	2.4	3

#	ARTICLE	IF	CITATIONS
55	A Review of Decision Making Under Deep Uncertainty Applications Using Green Infrastructure for Flood Management. Earth's Future, 2022, 10 , .	6.3	11
56	Hard-coupling water and power system models increases the complementarity of renewable energy sources. Applied Energy, 2022, 321, 119386.	10.1	4
57	Assessing the impact of the temporal resolution of performance indicators on optimal decisions of a water resources system. Journal of Hydrology, 2022, 612, 128185.	5 . 4	2
58	Uncertainty Analysis in Multiâ€Sector Systems: Considerations for Risk Analysis, Projection, and Planning for Complex Systems. Earth's Future, 2022, 10, .	6.3	16
59	post-MORDM: Mapping policies to synthesize optimization and robustness results for decision-maker compromise. Environmental Modelling and Software, 2022, 157, 105491.	4.5	2
60	Integrating local and global projections for the generation of water demand scenarios in the Red River Basin, Vietnam. IFAC-PapersOnLine, 2022, 55, 43-48.	0.9	0
62	Does hydropower production influence agriculture industry growth to achieve sustainable development in the EU economies?. Environmental Science and Pollution Research, 2023, 30, 12825-12843.	5. 3	9
63	Exploring the Consistency of Water Scarcity Inferences between Large-Scale Hydrologic and Node-Based Water System Model Representations of the Upper Colorado River Basin. Journal of Water Resources Planning and Management - ASCE, 2023, 149, .	2.6	2
64	Scale-invariant sensitivity for multi-purpose water reservoirs management with temporal scale-dependent modeling. Journal of Environmental Management, 2023, 339, 117862.	7.8	0
65	Stochastic Watershed Model Ensembles for Longâ€Range Planning: Verification and Validation. Water Resources Research, 2023, 59, .	4.2	5
66	Optimal water allocation integrated with water supply, replenishment, and spill in the in-series reservoir based on an improved decomposition and dynamic programming aggregation method. Journal of Hydroinformatics, 2023, 25, 989-1003.	2.4	0
67	Beyond engineering: A review of reservoir management through the lens of wickedness, competing objectives and uncertainty. Environmental Modelling and Software, 2023, 167, 105777.	4.5	3
68	Technical note: Statistical generation of climate-perturbed flow duration curves. Hydrology and Earth System Sciences, 2023, 27, 2499-2507.	4.9	0
69	Bagged stepwise cluster analysis for probabilistic river flow prediction. Journal of Hydrology, 2023, 625, 129995.	5.4	1
70	How Should Diverse Stakeholder Interests Shape Evaluations of Complex Water Resources Systems Robustness When Confronting Deeply Uncertain Changes?. Earth's Future, 2023, 11, .	6.3	1
71	Spatio-temporal analysis of river channel pattern in lower course of River Ravi using GIS and remote sensing. Applied Geomatics, 2023, 15, 759-772.	2.5	1
72	Evaluating Implementation Uncertainties and Defining Safe Operating Spaces for Deeply Uncertain Cooperative Multiâ€City Water Supply Investment Pathways. Water Resources Research, 2023, 59, .	4.2	0
73	Identifying robust adaptive irrigation operating policies to balance deeply uncertain economic food production and groundwater sustainability trade-offs. Journal of Environmental Management, 2023, 345, 118901.	7.8	3

CITATION REPORT

#	Article	IF	CITATIONS
74	Ecological security evaluation for Changtan Reservoir in Taizhou City, East China, based on the DPSIR model. Human and Ecological Risk Assessment (HERA), 2023, 29, 1064-1090.	3.4	3
75	Theory and practice of basin-wide floodwater utilization: Typical implementing measures in China. Journal of Hydrology, 2024, 628, 130520.	5.4	1
76	FIND: A Synthetic weather generator to control drought Frequency, Intensity, and Duration. Environmental Modelling and Software, 2024, 172, 105927.	4.5	0
77	Subsampling and space-filling metrics to test ensemble size for robustness analysis with a demonstration in the Colorado River Basin. Environmental Modelling and Software, 2024, 172, 105933.	4.5	0