Single-phase ejector geometry optimisation by means of algorithm and a surrogate CFD model

Energy 164, 46-64 DOI: 10.1016/j.energy.2018.08.176

Citation Report

CITATION REPORT

#	Article	IF	CITATIONS
1	An investigation of geometrical factors of multi-stage steam ejectors for air suction. Energy, 2019, 186, 115808.	8.8	18
2	Numerical Simulation of a Supersonic Ejector for Vacuum Generation with Explicit and Implicit Solver in Openfoam. Energies, 2019, 12, 3553.	3.1	5
3	A novel methodology for designing a multi-ejector refrigeration system. Applied Thermal Engineering, 2019, 151, 26-37.	6.0	27
4	Seasonal performance optimisation of thermally driven ejector cooling cycles working with R134a. International Journal of Refrigeration, 2019, 104, 356-366.	3.4	9
5	Current Advances in Ejector Modeling, Experimentation and Applications for Refrigeration and Heat Pumps. Part 1: Single-Phase Ejectors. Inventions, 2019, 4, 15.	2.5	45
6	A comprehensive review of ejector design, performance, and applications. Applied Energy, 2019, 240, 138-172.	10.1	230
7	Ejectors on the cutting edge: The past, the present and the perspective. Energy, 2019, 170, 998-1003.	8.8	70
8	A techno-economic analysis of geothermal ejector cooling system. Energy, 2020, 193, 116760.	8.8	21
9	Progress and challenges in utilization of ejectors for cryogenic cooling. Applied Thermal Engineering, 2020, 167, 114783.	6.0	18
10	Optimum Nozzle Design for a Viscous Liquid by Using Multi-Objective Search Approaches. IEEE Access, 2020, 8, 112688-112707.	4.2	1
11	Numerical Modeling of Ejector and Development of Improved Methods for the Design of Ejector-Assisted Refrigeration System. Energies, 2020, 13, 5835.	3.1	5
12	Simulation and Optimization of Venturi Injector by Machine Learning Algorithms. Journal of Irrigation and Drainage Engineering - ASCE, 2020, 146, .	1.0	5
13	Thermodynamic analysis of the optimal operating conditions for a two-stage CO2 refrigeration unit in warm climates with and without ejector. Applied Thermal Engineering, 2021, 185, 116284.	6.0	19
14	Performance investigation of a multiâ€nozzle ejector for proton exchange membrane fuel cell system. International Journal of Energy Research, 2021, 45, 3031-3048.	4.5	29
15	Synergistic effect of geometric parameters on CO2 ejector based on local exergy destruction analysis. Applied Thermal Engineering, 2021, 184, 116256.	6.0	14
16	Automated optimization of double heater convective polymerase chain reaction devices based on CFD simulation database and artificial neural network model. Biomedical Microdevices, 2021, 23, 20.	2.8	2
17	Multi-scale evaluation of ejector performances: The influence of refrigerants and ejector design. Applied Thermal Engineering, 2021, 186, 116502.	6.0	23
18	Pressure Exchanger for Energy Recovery in a Trans-Critical CO2 Refrigeration System. Energies, 2021, 14, 1754.	3.1	4

CITATION REPORT

#	Article	IF	CITATIONS
19	An applicable surface heating in a two-phase ejector refrigeration. European Physical Journal Plus, 2022, 137, 1.	2.6	9
20	Numerical study on the interaction of geometric parameters of a transcritical CO2 two-phase ejector using response surface methodology and genetic algorithm. Applied Thermal Engineering, 2022, 214, 118799.	6.0	8
21	Effect of Superheat Steam on Ejector in Distilled Water Preparation System for Medical Injection. Entropy, 2022, 24, 960.	2.2	3
22	A review of key components of hydrogen recirculation subsystem for fuel cell vehicles. Energy Conversion and Management: X, 2022, 15, 100265.	1.6	8
23	Computational 2D parameter study of suction and oscillatory blowing actuator with experimental validation. Aerospace Science and Technology, 2022, 129, 107813.	4.8	2
24	Verification of the analytical design model of a subcritical air ejector and assessment of the behavior of the manufactured machine under different operating conditions. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 8024-8039.	2.3	0
25	Physics-based surrogate model for reinforced concrete corrosion simulation. Results in Engineering, 2022, 16, 100659.	5.1	7
26	Optimization Design and Performance Evaluation of R1234yf Ejectors for Ejector-Based Refrigeration Systems. Entropy, 2022, 24, 1632.	2.2	3
27	Optimization of Two-Phase Ejector Mixing Chamber Length under Varied Liquid Volume Fraction. Entropy, 2023, 25, 7.	2.2	0
28	A 1D model for the unsteady gas dynamics of ejectors. Energy, 2023, 267, 126551.	8.8	3
29	Designing Hydrogen Recirculation Ejectors for Proton Exchange Membrane Fuel Cell Systems. Energies, 2023, 16, 1201.	3.1	2
30	Effects of Influencing Factors on the Performance and Morphology of Shock waves in Ejectors: A Review. International Journal of Modern Physics C, 0, , .	1.7	0
31	Working mechanism and characteristics analysis of a novel configuration of a supersonic ejector. Energy, 2023, 278, 128010.	8.8	1
32	A comprehensive investigation of non-condensable gas and condenser temperature effects on power plant ejector performance by considering condensation flow regime. Thermal Science and Engineering Progress, 2023, 45, 102128.	2.7	2
33	Multi-response optimization of ejector for proton exchange membrane fuel cell anode systems by the response surface methodology and desirability function approach. International Journal of Green Energy, 0, , 1-18.	3.8	0
35	Shape optimization and flow irreversibility mechanism analysis of normal temperature, high temperature and wet stream ejectors. Applied Thermal Engineering, 2024, 242, 122468.	6.0	0
36	Venturi Injector Optimization for Precise Powder Transport for Directed Energy Deposition Manufacturing Using the Discrete Element Method and Genetic Algorithms. Materials, 2024, 17, 911.	2.9	0