Sustaining the Future of Plant Breeding: The Critical Ro Germplasm System

Crop Science 58, 451-468 DOI: 10.2135/cropsci2017.05.0303

Citation Report

#	Article	IF	CITATIONS
1	Plant Genebanks: Present Situation and Proposals for Their Improvement. the Case of the Spanish Network. Frontiers in Plant Science, 2018, 9, 1794.	1.7	45
2	2017 Frank Meyer Medal for Plant Genetic Resources Lecture: Stewards of Our Agricultural Future. Crop Science, 2018, 58, 2233-2240.	0.8	12
4	Addressing Reproducibility in Cryopreservation, and Considerations Necessary for Commercialization and Community Development in Support of Genetic Resources of Aquatic Species. Journal of the World Aquaculture Society, 2018, 49, 644-663.	1.2	26
5	Identification of Founding Accessions and Patterns of Relatedness and Inbreeding Derived from Historical Pedigree Data in a White Clover Germplasm Collection in New Zealand. Crop Science, 2019, 59, 2087-2099.	0.8	7
6	A Road Map for Conservation, Use, and Public Engagement around North America's Crop Wild Relatives and Wild Utilized Plants. Crop Science, 2019, 59, 2302-2307.	0.8	20
7	Genetic Diversity of Bangladeshi Jackfruit (Artocarpus heterophyllus) over Time and Across Seedling Sources. Economic Botany, 2019, 73, 233-248.	0.8	14
8	Genomic Designing of Climate-Smart Pulse Crops. , 2019, , .		5
9	Genomic Designing for Climate-Smart Pea. , 2019, , 265-358.		3
10	Training in Plant Genetic Resources Management: A Way Forward. Crop Science, 2019, 59, 853-857.	0.8	5
11	Survey Identifies Essential Plant Genetic Resources Training Program Components. Crop Science, 2019, 59, 2308-2316.	0.8	5
12	Using Living Germplasm Collections to Characterize, Improve, and Conserve Woody Perennials. Crop Science, 2019, 59, 2365-2380.	0.8	33
13	Trans Situ Conservation of Crop Wild Relatives. Crop Science, 2019, 59, 2387-2403.	0.8	14
14	Plants: Crop diversity preâ€breeding technologies as agrarian care coâ€opted?. Area, 2020, 52, 235-243.	1.0	7
15	Combining ability of cytoplasmic male sterility on yield and agronomic traits of sorghum for grain and biomass dual-purpose use. Industrial Crops and Products, 2020, 157, 112894.	2.5	5
16	The problems of ex situ genetic conservation at the universities in developing countries: lesson learn from Universitas Gadjah Mada. IOP Conference Series: Earth and Environmental Science, 2020, 482, 012043.	0.2	0
17	Field apple scab susceptibility of a diverse Malus germplasm collection identifies potential sources of resistance for apple breeding. CABI Agriculture and Bioscience, 2020, 1, .	1.1	26
18	Evaluation of diverse germplasm of cowpea [<i>Vigna unguiculata</i> (L.) Walp.] against bruchid [<i>Callosobruchus maculatus</i> (Fab.)] and correlation with physical and biochemical parameters of seed. Plant Genetic Resources: Characterisation and Utilisation, 2020, 18, 120-129.	0.4	6
19	Old Ways, New Ways—Scaling Up from Customary Use of Plant Products to Commercial Harvest Taking a Multifunctional, Landscape Approach. Land, 2020, 9, 171.	1.2	8

	Сітатіс	CITATION REPORT	
#	Article	IF	CITATIONS
20	Making science more effective for agriculture. Advances in Agronomy, 2020, , 153-177.	2.4	34
21	Enhancing the searchability, breeding utility, and efficient management of germplasm accessions in the USDAâ~'ARS rice collection. Crop Science, 2020, 60, 3191-3211.	0.8	11
22	Reverse introduction of two―and sixâ€rowed barley lines from the United States into Egypt. Crop Science, 2020, 60, 812-829.	0.8	1
23	Harnessing wild relatives of pearl millet for germplasm enhancement: Challenges and opportunities. Crop Science, 2021, 61, 177-200.	0.8	22
24	<i>Crop Science</i> special issue: Adapting agriculture to climate change: A walk on the wild side. Crop Science, 2021, 61, 32-36.	0.8	54
25	Optimization of in vitro germination and cryopreservation conditions for preserving date palm pollen in the USDA National Plant Germplasm System. Plant Cell, Tissue and Organ Culture, 2021, 144, 223-232.	1.2	11
26	The unique role of seed banking and cryobiotechnologies in plant conservation. Plants People Planet, 2021, 3, 83-91.	1.6	46
27	Germplasm Collection, Genetic Resources, and Gene Pools in Alfalfa. Compendium of Plant Genomes, 2021, , 43-64.	0.3	2
28	Unraveling the Complex Hybrid Ancestry and Domestication History of Cultivated Strawberry. Molecular Biology and Evolution, 2021, 38, 2285-2305.	3.5	48
29	Omics resources and omics-enabled approaches for achieving high productivity and improved quality in pea (Pisum sativum L.). Theoretical and Applied Genetics, 2021, 134, 755-776.	1.8	28
30	Tapping Diversity From the Wild: From Sampling to Implementation. Frontiers in Plant Science, 2021, 12, 626565.	1.7	23
32	Identification of new sources of heat tolerance in cultivated and wild tomatoes. Euphytica, 2021, 217, 1.	0.6	12
33	A Genome-Wide Genetic Diversity Scan Reveals Multiple Signatures of Selection in a European Soybean Collection Compared to Chinese Collections of Wild and Cultivated Soybean Accessions. Frontiers in Plant Science, 2021, 12, 631767.	1.7	16
34	Phenotypic Diversity and Productivity of Medicago sativa Subspecies from Drought-Prone Environments in Mediterranean Type Climates. Plants, 2021, 10, 862.	1.6	7
35	The UCR Minicore: a resource for cowpea research and breeding. , 2021, 3, e95.		26
36	Genetic Variability, Correlation among Agronomic Traits, and Genetic Progress in a Sugarcane Diversity Panel. Agriculture (Switzerland), 2021, 11, 533.	1.4	9
37	Germplasm Conservation: Instrumental in Agricultural Biodiversity—A Review. Sustainability, 2021, 13, 6743.	1.6	23
38	Germplasm exchange is critical to conservation of biodiversity and global food security. Agronomy Journal, 2021, 113, 2969-2979.	0.9	11

#	Article	IF	CITATIONS
39	A Critical Review of the Current Global Ex Situ Conservation System for Plant Agrobiodiversity. I. History of the Development of the Global System in the Context of the Political/Legal Framework and Its Major Conservation Components. Plants, 2021, 10, 1557.	1.6	34
40	Breeding Driven Enrichment of Genetic Variation for Key Yield Components and Grain Starch Content Under Drought Stress in Winter Wheat. Frontiers in Plant Science, 2021, 12, 684205.	1.7	16
41	Combining abilities and elite germplasm enhancement across US public sorghum breeding programs. Crop Science, 0, , .	0.8	2
42	HTS-Based Diagnostics of Sugarcane Viruses: Seasonal Variation and Its Implications for Accurate Detection. Viruses, 2021, 13, 1627.	1.5	12
43	A Critical Review of the Current Global Ex Situ Conservation System for Plant Agrobiodiversity. II. Strengths and Weaknesses of the Current System and Recommendations for Its Improvement. Plants, 2021, 10, 1904.	1.6	18
44	Correlation and combining ability of main chemical components in sorghum stems and leaves using cytoplasmic male sterile lines for improving biomass feedstocks. Industrial Crops and Products, 2021, 167, 113552.	2.5	2
45	Wild relatives of plants as sources for the development of abiotic stress tolerance in plants. , 2022, , 471-518.		13
46	Quantile regression in genomic selection for oligogenic traits in autogamous plants: A simulation study. PLoS ONE, 2021, 16, e0243666.	1.1	6
47	Proso Millet (Panicum miliaceum L.) Breeding: Progress, Challenges and Opportunities. , 2019, , 223-257.		20
49	Detection of Adaptive Genetic Diversity in Wild Potato Populations and Its Implications in Conservation of Potato Germplasm. American Journal of Plant Sciences, 2020, 11, 1562-1578.	0.3	5
50	Opportunities and Challenges to Improve a Public Research Program in Plant Breeding and Enhance Underutilized Plant Genetic Resources in the Tropics. Genes, 2021, 12, 1584.	1.0	2
51	Unlocking genebanks to ensure food and nutrient security and environmental stability. Acta Horticulturae, 2020, , 1-8.	0.1	Ο
52	Effective Categorization of Tolerance to Salt Stress through Clustering Prunus Rootstocks According to Their Physiological Performances. Horticulturae, 2021, 7, 542.	1.2	10
53	Genomics of Plant Gene Banks: Prospects for Managing and Delivering Diversity in the Digital Age. Population Genomics, 2021, , 1.	0.2	Ο
54	Unlocking Plum Genetic Potential: Where Are We At?. Horticulturae, 2022, 8, 128.	1.2	7
55	Morphological variability of indigenous cherry plum (Prunus divaricata Ledeb.) accessions. European Journal of Horticultural Science, 2022, 87, .	0.3	Ο
56	Developing country demand for crop germplasm conserved by the U.S. National Plant Germplasm System. CABI Agriculture and Bioscience, 2022, 3, .	1.1	0
57	Origin, Maturity Group and Seed Coat Color Influence Carotenoid and Chlorophyll Concentrations in Soybean Seeds. Plants, 2022, 11, 848.	1.6	8

#	Article	IF	CITATIONS
58	Introgression of chromosome 1P from Agropyron cristatum reduces leaf size and plant height to improve the plant architecture of common wheat. Theoretical and Applied Genetics, 2022, 135, 1951-1963.	1.8	11
59	Fruit and vegetable biodiversity for nutritionally diverse diets: Challenges, opportunities, and knowledge gaps. Global Food Security, 2022, 33, 100618.	4.0	6
60	Leveraging National Germplasm Collections to Determine Significantly Associated Categorical Traits in Crops: Upland and Pima Cotton as a Case Study. Frontiers in Plant Science, 2022, 13, 837038.	1.7	0
61	Exploring the diversity and genetic structure of the U.S. National Cultivated Strawberry Collection. Horticulture Research, 0, , .	2.9	10
62	Development of an Agrobacterium-mediated CRISPR/Cas9 system in pea (Pisum sativum L.). Crop Journal, 2023, 11, 132-139.	2.3	22
63	Global dependence on Corn Belt Dent maize germplasm: Challenges and opportunities. Crop Science, 2022, 62, 2039-2066.	0.8	3
64	An inventory of crop wild relatives and wildâ \in utilized plants in Canada. Crop Science, 0, , .	0.8	2
65	Discovery and Domestication of New Fruit Trees in the 21st Century. Plants, 2022, 11, 2107.	1.6	5
66	Simple Sequence Repeat Markers Reveal Genetic Diversity and Population Structure of Bolivian Wild and Cultivated Tomatoes (Solanum lycopersicum L.). Genes, 2022, 13, 1505.	1.0	2
67	Management and Utilization of Plant Genetic Resources for a Sustainable Agriculture. Plants, 2022, 11, 2038.	1.6	31
68	Genomic and Bioinformatic Resources for Next-Generation Breeding Approaches Towards Enhanced Stress Tolerance in Cereals. , 2022, , 453-493.		2
69	Simulation Modeling of a High-Throughput Oyster Cryopreservation Pathway. Journal of Shellfish Research, 2022, 41, .	0.3	5
70	Mechanistic insights derived from re-establishment of desiccation tolerance in germinating xerophytic seeds: Caragana korshinskii as an example. Frontiers in Plant Science, 0, 13, .	1.7	2
71	Identification of diverse agronomic traits in chickpea (<scp><i>Cicer arietinum</i></scp> L.) germplasm lines to use in crop improvement. , 2023, 5, .		1
72	Advances in Summer Squash (Cucurbita pepo L.) Molecular Breeding Strategies. , 2023, , 163-215.		2
73	A draft Diabrotica virgifera virgiferaÂgenome: insights into control and host plant adaption by a major maize pest insect. BMC Genomics, 2023, 24, .	1.2	2
74	Safeguarding and Using Fruit and Vegetable Biodiversity. , 2023, , 553-567.		0
75	Methods for Cryopreserving of Date Palm Pollen. Springer Protocols, 2023, , 519-525.	0.1	0

CITATION REPORT

#	ARTICLE	IF	CITATIONS
76	Genomic insights into the NPGS intermediate wheatgrass germplasm collection. Crop Science, 2023, 63, 1381-1396.	0.8	2
77	Utilization of Wild Food Plants for Crop Improvement Programs. , 2023, , 259-288.		0
85	Conservation and Use of Temperate Fruit and Nut Genetic Resources. , 2023, , 1-25.		0
87	Genetic Improvement of Pea (Pisum sativum L.) for Food and Nutritional Security. , 2023, , 1-37.		0
89	Recent Advancements in Proso Millet (Panicum miliaceum L.) Breeding for Quality and Yield Improvement. , 2024, , 423-442.		0

CITATION REPORT