Big data analytics in smart grids: a review

Energy Informatics

1,

DOI: 10.1186/s42162-018-0007-5

Citation Report

#	Article	IF	CITATIONS
1	Application of Big Data in Smart Grids: Energy Analytics. , 2019, , .		7
2	Data Quality Management Framework for Smart Grid Systems. Lecture Notes in Business Information Processing, 2019, , 299-310.	1.0	10
3	Histogram Visualization of Smart Grid data using Mapreduce algorithm. , 2019, , .		0
4	Comprehensive Analysis System and Scenarios of Electric IoT Big Data. , 2019, , .		3
5	Big Data Platform for Smart Grids Power Consumption Anomaly Detection. , 0, , .		7
6	Data Analytics for Short Term Price and Load Forecasting in Smart Grids using Enhanced Recurrent Neural Network. , 2019, , .		7
7	A Dynamical Behavior Measurement Algorithm for Smart Meter Data: An Analytical Study. , 2019, , .		O
8	Applying the Smart Grid Architecture Model for Designing and Validating System-of-Systems in the Power and Energy Domain: A European Perspective. Energies, 2019, 12, 258.	3.1	100
9	Fog Computing for Realizing Smart Neighborhoods in Smart Grids. Computers, 2020, 9, 76.	3.3	11
10	Active consumer participation in smart energy systems. Energy and Buildings, 2020, 227, 110359.	6.7	48
11	Secure data analytics for smart grid systems in a sustainable smart city: Challenges, solutions, and future directions. Sustainable Computing: Informatics and Systems, 2020, 28, 100427.	2.2	24
12	Extended Flow-Based Security Assessment for Real-Sized Transmission Network Planning. Energies, 2020, 13, 3363.	3.1	O
13	Privacy Preservation of Data-Driven Models in Smart Grids Using Homomorphic Encryption. Information (Switzerland), 2020, 11, 357.	2.9	14
14	Sustainability Outcomes of Green Processes in Relation to Industry 4.0 in Manufacturing: Systematic Review. Sustainability, 2020, 12, 5968.	3.2	79
15	Distributed Fog Computing Architecture for Real-Time Anomaly Detection in Smart Meter Data. , 2020, , .		9
16	Role of Big Data Analytics in Power System Application. E3S Web of Conferences, 2020, 184, 01017.	0.5	7
17	Big Data and IoT System for Utility Power Planning using Commercial Cloud Database. , 2020, , .		3
18	Algorithm for Customizing the Material Selection Process for Application in Power Engineering. Energies, 2020, 13, 6458.	3.1	1

#	Article	IF	Citations
19	Adaptive Machine Learning for Automated Modeling of Residential Prosumer Agents. Energies, 2020, 13, 2250.	3.1	9
20	PMU Visibility Graphs. , 2020, , .		0
21	Execution of Real-time Wide Area Monitoring System with Big Data Functions and Practices. , 2020, , .		5
22	Spectral Analysis of Electricity Demand Using Hilbert–Huang Transform. Sensors, 2020, 20, 2912.	3.8	17
23	Mind the gap- open communication protocols for vehicle grid integration. Energy Informatics, 2020, 3,	2.3	52
24	Big data monetization throughout Big Data Value Chain: a comprehensive review. Journal of Big Data, 2020, 7, .	11.0	87
25	The Transfer Matrix Method: Analysis of Nonuniform Multiport Systems. IEEE Access, 2020, 8, 23650-23662.	4.2	10
26	Data-driven exploratory models of an electric distribution network for fault prediction and diagnosis. Computing (Vienna/New York), 2020, 102, 1199-1211.	4.8	8
27	Smart Grid Big Data Analytics: Survey of Technologies, Techniques, and Applications. IEEE Access, 2021, 9, 59564-59585.	4.2	67
28	Improvement of substation Monitoring aimed to improve its efficiency with the help of Big Data Analysis ^{**} . Journal of Intelligent Systems, 2021, 30, 499-510.	1.6	7
29	Synergizing PMU Data From Multiple Locations in Indian Power Grid-Case Study. IEEE Access, 2021, 9, 63980-63994.	4.2	4
30	IAPSG: A Novel Intelligent Application Platform for Smart Grid. IOP Conference Series: Earth and Environmental Science, 0, 632, 042055.	0.3	0
31	Cloud-Based Big Data Analysis Tools and Techniques Towards Sustainable Smart City Services. Advances in Computational Intelligence and Robotics Book Series, 2021, , 63-90.	0.4	2
32	Big Data for Digital Transformation of Public Services. Advances in Business Strategy and Competitive Advantage Book Series, 2021, , 250-266.	0.3	5
33	Evaluation and Assessment of Smart Grid Reliability Using Fuzzy Multi-criteria Decision-Making. Power Systems, 2021, , 67-104.	0.5	3
34	Big Data Analytics for Smart Grids, the Cyberphysical System in Energy—A Bibliographic Review. Lecture Notes in Networks and Systems, 2021, , 437-447.	0.7	O
35	Implementing Ai Principles: Frameworks, Processes, and Tools. SSRN Electronic Journal, 0, , .	0.4	4
36	Cyber Physical Defense Framework for Distributed Smart Grid Applications. Frontiers in Energy Research, 2021, 8, .	2.3	7

#	Article	IF	CITATIONS
37	Big data reliability: A critical review. Journal of Intelligent and Fuzzy Systems, 2021, 40, 5501-5516.	1.4	5
38	An empirical analysis of applications of artificial intelligence algorithms in wind power technology innovation during 1980–2017. Journal of Cleaner Production, 2021, 297, 126536.	9.3	18
39	Trend Analysis of Modal Identification based Real-time Power System Oscillations using L1 Trend Filtering. International Journal of Robotics and Control Systems, 2021, 1, 116-130.	1.0	1
40	Data Consistency for Data-Driven Smart Energy Assessment. Frontiers in Big Data, 2021, 4, 683682.	2.9	2
41	Importance of implementing smart renewable energy system using heuristic neural decision support system. Sustainable Energy Technologies and Assessments, 2021, 45, 101185.	2.7	6
42	Application of Enhanced CPC for Load Identification, Preventive Maintenance and Grid Interpretation. Energies, 2021, 14, 3275.	3.1	3
43	Smart Meters Time Series Clustering for Demand Response Applications in the Context of High Penetration of Renewable Energy Resources. Energies, 2021, 14, 3458.	3.1	7
44	Prosumer in smart grids based on intelligent edge computing: A review on Artificial Intelligence Scheduling Techniques. Ain Shams Engineering Journal, 2022, 13, 101504.	6.1	28
46	A comprehensive review on IoTâ€based infrastructure for smart grid applications. IET Renewable Power Generation, 2021, 15, 3761-3776.	3.1	17
47	Simple and effective descriptive analysis of missing data anomalies in smart home energy consumption readings. Journal of Energy Systems, 2021, 5, 199-220.	1.5	7
48	A Data Analytics/Big Data Framework for Advanced Metering Infrastructure Data. Sensors, 2021, 21, 5650.	3.8	13
49	Time-Series-Based Queries on Stable Transportation Networks Equipped with Sensors. ISPRS International Journal of Geo-Information, 2021, 10, 531.	2.9	4
50	Energy Profile Clustering with Balancing Mechanism towards more Reliable Distributed Virtual Nodes for Demand Response., 2021,,.		0
51	Energy fault detection for small buildings based on peer comparison of estimated operating status. Energy and Buildings, 2021, 246, 111110.	6.7	3
52	Towards next generation virtual power plant: Technology review and frameworks. Renewable and Sustainable Energy Reviews, 2021, 150, 111358.	16.4	95
53	A comprehensive overview of framework for developing sustainable energy internet: From things-based energy network to services-based management system. Renewable and Sustainable Energy Reviews, 2021, 150, 111409.	16.4	41
54	Artificial intelligence techniques for enabling Big Data services in distribution networks: A review. Renewable and Sustainable Energy Reviews, 2021, 150, 111459.	16.4	62
55	Solar farm voltage anomaly detection using high-resolution <mml:math altimg="si23.svg" display="inline" id="d1e442" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi<math>^1/4</mml:mi<math></mml:math> PMU data-driven unsupervised machine learning. Applied Energy, 2021, 303, 117656.	10.1	13

#	Article	IF	Citations
56	Industry 4.0-Based Enterprise Information System for Demand-Side Management and Energy Efficiency. , $2021, 1570-1591$.		0
57	Evaluation of Missing Data Imputation Methods for an Enhanced Distributed PV Generation Prediction. Advances in Intelligent Systems and Computing, 2020, , 590-609.	0.6	8
58	Industrial Networks and IIoT: Now and Future Trends. , 2020, , 3-55.		34
59	Data Science and AI in IoT Based Smart Healthcare: Issues, Challenges and Case Study. Studies in Computational Intelligence, 2021, , 415-439.	0.9	2
60	The Role of Big Data Analytics in Smart Grid Management. Advances in Intelligent Systems and Computing, 2020, , 403-412.	0.6	11
61	Time Series Clustering Analysis of Energy Consumption Data. , 2020, , .		2
62	NILM-based approach for energy efficiency assessment of household appliances. Energy Informatics, 2020, 3, .	2.3	14
63	Machine learning roles in advancing the power network stability due to deployments of renewable energies and electric vehicles. International Journal of Emerging Electric Power Systems, 2020, 21, .	0.8	4
64	Review of adaptive protection methods for microgrids. AIMS Energy, 2019, 7, 557-578.	1.9	27
65	Industry 4.0-Based Enterprise Information System for Demand-Side Management and Energy Efficiency. Advances in Computer and Electrical Engineering Book Series, 2020, , 137-163.	0.3	14
66	Fault Diagnosis of Smart Grids Based on Deep Learning Approach. , 2021, , .		8
67	A Conceptual and Systematics for Intelligent Power Management System-Based Cloud Computing: Prospects, and Challenges. Applied Sciences (Switzerland), 2021, 11, 9820.	2.5	14
68	Smart Grid Data Management in a Heterogeneous Environment with a Hybrid Load Forecasting Model. Applied Sciences (Switzerland), 2021, 11, 9600.	2.5	3
69	ADVANCED DATA ANALYSIS OF SMART GRID CONSUMPTION DATA. , 2020, , .		0
70	Activity Detection And Modeling Using Smart Meter Data: Concept And Case Studies. , 2020, , .		2
71	Big Data in Smart Energy Systems: A Critical Review. AJIT-e Online Academic Journal of Information Technology, 2020, 11, 11-26.	0.6	0
72	Smart Grid Technologies as a Concept of Innovative Energy Development: Initial Proposals for the Development of Ukraine. Lighting Engineering & Power Engineering, 2021, 60, 47-65.	0.2	2
73	Fog Computing for Efficient Predictive Analysis in Smart Grids. , 2021, , .		0

#	ARTICLE	IF	CITATIONS
74	Design and Life Cycle Data Analysis for Smart Metering. Communications in Computer and Information Science, 2020, , 282-295.	0.5	1
76	Evaluative analysis of next generation mobile networks in future smart grid in developing countries. , 2019, , .		1
77	The Laws of Big Data. IFIP Advances in Information and Communication Technology, 2020, , 16 -28.	0.7	0
78	Big Data Application for Security of Renewable Energy Resources. , 2020, , 237-254.		1
79	Deep Analytics for Management andÂCybersecurity of the National EnergyÂGrid. Lecture Notes in Computer Science, 2020, , 302-315.	1.3	0
80	Energy Theft in Smart Grids: A Survey on Data-Driven Attack Strategies and Detection Methods. IEEE Access, 2021, 9, 159291-159312.	4.2	10
81	Rapid rise of decarbonization potentials of photovoltaics plus electric vehicles in residential houses over commercial districts. Applied Energy, 2022, 306, 118142.	10.1	23
82	A technique for Effective Metering of Power Consumption in Smart Grid Environment. , 2021, , .		O
83	A Comprehensive Review on Sustainable Aspects of Big Data Analytics for the Smart Grid. Sustainability, 2021, 13, 13322.	3.2	27
84	Microgrid Digital Twins: Concepts, Applications, and Future Trends. IEEE Access, 2022, 10, 2284-2302.	4.2	68
85	Discriminant analysis classification of residential electricity smart meter data. Energy and Buildings, 2022, 258, 111823.	6.7	9
86	Use of Data Analytics in Microgrids: A Survey of Techniques. , 2020, , .		3
87	Privacy-Preserving Market for Smart Grid Data Trading. , 2020, , .		2
88	Data Science-based Sizing Approach for Renewable Energy Systems. , 2020, , .		0
89	Grid-forming Power Converter controller with Artificial Intelligence to Attenuate Inter-Area Modes. , 2020, , .		2
91	The Prediction of Weather's Data for Wind, Power System Using Graph Database. , 2021, , .		1
92	Data Analytics in G3-PLC Deployments for Coverage Prediction. , 2021, , .		0
93	Types of smart systems and their application in power grids. IOP Conference Series: Materials Science and Engineering, 2022, 1216, 012003.	0.6	0

#	ARTICLE	IF	CITATIONS
94	Towards data sharing economy on Internet of Things: a semantic for telemetry data. Journal of Big Data, 2022, 9, .	11.0	16
95	Big Data-Driven Hierarchical Local Area Network Security Risk Event Prediction Algorithm. Scientific Programming, 2022, 2022, 1-13.	0.7	0
98	A novel hybrid machine learning-based frequent item extraction for transactional database. International Journal of Modeling, Simulation, and Scientific Computing, 0, , .	1.4	0
99	Soft Load Shedding Based Demand Control of Residential Consumers. Electronics (Switzerland), 2022, 11, 615.	3.1	2
100	Towards Cognitive Authentication for Smart Healthcare Applications. Sensors, 2022, 22, 2101.	3.8	20
101	A residential labeled dataset for smart meter data analytics. Scientific Data, 2022, 9, 134.	5.3	12
102	Resource Orchestration of Cloud-Edge–based Smart Grid Fault Detection. ACM Transactions on Sensor Networks, 2022, 18, 1-26.	3.6	68
103	Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm. Renewable and Sustainable Energy Reviews, 2022, 160, 112128.	16.4	123
104	Big data analytics opportunities for applications in process engineering. Reviews in Chemical Engineering, 2023, 39, 479-511.	4.4	7
105	A Comparative Analysis of Big Data Technologies using Machine Learning Techniques. , 2021, , .		1
106	A new theoretical understanding of big data analytics capabilities in organizations: a thematic analysis. Journal of Big Data, $2021, 8, .$	11.0	9
107	Microgrid Protection with Penetration of DERs - A Comprehensive Review., 2022,,.		2
108	Understanding Microgrid Sustainability: A Systemic and Comprehensive Review. Energies, 2022, 15, 2906.	3.1	15
109	Smart City Data Science: Towards data-driven smart cities with open research issues. Internet of Things (Netherlands), 2022, 19, 100528.	7.7	49
110	Smart Grid Analytics. Lecture Notes in Energy, 2022, , 173-192.	0.3	1
111	Multi-Source Data Processing and Fusion Method for Power Distribution Internet of Things Based on Edge Intelligence. Frontiers in Energy Research, 2022, 10, .	2.3	7
113	Model-Predictive Control Design for Power System Oscillation Damping via Excitation – A Data-Driven Approach. IEEE Transactions on Power Systems, 2023, 38, 1176-1188.	6.5	7
114	Differentially Private <i>K</i> -Means Clustering Applied to Meter Data Analysis and Synthesis. IEEE Transactions on Smart Grid, 2022, 13, 4801-4814.	9.0	7

#	Article	IF	Citations
115	Evaluating and Improving Model-Based Assessment of Contextual Data Quality in Smart Grids. , 2022, , .		0
116	A Perspective on Research Initiatives in Cybersecurity Engineering for Future SmartGrids., 2022,,.		0
117	Sequential tree recognition method of sensitive data in energy big data center based on rule matching. Journal of Intelligent and Fuzzy Systems, 2022, , 1-12.	1.4	0
118	Teaching Practice of Dragon and Lion Dance in Colleges and Universities with the Support of Big Data Technology. Wireless Communications and Mobile Computing, 2022, 2022, 1-10.	1.2	O
119	Enhancing Market Agility Through Accurate Price Indicators Using Contextualized Data Analytics. Studies in Autonomic, Data-driven and Industrial Computing, 2022, , 51-67.	0.5	0
120	Big Data applications in power systems. , 2023, , 497-506.		0
121	Privacy-Preserved Framework for Short-Term Probabilistic Net Energy Forecasting. IEEE Transactions on Industrial Informatics, 2023, 19, 7613-7623.	11.3	3
122	Water Wave Optimization with Deep Learning Driven Smart Grid Stability Prediction. Computers, Materials and Continua, 2022, 73, 6019-6035.	1.9	0
123	Smart Metering Applications. Lecture Notes in Energy, 2022, , 13-124.	0.3	2
124	Methods and applications for Artificial Intelligence, Big Data, Internet of Things, and Blockchain in smart energy management. Energy and Al, 2023, 11, 100208.	10.6	46
125	Optimal Management of Computer Network Security in the Era of Big Data. Journal of Computer Networks and Communications, 2022, 2022, 1-10.	1.6	1
126	Machine Learning Approach for Smart Distribution Transformers Load Monitoring and Management System. Energies, 2022, 15, 7981.	3.1	4
127	Deep Learning Based Electricity Demand Prediction and Power Grid Operation according to Urbanization Rate and Industrial Differences. Transactions of the Korean Hydrogen and New Energy Society, 2022, 33, 591-597.	0.6	0
128	Deep learning for power quality. Electric Power Systems Research, 2023, 214, 108887.	3.6	24
129	Energy Semantic Data Management and Utilization in Smart Grid Networks with Focus on Circular Economy., 2022,, 1-24.		0
130	A differential evolution modified quantum PSO algorithm for social welfare maximisation in smart grids considering demand response and renewable generation. Microsystem Technologies, 0, , .	2.0	0
131	Overview of Big Data Analytics Technologies in Smart Grid. International Journal of Recent Technology and Engineering, 2023, 11, 36-45.	0.2	0
132	In-Memory Computing Architectures forÂBig Data andÂMachine Learning Applications. Communications in Computer and Information Science, 2022, , 19-33.	0.5	0

#	Article	IF	Citations
133	Data Analytics Applications in Reducing the Emission Footprint of an Energy System. , 2022, , 1-14.		O
134	Analysis and Design of Online State Grid Electric Power Big Data Application Value and Sharing Platform based on BP Algorithm. , 2022, , .		0
135	Identification and classification of heat pump problems in the field and their implication for a user-centric problem recognition. Energy Informatics, 2022, 5, .	2.3	4
136	A Comparative Study ofÂEnergy Domain Ontologies. Lecture Notes in Business Information Processing, 2023, , 43-58.	1.0	2
137	The Transition Toward Merging Big Data Analytics, IoT, and Artificial Intelligence with Blockchain in Transactive Energy Markets., 2022,,.		6
138	Generation Performance Analysis for Installed Photovoltaic Systems on the Maltese Islands. , 2022, , .		1
139	A Comprehensive Review on Big Data for Industries: Challenges and Opportunities. IEEE Access, 2023, 11, 744-769.	4.2	1
140	A Review on Digital Twin Technology in Smart Grid, Transportation System and Smart City: Challenges and Future. IEEE Access, 2023, 11, 17471-17484.	4.2	54
141	A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector. Energies, 2023, 16, 1077.	3.1	12
142	Customer segmentation based on smart meter data analytics: Behavioral similarities with manual categorization for building types. Energy and Buildings, 2023, 283, 112831.	6.7	6
143	Energy Intelligence: The Smart Grid Perspective. Power Systems, 2023, , 35-74.	0.5	1
144	Data sharing in energy systems. Advances in Applied Energy, 2023, 10, 100132.	13.2	8
145	Smart Grids to Lower Energy Usage and Carbon Emissions: Case Study Examples from Colombia and Turkey., 2022,, 1529-1545.		0
146	Future Energy System Analyses. , 2022, , 1-26.		0
147	Efficient Smart Grid Data Updating and Diagnostics for Transformer Loading Management. , 2022, , .		1
148	Data Analytics Applications in Reducing the Emission Footprint of an Energy System. , 2023, , 1-14.		0
149	Internet of Things Integration in Renewable Energy Systems. Advances in Computational Intelligence and Robotics Book Series, 2023, , 159-185.	0.4	1
150	Data Analytics Applications in Digital Energy System Operation. Power Systems, 2023, , 25-52.	0.5	0

#	ARTICLE	IF	CITATIONS
151	Artificial intelligence applications for microgrids integration and management of hybrid renewable energy sources. Artificial Intelligence Review, 2023, 56, 10557-10611.	15.7	15
152	An Artificial-Intelligence-Based Renewable Energy Prediction Program for Demand-Side Management in Smart Grids. Sustainability, 2023, 15, 5453.	3.2	13
153	Time-Series Load Data Analysis for User Power Profiling. , 2023, , .		1
154	Review of Big Data Analytics for Smart Electrical Energy Systems. Energies, 2023, 16, 3581.	3.1	1
155	Data like any other? Sexual and reproductive health, Big Data and the Sustainable Development Goals. Sexualities, 0, , 136346072311525.	1.1	0
156	Smart Contract Design in Distributed Energy Systems: A Systematic Review. Energies, 2023, 16, 4797.	3.1	4
157	A Survey on Big Data Analytics for Load Prediction in Smart Grids. Lecture Notes in Electrical Engineering, 2023, , 23-44.	0.4	0
158	Big data analytics and machine learning techniques to manage the smart grid., 2023,,.		1
159	Electricity sector resilience in response to extreme weather and climate-related events: Tools and datasets. Electricity Journal, 2023, 36, 107290.	2.5	1
160	Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey. Energies, 2023, 16, 5383.	3.1	2
161	Data Analytics Applications in Reducing the Emission Footprint of an Energy System. , 2023, , 3281-3294.		0
162	Energy Semantic Data Management and Utilization in Smart Grid Networks with Focus on Circular Economy., 2023,, 2899-2922.		O
163	A Study on Big Data Collecting and Utilizing Smart Factory Based Grid Networking Big Data Using Apache Kafka. IEEE Access, 2023, , 1-1.	4.2	0
164	Adoption of big data analytics for energy pipeline condition assessment - A systematic review. International Journal of Pressure Vessels and Piping, 2023, 206, 105061.	2.6	3
165	Smart grid technologies and application in the sustainable energy transition: a review. International Journal of Sustainable Energy, 2023, 42, 685-758.	2.4	1
166	Energy Frauds Characterization based on Information Theory Quantifiers. , 2023, , .		0
167	Data Analytics Applications in the Energy Systems Concerning Sustainability., 2023,, 2531-2550.		0
168	Future Energy System Analyses. , 2023, , 2303-2328.		0

#	Article	IF	CITATIONS
169	Research on real-time evaluation model of social work based on big data., 2023,,.		0
170	Big Data in Smart Ecosystems: Trends, Challenges and Future Prospectus. , 2023, , 29-50.		O
171	Machine Learning-Based Error Correction Codes and Communication Protocols for Power Line Communication: An Overview. IEEE Access, 2023, 11, 124760-124781.	4.2	0
172	A Data-Driven Architecture for Smart Renewable Energy Microgrids in Non-Interconnected Zones: A Colombian Case Study. Energies, 2023, 16, 7900.	3.1	1
173	Role of Big Data Analytics in the Internet of Things: A Comprehensive Survey. , 2023, , .		0
174	A perspective on the enabling technologies of explainable AI-based industrial packetized energy management. IScience, 2023, 26, 108415.	4.1	0
175	State of art review of Ghana Power System from the perspective of smart grid implementation. Energy Strategy Reviews, 2023, 50, 101260.	7.3	0
176	Studies on Conventional and Advanced Machine Learning Algorithm Towards Framing of Robust Data Analytics for the Smart Grid Application. Intelligent Systems Reference Library, 2023, , 65-85.	1.2	0
177	Smart Grid Management for Smart City Infrastructure Using Wearable Sensors. Intelligent Systems Reference Library, 2023, , 39-63.	1.2	0
178	Data Analytics for Smart Grids and Applications—Present and Future Directions. Intelligent Systems Reference Library, 2023, , 1-13.	1.2	0
179	The Role of Big Data Analytics in Urban Systems: Review and Prospect for Smart Transport and Healthcare Systems. , 2023 , , $1-26$.		0
181	Compression Techniques for Real-Time Control and Non-Time-Critical Big Data in Smart Grids: A Review. Energies, 2023, 16, 8077.	3.1	0
182	Machine Learning Algorithms for Load Forecasting Based on Big Data., 2023,,.		0
183	A review of in-memory computing for machine learning: architectures, options. International Journal of Web Information Systems, 0, , .	2.4	0
184	Deep Learning Based Effective Technique for Smart Grid Contingency Analysis Using RNN with LSTM. Electric Power Components and Systems, 0, , 1-18.	1.8	0
185	Social welfare evaluation during demand response programs execution considering machine learning-based load profile clustering. Applied Energy, 2024, 357, 122518.	10.1	0
186	Energy systems as a critical infrastructure: Threats, solutions, and future outlook., 2024, , 287-305.		0
187	Machine learning and virtual reality technology in power engineering. AIP Conference Proceedings, 2024, , .	0.4	0

CITATION REPORT

#	Article	IF	CITATIONS
188	Energetic Equilibrium: Optimizing renewable and non-renewable energy sources via particle swarm optimization. Utilities Policy, 2024, 87, 101722.	4.0	0
189	Enhancing protection in AC microgrids: An adaptive approach with ANN and ANFIS models. Computers and Electrical Engineering, 2024, 115, 109103.	4.8	0
190	Analysis and Design of Reliable Converter Topology for Grid Connected PV Systems with ANN Controller., 2023,,.		0
191	Role of IoT technologies in big data management systems: A review and Smart Grid case study. Pervasive and Mobile Computing, 2024, 100, 101905.	3.3	0
192	A Filling Method Based on K-Singular Value Decomposition (K-SVD) for Missing and Abnormal Energy Consumption Data of Buildings. Buildings, 2024, 14, 696.	3.1	0
193	An Exploratory Study on Trust in Blockchain-Enabled Energy Trading. Communications in Computer and Information Science, 2024, , 108-122.	0.5	0