Nitrous Oxide Emissions Increase Exponentially When Are Exceeded in the North China Plain

Environmental Science & amp; Technology 52, 12504-12513

DOI: 10.1021/acs.est.8b03931

Citation Report

#	Article	IF	CITATIONS
2	Oxygen Regulates Nitrous Oxide Production Directly in Agricultural Soils. Environmental Science & Technology, 2019, 53, 12539-12547.	4.6	77
3	Crop straw incorporation interacts with N fertilizer on N2O emissions in an intensively cropped farmland. Geoderma, 2019, 341, 129-137.	2.3	48
4	Weakened growth of croplandâ€N ₂ O emissions in China associated with nationwide policy interventions. Global Change Biology, 2019, 25, 3706-3719.	4.2	46
5	Impacts of six potential HONO sources on HOx budgets and SOA formation during a wintertime heavy haze period in the North China Plain. Science of the Total Environment, 2019, 681, 110-123.	3.9	40
6	Disturbances of electron production, transport and utilization caused by chlorothalonil are responsible for the deterioration of soil denitrification. Soil Biology and Biochemistry, 2019, 134, 100-107.	4.2	21
7	Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nature Climate Change, 2019, 9, 993-998.	8.1	229
8	Greenhouse mitigation strategies for agronomic and grazing lands of the US Southern Great Plains. Mitigation and Adaptation Strategies for Global Change, 2020, 25, 819-853.	1.0	11
9	Data-driven estimates of global nitrous oxide emissions from croplands. National Science Review, 2020, 7, 441-452.	4.6	95
10	Projected background nitrous oxide emissions from cultivable maize and rice farmland in China. Atmospheric Pollution Research, 2020, 11, 1982-1990.	1.8	2
11	Biochar addition mitigates nitrogen loss induced by straw incorporation and nitrogen fertilizer application. Soil Use and Management, 2020, 36, 751-765.	2.6	9
12	Straw amendments did not induce high N ₂ O emissions in nonâ€frozen wintertime conditions: A study in northern Germany. Soil Use and Management, 2020, 36, 693-703.	2.6	4
13	Straw decreased N2O emissions from flooded paddy soils via altering denitrifying bacterial community compositions and soil organic carbon fractions. FEMS Microbiology Ecology, 2020, 96, .	1.3	13
14	Impact of irrigation and fertilization regimes on greenhouse gas emissions from soil of mulching cultivated maize (Zea mays L.) field in the upper reaches of Yellow River, China. Journal of Cleaner Production, 2020, 259, 120873.	4.6	70
15	Finding the optimal fertilizer type and rate to balance yield and soil GHG emissions under reclaimed water irrigation. Science of the Total Environment, 2020, 729, 138954.	3.9	23
16	Temperature-dependent changes in active nitrifying communities in response to field fertilization legacy. Biology and Fertility of Soils, 2021, 57, 1-14.	2.3	6
17	Dynamics of ammonia oxidizers in response to different fertilization inputs in intensively managed agricultural soils. Applied Soil Ecology, 2021, 157, 103729.	2.1	9
18	Crop straw incorporation alleviates overall fertilizer-N losses and mitigates N2O emissions per unit applied N from intensively farmed soils: An in situ 15N tracing study. Science of the Total Environment, 2021, 764, 142884.	3.9	25
19	Variations of dissimilatory nitrate reduction processes along reclamation chronosequences in Chongming Island, China. Soil and Tillage Research, 2021, 206, 104815.	2.6	9

#	Article	IF	CITATIONS
20	Effects of long-term nitrogen fertilization on N2O, N2 and their yield-scaled emissions in a temperate semi-arid agro-ecosystem. Journal of Soils and Sediments, 2021, 21, 1659-1671.	1.5	20
21	Reducing N2O emissions with enhanced efficiency nitrogen fertilizers (EENFs) in a high-yielding spring maize system. Environmental Pollution, 2021, 273, 116422.	3.7	25
22	Producing more potatoes with lower inputs and greenhouse gases emissions by regionalized cooperation in China. Journal of Cleaner Production, 2021, 299, 126883.	4.6	19
23	Exponential response of nitrous oxide (N2O) emissions to increasing nitrogen fertiliser rates in a tropical sugarcane cropping system. Agriculture, Ecosystems and Environment, 2021, 313, 107376.	2.5	24
24	Cropping system design can improve nitrogen use efficiency in intensively managed agriculture. Environmental Pollution, 2021, 280, 116967.	3.7	19
25	Spatial patterns of net greenhouse gas balance and intensity in Chinese orchard system. Science of the Total Environment, 2021, 779, 146250.	3.9	12
26	Environmental, human health, and ecosystem economic performance of long-term optimizing nitrogen management for wheat production. Journal of Cleaner Production, 2021, 311, 127620.	4.6	22
27	Nonlinear dependency of N2O emissions on nitrogen input in dry farming systems may facilitate green development in China. Agriculture, Ecosystems and Environment, 2021, 317, 107456.	2.5	18
28	Nitrous oxide respiring bacteria in biogas digestates for reduced agricultural emissions. ISME Journal, 2022, 16, 580-590.	4.4	16
29	Intensive vegetable production results in high nitrate accumulation in deep soil profiles in China. Environmental Pollution, 2021, 287, 117598.	3.7	20
30	Reducing N2O emissions while maintaining yield in a wheat–maize rotation system modelled by APSIM. Agricultural Systems, 2021, 194, 103277.	3.2	7
31	Water environmental pressure assessment in agricultural systems in Central Asia based on an Integrated Excess Nitrogen Load Model. Science of the Total Environment, 2022, 803, 149912.	3.9	10
32	Calibration and validation of the DNDC model to estimate nitrous oxide emissions and crop productivity for a summer maize-winter wheat double cropping system in Hebei, China. Environmental Pollution, 2020, 262, 114199.	3.7	33
33	Deficit irrigation combined with reduced N-fertilizer rate can mitigate the high nitrous oxide emissions from Chinese drip-fertigated maize field. Global Ecology and Conservation, 2019, 20, e00803.	1.0	21
34	Tea-planted soils as global hotspots for N ₂ O emissions from croplands. Environmental Research Letters, 2020, 15, 104018.	2.2	23
35	The potential of ryegrass as cover crop to reduce soil <scp>N₂O</scp> emissions and increase the population size of denitrifying bacteria. European Journal of Soil Science, 2021, 72, 1447-1461.	1.8	12
36	Mitigating nitrous oxide emissions from agricultural soils by precision management. Frontiers of Agricultural Science and Engineering, 2020, 7, 75.	0.9	9
37	Enrichment of <scp> <i>nosZ</i> </scp> â€ŧype denitrifiers by arbuscular mycorrhizal fungi mitigates <scp>N₂O</scp> emissions from soybean stubbles. Environmental Microbiology, 2021, 23, 6587-6602.	1.8	13

CITATION REPORT

	CITATION REF	CITATION REPORT	
#	Article	IF	CITATIONS
38	Oxygen-depletion by rapid ammonia oxidation regulates kinetics of N2O, NO and N2 production in an ammonium fertilised agricultural soil. Soil Biology and Biochemistry, 2021, 163, 108460.	4.2	17
39	Soil oxygen depletion and corresponding nitrous oxide production at hot moments in an agricultural soil. Environmental Pollution, 2022, 292, 118345.	3.7	13
41	Rethinking nitrogen use: need to plan beyond present. , 2022, , 1-11.		2
42	Garlic–rice system increases net economic benefits and reduces greenhouse gas emission intensity. Agriculture, Ecosystems and Environment, 2022, 326, 107778.	2.5	12
43	Optimizing organic amendment applications to enhance carbon sequestration and economic benefits in an infertile sandy soil. Journal of Environmental Management, 2022, 303, 114129.	3.8	10
44	Fertilizer-induced nitrous oxide emissions from global orchards and its estimate of China. Agriculture, Ecosystems and Environment, 2022, 328, 107854.	2.5	15
45	Optimum fertilizer application rate to ensure yield and decrease greenhouse gas emissions in rain-fed agriculture system of the Loess Plateau. Science of the Total Environment, 2022, 823, 153762.	3.9	16
46	Analysis of soil fertility and optimal nitrogen application of brown earth (<i>luvisols</i>) in China. Soil Use and Management, 2022, 38, 1416-1429.	2.6	3
47	Root anatomical phenotypes related to growth under low nitrogen availability in maize (Zea mays L.) hybrids. Plant and Soil, 2022, 474, 265-276.	1.8	4
48	Towards a clean production by exploring the nexus between agricultural ecosystem and environmental degradation using novel dynamic ARDL simulations approach. Environmental Science and Pollution Research, 2022, 29, 53768-53784.	2.7	28
49	Quantifying biological processes producing nitrous oxide in soil using a mechanistic model. Biogeochemistry, 2022, 159, 1-14.	1.7	7
50	Appropriate N fertilizer addition mitigates N2O emissions from forage crop fields. Science of the Total Environment, 2022, 829, 154628.	3.9	7
51	Estimating field N2 emissions based on laboratory-quantified N2O/(N2O + N2) ratios and field-quantified N2O emissions. Journal of Soils and Sediments, 2022, 22, 2196-2208.	 1.5	6
52	Identifying exemplary sustainable cropping systems using a positive deviance approach: Wheat-maize double cropping in the North China Plain. Agricultural Systems, 2022, 201, 103471.	3.2	10
53	Sustainable water and nitrogen optimization to adapt to different temperature variations and rainfall patterns for a trade-off between winter wheat yield and N2O emissions. Science of the Total Environment, 2023, 854, 158822.	3.9	5
54	Nitrous Oxide Emission and Grain Yield in Chinese Winter Wheat–Summer Maize Rotation: A Meta-Analysis. Agronomy, 2022, 12, 2305.	1.3	6
55	Agriculture-Induced N2O Emissions and Reduction Strategies in China. International Journal of Environmental Research and Public Health, 2022, 19, 12193.	1.2	3
56	Magnesium is a nutritional tool for the yield and quality of oolong tea (Camellia sinensis L.) and reduces reactive nitrogen loss. Scientia Horticulturae, 2023, 308, 111590.	1.7	5

#	Article	IF	CITATIONS
57	Optimizing crop rotation increases soil carbon and reduces GHG emissions without sacrificing yields. Agriculture, Ecosystems and Environment, 2023, 342, 108220.	2.5	13
58	Nitrogen management to reduce CHG emissions while maintaining high crop productivity in temperate summer rainfall climate. Field Crops Research, 2023, 290, 108761.	2.3	4
59	Effects of periodic drying-wetting on microbial dynamics and activity of nitrite/nitrate-dependent anaerobic methane oxidizers in intertidal wetland sediments. Water Research, 2023, 229, 119436.	5.3	8
60	How large is the mitigation potential of natural climate solutions in China?. Environmental Research Letters, 2023, 18, 015001.	2.2	3
61	Quantifying nitrous oxide production rates from nitrification and denitrification under various moisture conditions in agricultural soils: Laboratory study and literature synthesis. Frontiers in Microbiology, 0, 13, .	1.5	17
62	GHG Global Emission Prediction of Synthetic N Fertilizers Using Expectile Regression Techniques. Atmosphere, 2023, 14, 283.	1.0	3
63	Fertilizer N triggers native soil N-derived N2O emissions by priming gross N mineralization. Soil Biology and Biochemistry, 2023, 178, 108961.	4.2	13
64	Investigating atmospheric nitrate sources and formation pathways between heating and non-heating seasons in urban North China. Environmental Research Letters, 2023, 18, 034006.	2.2	3
65	Utilization of soil and fertilizer nitrogen supply under mulched drip irrigation with various water qualities in arid regions. Agricultural Water Management, 2023, 280, 108219.	2.4	4
66	Agriculture-related green house gas emissions and mitigation measures. Advances in Agronomy, 2023, , 257-376.	2.4	0
67	Mycorrhiza-mediated recruitment of complete denitrifying Pseudomonas reduces N2O emissions from soil. Microbiome, 2023, 11, .	4.9	15
68	Greenhouse gas emissions and ammonia loss of maize fertigation with a centre pivot system in the North China Plain. Irrigation and Drainage, 2023, 72, 1038-1052.	0.8	1
69	Optimizing Agronomic, Environmental, Health and Economic Performances in Summer Maize Production through Fertilizer Nitrogen Management Strategies. Plants, 2023, 12, 1490.	1.6	4
70	Combination of suitable planting density and nitrogen rate for high yield maize and their source–sink relationship in Northwest China. Journal of the Science of Food and Agriculture, 0, , .	1.7	3
74	Climate-Smart Agriculture in China: Current Status and Future Perspectives. , 2023, , 205-231.		0