Inflamma some inhibition prevents $\hat{I}\pm\mbox{-synuclein}$ pathol neurodegeneration in mice

Science Translational Medicine

10,

DOI: 10.1126/scitranslmed.aah4066

Citation Report

#	Article	IF	CITATIONS
1	DNA Methylation Biomarkers for the Diagnosis of Barrett's Oesophagus. American Journal of Gastroenterology, 2018, 113, 1722.	0.4	0
2	Neuroprotective and Neurotherapeutic Effects of Tetrahedral Framework Nucleic Acids on Parkinson's Disease <i>in Vitro</i> . ACS Applied Materials & Interfaces, 2019, 11, 32787-32797.	8.0	38
3	Microglia affect α-synuclein cell-to-cell transfer in a mouse model of Parkinson's disease. Molecular Neurodegeneration, 2019, 14, 34.	10.8	141
4	Modulation of Innate Immunity by Amyloidogenic Peptides. Trends in Immunology, 2019, 40, 762-780.	6.8	6
5	Kir6.1/K-ATP channel on astrocytes protects against dopaminergic neurodegeneration in the MPTP mouse model of Parkinson's disease via promoting mitophagy. Brain, Behavior, and Immunity, 2019, 81, 509-522.	4.1	46
6	Crystals in the Substantia Nigra. ACS Chemical Neuroscience, 2019, 10, 3415-3418.	3.5	4
7	Reformulating Pro-Oxidant Microglia in Neurodegeneration. Journal of Clinical Medicine, 2019, 8, 1719.	2.4	47
8	Targeting NLRP3 Inflammasome Activation in Severe Asthma. Journal of Clinical Medicine, 2019, 8, 1615.	2.4	65
9	Amentoflavone suppresses amyloid β1–42 neurotoxicity in Alzheimer's disease through the inhibition of pyroptosis. Life Sciences, 2019, 239, 117043.	4.3	52
10	Pharmacological Inhibitors of the NLRP3 Inflammasome. Frontiers in Immunology, 2019, 10, 2538.	4.8	436
11	Specific Inhibition of the NLRP3 Inflammasome as an Antiinflammatory Strategy in Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 1381-1391.	5.6	74
12	Gastrodin ameliorates microvascular reperfusion injury–induced pyroptosis by regulating the NLRP3/caspase-1 pathway. Journal of Physiology and Biochemistry, 2019, 75, 531-547.	3.0	48
13	Immunotherapy in Parkinson's disease: Current status and future directions. Neurobiology of Disease, 2019, 132, 104587.	4.4	41
14	Gut Inflammation in Association With Pathogenesis of Parkinson's Disease. Frontiers in Molecular Neuroscience, 2019, 12, 218.	2.9	63
15	Microglia Biology: One Century of Evolving Concepts. Cell, 2019, 179, 292-311.	28.9	772
16	Phytochemicals as Novel Therapeutic Strategies for NLRP3 Inflammasome-Related Neurological, Metabolic, and Inflammatory Diseases. International Journal of Molecular Sciences, 2019, 20, 2876.	4.1	67
17	A secret that underlies Parkinson's disease: The damaging cycle. Neurochemistry International, 2019, 129, 104484.	3.8	21
18	Analytical methods used in the study of Parkinson's disease. TrAC - Trends in Analytical Chemistry, 2019, 118, 292-302.	11.4	9

#	Article	IF	CITATIONS
19	Neurodegenerative disease treatments by direct TNF reduction, SB623 cells, maraviroc and irisin and MCC950, from an inflammatory perspective – a Commentary. Expert Review of Neurotherapeutics, 2019, 19, 535-543.	2.8	13
20	Next Generation Precision Medicine: CRISPR-mediated Genome Editing for the Treatment of Neurodegenerative Disorders. Journal of NeuroImmune Pharmacology, 2019, 14, 608-641.	4.1	22
21	Pigment Nephropathy: Novel Insights into Inflammasome-Mediated Pathogenesis. International Journal of Molecular Sciences, 2019, 20, 1997.	4.1	14
22	Triptolide Inhibits Preformed Fibril-Induced Microglial Activation by Targeting the MicroRNA155-5p/SHIP1 Pathway. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-13.	4.0	28
23	Fyn kinase regulates misfolded α-synuclein uptake and NLRP3 inflammasome activation in microglia. Journal of Experimental Medicine, 2019, 216, 1411-1430.	8.5	169
24	The role and therapeutic potential of connexins, pannexins and their channels in Parkinson's disease. Cellular Signalling, 2019, 58, 111-118.	3.6	24
25	Nanodelivery of cerebrolysin reduces pathophysiology of Parkinson's disease. Progress in Brain Research, 2019, 245, 201-246.	1.4	28
26	NLRP3 inflammasome pathway is involved in olfactory bulb pathological alteration induced by MPTP. Acta Pharmacologica Sinica, 2019, 40, 991-998.	6.1	17
27	Therapeutic Inhibition of the Complement System in Diseases of the Central Nervous System. Frontiers in Immunology, 2019, 10, 362.	4.8	148
28	Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death and Disease, 2019, 10, 128.	6.3	835
29	Biochanin A protects against angiotensin II-induced damage of dopaminergic neurons in rats associated with the increased endophilin A2 expression. Behavioural Pharmacology, 2019, 30, 699-710.	1.7	7
30	Complement dysregulation in the central nervous system during development and disease. Seminars in Immunology, 2019, 45, 101340.	5.6	85
31	Update of inflammasome activation in microglia/macrophage in aging and agingâ€related disease. CNS Neuroscience and Therapeutics, 2019, 25, 1299-1307.	3.9	41
32	Pharmacological Targeting of Microglial Activation: New Therapeutic Approach. Frontiers in Cellular Neuroscience, 2019, 13, 514.	3.7	94
33	Diet in Parkinson's Disease: Critical Role for the Microbiome. Frontiers in Neurology, 2019, 10, 1245.	2.4	83
34	CXCL12 is involved in α-synuclein-triggered neuroinflammation of Parkinson's disease. Journal of Neuroinflammation, 2019, 16, 263.	7.2	42
35	The NLRP3 inflammasome: a new player in neurological diseases. Turkish Journal of Biology, 2019, 43, 349-359.	0.8	31
36	Mitochondria at the interface between neurodegeneration and neuroinflammation. Seminars in Cell and Developmental Biology, 2020, 99, 163-171.	5.0	74

#	Article	IF	CITATIONS
37	NLRP3-dependent pyroptosis is required for HIV-1 gp120-induced neuropathology. Cellular and Molecular Immunology, 2020, 17, 283-299.	10.5	78
38	Apelin/APJ system: A novel promising target for neurodegenerative diseases. Journal of Cellular Physiology, 2020, 235, 638-657.	4.1	32
39	Targeting the Microglial NLRP3 Inflammasome and Its Role in Parkinson's Disease. Movement Disorders, 2020, 35, 20-33.	3.9	161
40	The microglial NLRP3 inflammasome is activated by amyotrophic lateral sclerosis proteins. Glia, 2020, 68, 407-421.	4.9	133
41	Systemic activation of NLRP3 inflammasome and plasma α-synuclein levels are correlated with motor severity and progression in Parkinson's disease. Journal of Neuroinflammation, 2020, 17, 11.	7.2	127
42	Programmed death-ligand 1 triggers PASMCs pyroptosis and pulmonary vascular fibrosis in pulmonary hypertension. Journal of Molecular and Cellular Cardiology, 2020, 138, 23-33.	1.9	48
43	Innate and adaptive immune responses in Parkinson's disease. Progress in Brain Research, 2020, 252, 169-216.	1.4	64
44	Fiery Cell Death: Pyroptosis in the Central Nervous System. Trends in Neurosciences, 2020, 43, 55-73.	8.6	205
45	The Dichotomous Role of Inflammation in the CNS: A Mitochondrial Point of View. Biomolecules, 2020, 10, 1437.	4.0	20
46	Microglia as therapeutic target in central nervous system disorders. Journal of Pharmacological Sciences, 2020, 144, 102-118.	2.5	19
47	Diet, Microbiota and Brain Health: Unraveling the Network Intersecting Metabolism and Neurodegeneration. International Journal of Molecular Sciences, 2020, 21, 7471.	4.1	32
48	Emerging Microglia Biology Defines Novel Therapeutic Approaches for Alzheimer's Disease. Neuron, 2020, 108, 801-821.	8.1	132
49	Echinacoside protects dopaminergic neurons by inhibiting NLRP3/Caspase-1/IL-1β signaling pathway in MPTP-induced Parkinson's disease model. Brain Research Bulletin, 2020, 164, 55-64.	3.0	33
50	NLRP3 Inflammasome Activation in Cancer: A Double-Edged Sword. Frontiers in Immunology, 2020, 11, 1444.	4.8	148
51	The gut microbiota attenuate neuroinflammation in manganese exposure by inhibiting cerebral NLRP3 inflammasome. Biomedicine and Pharmacotherapy, 2020, 129, 110449.	5.6	33
52	Inflammasomes and Cell Death: Common Pathways in Microparticle Diseases. Trends in Molecular Medicine, 2020, 26, 1003-1020.	6.7	36
53	Slc6a3-dependent expression of a CAPS-associated Nlrp3 allele results in progressive behavioral abnormalities and neuroinflammation in aging mice. Journal of Neuroinflammation, 2020, 17, 213.	7.2	10
54	Inflammation in Parkinson's Disease: Mechanisms and Therapeutic Implications. Cells, 2020, 9, 1687.	4.1	334

#	Article	IF	CITATIONS
55	Modulation of β-Amyloid Fibril Formation in Alzheimer's Disease by Microglia and Infection. Frontiers in Molecular Neuroscience, 2020, 13, 609073.	2.9	35
56	Neuroprotective effects of natural cordycepin on LPS-induced Parkinson's disease through suppressing TLR4/NF-κB/NLRP3-mediated pyroptosis. Journal of Functional Foods, 2020, 75, 104274.	3.4	9
57	Neuroinflammation and protein pathology in Parkinson's disease dementia. Acta Neuropathologica Communications, 2020, 8, 211.	5.2	86
58	Distinct Molecular Mechanisms Underlying Potassium Efflux for NLRP3 Inflammasome Activation. Frontiers in Immunology, 2020, 11, 609441.	4.8	46
59	Therapeutic innovation in Parkinson's disease: a 2020 update on disease-modifying approaches. Expert Review of Neurotherapeutics, 2020, 20, 1047-1064.	2.8	11
60	Inflammasomes: a preclinical assessment of targeting in atherosclerosis. Expert Opinion on Therapeutic Targets, 2020, 24, 825-844.	3.4	8
61	The NLRP3 inflammasome as a bridge between neuro-inflammation in metabolic and neurodegenerative diseases. International Review of Neurobiology, 2020, 154, 345-391.	2.0	20
62	Therapeutic modulation of inflammasome pathways. Immunological Reviews, 2020, 297, 123-138.	6.0	135
63	Tumor Necrosis Factor-Like Weak Inducer of Apoptosis (TWEAK) Enhances Activation of STAT3/NLRC4 Inflammasome Signaling Axis through PKCδin Astrocytes: Implications for Parkinson's Disease. Cells, 2020, 9, 1831.	4.1	16
64	Elevated Percentage of CD3+ T-Cells and CD4+/CD8+ Ratios in Multiple System Atrophy Patients. Frontiers in Neurology, 2020, 11, 658.	2.4	13
65	Key Mechanisms and Potential Targets of the NLRP3 Inflammasome in Neurodegenerative Diseases. Frontiers in Integrative Neuroscience, 2020, 14, 37.	2.1	48
66	Microglia and astrocyte dysfunction in parkinson's disease. Neurobiology of Disease, 2020, 144, 105028.	4.4	177
67	Mitochondrial Dysfunction, Oxidative Stress, and Neuroinflammation: Intertwined Roads to Neurodegeneration. Antioxidants, 2020, 9, 647.	5.1	159
68	Status and future directions of clinical trials in Parkinson's disease. International Review of Neurobiology, 2020, 154, 153-188.	2.0	7
69	Noncanonical function of an autophagy protein prevents spontaneous Alzheimer's disease. Science Advances, 2020, 6, eabb9036.	10.3	62
70	Selective inhibition of the K ⁺ efflux sensitive NLRP3 pathway by Cl ^{â^'} channel modulation. Chemical Science, 2020, 11, 11720-11728.	7.4	9
71	The NLRP3 inflammasome: Mechanism of action, role in disease and therapies. Molecular Aspects of Medicine, 2020, 76, 100889.	6.4	195
72	PiDose: an open-source system for accurate and automated oral drug administration to group-housed mice. Scientific Reports, 2020, 10, 11584.	3.3	10

#	Article	IF	CITATIONS
73	Morphine and Fentanyl Repeated Administration Induces Different Levels of NLRP3-Dependent Pyroptosis in the Dorsal Raphe Nucleus of Male Rats via Cell-Specific Activation of TLR4 and Opioid Receptors. Cellular and Molecular Neurobiology, 2022, 42, 677-694.	3.3	37
74	Editorial: Role of Diet, Physical Activity and Immune System in Parkinson's Disease. Frontiers in Neurology, 2020, 11, 611349.	2.4	2
75	Upregulation of Nucleotide-Binding Oligomerization Domain-, LRR- and Pyrin Domain-Containing Protein 3 in Motoneurons Following Peripheral Nerve Injury in Mice. Frontiers in Pharmacology, 2020, 11, 584184.	3.5	6
76	AIM2 inflammasome mediates hallmark neuropathological alterations and cognitive impairment in a mouse model of vascular dementia. Molecular Psychiatry, 2021, 26, 4544-4560.	7.9	71
77	Ellagic Acid Protects Dopamine Neurons via Inhibition of NLRP3 Inflammasome Activation in Microglia. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-13.	4.0	26
78	Cerebral sterile inflammation in neurodegenerative diseases. Inflammation and Regeneration, 2020, 40, 28.	3.7	24
79	New Insights into Immune-Mediated Mechanisms in Parkinson's Disease. International Journal of Molecular Sciences, 2020, 21, 9302.	4.1	16
80	Inhibition of the NLRP3-inflammasome prevents cognitive deficits in experimental autoimmune encephalomyelitis mice via the alteration of astrocyte phenotype. Cell Death and Disease, 2020, 11, 377.	6.3	104
81	Targeting NLRP3 Inflammasome Reduces Age-Related Experimental Alveolar Bone Loss. Journal of Dental Research, 2020, 99, 1287-1295.	5.2	53
82	Reconciling protective and pathogenic roles of the NLRP3 inflammasome in leishmaniasis. Immunological Reviews, 2020, 297, 53-66.	6.0	14
83	Targeting the NLRP3 Inflammasome in Severe COVID-19. Frontiers in Immunology, 2020, 11, 1518.	4.8	329
84	Neuroinflammatory Responses and Parkinson' Disease: Pathogenic Mechanisms and Therapeutic Targets. Journal of NeuroImmune Pharmacology, 2020, 15, 830-837.	4.1	41
85	Disulfiram suppresses NLRP3 inflammasome activation to treat peritoneal and gouty inflammation. Free Radical Biology and Medicine, 2020, 152, 8-17.	2.9	58
86	Neuroimmune Connections in Aging and Neurodegenerative Diseases. Trends in Immunology, 2020, 41, 300-312.	6.8	111
87	Kellerin alleviates cognitive impairment in mice after ischemic stroke by multiple mechanisms. Phytotherapy Research, 2020, 34, 2258-2274.	5.8	12
88	Leucine Rich Repeat Kinase 2 and Innate Immunity. Frontiers in Neuroscience, 2020, 14, 193.	2.8	36
89	The gut microbiome in Parkinson's disease: A culprit or a bystander?. Progress in Brain Research, 2020, 252, 357-450.	1.4	70
90	Neurodegenerative Susceptibility During Maternal Nutritional Programing: Are Central and Peripheral Innate Immune Training Relevant?. Frontiers in Neuroscience, 2020, 14, 13.	2.8	7

#	Article	IF	Citations
91	DROSHA-Dependent miRNA and AIM2 Inflammasome Activation in Idiopathic Pulmonary Fibrosis. International Journal of Molecular Sciences, 2020, 21, 1668.	4.1	14
92	The NLRP3 Inflammasome as a Critical Actor in the Inflammaging Process. Cells, 2020, 9, 1552.	4.1	33
93	Stress-induced NLRP3 inflammasome activation negatively regulates fear memory in mice. Journal of Neuroinflammation, 2020, 17, 205.	7.2	64
94	Neurovascular Inflammaging in Health and Disease. Cells, 2020, 9, 1614.	4.1	44
95	Peripheral innate immune and bacterial signals relate to clinical heterogeneity in Parkinson's disease. Brain, Behavior, and Immunity, 2020, 87, 473-488.	4.1	58
96	Abnormal Mitochondrial Quality Control in Neurodegenerative Diseases. Frontiers in Cellular Neuroscience, 2020, 14, 138.	3.7	42
97	Evaluation of the Neuroprotective Effect of Microglial Depletion by CSF-1R Inhibition in a Parkinson's Animal Model. Molecular Imaging and Biology, 2020, 22, 1031-1042.	2.6	26
98	A novel role of NLRP3-generated IL-1β in the acute-chronic transition of peripheral lipopolysaccharide-elicited neuroinflammation: implications for sepsis-associated neurodegeneration. Journal of Neuroinflammation, 2020, 17, 64.	7.2	60
99	The strategies of targeting the NLRP3 inflammasome to treat inflammatory diseases. Advances in Immunology, 2020, 145, 55-93.	2.2	44
100	Inflammasome and Cognitive Symptoms in Human Diseases: Biological Evidence from Experimental Research. International Journal of Molecular Sciences, 2020, 21, 1103.	4.1	16
101	The rOXâ€stars of inflammation: links between the inflammasome and mitochondrial meltdown. Clinical and Translational Immunology, 2020, 9, e01109.	3.8	35
102	Glial Cells—The Strategic Targets in Amyotrophic Lateral Sclerosis Treatment. Journal of Clinical Medicine, 2020, 9, 261.	2.4	51
103	Through Reducing ROS Production, IL-10 Suppresses Caspase-1-Dependent IL-1β Maturation, thereby Preventing Chronic Neuroinflammation and Neurodegeneration. International Journal of Molecular Sciences, 2020, 21, 465.	4.1	18
104	Nicotinamide Adenine Dinucleotide Phosphate Oxidase and Neurodegenerative Diseases: Mechanisms and Therapy. Antioxidants and Redox Signaling, 2020, 33, 374-393.	5.4	22
105	Microglia and Parkinson's disease: footprints to pathology. Journal of Neural Transmission, 2020, 127, 149-158.	2.8	37
106	Parkinson disease and the immune system — associations, mechanisms and therapeutics. Nature Reviews Neurology, 2020, 16, 303-318.	10.1	254
107	Novel approaches to counter protein aggregation pathology in Parkinson's disease. Progress in Brain Research, 2020, 252, 451-492.	1.4	9
108	NLRP3 inflammasome and glia maturation factor coordinately regulate neuroinflammation and neuronal loss in MPTP mouse model of Parkinson's disease. International Immunopharmacology, 2020, 83, 106441.	3.8	36

#	Article	IF	CITATIONS
109	Microglia and Other Myeloid Cells in Central Nervous System Health and Disease. Journal of Pharmacology and Experimental Therapeutics, 2020, 375, 154-160.	2.5	25
110	Microbiota in cerebrovascular disease: A key player and future therapeutic target. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1368-1380.	4.3	29
111	Synthesis and evaluation of NLRP3-inhibitory sulfonylurea [11C]MCC950 in healthy animals. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127186.	2.2	14
112	New hopes for disease modification in Parkinson's Disease. Neuropharmacology, 2020, 171, 108085.	4.1	25
113	Carnosol inhibits inflammasome activation by directly targeting HSP90 to treat inflammasome-mediated diseases. Cell Death and Disease, 2020, 11, 252.	6.3	40
114	Exosome α-Synuclein Release in Plasma May be Associated With Postoperative Delirium in Hip Fracture Patients. Frontiers in Aging Neuroscience, 2020, 12, 67.	3.4	17
115	NLRP3 Inflammasome Inhibition Prevents α-Synuclein Pathology by Relieving Autophagy Dysfunction in Chronic MPTP–Treated NLRP3 Knockout Mice. Molecular Neurobiology, 2021, 58, 1303-1311.	4.0	34
116	Targeting microglial autophagic degradation in NLRP3 inflammasome-mediated neurodegenerative diseases. Ageing Research Reviews, 2021, 65, 101202.	10.9	104
117	NEAT1 Decreasing Suppresses Parkinson's Disease Progression via Acting as miR-1301-3p Sponge. Journal of Molecular Neuroscience, 2021, 71, 369-378.	2.3	23
118	Albiflorin Attenuates Mood Disorders Under Neuropathic Pain State by Suppressing the Hippocampal NLRP3 Inflammasome Activation During Chronic Constriction Injury. International Journal of Neuropsychopharmacology, 2021, 24, 64-76.	2.1	24
119	Impaired autophagy in microglia aggravates dopaminergic neurodegeneration by regulating NLRP3 inflammasome activation in experimental models of Parkinson's disease. Brain, Behavior, and Immunity, 2021, 91, 324-338.	4.1	93
120	Mitochondrial dysfunction in the development and progression of neurodegenerative diseases. Archives of Biochemistry and Biophysics, 2021, 702, 108698.	3.0	126
121	Dissecting the non-neuronal cell contribution to Parkinson's disease pathogenesis using induced pluripotent stem cells. Cellular and Molecular Life Sciences, 2021, 78, 2081-2094.	5.4	8
122	2,5-hexanedione induces NLRP3 inflammasome activation and neurotoxicity through NADPH oxidase-dependent pathway. Free Radical Biology and Medicine, 2021, 162, 561-570.	2.9	9
123	Nanozyme scavenging ROS for prevention of pathologic α-synuclein transmission in Parkinson's disease. Nano Today, 2021, 36, 101027.	11.9	78
124	NLR in eXile: Emerging roles of NLRX1 in immunity and human disease. Immunology, 2021, 162, 268-280.	4.4	30
125	Strategies for Targeting the NLRP3 Inflammasome in the Clinical and Preclinical Space. Journal of Medicinal Chemistry, 2021, 64, 101-122.	6.4	67
126	INT-777 attenuates NLRP3-ASC inflammasome-mediated neuroinflammation via TGR5/cAMP/PKA signaling pathway after subarachnoid hemorrhage in rats. Brain, Behavior, and Immunity, 2021, 91, 587-600.	4.1	79

#	Article	IF	CITATIONS
127	Neuroimmune crosstalk and evolving pharmacotherapies in neurodegenerative diseases. Immunology, 2021, 162, 160-178.	4.4	12
128	Inhibiting NLRP3 inflammasome activation prevents copper-induced neuropathology in a murine model of Wilson's disease. Cell Death and Disease, 2021, 12, 87.	6.3	48
129	Decoding Mast Cell-Microglia Communication in Neurodegenerative Diseases. International Journal of Molecular Sciences, 2021, 22, 1093.	4.1	40
130	The NLRP3 Inflammasome and Its Role in the Pathogenicity of Leukemia. International Journal of Molecular Sciences, 2021, 22, 1271.	4.1	16
131	Ubiquitin signalling in neurodegeneration: mechanisms and therapeutic opportunities. Cell Death and Differentiation, 2021, 28, 570-590.	11.2	197
132	NLRP3 Inflammasome Blockade Reduces Cocaine-Induced Microglial Activation and Neuroinflammation. Molecular Neurobiology, 2021, 58, 2215-2230.	4.0	22
133	Role of Microgliosis and NLRP3 Inflammasome in Parkinson's Disease Pathogenesis and Therapy. Cellular and Molecular Neurobiology, 2022, 42, 1283-1300.	3.3	31
135	<scp>αâ€Synuclein</scp> evokes <scp>NLRP3</scp> inflammasomeâ€mediated <scp>IL</scp> â€1β secretion f primary human microglia. Clia, 2021, 69, 1413-1428.	rom 4.9	58
136	Neuroinflammation in Parkinson's Disease: Triggers, Mechanisms, and Immunotherapies. Neuroscientist, 2022, 28, 364-381.	3.5	21
137	Bioactive peptides and gut microbiota: Candidates for a novel strategy for reduction and control of neurodegenerative diseases. Trends in Food Science and Technology, 2021, 108, 164-176.	15.1	66
138	Targeting the NLRP3 Inflammasome via BTK. Frontiers in Cell and Developmental Biology, 2021, 9, 630479.	3.7	24
139	Inflammatory Mechanisms in Parkinson's Disease: From Pathogenesis to Targeted Therapies. Neuroscientist, 2022, 28, 485-506.	3.5	14
140	NEAT1 on the Field of Parkinson's Disease: Offense, Defense, or a Player on the Bench?. Journal of Parkinson's Disease, 2021, 11, 123-138.	2.8	11
141	Broader Insights into Understanding Tumor Necrosis Factor and Neurodegenerative Disease Pathogenesis Infer New Therapeutic Approaches. Journal of Alzheimer's Disease, 2021, 79, 931-948.	2.6	15
142	The Role of the Inflammasome in Neurodegenerative Diseases. Molecules, 2021, 26, 953.	3.8	71
143	Neuroinflammation in Prion Disease. International Journal of Molecular Sciences, 2021, 22, 2196.	4.1	20
144	Periphery and brain, innate and adaptive immunity in Parkinson's disease. Acta Neuropathologica, 2021, 141, 527-545.	7.7	133
145	Biomarkers and the Role of α-Synuclein in Parkinson's Disease. Frontiers in Aging Neuroscience, 2021, 13, 645996.	3.4	13

#	Article	IF	CITATIONS
146	Unraveling the Link Between Mitochondrial Dynamics and Neuroinflammation. Frontiers in Immunology, 2021, 12, 624919.	4.8	47
147	SGK1 inhibition in glia ameliorates pathologies and symptoms in Parkinson disease animal models. EMBO Molecular Medicine, 2021, 13, e13076.	6.9	52
148	ll-10 signaling reduces survival in mouse models of synucleinopathy. Npj Parkinson's Disease, 2021, 7, 30.	5.3	8
149	Neurodegenerative Disease and the NLRP3 Inflammasome. Frontiers in Pharmacology, 2021, 12, 643254.	3.5	107
150	Alpha-Synuclein Handling by Microglia: Activating, Combating, and Worsening. Neuroscience Bulletin, 2021, 37, 751-753.	2.9	9
151	The cell biology of Parkinson's disease. Journal of Cell Biology, 2021, 220, .	5.2	77
152	Do naturally occurring antioxidants protect against neurodegeneration of the dopaminergic system? A systematic revision in animal models of Parkinson's disease. Current Neuropharmacology, 2021, 19, .	2.9	2
153	Reactive microglia enhance the transmission of exosomal α-synuclein via toll-like receptor 2. Brain, 2021, 144, 2024-2037.	7.6	57
154	Neuroprotective Effects of a GLP-2 Analogue in the MPTP Parkinson's Disease Mouse Model. Journal of Parkinson's Disease, 2021, 11, 529-543.	2.8	9
155	Development of immunotherapy and nanoparticles-based strategies for the treatment of Parkinson's disease. Journal of Pharmaceutical Investigation, 2021, 51, 465-481.	5.3	13
156	Soluble α-synuclein–antibody complexes activate the NLRP3 inflammasome in hiPSC-derived microglia. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	69
157	The Contribution of Microglia to Neuroinflammation in Parkinson's Disease. International Journal of Molecular Sciences, 2021, 22, 4676.	4.1	114
158	Papaverine Exerts Neuroprotective Effect by Inhibiting NLRP3 Inflammasome Activation in an MPTP-Induced Microglial Priming Mouse Model Challenged with LPS. Biomolecules and Therapeutics, 2021, 29, 295-302.	2.4	11
160	Distinct Features of Brain-Resident Macrophages: Microglia and Non-Parenchymal Brain Macrophages. Molecules and Cells, 2021, 44, 281-291.	2.6	36
161	P2X7 receptor and the NLRP3 inflammasome: Partners in crime. Biochemical Pharmacology, 2021, 187, 114385.	4.4	84
162	c-FLIP regulates pyroptosis in retinal neurons following oxygen-glucose deprivation/recovery via a GSDMD-mediated pathway. Annals of Anatomy, 2021, 235, 151672.	1.9	22
163	A Probe for NLRP3 Inflammasome Inhibitor MCC950 Identifies Carbonic Anhydrase 2 as a Novel Target. ACS Chemical Biology, 2021, 16, 982-990.	3.4	27
164	Discovery of N-phenyl-1-(phenylsulfonamido)cyclopropane-1-carboxamide analogs as NLRP3 inflammasome inhibitors. Medicinal Chemistry Research, 2021, 30, 1294-1308.	2.4	1

#	Article	IF	CITATIONS
165	A selective NLRP3 inflammasome inhibitor attenuates behavioral deficits and neuroinflammation in a mouse model of Parkinson's disease. Journal of Neuroimmunology, 2021, 354, 577543.	2.3	27
166	The involvement of NLRP3 inflammasome in the treatment of neurodegenerative diseases. Biomedicine and Pharmacotherapy, 2021, 138, 111428.	5.6	29
167	Protein network exploration prioritizes targets for modulating neuroinflammation in Parkinson's disease. International Immunopharmacology, 2021, 95, 107526.	3.8	8
168	Tollâ€like receptors in neuroinflammation, neurodegeneration, and alcoholâ€induced brain damage. IUBMB Life, 2021, 73, 900-915.	3.4	40
169	LRRK2; a dynamic regulator of cellular trafficking. Brain Research, 2021, 1761, 147394.	2.2	3
170	Pharmacological Inhibition of the Nod-Like Receptor Family Pyrin Domain Containing 3 Inflammasome with MCC950. Pharmacological Reviews, 2021, 73, 968-1000.	16.0	87
171	P2X7 receptor/NLRP3 inflammasome complex and αâ€synuclein in peripheral blood mononuclear cells: a prospective study in neoâ€diagnosed, treatmentâ€naÃ⁻ve Parkinson's disease. European Journal of Neurology, 2021, 28, 2648-2656.	3.3	12
172	Inflammasomes and Type 1 Diabetes. Frontiers in Immunology, 2021, 12, 686956.	4.8	7
173	Chrysomycin A Attenuates Neuroinflammation by Down-Regulating NLRP3/Cleaved Caspase-1 Signaling Pathway in LPS-Stimulated Mice and BV2 Cells. International Journal of Molecular Sciences, 2021, 22, 6799.	4.1	16
174	X-ray Structure-Guided Discovery of a Potent, Orally Bioavailable, Dual Human Indoleamine/Tryptophan 2,3-Dioxygenase (hIDO/hTDO) Inhibitor That Shows Activity in a Mouse Model of Parkinson's Disease. Journal of Medicinal Chemistry, 2021, 64, 8303-8332.	6.4	9
175	NLRC5: A Potential Target for Central Nervous System Disorders. Frontiers in Immunology, 2021, 12, 704989.	4.8	6
176	Targeting Inflammasomes to Treat Neurological Diseases. Annals of Neurology, 2021, 90, 177-188.	5.3	46
177	Small molecule approaches to treat autoimmune and inflammatory diseases (Part II): Nucleic acid sensing antagonists and inhibitors. Bioorganic and Medicinal Chemistry Letters, 2021, 44, 128101.	2.2	7
178	Progress towards therapies for disease modification in Parkinson's disease. Lancet Neurology, The, 2021, 20, 559-572.	10.2	136
179	PKC Delta Activation Promotes Endoplasmic Reticulum Stress (ERS) and NLR Family Pyrin Domain-Containing 3 (NLRP3) Inflammasome Activation Subsequent to Asynuclein-Induced Microglial Activation: Involvement of Thioredoxin-Interacting Protein (TXNIP)/Thioredoxin (Trx) Redoxisome Pathway. Frontiers in Aging Neuroscience, 2021, 13, 661505.	3.4	14
180	A phenotypic high-content, high-throughput screen identifies inhibitors of NLRP3 inflammasome activation. Scientific Reports, 2021, 11, 15319.	3.3	10
181	NU9056, a KAT 5 Inhibitor, Treatment Alleviates Brain Dysfunction by Inhibiting NLRP3 Inflammasome Activation, Affecting Gut Microbiota, and Derived Metabolites in LPS-Treated Mice. Frontiers in Nutrition, 2021, 8, 701760.	3.7	14
182	Melatonin Attenuates Neuroinflammation by Down-Regulating NLRP3 Inflammasome via a SIRT1-Dependent Pathway in MPTP-Induced Models of Parkinson's Disease. Journal of Inflammation Research, 2021, Volume 14, 3063-3075.	3.5	32

# 183	ARTICLE Inhibition of the NLRP3 inflammasome improves lifespan in animal murine model of Hutchinson–Gilford Progeria. EMBO Molecular Medicine, 2021, 13, e14012.	IF 6.9	Citations
184	Promise of the NLRP3 Inflammasome Inhibitors in In Vivo Disease Models. Molecules, 2021, 26, 4996.	3.8	15
185	ML365 inhibits TWIK2 channel to block ATP-induced NLRP3 inflammasome. Acta Pharmacologica Sinica, 2022, 43, 992-1000.	6.1	11
186	The Ageing Brain: Molecular and Cellular Basis of Neurodegeneration. Frontiers in Cell and Developmental Biology, 2021, 9, 683459.	3.7	94
187	TBK1 and IKKÎμ act like an OFF switch to limit NLRP3 inflammasome pathway activation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	22
188	Pyroptosis: A promising therapeutic target for noninfectious diseases. Cell Proliferation, 2021, 54, e13137.	5.3	22
189	Evidence of Inflammation in Parkinson's Disease and Its Contribution to Synucleinopathy. Journal of Movement Disorders, 2022, 15, 1-14.	1.3	12
190	Metabolomic Investigation of Synergistic Mechanism for Fangfeng Extract Preventing LPS Induced Neuroinflammation in BV-2 Microglia Cells. Applied Sciences (Switzerland), 2021, 11, 8155.	2.5	1
191	Depichering the Effects of Astragaloside IV on AD-Like Phenotypes: A Systematic and Experimental Investigation. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-21.	4.0	14
192	Mitochondrial dysfunction in adult midbrain dopamine neurons triggers an early immune response. PLoS Genetics, 2021, 17, e1009822.	3.5	8
193	Microglial NLRP3 Inflammasome Activation upon TLR2 and TLR5 Ligation by Distinct α-Synuclein Assemblies. Journal of Immunology, 2021, 207, 2143-2154.	0.8	53
194	Selective targeting of the TLR2/MyD88/NF-κB pathway reduces α-synuclein spreading in vitro and in vivo. Nature Communications, 2021, 12, 5382.	12.8	81
195	Defining (and blocking) neuronal death in Parkinson's disease: Does it matter what we call it?. Brain Research, 2021, 1771, 147639.	2.2	3
196	The Nrf2-NLRP3-caspase-1 axis mediates the neuroprotective effects of Celastrol in Parkinson's disease. Redox Biology, 2021, 47, 102134.	9.0	65
197	Targeted drug delivery systems to control neuroinflammation in central nervous system disorders. Journal of Drug Delivery Science and Technology, 2021, 66, 102802.	3.0	8
198	A Novel Treatment Strategy by Natural Products in NLRP3 Inflammasome-Mediated Neuroinflammation in Alzheimer's and Parkinson's Disease. International Journal of Molecular Sciences, 2021, 22, 1324.	4.1	33
199	Plasma-borne indicators of inflammasome activity in Parkinson's disease patients. Npj Parkinson's Disease, 2021, 7, 2.	5.3	34
200	Animal Models of Metabolic Disorders in the Study of Neurodegenerative Diseases: An Overview. Frontiers in Neuroscience, 2020, 14, 604150.	2.8	31

ARTICLE IF CITATIONS # Role of pattern recognition receptors and the microbiota in neurological disorders. Journal of 201 2.9 17 Physiology, 2021, 599, 1379-1389. Mitophagy in Parkinson's disease: From pathogenesis to treatment target. Neurochemistry 3.8 International, 2020, 138, 104756. NLRP3 regulates alveolar bone loss in ligatureâ€induced periodontitis by promoting osteoclastic 203 5.3 75 differentiation. Cell Proliferation, 2021, 54, e12973. Immunotherapy for neurodegeneration?. Science, 2019, 364, 130-131. 204 Linking Mn ²⁺, α-synuclein, and neuroinflammation. Science Signaling, 2019, 12, . 205 3.6 1 Kv1.3 modulates neuroinflammation and neurodegeneration in Parkinson's disease. Journal of Clinical 8.2 Investigation, 2020, 130, 4195-4212. Modeling α-Synuclein Propagation with Preformed Fibril Injections. Journal of Movement Disorders, 207 1.3 65 2019, 12, 139-151. Kill one or kill the many: interplay between mitophagy and apoptosis. Biological Chemistry, 2020, 402, 208 2.5 44 73-88. 209 Fyn amplifies NLRP3 inflammasome signaling in Parkinson's disease. Aging, 2019, 11, 5871-5873. 3.1 11 Salidroside ameliorates Parkinson's disease by inhibiting NLRP3-dependent pyroptosis. Aging, 2020, 12, 3.1 93 9405-9426. Exercise and Neuroinflammation in Health and Disease. International Neurourology Journal, 2019, 23, 211 1.2 48 S82-92. Microglia in Neuroinflammation and Neurodegeneration: From Understanding to Therapy. Frontiers 2.8 171 in Neuroscience, 2021, 15, 742065. Platelet Behavior Contributes to Neuropathologies: A Focus on Alzheimer's and Parkinson's Disease. 213 2.7 4 Seminars in Thrombosis and Hemostasis, 2021, , . Biomarkers in Parkinson's Disease. Neuromethods, 2022, , 155-180. 214 0.3 Targeting Microglial α-Synuclein/TLRs/NF-kappaB/NLRP3 Inflammasome Axis in Parkinson's Disease. 215 4.8 71 Frontiers in Immunology, 2021, 12, 719807. Disease modifying therapies for Parkinson's disease: Novel targets. Neuropharmacology, 2021, 201, 108839. PF-04620110, a Potent Antidiabetic Agent, Suppresses Fatty Acid-Induced NLRP3 Inflammasome Activation 218 4.7 2 in Macrophages. Diabetes and Metabolism Journal, 2019, 43, 683. Mechanisms Involved in Microglial-Interceded Alzheimer's Disease and Nanocarrier-Based Treatment 219 Approaches. Journal of Personalized Medicine, 2021, 11, 1116.

#	Article	IF	CITATIONS
220	Mechanistic Insight from Preclinical Models of Parkinson's Disease Could Help Redirect Clinical Trial Efforts in GDNF Therapy. International Journal of Molecular Sciences, 2021, 22, 11702.	4.1	7
221	Environmental neurotoxicants and inflammasome activation in Parkinson's disease – A focus on the gut-brain axis. International Journal of Biochemistry and Cell Biology, 2022, 142, 106113.	2.8	7
222	Neuroinflammation in Parkinson's disease: a meta-analysis of PET imaging studies. Journal of Neurology, 2022, 269, 2304-2314.	3.6	18
224	Chemical Probes in Cellular Assays for Target Validation and Screening in Neurodegeneration. Chemical Biology, 2020, , 276-319.	0.2	0
225	Alpha-synuclein promotes dopaminergic neuron death in Parkinson's disease through microglial and NLRP3 activation. University of Saskatchewan Undergraduate Research Journal, 2020, 6, .	0.0	0
226	MCC950, the NLRP3 Inhibitor, Protects against Cartilage Degradation in a Mouse Model of Osteoarthritis. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-14.	4.0	25
227	iPSC-Derived Microglia as a Model to Study Inflammation in Idiopathic Parkinson's Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 740758.	3.7	19
228	An Epigenetic Insight into NLRP3 Inflammasome Activation in Inflammation-Related Processes. Biomedicines, 2021, 9, 1614.	3.2	20
229	Targeting alpha-synuclein via the immune system in Parkinson's disease: Current vaccine therapies. Neuropharmacology, 2022, 202, 108870.	4.1	14
230	Nanomaterials as novel agents for amelioration of Parkinson's disease. Nano Today, 2021, 41, 101328.	11.9	18
233	Kaemperfol alleviates pyroptosis and microglia-mediated neuroinflammation in Parkinson's disease via inhibiting p38MAPK/NF-1ºB signaling pathway. Neurochemistry International, 2022, 152, 105221.	3.8	32
234	Contribution of Mitochondrial Dysfunction Combined with NLRP3 Inflammasome Activation in Selected Neurodegenerative Diseases. Pharmaceuticals, 2021, 14, 1221.	3.8	13
235	Inflammasome activation in neurodegenerative diseases. Essays in Biochemistry, 2021, 65, 885-904.	4.7	23
236	A Novel Long-Noncoding RNA LncZFAS1 Prevents MPP+-Induced Neuroinflammation Through MIB1 Activation. Molecular Neurobiology, 2022, 59, 778-799.	4.0	10
237	Novel mechanistic insights towards the repositioning of alogliptin in Parkinson's disease. Life Sciences, 2021, 287, 120132.	4.3	17
238	Immune response during idiopathic Parkinson's disease: From humans to animal models. International Review of Movement Disorders, 2021, 2, 261-301.	0.1	1
239	Aminochrome Induces Neuroinflammation and Dopaminergic Neuronal Loss: A New Preclinical Model to Find Anti-inflammatory and Neuroprotective Drugs for Parkinson's Disease. Cellular and Molecular Neurobiology, 2023, 43, 265-281.	3.3	3
240	Exosomes isolated during dopaminergic neuron differentiation suppressed neuronal inflammation in a rodent model of Parkinson's disease. Neuroscience Letters, 2022, 771, 136414.	2.1	13

#	Article		CITATIONS
241	Standpoints in mitochondrial dysfunction: Underlying mechanisms in search of therapeutic strategies. Mitochondrion, 2022, 63, 9-22.	3.4	9
242	Inflammasome Signaling in the Aging Brain and Age-Related Neurodegenerative Diseases. Molecular Neurobiology, 2022, 59, 2288-2304.	4.0	22
243	Mechanisms of NLRP3 inflammasome-mediated hepatic stellate cell activation: Therapeutic potential for liver fibrosis. Genes and Diseases, 2023, 10, 480-494.	3.4	6
244	Enteric α-synuclein impairs intestinal epithelial barrier through caspase-1-inflammasome signaling in Parkinson's disease before brain pathology. Npj Parkinson's Disease, 2022, 8, 9.	5.3	36
245	Age-dependent aggregation of α-synuclein in the nervous system of gut-brain axis is associated with caspase-1 activation. Metabolic Brain Disease, 2022, 37, 1669-1681.	2.9	2
247	Bi-Directional Relationship Between Autophagy and Inflammasomes in Neurodegenerative Disorders. Cellular and Molecular Neurobiology, 2023, 43, 115-137.	3.3	3
248	Sleep and circadian rhythms in Parkinson's disease and preclinical models. Molecular Neurodegeneration, 2022, 17, 2.	10.8	32
249	NLRP3 Inflammasome in Vascular Disease: A Recurrent Villain to Combat Pharmacologically. Antioxidants, 2022, 11, 269.	5.1	6
251	TI: NLRP3 Inflammasome-Dependent Pyroptosis in CNS Trauma: A Potential Therapeutic Target. Frontiers in Cell and Developmental Biology, 2022, 10, 821225.	3.7	9
252	Crosstalk Between the NLRP3 Inflammasome/ASC Speck and Amyloid Protein Aggregates Drives Disease Progression in Alzheimer's and Parkinson's Disease. Frontiers in Molecular Neuroscience, 2022, 15, 805169.	2.9	15
253	Neuroinflammation in Gaucher disease, neuronal ceroid lipofuscinosis, and commonalities with Parkinson's disease. Brain Research, 2022, 1780, 147798.	2.2	8
254	Urolithin A promotes mitophagy and suppresses NLRP3 inflammasome activation in lipopolysaccharide-induced BV2 microglial cells and MPTP-induced Parkinson's disease model. Neuropharmacology, 2022, 207, 108963.	4.1	53
256	MCC950 in the treatment of NLRP3-mediated inflammatory diseases: Latest evidence and therapeutic outcomes. International Immunopharmacology, 2022, 106, 108595.	3.8	26
257	Dl-3-n-Butylphthalide Rescues Dopaminergic Neurons in Parkinson's Disease Models by Inhibiting the NLRP3 Inflammasome and Ameliorating Mitochondrial Impairment. Frontiers in Immunology, 2021, 12, 794770.	4.8	44
258	Autophagy-Lysosomal Pathway as Potential Therapeutic Target in Parkinson's Disease. Cells, 2021, 10, 3547.	4.1	28
259	Immunotherapeutic interventions in Parkinson's disease: Focus on α-Synuclein. Advances in Protein Chemistry and Structural Biology, 2022, 129, 381-433.	2.3	3
260	NPT1220-312, a TLR2/TLR9 Small Molecule Antagonist, Inhibits Pro-Inflammatory Signaling, Cytokine Release, and NLRP3 Inflammasome Activation. International Journal of Inflammation, 2022, 2022, 1-12.	1.5	2
261	Dopamine signaling modulates microglial NLRP3 inflammasome activation: implications for Parkinson's disease. Journal of Neuroinflammation, 2022, 19, 50.	7.2	26

#	Article	IF	CITATIONS
262	A selective inhibitor of the NLRP3 inflammasome as a potential therapeutic approach for neuroprotection in a transgenic mouse model of Huntington's disease. Journal of Neuroinflammation, 2022, 19, 56.	7.2	28
263	Echinacoside Protects Dopaminergic Neurons Through Regulating IL-6/JAK2/STAT3 Pathway in Parkinson's Disease Model. Frontiers in Pharmacology, 2022, 13, 848813.	3.5	9
264	The potential convergence of NLRP3 inflammasome, potassium, and dopamine mechanisms in Parkinson's disease. Npj Parkinson's Disease, 2022, 8, 32.	5.3	19
265	Microglia and Neuroinflammation: Crucial Pathological Mechanisms in Traumatic Brain Injury-Induced Neurodegeneration. Frontiers in Aging Neuroscience, 2022, 14, 825086.	3.4	46
266	" <i>Reframing</i> ―dopamine signaling at the intersection of glial networks in the aged Parkinsonian brain as innate <i>Nrf2/Wnt</i> driver: Therapeutical implications. Aging Cell, 2022, 21, e13575.	6.7	8
267	Inflammasome Inhibition Prevents Motor Deficit and Cerebellar Degeneration Induced by Chronic Methamphetamine Administration. Frontiers in Molecular Neuroscience, 2022, 15, 861340.	2.9	6
268	A small molecule inhibitor of caspase-1 inhibits NLRP3 inflammasome activation and pyroptosis to alleviate gouty inflammation. Immunology Letters, 2022, 244, 28-39.	2.5	12
269	Reducing neuroinflammation via therapeutic compounds and lifestyle to prevent or delay progression of Parkinson's disease. Ageing Research Reviews, 2022, 78, 101618.	10.9	28
270	Convergence of signalling pathways in innate immune responses and genetic forms of Parkinson's disease. Neurobiology of Disease, 2022, 169, 105721.	4.4	6
271	Biomarker of Neuroinflammation in Parkinson's Disease. International Journal of Molecular Sciences, 2022, 23, 4148.	4.1	50
272	Fighting Parkinson's disease: The return of the mitochondria. Mitochondrion, 2022, 64, 34-44.	3.4	19
273	Immune responses in the Parkinson's disease brain. Neurobiology of Disease, 2022, 168, 105700.	4.4	30
274	Regulated cell death: discovery, features and implications for neurodegenerative diseases. Cell Communication and Signaling, 2021, 19, 120.	6.5	48
275	p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson's disease. Journal of Neuroinflammation, 2021, 18, 295.	7.2	37
276	Perillyl Alcohol Attenuates NLRP3 Inflammasome Activation and Rescues Dopaminergic Neurons in Experimental In Vitro and In Vivo Models of Parkinson's Disease. ACS Chemical Neuroscience, 2022, 13, 53-68.	3.5	15
277	Biphasic Role of Microglia in Healthy and Diseased Brain. , 2022, , 507-537.		1
278	STING mediates neurodegeneration and neuroinflammation in nigrostriatal α-synucleinopathy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118819119.	7.1	64
279	GM1 ganglioside modifies microglial and neuroinflammatory responses to α-synuclein in the rat AAV-A53T α-synuclein model of Parkinson's disease. Molecular and Cellular Neurosciences, 2022, 120, 103729.	2.2	5

#	Article		CITATIONS
280	MCC950 ameliorates the dementia symptom at the early age of line M83 mouse and reduces hippocampal α-synuclein accumulation. Biochemical and Biophysical Research Communications, 2022, 611, 23-30.	2.1	8
281	The NLRP3 Inflammasome in Stress Response: Another Target for the Promiscuous Cannabidiol. Current Neuropharmacology, 2023, 21, 284-308.	2.9	5
286	Endoplasmic Reticulum Stress and Its Role in Homeostasis and Immunity of Central and Peripheral Neurons. Frontiers in Immunology, 2022, 13, 859703.	4.8	9
287	Catching a killer: Mechanisms of programmed cell death and immune activation in Amyotrophic Lateral Sclerosis. Immunological Reviews, 2022, 311, 130-150.	6.0	9
288	NLRP3 and pyroptosis blockers for treating inflammatory diseases. Trends in Pharmacological Sciences, 2022, 43, 653-668.	8.7	193
289	Ezh2 competes with p53 to license lncRNA Neat1 transcription for inflammasome activation. Cell Death and Differentiation, 2022, 29, 2009-2023.	11.2	12
290	Pyroptosis in inflammatory diseases and cancer. Theranostics, 2022, 12, 4310-4329.	10.0	91
291	Pyroptosis and Its Role in SARS-CoV-2 Infection. Cells, 2022, 11, 1717.	4.1	17
292	Investigating the <scp>NLRP3</scp> inflammasome and its regulator <scp>miR</scp> â€223â€3p in multiple sclerosis and experimental demyelination. Journal of Neurochemistry, 2022, 163, 94-112.	3.9	4
293	NLRP3-Dependent Pyroptosis: A Candidate Therapeutic Target for Depression. Frontiers in Cellular Neuroscience, 0, 16, .	3.7	11
294	The Mechanism and Function of Glia in Parkinson's Disease. Frontiers in Cellular Neuroscience, 0, 16, .	3.7	10
295	Neuronal NLRP3 is a parkin substrate that drives neurodegeneration in Parkinson's disease. Neuron, 2022, 110, 2422-2437.e9.	8.1	64
296	Leveraging the preformed fibril model to distinguish between alpha-synuclein inclusion- and nigrostriatal degeneration-associated immunogenicity. Neurobiology of Disease, 2022, 171, 105804.	4.4	12
297	The circadian clock protein Rev-erbα provides neuroprotection and attenuates neuroinflammation against Parkinson's disease via the microglial NLRP3 inflammasome. Journal of Neuroinflammation, 2022, 19, .	7.2	28
298	The NLRP3 Inflammasome Pathway: A Review of Mechanisms and Inhibitors for the Treatment of Inflammatory Diseases. Frontiers in Aging Neuroscience, 0, 14, .	3.4	91
299	Neurodegeneration and Neuroinflammation in Parkinson's Disease: a Self-Sustained Loop. Current Neurology and Neuroscience Reports, 2022, 22, 427-440.	4.2	21
300	Microglia in Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, S105-S112.	2.8	18
301	The Pathological Mechanism Between the Intestine and Brain in the Early Stage of Parkinson's Disease. Frontiers in Aging Neuroscience, 0, 14, .	3.4	3

#	Article	IF	CITATIONS
302	Central and Peripheral Inflammation: Connecting the Immune Responses of Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, S129-S136.	2.8	9
303	Nonstructural Protein NSs Activates Inflammasome and Pyroptosis through Interaction with NLRP3 in Human Microglial Cells Infected with Severe Fever with Thrombocytopenia Syndrome Bandavirus. Journal of Virology, 2022, 96, .	3.4	6
304	Multifunctional Selenium Nanoparticles with Different Surface Modifications Ameliorate Neuroinflammation through the Gut Microbiota-NLRP3 Inflammasome-Brain Axis in APP/PS1 Mice. ACS Applied Materials & Interfaces, 2022, 14, 30557-30570.	8.0	20
305	<i>Roseburia hominis</i> Alleviates Neuroinflammation via Shortâ€Chain Fatty Acids through Histone Deacetylase Inhibition. Molecular Nutrition and Food Research, 2022, 66, .	3.3	24
306	The emerging role of LRRK2 in tauopathies. Clinical Science, 2022, 136, 1071-1079.	4.3	12
307	Impact of Nutrition, Microbiota Transplant and Weight Loss Surgery on Dopaminergic Alterations in Parkinson's Disease and Obesity. International Journal of Molecular Sciences, 2022, 23, 7503.	4.1	9
308	Therapeutic functions of astrocytes to treat α-synuclein pathology in Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	15
309	Inflammasome Activation in Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, S113-S128.	2.8	11
310	Therapeutic Strategies for Immune Transformation in Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, S201-S222.	2.8	7
311	Ciclopirox inhibits NLRP3 inflammasome activation via protecting mitochondria and ameliorates imiquimod-induced psoriatic inflammation in mice. European Journal of Pharmacology, 2022, 930, 175156.	3.5	6
312	Dysregulation of peripheral monocytes and pro-inflammation of alpha-synuclein in Parkinson's disease. Journal of Neurology, 2022, 269, 6386-6394.	3.6	10
313	Microglia Pyroptosis: A Candidate Target for Neurological Diseases Treatment. Frontiers in Neuroscience, 0, 16, .	2.8	9
314	Discovery and Optimization of Triazolopyrimidinone Derivatives as Selective NLRP3 Inflammasome Inhibitors. ACS Medicinal Chemistry Letters, 2022, 13, 1321-1328.	2.8	7
315	Role of NLRP3 Inflammasome and Its Inhibitors as Emerging Therapeutic Drug Candidate for Alzheimer's Disease: a Review of Mechanism of Activation, Regulation, and Inhibition. Inflammation, 2023, 46, 56-87.	3.8	15
316	Crosstalk between regulatory non-coding RNAs and oxidative stress in Parkinson's disease. Frontiers in Aging Neuroscience, 0, 14, .	3.4	6
317	Mechanisms of NLRP3 activation and pathology during neurodegeneration. International Journal of Biochemistry and Cell Biology, 2022, 151, 106273.	2.8	9
318	Spatiotemporal evolution of pyroptosis and canonical inflammasome pathway in hSOD1G93A ALS mouse model. BMC Neuroscience, 2022, 23, .	1.9	8
319	Spreading of alpha-synuclein between different cell types. Behavioural Brain Research, 2023, 436, 114059.	2.2	6

#	Article	IF	Citations
320	The Significance of NLRP Inflammasome in Neuropsychiatric Disorders. Brain Sciences, 2022, 12, 1057.	2.3	7
321	Multiple system atrophy. Nature Reviews Disease Primers, 2022, 8, .	30.5	59
322	Role of NLRP3 Inflammasome in Parkinson's Disease and Therapeutic Considerations. Journal of Parkinson's Disease, 2022, 12, 2117-2133.	2.8	15
323	NLRP3 inflammasome in neurodegenerative disease. Translational Research, 2023, 252, 21-33.	5.0	25
324	CircSV2b participates in oxidative stress regulation through miR-5107-5p-Foxk1-Akt1 axis in Parkinson's disease. Redox Biology, 2022, 56, 102430.	9.0	22
325	Different patterns of exosomal <scp>αâ€synuclein</scp> between Parkinson's disease and probable rapid eye movement sleep behavior disorder. European Journal of Neurology, 2022, 29, 3590-3599.	3.3	11
326	lsoliquiritigenin attenuates neuroinflammation in mice model of Parkinson's disease by promoting Nrf2/NQO-1 pathway. Translational Neuroscience, 2022, 13, 301-308.	1.4	2
327	Intestinal microbiota and neuroinflammation in Parkinson's disease: At the helm of the gut-brain axis. International Review of Neurobiology, 2022, , .	2.0	1
329	Kv1.3 K ⁺ Channel Physiology Assessed by Genetic and Pharmacological Modulation. Physiology, 2023, 38, 25-41.	3.1	8
330	Exercise modulates central and peripheral inflammatory responses and ameliorates methamphetamine-induced anxiety-like symptoms in mice. Frontiers in Molecular Neuroscience, 0, 15, .	2.9	5
331	Punicalagin Attenuates LPS-Induced Inflammation and ROS Production in Microglia by Inhibiting the MAPK/NF-I®B Signaling Pathway and NLRP3 Inflammasome Activation. Journal of Inflammation Research, 0, Volume 15, 5347-5359.	3.5	10
332	Neuroinflammation and Parkinson's Disease—From Neurodegeneration to Therapeutic Opportunities. Cells, 2022, 11, 2908.	4.1	28
333	Pathological and Therapeutic Advances in Parkinson's Disease: Mitochondria in the Interplay. Journal of Alzheimer's Disease, 2023, 94, S399-S428.	2.6	15
334	Linking Immune Activation and Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, S1-S3.	2.8	1
335	The Role of Hydrogen Sulfide Targeting Autophagy in the Pathological Processes of the Nervous System. Metabolites, 2022, 12, 879.	2.9	6
336	Targeting microglial NLRP3 in the SNc region as a promising diseaseâ€modifying therapy for Parkinson's disease. Brain and Behavior, 2022, 12, .	2.2	3
337	Interaction between autophagy and the NLRP3 inflammasome in Alzheimer's and Parkinson's disease. Frontiers in Aging Neuroscience, 0, 14, .	3.4	15
338	NLRP3 inflammasomes: A potential target to improve mitochondrial biogenesis in Parkinson's disease. European Journal of Pharmacology, 2022, 934, 175300.	3.5	15

#	Article	IF	CITATIONS
339	Exendin-4 and linagliptin attenuate neuroinflammation in a mouse model of Parkinson′s disease. Neural Regeneration Research, 2022, .	3.0	1
340	Targeting the inflammasome in Parkinson's disease. Frontiers in Aging Neuroscience, 0, 14, .	3.4	6
342	Regulation of α-synuclein homeostasis and inflammasome activation by microglial autophagy. Science Advances, 2022, 8, .	10.3	12
343	Association of Glial Activation and α-Synuclein Pathology in Parkinson's Disease. Neuroscience Bulletin, 2023, 39, 479-490.	2.9	11
344	C9-ALS-Associated Proline-Arginine Dipeptide Repeat Protein Induces Activation of NLRP3 Inflammasome of HMC3 Microglia Cells by Binding of Complement Component 1 Q Subcomponent-Binding Protein (C1QBP), and Syringin Prevents This Effect. Cells, 2022, 11, 3128.	4.1	12
345	Parkinson's disease: connecting mitochondria to inflammasomes. Trends in Immunology, 2022, 43, 877-885.	6.8	18
346	SARS-CoV-2 drives NLRP3 inflammasome activation in human microglia through spike protein. Molecular Psychiatry, 2023, 28, 2878-2893.	7.9	47
347	Microglia dynamics in aging-related neurobehavioral and neuroinflammatory diseases. Journal of Neuroinflammation, 2022, 19, .	7.2	22
348	The role of Nod-like receptor protein 3 inflammasome activated by ion channels in multiple diseases. Molecular and Cellular Biochemistry, 0, , .	3.1	2
349	Microglia and astrocyte activation is regionâ€dependent in the αâ€synuclein mouse model of Parkinson's disease. Glia, 2023, 71, 571-587.	4.9	14
350	Chronic Microcystin-LR-Induced α-Synuclein Promotes Neuroinflammation Through Activation of the NLRP3 Inflammasome in Microglia. Molecular Neurobiology, 2023, 60, 884-900.	4.0	6
351	Endothelial LRP1-ICD Accelerates Cognition-Associated Alpha-Synuclein Pathology and Neurodegeneration through PARP1 Activation in a Mouse Model of Parkinson's Disease. Molecular Neurobiology, 2023, 60, 979-1003.	4.0	4
352	Inflammasomes as biomarkers and therapeutic targets in traumatic brain injury and related-neurodegenerative diseases: A comprehensive overview. Neuroscience and Biobehavioral Reviews, 2023, 144, 104969.	6.1	6
353	Inflammasome and neurodegenerative diseases. , 2023, , 291-326.		1
354	Mitochondrial signaling on innate immunity activation in Parkinson disease. Current Opinion in Neurobiology, 2023, 78, 102664.	4.2	5
355	δ-opioid Receptor, Microglia and Neuroinflammation. , 2023, 14, 778.		4
356	Loss of function of CMPK2 causes mitochondria deficiency and brain calcification. Cell Discovery, 2022, 8, .	6.7	10
357	Heatâ€killed <scp><i>Lactobacillus murinus</i></scp> confers neuroprotection against dopamine neuronal loss by targeting <scp>NLRP3</scp> inflammasome. Bioengineering and Translational Medicine, 2023, 8, .	7.1	6

#	Article	IF	CITATIONS
358	The immunomodulatory roles of the gut microbiome in autoimmune diseases of the central nervous system: Multiple sclerosis as a model. Journal of Autoimmunity, 2023, 137, 102957.	6.5	4
359	Manganese-induced neuronal apoptosis: new insights into the role of endoplasmic reticulum stress in regulating autophagy-related proteins. Toxicological Sciences, 2023, 191, 193-200.	3.1	4
361	Relevance of biochemical deep phenotyping for a personalised approach to Parkinson's disease. Neuroscience, 2022, , .	2.3	3
362	Inflammation promotes synucleinopathy propagation. Experimental and Molecular Medicine, 2022, 54, 2148-2161.	7.7	12
363	Microglia-containing human brain organoids for the study of brain development and pathology. Molecular Psychiatry, 2023, 28, 96-107.	7.9	30
364	NLRP3 inflammasome inhibitor MCC950 reduces cerebral ischemia/reperfusion induced neuronal ferroptosis. Neuroscience Letters, 2023, 795, 137032.	2.1	2
365	Neurodegeneration and inflammation crosstalk: Therapeutic targets and perspectives. IBRO Neuroscience Reports, 2023, 14, 95-110.	1.6	7
366	Toll-like receptors and NLRP3 inflammasome-dependent pathways in Parkinson's disease: mechanisms and therapeutic implications. Journal of Neurology, 2023, 270, 1346-1360.	3.6	8
367	Dopamine, Immunity, and Disease. Pharmacological Reviews, 2023, 75, 62-158.	16.0	43
368	Role of α-synuclein in microglia: autophagy and phagocytosis balance neuroinflammation in Parkinson's disease. Inflammation Research, 2023, 72, 443-462.	4.0	15
369	Small molecules to perform big roles: The search for Parkinson's and Huntington's disease therapeutics. Frontiers in Neuroscience, 0, 16, .	2.8	1
370	Mechanism of pyroptosis in neurodegenerative diseases and its therapeutic potential by traditional Chinese medicine. Frontiers in Pharmacology, 0, 14, .	3.5	4
371	Genetic deletion or pharmacologic inhibition of the Nlrp3 inflammasome did not ameliorate experimental NASH. Journal of Lipid Research, 2023, 64, 100330.	4.2	2
372	Cannabidivarin alleviates αâ€synuclein aggregation via <scp>DAF</scp> â€16 in <i>Caenorhabditis elegans</i> . FASEB Journal, 2023, 37, .	0.5	2
373	Inflammation and cognition in severe mental illness: patterns of covariation and subgroups. Molecular Psychiatry, 2023, 28, 1284-1292.	7.9	6
374	Identification of inflammasome signaling proteins in neurons and microglia in early and intermediate stages of Alzheimer's disease. Brain Pathology, 2023, 33, .	4.1	10
375	The Potential of NLRP3 Inflammasome as a Therapeutic Target in Neurological Diseases. Molecular Neurobiology, 2023, 60, 2520-2538.	4.0	7
376	The mechanism of NLRP3 inflammasome activation and its pharmacological inhibitors. Frontiers in Immunology, 0, 13, .	4.8	17

#	Article		CITATIONS
377	Synthesis and Evaluation of [¹¹ C]MCC950 for Imaging NLRP3-Mediated Inflammation in Atherosclerosis. Molecular Pharmaceutics, 2023, 20, 1709-1716.	4.6	2
378	Mitochondrion: A bridge linking aging and degenerative diseases. Life Sciences, 2023, 322, 121666.	4.3	2
379	HCH6-1, an antagonist of formyl peptide receptor-1, exerts anti-neuroinflammatory and neuroprotective effects in cellular and animal models of Parkinson's disease. Biochemical Pharmacology, 2023, 212, 115524.	4.4	3
380	CSK-3β: An exuberating neuroinflammatory mediator in Parkinson's disease. Biochemical Pharmacology, 2023, 210, 115496.	4.4	8
381	β-Hydroxybutyrate Regulates Activated Microglia to Alleviate Neurodegenerative Processes in Neurological Diseases: A Scoping Review. Nutrients, 2023, 15, 524.	4.1	7
382	Patchouli alcohol ameliorates depression-like behaviors through inhibiting NLRP3-mediated neuroinflammation in male stress-exposed mice. Journal of Affective Disorders, 2023, 326, 120-131.	4.1	5
383	Investigating Therapeutic Effects of Indole Derivatives Targeting Inflammation and Oxidative Stress in Neurotoxin-Induced Cell and Mouse Models of Parkinson's Disease. International Journal of Molecular Sciences, 2023, 24, 2642.	4.1	8
384	ASC specks exacerbate α‑synuclein pathology via amplifying NLRP3 inflammasome activities. Journal of Neuroinflammation, 2023, 20, .	7.2	2
385	CB2R activation ameliorates late adolescent chronic alcohol exposure-induced anxiety-like behaviors during withdrawal by preventing morphological changes and suppressing NLRP3 inflammasome activation in prefrontal cortex microglia in mice. Brain, Behavior, and Immunity, 2023, 110, 60-79.	4.1	11
386	Genetic Variants in Sulfonylurea Targets Affect Parkinson's Disease Risk: A Twoâ€Sample Mendelian Randomization Study. Movement Disorders, 2023, 38, 703-705.	3.9	2
387	Disease mechanisms as subtypes: Lysosomal dysfunction in the endolysosomal Parkinson's disease subtype. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2023, , 33-51.	1.8	1
388	Disease mechanisms as subtypes: Immune dysfunction in Parkinson's disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2023, , 67-93.	1.8	0
389	Integrin Mac1 mediates paraquat and maneb-induced learning and memory impairments in mice through NADPH oxidase–NLRP3 inflammasome axis-dependent microglial activation. Journal of Neuroinflammation, 2023, 20, .	7.2	3
390	Regulatory T cells alleviate myelin loss and cognitive dysfunction by regulating neuroinflammation and microglial pyroptosis via TLR4/MyD88/NF-I®B pathway in LPC-induced demyelination. Journal of Neuroinflammation, 2023, 20, .	7.2	10
391	Signaling pathways in Parkinson's disease: molecular mechanisms and therapeutic interventions. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	37
392	Mechanisms of Glucocerebrosidase Dysfunction in Parkinson's Disease. Journal of Molecular Biology, 2023, 435, 168023.	4.2	7
393	Mitochondrial dynamics in macrophages: divide to conquer or unite to survive?. Biochemical Society Transactions, 2023, 51, 41-56.	3.4	2
394	Current Treatments and New, Tentative Therapies for Parkinson's Disease. Pharmaceutics, 2023, 15, 770.	4.5	4

#	Article	IF	CITATIONS
395	PM2.5 induce myocardial injury in hyperlipidemic mice through ROS-pyroptosis signaling pathway. Ecotoxicology and Environmental Safety, 2023, 254, 114699.	6.0	2
396	The neuroprotective effects of targeting key factors of neuronal cell death in neurodegenerative diseases: The role of ER stress, oxidative stress, and neuroinflammation. Frontiers in Cellular Neuroscience, 0, 17, .	3.7	14
397	Microglial <scp>cGAS</scp> drives neuroinflammation in the <scp>MPTP</scp> mouse models of Parkinson's disease. CNS Neuroscience and Therapeutics, 2023, 29, 2018-2035.	3.9	5
398	Neuroprotective effect of engineered <i>Clostridium</i> <scp>butyricumâ€pMTL007â€GLP</scp> â€1 on Parkinson's disease mice models via promoting mitophagy. Bioengineering and Translational Medicine, 2023, 8, .	7.1	2
399	Alpha Synuclein: Neurodegeneration and Inflammation. International Journal of Molecular Sciences, 2023, 24, 5914.	4.1	11
400	Novel Activity of ODZ10117, a STAT3 Inhibitor, for Regulation of NLRP3 Inflammasome Activation. International Journal of Molecular Sciences, 2023, 24, 6079.	4.1	3
401	NLRP3 Inflammasome's Activation in Acute and Chronic Brain Diseases—An Update on Pathogenetic Mechanisms and Therapeutic Perspectives with Respect to Other Inflammasomes. Biomedicines, 2023, 11, 999.	3.2	6
402	Interactions between gut microbes and NLRP3 inflammasome in the gut-brain axis. Computational and Structural Biotechnology Journal, 2023, 21, 2215-2227.	4.1	4
403	Inflammasome inhibition protects dopaminergic neurons from α-synuclein pathology in a model of progressive Parkinson's disease. Journal of Neuroinflammation, 2023, 20, .	7.2	7
404	Parkin regulates microglial <scp>NLRP3</scp> and represses neurodegeneration in Parkinson's disease. Aging Cell, 2023, 22, .	6.7	6
405	Exosomes derived from human umbilical cord mesenchymal stem cells alleviate Parkinson's disease and neuronal damage through inhibition of microglia. Neural Regeneration Research, 2023, 18, 2291.	3.0	9
406	Pathophysiology and Neuroimmune Interactions Underlying Parkinson's Disease and Traumatic Brain Injury. International Journal of Molecular Sciences, 2023, 24, 7186.	4.1	0
407	NLRP3 mediates the neuroprotective effects of SVHRSP derived from scorpion venom in rotenone-induced experimental Parkinson's disease model. Journal of Ethnopharmacology, 2023, 312, 116497.	4.1	3
408	PARK7/DJ-1 in microglia: implications in Parkinson's disease and relevance as a therapeutic target. Journal of Neuroinflammation, 2023, 20, .	7.2	5
409	NOD-like receptor NLRC5 promotes neuroinflammation and inhibits neuronal survival in Parkinson's disease models. Journal of Neuroinflammation, 2023, 20, .	7.2	6
410	GSDMD in peripheral myeloid cells regulates microglial immune training and neuroinflammation in Parkinson's disease. Acta Pharmaceutica Sinica B, 2023, 13, 2663-2679.	12.0	2
411	Cntnap4 partial deficiency exacerbates α-synuclein pathology through astrocyte–microglia C3-C3aR pathway. Cell Death and Disease, 2023, 14, .	6.3	4
412	Role of pyroptosis in the pathogenesis and treatment of diseases. MedComm, 2023, 4, .	7.2	2

#	Article	IF	CITATIONS
413	Response to Comment on "Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice― Science Translational Medicine, 2023, 15, .	12.4	1
414	Comment on "Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in miceâ€: Science Translational Medicine, 2023, 15, .	12.4	1
415	Elevated GRO-Î \pm and IL-18 in serum and brain implicate the NLRP3 inflammasome in frontotemporal dementia. Scientific Reports, 2023, 13, .	3.3	0
416	Mesenchymal stem cells (<scp>MSCs</scp>) and <scp>MSC</scp> â€derived exosomes in animal models of central nervous system diseases: Targeting the <scp>NLRP3</scp> inflammasome. IUBMB Life, 2023, 75, 794-810.	3.4	3
417	Inflammasomes during SARS-CoV-2 infection and development of their corresponding inhibitors. Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	4
418	Aflatoxin B1 Increases Soluble Epoxide Hydrolase in the Brain and Induces Neuroinflammation and Dopaminergic Neurotoxicity. International Journal of Molecular Sciences, 2023, 24, 9938.	4.1	3
419	Proof-of-Principle Study of Inflammasome Signaling Proteins as Diagnostic Biomarkers of the Inflammatory Response in Parkinson's Disease. Pharmaceuticals, 2023, 16, 883.	3.8	5
420	Microglial Metabolic Reprogramming: Emerging Insights and Therapeutic Strategies in Neurodegenerative Diseases. Cellular and Molecular Neurobiology, 0, , .	3.3	0
421	Pharmacologic inhibition of NLRP3 reduces the levels of α-synuclein and protects dopaminergic neurons in a model of Parkinson's disease. Journal of Neuroinflammation, 2023, 20, .	7.2	2
422	Regulatory functional role of NLRP3 inflammasome during <i>mycoplasma hyopneumoniae</i> infection in swine. Journal of Animal Science, 0, , .	0.5	0
424	Treatment of Parkinson's Disease: Current Treatments and Recent Therapeutic Developments. Current Drug Discovery Technologies, 2023, 20, .	1.2	2
425	JAC4 Alleviates Rotenone-Induced Parkinson's Disease through the Inactivation of the NLRP3 Signal Pathway. Antioxidants, 2023, 12, 1134.	5.1	1
426	A 360° view of the inflammasome: Mechanisms of activation, cell death, and diseases. Cell, 2023, 186, 2288-2312.	28.9	48
427	The NLRP3 inflammasome: contributions to inflammation-related diseases. Cellular and Molecular Biology Letters, 2023, 28, .	7.0	14
428	Regulatory Cues in Pulmonary Fibrosis—With Emphasis on the AIM2 Inflammasome. International Journal of Molecular Sciences, 2023, 24, 10876.	4.1	0
429	Ox-inflammasome involvement in neuroinflammation. Free Radical Biology and Medicine, 2023, 207, 161-177.	2.9	4
430	Role of neuroinflammation in neurodegeneration development. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	62
431	Research progress of NLRP3 inflammasome and its inhibitors with aging diseases. European Journal of Pharmacology, 2023, 957, 175931.	3.5	1

#	Article		CITATIONS
432	Urolithin A in Health and Diseases: Prospects for Parkinson's Disease Management. Antioxidants, 2023, 12, 1479.	5.1	2
433	Pyroptosis in neurodegenerative diseases: from bench to bedside. Cell Biology and Toxicology, 2023, 39, 2467-2499.	5.3	3
434	Divergent functional outcomes of NLRP3 blockade downstream of multi-inflammasome activation: therapeutic implications for ALS. Frontiers in Immunology, 0, 14, .	4.8	2
435	Overview of the Gut–Brain Axis: From Gut to Brain and Back Again. Seminars in Neurology, 2023, 43, 506-517.	1.4	1
436	Pharmacological Inhibition of PTEN Rescues Dopaminergic Neurons by Attenuating Apoptotic and Neuroinflammatory Signaling Events. Journal of NeuroImmune Pharmacology, 2023, 18, 462-475.	4.1	1
437	Medicinal chemistry strategies targeting NLRP3 inflammasome pathway: A recent update from 2019 to mid-2023. European Journal of Medicinal Chemistry, 2023, 260, 115750.	5.5	3
438	Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	23
439	Mechanisms of NLRP3 inflammasome activation and the development of peptide inhibitors. Cytokine and Growth Factor Reviews, 2023, , .	7.2	0
440	Qiji Shujiang granules alleviates dopaminergic neuronal injury of parkinson's disease by inhibiting NLRP3/Caspase-1 pathway mediated pyroptosis. Phytomedicine, 2023, 120, 155019.	5.3	1
441	Cystathionine β-Synthase Suppresses NLRP3 Inflammasome Activation <i>via</i> Redox Regulation in Microglia. Antioxidants and Redox Signaling, 0, , .	5.4	1
442	Inhibiting the NLRP3 Inflammasome with MCC950 Alleviates Neurological Impairment in the Brain of EAE Mice. Molecular Neurobiology, 2024, 61, 1318-1330.	4.0	0
443	The role of caspase-8 in inflammatory signalling and pyroptotic cell death. Seminars in Immunology, 2023, 70, 101832.	5.6	3
444	The Involvement of Neuroinflammation in the Onset and Progression of Parkinson's Disease. International Journal of Molecular Sciences, 2023, 24, 14582.	4.1	6
445	Targeting NLRP3 inflammasome for neurodegenerative disorders. Molecular Psychiatry, 2023, 28, 4512-4527.	7.9	1
446	Effects of a high saturated fatty acid diet on the intestinal microbiota modification and associated impacts on Parkinson's disease development. Journal of Neuroimmunology, 2023, 382, 578171.	2.3	0
447	Metabolic reprogramming and polarization of microglia in Parkinson's disease: Role of inflammasome and iron. Ageing Research Reviews, 2023, 90, 102032.	10.9	8
448	Coumarin-chalcone hybrid LM-021 and indole derivative NC009-1 targeting inflammation and oxidative stress to protect BE(2)-M17 cells against α-synuclein toxicity. Aging, 2023, 15, 8061-8089.	3.1	3
449	The STING inhibitor C-176 attenuates MPTP-induced neuroinflammation and neurodegeneration in mouse parkinsonian models. International Immunopharmacology, 2023, 124, 110827.	3.8	0

		CITATION RE	PORT	
#	Article		IF	Citations
450	Inflammasome assembly in neurodegenerative diseases. Trends in Neurosciences, 2023	3, 46, 814-831.	8.6	7
452	A review of studies on the implication of NLRP3 inflammasome for Parkinson's dise candidate treatment targets. Neurochemistry International, 2023, 170, 105610.	ase and related	3.8	1
453	Hsa_circ_0054220 Upregulates HMGA1 by the Competitive RNA Pattern to Promote № MPTP Model of Parkinson's Disease. Applied Biochemistry and Biotechnology, 0, , .	leural Impairment in	2.9	0
454	Role of Nanoparticle-Conjugates and Nanotheranostics in Abrogating Oxidative Stress Ameliorating Neuroinflammation. Antioxidants, 2023, 12, 1877.	and	5.1	0
455	Role and mechanism of MiR-542-3p in regulating TLR4 in nonylphenol-induced neurona Phytomedicine, 2024, 123, 155123.	ıl cell pyroptosis.	5.3	0
456	NLRP3 inflammasome in cognitive impairment and pharmacological propertiesÂofÂits i Translational Neurodegeneration, 2023, 12, .	nhibitors.	8.0	1
457	β-Caryophyllene decreases neuroinflammation and exerts neuroprotection of dopamin a model of hemiparkinsonism through inhibition of the NLRP3 inflammasome. Parkinsc Related Disorders, 2023, 117, 105906.		2.2	0
458	The Neglected Sibling: NLRP2 Inflammasome in the Nervous System. , 2023, .			0
459	Cell type-targeting nanoparticles in treating central nervous system diseases: Challeng Nanotechnology Reviews, 2023, 12, .	es and hopes.	5.8	0
460	Drugging the NLRP3 inflammasome: from signalling mechanisms to therapeutic target Reviews Drug Discovery, 2024, 23, 43-66.	s. Nature	46.4	3
461	Cytokine activity in Parkinson's disease. Neuronal Signaling, 2023, 7, .		3.2	0
463	Mitochondrial dysfunction and inflammasome activation in neurodegenerative disease and therapeutic implications. Mitochondrion, 2023, 73, 72-83.	s: Mechanisms	3.4	2
464	Gut microbiota-mediated ursodeoxycholic acids regulate the inflammation of microglia signaling after MCAO. Brain, Behavior, and Immunity, 2024, 115, 667-679.	through TGR5	4.1	0
465	Baicalin exerts neuroprotective actions by regulating the Nrf2-NLRP3 axis in toxin-induc Parkinson's disease. Chemico-Biological Interactions, 2024, 387, 110820.	ced models of	4.0	0
466	Differential profiles of serum cytokines in Parkinson's disease according to disease dur Neurobiology of Disease, 2024, 190, 106371.	ation.	4.4	0
467	Causal associations between common musculoskeletal disorders and dementia: a Men randomization study. Frontiers in Aging Neuroscience, 0, 15, .	delian	3.4	0
468	Sex-dimorphic neuroprotective effect of CD163 in an α-synuclein mouse model of Parł Npj Parkinson's Disease, 2023, 9, .	≀inson's disease.	5.3	0
469	MCC950 alleviates seizure severity and angiogenesis by inhibiting NLRP3/ IL-1Î ² signali pathway-mediated pyroptosis in mouse model of epilepsy. International Immunopharm 126, 111236.	ng Iacology, 2024,	3.8	1

#	Article	IF	CITATIONS
470	Inflammasomes as regulators of mechano-immunity. EMBO Reports, 0, , .	4.5	0
471	Adenine model of chronic renal failure in rats to determine whether MCC950, an NLRP3 inflammasome inhibitor, is a renopreventive. BMC Nephrology, 2023, 24, .	1.8	0
472	The Michael J. Fox Foundation's quest for a cure for Parkinson's disease: an interview with Nicole Polinski. DMM Disease Models and Mechanisms, 2023, 16, .	2.4	0
473	Serum apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) is a novel stroke biomarker. Clinica Chimica Acta, 2024, 553, 117734.	1.1	0
474	Role of NLRP3 Inflammasome in Stroke Pathobiology: Current Therapeutic Avenues and Future Perspective. ACS Chemical Neuroscience, 0, , .	3.5	0
475	Inflammasomes in neurological disorders — mechanisms and therapeutic potential. Nature Reviews Neurology, 2024, 20, 67-83.	10.1	2
476	The involvement of α-synucleinopathy in the disruption of microglial homeostasis contributes to the pathogenesis of Parkinson's disease. Cell Communication and Signaling, 2024, 22, .	6.5	1
477	Molecular crosstalk between circadian clock and NLRP3 inflammasome signaling in Parkinson's disease. Heliyon, 2024, 10, e24752.	3.2	0
478	The pyroptosis mediated biomarker pattern: an emerging diagnostic approach for Parkinson's disease. Cellular and Molecular Biology Letters, 2024, 29, .	7.0	0
479	MCC950 Attenuates Microglial NLRP3-Mediated Chronic Neuroinflammation and Memory Impairment in a Rat Model of Repeated Low-Level Blast Exposure. Journal of Neurotrauma, 0, , .	3.4	0
480	Characterization of pSer129-αSyn Pathology and Neurofilament Light-Chain Release across In Vivo, Ex Vivo, and In Vitro Models of Pre-Formed-Fibril-Induced αSyn Aggregation. Cells, 2024, 13, 253.	4.1	0
481	What Can Inflammation Tell Us about Therapeutic Strategies for Parkinson's Disease?. International Journal of Molecular Sciences, 2024, 25, 1641.	4.1	0
482	Management of the Brain: Essential Oils as Promising Neuroinflammation Modulator in Neurodegenerative Diseases. Antioxidants, 2024, 13, 178.	5.1	0
483	Immune receptors and aging brain. Bioscience Reports, 2024, 44, .	2.4	0
484	Role of pyroptosis in the pathogenesis of various neurological diseases. Brain, Behavior, and Immunity, 2024, 117, 428-446.	4.1	0
485	Baohuoside I suppresses the NLRP3 inflammasome activation via targeting GPER to fight against Parkinson's disease. Phytomedicine, 2024, 126, 155435.	5.3	0
486	Mitochondria Dysfunction and Neuroinflammation in Neurodegeneration: Who Comes First?. Antioxidants, 2024, 13, 240.	5.1	0
487	Role of inflammasomes in HIV-1 and drug abuse-mediated neuroinflammation. , 2024, , 209-224.		ο

#	Article	IF	CITATIONS
488	Altered vacuole membrane protein 1 (VMP1) expression is associated with increased NLRP3 inflammasome activation and mitochondrial dysfunction. Inflammation Research, 2024, 73, 563-580.	4.0	0
489	Sirtuin dysregulation in Parkinson's disease: Implications of acetylation and deacetylation processes. Life Sciences, 2024, 342, 122537.	4.3	0
490	New Insights on NLRP3 Inflammasome: Mechanisms of Activation, Inhibition, and Epigenetic Regulation. Journal of NeuroImmune Pharmacology, 2024, 19, .	4.1	0
491	Epigenetic regulation of autophagy in neuroinflammation and synaptic plasticity. Frontiers in Immunology, 0, 15, .	4.8	0
492	Microglial <scp>ApoD</scp> â€induced <scp>NLRC4</scp> inflammasome activation promotes Alzheimer's disease progression. Animal Models and Experimental Medicine, 0, , .	3.3	0