Magnetoresistance in Co-hBN-NiFe Tunnel Junctions En through Single Defects in Ultrathin hBN Barriers

Nano Letters

18,6954-6960

DOI: 10.1021/acs.nanolett.8b02866

Citation Report

CITATIO	NI DE	т

#	Article	IF	CITATIONS
1	Tunnel spectroscopy of localised electronic states in hexagonal boron nitride. Communications Physics, 2018, 1, .	5.3	33
2	Axial field induced spin response in Fe/hBN-based tunnel junctions. Physical Review B, 2019, 100, .	3.2	5
3	Substitutional Si impurities in monolayer hexagonal boron nitride. Applied Physics Letters, 2019, 115, .	3.3	16
4	Two-dimensional van der Waals spinterfaces and magnetic-interfaces. Applied Physics Reviews, 2020, 7, .	11.3	100
6	Tunneling spectroscopy as a probe of fractionalization in two-dimensional magnetic heterostructures. Physical Review B, 2020, 102, .	3.2	15
7	<i>Colloquium</i> : Spintronics in graphene and other two-dimensional materials. Reviews of Modern Physics, 2020, 92, .	45.6	265
8	<i>Ab Initio</i> Study of Hexagonal Boron Nitride as the Tunnel Barrier in Magnetic Tunnel Junctions. ACS Applied Materials & amp; Interfaces, 2021, 13, 47226-47235.	8.0	6
9	Synthesis of emerging 2D layered magnetic materials. Nanoscale, 2021, 13, 2157-2180.	5.6	35
10	The Unusual Dielectric Response of Large Area Molecular Tunnel Junctions Probed with Impedance Spectroscopy. Advanced Electronic Materials, 2022, 8, 2100495.	5.1	10
11	Manipulation of Magnetic Properties and Magnetoresistance in Co/Cu∫î³â€²-Fe ₄ N/Mica Flexible Spin Valves via External Mechanical Strains. ACS Applied Electronic Materials, 2022, 4, 276-286.	4.3	1
12	Two-dimensional materials prospects for non-volatile spintronic memories. Nature, 2022, 606, 663-673.	27.8	116
14	Charge transfer due to defects in hexagonal boron nitride/graphene heterostructures: An <i>ab initio</i> study. Physical Review Materials, 2023, 7, .	2.4	0
15	Recent innovations in 2D magnetic materials and their potential applications in the modern era. Materials Today, 2023, , .	14.2	0