Wavefront steering of elastic shear vertical waves in sol metasurface

Journal of Applied Physics 124,

DOI: 10.1063/1.5049515

Citation Report

#	Article	IF	CITATIONS
1	Beam splitting of flexural waves with a coding meta-slab. Applied Physics Express, 2019, 12, 097002.	2.4	16
2	Asymmetric transmission of elastic shear vertical waves in solids. Ultrasonics, 2019, 96, 34-39.	3.9	15
3	Multifunctional elastic metasurface design with topology optimization. Acta Materialia, 2020, 185, 382-399.	7.9	47
4	Design of elastic metasurfaces for controlling shear vertical waves using uniaxial scaling transformation method. International Journal of Mechanical Sciences, 2020, 169, 105335.	6.7	13
5	Tunable multifunctional fish-bone elastic metasurface for the wavefront manipulation of the transmitted in-plane waves. Journal of Applied Physics, 2020, 128, .	2.5	32
6	Vibration control of flexural waves in thin plates by 3D-printed metasurfaces. Journal of Sound and Vibration, 2020, 481, 115440.	3.9	46
7	Flexural wave absorption by lossy gradient elastic metasurface. Journal of the Mechanics and Physics of Solids, 2020, 143, 104052.	4.8	72
8	Modular elastic metasurfaces with mass oscillators for transmitted flexural wave manipulation. Journal Physics D: Applied Physics, 2021, 54, 255303.	2.8	23
9	Experimental realization of a pillared metasurface for flexural wave focusing. APL Materials, 2021, 9, .	5.1	35
10	Advances in the study of elastic metasurfaces. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2022, 52, 911-927.	0.5	2
11	Design of Acoustic/Elastic Phase Gradient Metasurfaces: Principles, Functional Elements, Tunability, and Coding. Applied Mechanics Reviews, 2022, 74, .	10.1	49
12	Elastic Metagratings with Simultaneous Modulation of Reflected and Transmitted Waves. Crystals, 2022, 12, 901.	2.2	7
13	Elastic Metagratings with Simultaneous Highly Efficient Control over Longitudinal and Transverse Waves for Multiple Functionalities. Physical Review Applied, 2022, 18, .	3.8	9
14	Continuous-phase-transformation elastic metasurface for flexural wave using notched structure. International Journal of Mechanical Sciences, 2023, 257, 108563.	6.7	6
15	Elastic metamaterials for guided waves: from fundamentals to applications. Smart Materials and Structures, 2023, 32, 123001.	3.5	5
16	Scattering-free modulation of elastic shear-horizontal waves based on interface-impedance theory. Physical Review Applied, 2023, 20, .	3.8	1