ECG Signal Classification Using Various Machine Learni

Journal of Medical Systems 42, 241 DOI: 10.1007/s10916-018-1083-6

Citation Report

#	Article	IF	CITATIONS
1	ECG Signal Filtering Approach for Detection of P, QRS, T Waves and Complexes in Short Single-Lead Recording. , 2019, , .		10
2	High Precision Digitization of Paper-Based ECG Records: A Step Toward Machine Learning. IEEE Journal of Translational Engineering in Health and Medicine, 2019, 7, 1-8.	2.2	26
3	Spectral feature and optimization- based actor-critic neural network for arrhythmia classification using ECG signal. Journal of Experimental and Theoretical Artificial Intelligence, 2020, 32, 409-435.	1.8	8
4	Premature Ventricular Contractions Classification using Machine Learning Approach. , 2020, , .		2
5	Deep Learning Algorithm Classifies Heartbeat Events Based on Electrocardiogram Signals. Frontiers in Physiology, 2020, 11, 569050.	1.3	29
6	Machine Learning in Electrocardiography and Echocardiography: Technological Advances in Clinical Cardiology. Current Cardiology Reports, 2020, 22, 161.	1.3	12
7	Statistical and entropy-based features can efficiently detect the short-term effect of caffeinated coffee on the cardiac physiology. Medical Hypotheses, 2020, 145, 110323.	0.8	7
8	Heart Rhythm Abnormality Detection and Classification using Machine Learning Technique. , 2020, , .		8
9	Explainable Prediction of Acute Myocardial Infarction Using Machine Learning and Shapley Values. IEEE Access, 2020, 8, 210410-210417.	2.6	51
10	Multi-Label ECG Signal Classification Based on Ensemble Classifier. IEEE Access, 2020, 8, 117986-117996.	2.6	29
11	Machine Learning-Based Ensemble Approach for Predicting the Mortality Risk of COVID-19 Patients: A Case Study. Algorithms for Intelligent Systems, 2021, , 1-25.	0.5	1
12	IoT Model for Heart Disease Detection Using Machine Learning (ML) Techniques. , 2021, , 399-409.		1
13	Preprocessing of the electrocardiogram signal for a patient parameter monitoring system. , 2021, , 115-133.		0
14	Automatic heart disease class detection using convolutional neural network architectureâ€based various optimizersâ€networks. IET Smart Cities, 2021, 3, 3-15.	1.6	6
15	A Wearable Wireless Sensor System Using Machine Learning Classification to Detect Arrhythmia. IEEE Sensors Journal, 2021, 21, 11109-11116.	2.4	17
16	A WBAN-Based Framework for Health Condition Monitoring and Faulty Sensor Node Detection Applying ANN. International Journal of Biomedical and Clinical Engineering, 2021, 10, 44-65.	0.2	2
17	Effect of curve fitting in an automated cardiac arrhythmia detection system. , 2021, , .		0
18	Automated detection of fibrillations and flutters based on fused feature set and ANFIS classifier. Biomedical Signal Processing and Control, 2021, 69, 102834.	3.5	2

#	Article	IF	CITATIONS
19	Plantar Pressure Detection System Based on Flexible Hydrogel Sensor Array and WT-RF. Sensors, 2021, 21, 5964.	2.1	2
20	FDRF: Fault Detection and Recovery Framework for Seamless Data Transmission in Remote Health Monitoring Using WBAN. Wireless Personal Communications, 2022, 123, 325-356.	1.8	1
21	Real-time arrhythmia heart disease detection system using CNN architecture based various optimizers-networks. Multimedia Tools and Applications, 2022, 81, 41711-41732.	2.6	8
22	Deep Learning-Based Image Feature with Arthroscopy-Aided Early Diagnosis and Treatment of Meniscus Injury of Knee Joint. Journal of Healthcare Engineering, 2021, 2021, 1-8.	1.1	2
23	An efficient ECG arrhythmia classification method based on Manta ray foraging optimization. Expert Systems With Applications, 2021, 181, 115131.	4.4	87
24	Can high-frequency ECG fluctuations differentiate between healthy and myocardial infarction cases?. Biomedical Engineering Advances, 2021, 2, 100011.	2.2	2
25	Deep Learning-Based Approach for Atrial Fibrillation Detection. Lecture Notes in Computer Science, 2020, , 100-113.	1.0	8
26	Demonstration of the potential of white-box machine learning approaches to gain insights from cardiovascular disease electrocardiograms. PLoS ONE, 2020, 15, e0243615.	1.1	19
27	Analysis of Customers' Reviews Using Soft Computing Classification Algorithms: A Case Study of Amazon. Studies in Big Data, 2021, , 331-352.	0.8	1
28	Detecting ECG abnormalities using an ensemble framework enhanced by Bayesian belief network. Biomedical Signal Processing and Control, 2022, 72, 103320.	3.5	3
29	Predictive Modeling Algorithms-based Classification of Arrhythmia. , 2020, , .		0
30	An overview on machine learning methods for ECG Heartbeat Arrhythmia Classification. , 2021, , .		2
31	A Hybrid Feature Extraction Method for Heart Disease Classification using ECG Signals. , 2021, , .		5
32	Machine Learning Techniques for Cardiovascular Risk Score -Prediction. , 2021, , .		1
33	Analysis of Inducing Factors of Chronic Pulmonary Heart Disease Caused by Chronic Obstructive Pulmonary Disease at High Altitude through Epidemiological Investigation under Intelligent Medicine and Big Data. Journal of Healthcare Engineering, 2022, 2022, 1-10.	1.1	1
34	Identifying Electrocardiogram Abnormalities Using a Handcrafted-Rule-Enhanced Neural Network. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, 20, 2434-2444.	1.9	2
35	An ECG classification using DNN classifier with modified pigeon inspired optimizer. Multimedia Tools and Applications, 2022, 81, 9131-9150.	2.6	2
36	ECG Classification Using Machine Learning Classifiers with Optimal Feature Selection Methods. Lecture Notes on Data Engineering and Communications Technologies, 2022, , 277-289.	0.5	4

CITATION REPORT

ARTICLE IF CITATIONS # ECG Recurrence Plot-Based Arrhythmia Classification Using Two-Dimensional Deep Residual CNN 37 2.123 Features. Sensors, 2022, 22, 1660. An Embedded System Using Convolutional Neural Network Model for Online and Real-Time ECG Signal 1.3 Classification and Prediction. Diagnostics, 2022, 12, 795. 39 The development of wearable ECG device., 2022,,. 0 Machine Algorithm for Heartbeat Monitoring and Arrhythmia Detection Based on ECG Systems. Computational Intelligence and Neuroscience, 2021, 2021, 1-9. Arithmetic Optimization Algorithm with Explainable Artificial Intelligence Technique for Biomedical 41 1.0 2 Signal Analysis. Intelligent Systems Reference Library, 2022, , 123-137. Statistical Evaluation of Transformation Methods Accuracy on Derived Pathological Vectorcardiographic Leads. IEEE Journal of Translational Engineering in Health and Medicine, 2022, 10, 2.2 1-8. Machine Learning Algorithms for Atrioventricular Conduction Defects Prediction using ECG: A 43 2 Comparative Study., 2022, , . Supraventricular ectopic beats and ventricular ectopic beats detection based on improved U-net. 1.2 44 Physiological Measurement, 2022, , . Integration of Machine Learning and AOptimization Techniques for ACardiac Health Recognition. Studies 46 0.7 3 in Computational Intelligence, 2022, , 121-148. ECG Diagnosis for Cardiovascular Diseases Using Soft Computing Algorithms. Current Signal Transduction Therapy, 2022, 17, . Classification of ECG Signals Using the NaÃ⁻ve Bayes Classification Method and Its Implementation in 48 1 Android-Based Smart Health Care., 2021, , . Current Advancements in Cardiovascular Disease Management using Artificial Intelligence and 49 Machine Learning Models: Current Scenario and Challenges., 2022, , . Health Monitoring Methods in Heart Diseases Based on Data Mining Approach: A Directional Review. 50 0.8 2 Studies in Big Data, 2022, , 115-159. Heartbeat Classification and Arrhythmia Detection Using a Multi-Model Deep-Learning Technique. 2.1 14 Sensors, 2022, 22, 5606. Assessment of Cardiac Dynamics and Risk Factor Analysis Using Deep Neural Nets. Advances in Medical 52 0.3 0 Technologies and Clinical Practice Book Series, 2022, , 138-165. A Review on IoT-Driven Technologies for Heart Disease Diagnosis and Prediction. Advances in Medical Technologies and Clinical Practice Book Series, 2022, , 21-34. A multi-label classification system for anomaly classification in electrocardiogram. Health 54 3.4 3 Information Science and Systems, 2022, 10, . Lightweight Multireceptive Field CNN for 12-Lead ECG Signal Classification. Computational 1.1 Intelligence and Neuroscience, 2022, 2022, 1-14.

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
56	An efficient honey badger based Faster region CNN for chronc heart Failure prediction. Biomedical Signal Processing and Control, 2023, 79, 104165.	3.5	3
57	LASSO Regression-Based Diagnosis of Acute ST-Segment Elevation Myocardial Infarction (STEMI) on Electrocardiogram (ECG). Journal of Clinical Medicine, 2022, 11, 5408.	1.0	8
58	Electrocardiogram signal classification using VGGNet: a neural network based classification model. International Journal of Information Technology (Singapore), 2023, 15, 119-128.	1.8	7
59	A Systematic Review on Artificial Intelligence-Based Techniques for Diagnosis of Cardiovascular Arrhythmia Diseases: Challenges and Opportunities. Archives of Computational Methods in Engineering, 2023, 30, 865-888.	6.0	6
60	Recent Advances in Artificial Intelligence and Wearable Sensors in Healthcare Delivery. Applied Sciences (Switzerland), 2022, 12, 10271.	1.3	9
61	Early Detection of Myocardial Infarction Using Machine Learning with Maximum Accuracy. Lecture Notes in Electrical Engineering, 2022, , 553-563.	0.3	Ο
62	ECG Signal Classification Using Recurrence Plot-Based Approach andÂDeep Learning forÂArrhythmia Prediction. Lecture Notes in Computer Science, 2022, , 327-335.	1.0	0
63	ECG classification using Artificial Intelligence: Model Optimization and Robustness Assessment. , 2022, , .		1
64	Can we explain machine learning-based prediction for rupture status assessments of intracranial aneurysms?. Biomedical Physics and Engineering Express, 2023, 9, 037001.	0.6	2
65	2D-wavelet encoded deep CNN for image-based ECG classification. Multimedia Tools and Applications, 2023, 82, 20553-20569.	2.6	6
66	A Deep Learning Framework for the Classification of ECG Signals. , 2022, , .		1
67	CardioLabelNet: AnÂuncertainty estimation using fuzzy for abnormalities detection in ECG. , 0, , .		0
68	TinyML-Based Classification in an ECG Monitoring Embedded System. Computers, Materials and Continua, 2023, 75, 1751-1764.	1.5	3
69	An overview on state-of-the-art electrocardiogram signal processing methods: Traditional to Al-based approaches. Expert Systems With Applications, 2023, 217, 119561.	4.4	7
70	Preliminary Study on Gender Identification by Electrocardiography Data. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2023, , 40-49.	0.2	0
71	ECG signal generation based on conditional generative models. Biomedical Signal Processing and Control, 2023, 82, 104587.	3.5	5
72	Classifying the heart sound signals using texturalâ€based features for an efficient decision support system. Expert Systems, 2023, 40, .	2.9	3
73	Light weight multi-branch network-based extraction and classification of myocardial infarction from 12 lead electrocardiogram images. Imaging Science Journal, 0, , 1-11.	0.2	1

		CITATION REPORT		
#	Article		IF	CITATIONS
74	Machine learning-based signal quality assessment for cardiac volume monitoring in elec impedance tomography. Machine Learning: Science and Technology, 2023, 4, 015034.		2.4	1
76	Detection of Arrhythmia via Electrical Activity of the Heart Using Al Techniques. Lecture Networks and Systems, 2023, , 189-200.	Notes in	0.5	0
77	Preliminary Study on the Identification of Diseases by Electrocardiography Sensors' Notes in Computer Science, 2023, , 292-304.	Data. Lecture	1.0	0
78	A simplified Approach for Accurate Arrythmia Detection using Automated Machine Lear	ning. , 2023, , .		0
79	Detection of Heart Diseases Using CNN-LSTM. Lecture Notes in Networks and Systems,	2023, , 501-509.	0.5	0
80	Design and analysis of low power architecture for electrocardiogram abnormalities dete artificial neural network classifiers. AIP Conference Proceedings, 2023, , .	ection using	0.3	1
81	Transfer Learning in Deep Neural Network Model of ECG Signal Classification. , 2022, , .			0
82	HITR-ECG: Human Identification and Classification Simulation System Using Multichanr Biometric Systems Era. Lecture Notes in Networks and Systems, 2023, , 171-181.	el ECG Signals:	0.5	0
83	Techniques of biological signals classification and comparisons using Machine Learning 2023, , .	Techniques. ,		0
85	Interpreting Arrhythmia Classification Using Deep Neural Network and CAM-Based App	roach. , 2022, , .		0
87	Heart Abnormality Detection Through Neural Network. , 2023, , .			0
88	1DCNN-TRSNet: A Hybrid End-to-End Arrhythmia Classification Deep Network Based on 2023, , .	Transformer. ,		0
92	Certain Examination on ECG Classification using Hybrid Machine Learning Models. , 202	23, , .		0
94	Heart Disease Prediction using Machine Learning Algorithms from ECG images: A short 2023, , .	Summary. ,		0