Hydrophobically modified chitosan nanoliposomes for

International Journal of Nanomedicine Volume 13, 5837-5848

DOI: 10.2147/ijn.s166901

Citation Report

#	Article	IF	CITATIONS
1	<p>Simultaneous Intramuscular And Intranasal Administration Of Chitosan Nanoparticles–Adjuvanted Chlamydia Vaccine Elicits Elevated Protective Responses In The Lung</p> . International Journal of Nanomedicine, 2019, Volume 14, 8179-8193.	3.3	17
2	Progress in the Development of Chitosan-Based Biomaterials for Tissue Engineering and Regenerative Medicine. Biomolecules, 2019, 9, 470.	1.8	220
3	Strategies to Enhance Drug Absorption via Nasal and Pulmonary Routes. Pharmaceutics, 2019, 11, 113.	2.0	165
4	Preparation of sulfatide mimicking oleic acid sulfated chitosan as a potential inhibitor for metastasis. International Journal of Biological Macromolecules, 2020, 147, 792-798.	3.6	6
5	A review on chitosan and its development as pulmonary particulate anti-infective and anti-cancer drug carriers. Carbohydrate Polymers, 2020, 250, 116800.	5.1	73
6	Carboxymethyl chitosanâ€decorated proliposomes as carriers for improved stability and sustained release of flaxseed oil. Journal of Food Science, 2020, 85, 3237-3243.	1.5	7
7	Strategies to Obtain Encapsulation and Controlled Release of Small Hydrophilic Molecules. Frontiers in Bioengineering and Biotechnology, 2020, 8, 437.	2.0	68
8	Nanoencapsulation of bioactive food ingredients. , 2020, , 279-344.		11
9	Applications of Fourier transform infrared spectroscopy to pharmaceutical preparations. Expert Opinion on Drug Delivery, 2020, 17, 551-571.	2.4	29
10	Applications of Polymers in Small Intestinal Drug Delivery. , 2021, , 105-129.		3
11	Connecting the dots in drug delivery: A tour d'horizon of chitosan-based nanocarriers system. International Journal of Biological Macromolecules, 2021, 169, 103-121.	3.6	45
13	Encapsulation of microorganisms for bioremediation: Techniques and carriers. Reviews in Environmental Science and Biotechnology, 2021, 20, 815-838.	3.9	19
14	Food-based iron delivery systems: A review. Trends in Food Science and Technology, 2021, 116, 75-89.	7.8	20
15	Î ² -Caryophyllene Liposomes Attenuate Neurovascular Unit Damage After Subarachnoid Hemorrhage in Rats. Neurochemical Research, 2020, 45, 1758-1768.	1.6	11
16	Metformin-loaded chitosomes for treatment of malignant pleural mesothelioma $\hat{a} \in A$ rare thoracic cancer. International Journal of Biological Macromolecules, 2020, 160, 128-141.	3.6	27
17	Engineered Site-specific Vesicular Systems for Colonic Delivery: Trends and Implications. Current Pharmaceutical Design, 2020, 26, 5441-5455.	0.9	2
18	Membrane Vesicles for Nanoencapsulated Sulforaphane Increased Their Anti-Inflammatory Role on an In Vitro Human Macrophage Model. International Journal of Molecular Sciences, 2022, 23, 1940.	1.8	11
19	Recent applications of cell-penetrating peptide guidance of nanosystems in breast and prostate cancer (Review). Oncology Letters, 2022, 23, 103.	0.8	5

#	Article	IF	CITATIONS
20	Efficient Delivery of Hydrophilic Small Molecules to Retinal Cell Lines Using Gel Core-Containing Solid Lipid Nanoparticles. Pharmaceutics, 2022, 14, 74.	2.0	2
21	Natural Polysaccharide-Based Nanodrug Delivery Systems for Treatment of Diabetes. Polymers, 2022, 14, 3217.	2.0	28
22	Multifunctional nanoparticles based on marine polysaccharides for apremilast delivery to inflammatory macrophages: Preparation, targeting ability, and uptake mechanism. International Journal of Biological Macromolecules, 2022, 222, 1709-1722.	3.6	9
23	Biopolymers and their derivatives: Key components of advanced biomedical technologies. Biotechnology Advances, 2022, 61, 108056.	6.0	22
24	Chitosan Derivatives as Carriers for Drug Delivery and Biomedical Applications. ACS Biomaterials Science and Engineering, 2023, 9, 2181-2202.	2.6	20
25	Biogenic engineered nanomaterials for enhancing bioavailability <i>via</i> developing nano-iron-fortified smart foods: advances, insight, and prospects of nanobionics in fortification of food. Food and Function, 2023, 14, 9083-9099.	2.1	3
27	Chitin, Chitosan, and their Derivatives from Seafood Waste and Processing Byproducts. , 2024, , 253-278.		0