Mechanisms of resistance to BRAF and MEK inhibitors a Drug Administration-approved targeted therapy in adv

OncoTargets and Therapy Volume 11, 7095-7107 DOI: 10.2147/ott.s182721

Citation Report

#	Article	IF	CITATIONS
1	Clinical outcomes of BRAF plus MEK inhibition in melanoma: A metaâ€analysis and systematic review. Cancer Medicine, 2019, 8, 5414-5424.	1.3	14
2	MEK inhibition remodels the active chromatin landscape and induces SOX10 genomic recruitment in BRAF(V600E) mutant melanoma cells. Epigenetics and Chromatin, 2019, 12, 50.	1.8	12
3	Telmisartan induces melanoma cell apoptosis and synergizes with vemurafenib <i>in vitro</i> by altering cell bioenergetics. Cancer Biology and Medicine, 2019, 16, 247.	1.4	21
4	Targeting Oncogenic BRAF: Past, Present, and Future. Cancers, 2019, 11, 1197.	1.7	143
5	Searching new structural scaffolds for BRAF inhibitors. An integrative study using theoretical and experimental techniques. Bioorganic Chemistry, 2019, 91, 103125.	2.0	9
6	Metabolic flexibility in melanoma: A potential therapeutic target. Seminars in Cancer Biology, 2019, 59, 187-207.	4.3	62
7	The emergence of drug resistance to targeted cancer therapies: Clinical evidence. Drug Resistance Updates, 2019, 47, 100646.	6.5	81
8	Discovery of a First-in-Class Mitogen-Activated Protein Kinase Kinase 1/2 Degrader. Journal of Medicinal Chemistry, 2019, 62, 10897-10911.	2.9	43
9	Effects of Glutathione Transferase-Targeting Nitrobenzoxadiazole Compounds in Relation to PD-L1 Status in Human Melanoma Cells. Chemotherapy, 2019, 64, 138-145.	0.8	4
10	Drug resistance of BRAF-mutant melanoma: Review of up-to-date mechanisms of action and promising targeted agents. European Journal of Pharmacology, 2019, 862, 172621.	1.7	65
11	Immune modulation via epigenetic targeting to overcome immune checkpoint inhibitor resistance. Immunotherapy, 2019, 11, 1263-1266.	1.0	1
12	Growth Hormone Upregulates Melanocyte-Inducing Transcription Factor Expression and Activity via JAK2-STAT5 and SRC Signaling in GH Receptor-Positive Human Melanoma. Cancers, 2019, 11, 1352.	1.7	20
13	Cancer Mutations in FGFR2 Prevent a Negative Feedback Loop Mediated by the ERK1/2 Pathway. Cells, 2019, 8, 518.	1.8	17
14	The promise of Immuno-oncology: implications for defining the value of cancer treatment. , 2019, 7, 129.		66
15	BRAF status as a predictive factor for response in isolated limb perfusion. International Journal of Hyperthermia, 2019, 36, 510-514.	1.1	2
16	Encorafenib + binimetinib: a profile of their combined use in treating BRAF-mutated unresectable or metastatic melanoma. Drugs and Therapy Perspectives, 2019, 35, 151-159.	0.3	0
17	Comparative efficacy of combination immunotherapy and targeted therapy in the treatment of BRAF-mutant advanced melanoma: a matching-adjusted indirect comparison. Immunotherapy, 2019, 11, 617-629.	1.0	29
18	Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacological Research, 2019, 144, 19-50.	3.1	377

#	Article	IF	CITATIONS
19	Mouse Models as a Tool for Understanding Progression in Braf ^{V600E} -Driven Thyroid Cancers. Endocrinology and Metabolism, 2019, 34, 11.	1.3	14
20	Targeting the ERK Signaling Pathway in Melanoma. International Journal of Molecular Sciences, 2019, 20, 1483.	1.8	116
21	The Potential of Targeting P53 and HSP90 Overcoming Acquired MAPKi-Resistant Melanoma. Current Treatment Options in Oncology, 2019, 20, 22.	1.3	8
22	Genome-wide screening identifies novel genes implicated in cellular sensitivity to BRAFV600E expression. Oncogene, 2020, 39, 723-738.	2.6	11
23	Insights into Fibroblast Plasticity. American Journal of Pathology, 2020, 190, 206-221.	1.9	23
24	Targeted therapy clinical trials in ovarian cancer: improved outcomes by gene mutation screening. Anti-Cancer Drugs, 2020, 31, 101-109.	0.7	4
25	Role of VEGFRâ€1 in melanoma acquired resistance to the BRAF inhibitor vemurafenib. Journal of Cellular and Molecular Medicine, 2020, 24, 465-475.	1.6	34
26	Characterization of Melanoma Cell Lines Resistant to Vemurafenib and Evaluation of Their Responsiveness to EGFR- and MET-Inhibitor Treatment. International Journal of Molecular Sciences, 2020, 21, 113.	1.8	33
27	BRAF Alteration in Central and Peripheral Nervous System Tumors. Frontiers in Oncology, 2020, 10, 574974.	1.3	15
28	Inhibiting insulin and mTOR signaling by afatinib and crizotinib combination fosters broad cytotoxic effects in cutaneous malignant melanoma. Cell Death and Disease, 2020, 11, 882.	2.7	10
29	The concepts of rechallenge and retreatment in melanoma: A proposal for consensus definitions. European Journal of Cancer, 2020, 138, 68-76.	1.3	10
30	Kinase inhibitors with viral oncolysis: Unmasking pharmacoviral approaches for cancer therapy. Cytokine and Growth Factor Reviews, 2020, 56, 83-93.	3.2	5
31	A Phase Ib/II Study of the BRAF Inhibitor Encorafenib Plus the MEK Inhibitor Binimetinib in Patients with <i>BRAFV600E/K</i> -mutant Solid Tumors. Clinical Cancer Research, 2020, 26, 5102-5112.	3.2	23
32	Identification of synthetic chemosensitivity genes paired with BRAF for BRAF/MAPK inhibitors. Scientific Reports, 2020, 10, 20001.	1.6	2
33	A CRAF/glutathione-S-transferase P1 complex sustains autocrine growth of cancers with <i>KRAS</i> and <i>BRAF</i> mutations. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19435-19445.	3.3	9
34	Pimasertib Versus Dacarbazine in Patients With Unresectable NRAS-Mutated Cutaneous Melanoma: Phase II, Randomized, Controlled Trial with Crossover. Cancers, 2020, 12, 1727.	1.7	36
35	Ca2+ as a therapeutic target in cancer. Advances in Cancer Research, 2020, 148, 233-317.	1.9	16
36	Combating acquired resistance to MAPK inhibitors in melanoma by targeting Abl1/2-mediated reactivation of MEK/ERK/MYC signaling. Nature Communications, 2020, 11, 5463.	5.8	24

#	Article	IF	CITATIONS
37	The MAPK and AMPK signalings: interplay and implication in targeted cancer therapy. Journal of Hematology and Oncology, 2020, 13, 113.	6.9	232
38	Silencing of CEBPB-AS1 modulates CEBPB expression and resensitizes BRAF-inhibitor resistant melanoma cells to vemurafenib. Melanoma Research, 2020, 30, 443-454.	0.6	4
39	Efficacy, Tolerability, and Pharmacokinetics of Combined Targeted MEK and Dual mTORC1/2 Inhibition in a Preclinical Model of Mucosal Melanoma. Molecular Cancer Therapeutics, 2020, 19, 2308-2318.	1.9	14
40	Antibody-Based Immunotherapy: Alternative Approaches for the Treatment of Metastatic Melanoma. Biomedicines, 2020, 8, 327.	1.4	9
41	Clinical Implications of Acquired BRAF Inhibitors Resistance in Melanoma. International Journal of Molecular Sciences, 2020, 21, 9730.	1.8	15
42	Targeting PHGDH Upregulation Reduces Glutathione Levels and Resensitizes Resistant NRAS-Mutant Melanoma to MAPK Kinase Inhibition. Journal of Investigative Dermatology, 2020, 140, 2242-2252.e7.	0.3	23
43	Functional Genomic Screening Independently Identifies CUL3 as a Mediator of Vemurafenib Resistance via Src-Rac1 Signaling Axis. Frontiers in Oncology, 2020, 10, 442.	1.3	45
44	BRAF mutation and its inhibitors in sarcoma treatment. Cancer Medicine, 2020, 9, 4881-4896.	1.3	26
45	Indoleamine 2,3-dioxygenase in melanoma progression and BRAF inhibitor resistance. Pharmacological Research, 2020, 159, 104998.	3.1	10
46	The MNK1/2-eIF4E Axis as a Potential Therapeutic Target in Melanoma. International Journal of Molecular Sciences, 2020, 21, 4055.	1.8	23
47	Inhibition of Patched Drug Efflux Increases Vemurafenib Effectiveness against Resistant BrafV600E Melanoma. Cancers, 2020, 12, 1500.	1.7	9
48	Melanoma with in-frame deletion of MAP2K1: a distinct molecular subtype of cutaneous melanoma mutually exclusive from BRAF, NRAS, and NF1 mutations. Modern Pathology, 2020, 33, 2397-2406.	2.9	16
49	Atezolizumab, vemurafenib, and cobimetinib as first-line treatment for unresectable advanced BRAFV600 mutation-positive melanoma (IMspire150): primary analysis of the randomised, double-blind, placebo-controlled, phase 3 trial. Lancet, The, 2020, 395, 1835-1844.	6.3	423
50	Tyrosine Kinase Inhibitors in Cancer: Breakthrough and Challenges of Targeted Therapy. Cancers, 2020, 12, 731.	1.7	280
51	Gene Expression Signature of BRAF Inhibitor Resistant Melanoma Spheroids. Pathology and Oncology Research, 2020, 26, 2557-2566.	0.9	5
52	Targeted Therapy in Melanoma and Mechanisms of Resistance. International Journal of Molecular Sciences, 2020, 21, 4576.	1.8	107
53	BRAF inhibition in melanoma is associated with the dysregulation of histone methylation and histone methyltransferases. Neoplasia, 2020, 22, 376-389.	2.3	14
54	A Review of ULK1-Mediated Autophagy in Drug Resistance of Cancer. Cancers, 2020, 12, 352.	1.7	47

		Citation Report	
#	Article	IF	Citations
55	Overcoming Drug Resistance to BRAF Inhibitor. Bulletin of Mathematical Biology, 2020, 82, 8.	0.9	1
56	The miRNAs Role in Melanoma and in Its Resistance to Therapy. International Journal of Molecular Sciences, 2020, 21, 878.	1.8	50
57	Secondary Resistant Mutations to Small Molecule Inhibitors in Cancer Cells. Cancers, 2020, 12, 9	27. 1.7	6
58	Genomic and signalling pathway characterization of the NZM panel of melanoma cell lines: A valu model for studying the impact of genetic diversity in melanoma. Pigment Cell and Melanoma Rese 2021, 34, 136-143.	able earch, 1.5	9
59	Expression of <i>Nras Q61R</i> and <i>MYC</i> transgene in germinal center B cells induced highly malignant multiple myeloma in mice. Blood, 2021, 137, 61-74.	ces a 0.6	21
60	MEK inhibitor resistance mechanisms and recent developments in combination trials. Cancer Treatment Reviews, 2021, 92, 102137.	3.4	85
61	NECTIN4: A Novel Therapeutic Target for Melanoma. International Journal of Molecular Sciences, 2 22, 976.	2021, 1.8	22
62	Inhibition of endothelin-B receptor signaling synergizes with MAPK pathway inhibitors in BRAF mutated melanoma. Oncogene, 2021, 40, 1659-1673.	2.6	8
63	Harnessing the Co-vulnerabilities of Amino Acid-Restricted Cancers. Cell Metabolism, 2021, 33, 9-	-20. 7.2	22
64	Diverse mechanisms activate the PI 3-kinase/mTOR pathway in melanomas: implications for the u 3-kinase inhibitors to overcome resistance to inhibitors of BRAF and MEK. BMC Cancer, 2021, 21,		21
65	The Role of Intrinsic Signaling Pathways in Cell Proliferation. Nano LIFE, 2021, 11, 2030003.	0.6	3
66	Methiothepin Increases Chemotherapy Efficacy against Resistant Melanoma Cells. Molecules, 202 1867.	21, 26, 1.7	9
67	Antitumoral Activity of the MEK Inhibitor Trametinib (TMT212) Alone and in Combination with the CDK4/6 Inhibitor Ribociclib (LEE011) in Neuroendocrine Tumor Cells In Vitro. Cancers, 2021, 13, 2	e 1.7	5
68	PSPH promotes melanoma growth and metastasis by metabolic deregulation-mediated transcript activation of NR4A1. Oncogene, 2021, 40, 2448-2462.	ional 2.6	19
69	Resistance to Molecularly Targeted Therapies in Melanoma. Cancers, 2021, 13, 1115.	1.7	36
70	First-line Advanced Cutaneous Melanoma Treatments: Where Do We Stand?. JMIR Cancer, 2021,	7, e29912. 0.9	4
72	<scp>FOXD1</scp> promotes dedifferentiation and targeted therapy resistance in melanoma by regulating the expression of connective tissue growth factor. International Journal of Cancer, 202 149, 657-674.	21, 2.3	14
73	Association Between FSIP2 Mutation and an Improved Efficacy of Immune Checkpoint Inhibitors i Patients With Skin Cutaneous Melanoma. Frontiers in Molecular Biosciences, 2021, 8, 629330.	in 1.6	3

#	Article	IF	CITATIONS
74	Many Distinct Ways Lead to Drug Resistance in BRAF- and NRAS-Mutated Melanomas. Life, 2021, 11, 424.	1.1	3
75	Introductory Chapter: Melanoma and Therapeutic Perspectives. , 0, , .		Ο
76	CDK4/6 Inhibitors in Melanoma: A Comprehensive Review. Cells, 2021, 10, 1334.	1.8	31
77	Current Status and Prospects of Immunotherapy for Gynecologic Melanoma. Journal of Personalized Medicine, 2021, 11, 403.	1.1	4
78	Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduction and Targeted Therapy, 2021, 6, 201.	7.1	607
79	p65BTK Is a Novel Biomarker and Therapeutic Target in Solid Tumors. Frontiers in Cell and Developmental Biology, 2021, 9, 690365.	1.8	7
80	Triple Combination Therapy With PD-1/PD-L1, BRAF, and MEK Inhibitor for Stage III–IV Melanoma: A Systematic Review and Meta-Analysis. Frontiers in Oncology, 2021, 11, 693655.	1.3	16
81	Autophagy Inhibition in BRAF-Driven Cancers. Cancers, 2021, 13, 3498.	1.7	13
82	Recognition, Staging, and Management of Melanoma. Medical Clinics of North America, 2021, 105, 643-661.	1.1	4
83	Hydrophobic and polar interactions of FDA-approved small molecule protein kinase inhibitors with their target enzymes. Pharmacological Research, 2021, 169, 105660.	3.1	16
84	Development of Dual ARV-825 and Nintedanib-Loaded PEGylated Nano-Liposomes for Synergistic Efficacy in Vemurafnib-Resistant Melanoma. Pharmaceutics, 2021, 13, 1005.	2.0	22
86	Targeting CDK4/6 Represents a Therapeutic Vulnerability in Acquired BRAF/MEK Inhibitor–Resistant Melanoma. Molecular Cancer Therapeutics, 2021, 20, 2049-2060.	1.9	16
88	Potent pro-apoptotic combination therapy is highly effective in a broad range of cancers. Cell Death and Differentiation, 2021, , .	5.0	10
89	Integrative pan-cancer analysis of MEK1 aberrations and the potential clinical implications. Scientific Reports, 2021, 11, 18366.	1.6	0
90	Current Advancements and Novel Strategies in the Treatment of Metastatic Melanoma. Integrative Cancer Therapies, 2021, 20, 153473542199007.	0.8	25
91	uPAR Controls Vasculogenic Mimicry Ability Expressed by Drug-Resistant Melanoma Cells. Oncology Research, 2021, 28, 873-884.	0.6	10
93	Overcoming Resistance to Drugs Targeting KRAS Mutation. Innovation(China), 2020, 1, 100035.	5.2	44
94	Cooperativity Between Orthosteric Inhibitors and Allosteric Inhibitor 8-Anilino-1-Naphthalene Sulfonic Acid (ANS) in Cyclin-Dependent Kinase 2. ACS Chemical Biology, 2020, 15, 1759-1764.	1.6	9

#	Article	IF	CITATIONS
95	MEK Inhibition Reverses Aberrant Signaling in Melanoma Cells through Reorganization of NRas and BRAF in Self Nanoclusters. Cancer Research, 2021, 81, 1279-1292.	0.4	3
96	Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. International Journal of Molecular Sciences, 2020, 21, 1102.	1.8	408
97	HSP70 Inhibition Blocks Adaptive Resistance and Synergizes with MEK Inhibition for the Treatment of <i>NRAS</i> -Mutant Melanoma. Cancer Research Communications, 2021, 1, 17-29.	0.7	5
98	RICTOR Affects Melanoma Tumorigenesis and Its Resistance to Targeted Therapy. Biomedicines, 2021, 9, 1498.	1.4	10
99	G <i>α</i> s–Protein Kinase A (PKA) Pathway Signalopathies: The Emerging Genetic Landscape and Therapeutic Potential of Human Diseases Driven by Aberrant G <i>α</i> s-PKA Signaling. Pharmacological Reviews, 2021, 73, 1326-1368.	7.1	27
100	<i>Asxl1</i> loss cooperates with oncogenic <i>Nras</i> in mice to reprogram the immune microenvironment and drive leukemic transformation. Blood, 2022, 139, 1066-1079.	0.6	24
102	KMT2D deficiency confers a therapeutic vulnerability to glycolytic and IGFR inhibitors in melanoma. Molecular and Cellular Oncology, 2021, 8, 1984827.	0.3	1
103	Modern combined targeted and immunotherapy of metastatic skin melanoma. Meditsinskiy Sovet, 2020, , 54-61.	0.1	1
104	F-18 FDG PET Tests in Skin Cancer Including Malignant Melanoma. , 2021, , 119-134.		0
105	Anti-tumor activities of the new oral pan-RAF inhibitor, TAK-580, used as monotherapy or in combination with novel agents in multiple myeloma. Oncotarget, 2020, 11, 3984-3997.	0.8	6
106	BRAF in malignant melanoma progression and metastasis: potentials and challenges. American Journal of Cancer Research, 2020, 10, 1103-1114.	1.4	10
107	IGF1R/IR Mediates Resistance to BRAF and MEK Inhibitors in BRAF-Mutant Melanoma. Cancers, 2021, 13, 5863.	1.7	15
108	Estimated Cost-effectiveness of Atezolizumab Plus Cobimetinib and Vemurafenib for Treatment of <i>BRAF V600</i> Variation Metastatic Melanoma. JAMA Network Open, 2021, 4, e2132262.	2.8	6
109	A Need for More Molecular Profiling in Brain Metastases. Frontiers in Oncology, 2021, 11, 785064.	1.3	1
110	Distribution of copy number variations and rearrangement endpoints in human cancers with a review of literature. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2022, 824, 111773.	0.4	6
111	Current developments in extracellular-regulated protein kinase (ERK1/2) inhibitors. Drug Discovery Today, 2022, , .	3.2	5
112	Antibody–Drug Conjugates as an Emerging Therapy in Oncodermatology. Cancers, 2022, 14, 778.	1.7	13
113	3, 3′- (3, 5-DCPBC) Down-Regulates Multiple Phosphokinase Dependent Signal Transduction Pathways in Malignant Melanoma Cells through Specific Diminution of EGFRY1086 Phosphorylation. Molecules, 2022, 27, 1172.	1.7	Ο

#	Article	IF	CITATIONS
114	Immune checkpoint inhibitors for the treatment of melanoma. Expert Opinion on Biological Therapy, 2022, 22, 563-576.	1.4	10
115	Pathophysiology roles and translational opportunities of miRNAs in cutaneous melanoma. , 2022, , 339-384.		Ο
116	Combined inhibition of HMGCoA reductase and mitochondrial complex I induces tumor regression of BRAF inhibitor-resistant melanomas. Cancer & Metabolism, 2022, 10, 6.	2.4	8
117	A preclinical model of patient-derived cerebrospinal fluid circulating tumor cells for experimental therapeutics in leptomeningeal disease from melanoma. Neuro-Oncology, 2022, 24, 1673-1686.	0.6	6
118	Inhibition of Axl Promotes the Therapeutic Effect of Targeted Inhibition of the PI3K/Akt Pathway in NRAS Mutant Melanoma Cells. Journal of Oncology, 2022, 2022, 1-9.	0.6	2
119	ROR2 increases the chemoresistance of melanoma by regulating p53 and Bcl2-family proteins via ERK hyperactivation. Cellular and Molecular Biology Letters, 2022, 27, 23.	2.7	6
120	The PIK3CA H1047R Mutation Confers Resistance to BRAF and MEK Inhibitors in A375 Melanoma Cells through the Cross-Activation of MAPK and PI3K–Akt Pathways. Pharmaceutics, 2022, 14, 590.	2.0	11
121	Melanoma: An update on systemic therapies. Journal of the American Academy of Dermatology, 2022, 86, 515-524.	0.6	26
122	Phase II Study of Selumetinib in Children and Young Adults With Tumors Harboring Activating Mitogen-Activated Protein Kinase Pathway Genetic Alterations: Arm E of the NCI-COG Pediatric MATCH Trial. Journal of Clinical Oncology, 2022, 40, 2235-2245.	0.8	21
123	Anchored Multiplex PCR Custom Melanoma Next Generation Sequencing Panel for Analysis of Circulating Tumor DNA. Frontiers in Oncology, 2022, 12, 820510.	1.3	2
125	Combination targeted and immune therapy in the treatment of advanced melanoma: a valid treatment option for patients?. Therapeutic Advances in Medical Oncology, 2022, 14, 175883592210903.	1.4	4
126	Targeting RAS–RAF–MEK–ERK signaling pathway in human cancer: Current status in clinical trials. Genes and Diseases, 2023, 10, 76-88.	1.5	34
128	Drug resistance problems in chemotherapy. , 2022, , 121-141.		1
129	Targeting mitochondrial metabolism for metastatic cancer therapy. Molecular Carcinogenesis, 2022, 61, 827-838.	1.3	13
130	Integrating multi-omics data reveals function and therapeutic potential of deubiquitinating enzymes. ELife, 0, 11, .	2.8	16
131	Heterogeneity in Melanoma. Cancers, 2022, 14, 3030.	1.7	10
132	M-CSF as a therapeutic target in BRAFV600E melanoma resistant to BRAF inhibitors. British Journal of Cancer, 2022, 127, 1142-1152.	2.9	4
133	Changes in the Transcriptome and Chromatin Landscape in BRAFi-Resistant Melanoma Cells. Frontiers in Oncology, 0, 12, .	1.3	3

#	Article	IF	CITATIONS
134	Targeting protein arginine methyltransferase 5 sensitizes glioblastoma to trametinib. Neuro-Oncology Advances, 2022, 4, .	0.4	3
135	Targeting the Epigenome in Malignant Melanoma: Facts, Challenges and Therapeutic Promises. SSRN Electronic Journal, 0, , .	0.4	0
136	Current Insights into the Role of BRAF Inhibitors in Treatment of Melanoma. Anti-Cancer Agents in Medicinal Chemistry, 2023, 23, 278-297.	0.9	5
137	Expression of active B-Raf proto-oncogene in kidney collecting ducts induces cyst formation in normal mice and accelerates cyst growth in mice with polycystic kidney disease. Kidney International, 2022, 102, 1103-1114.	2.6	2
138	La résistance aux inhibiteurs de BRAF. Medecine/Sciences, 2022, 38, 570-578.	0.0	0
139	Targeting of the Lipid Metabolism Impairs Resistance to BRAF Kinase Inhibitor in Melanoma. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	10
140	The overview of Mitogen-activated extracellular signal-regulated kinase (MEK)-based dual inhibitor in the treatment of cancers. Bioorganic and Medicinal Chemistry, 2022, 70, 116922.	1.4	3
141	Proliferation and Immune Response Gene Signatures Associated with Clinical Outcome to Immunotherapy and Targeted Therapy in Metastatic Cutaneous Malignant Melanoma. Cancers, 2022, 14, 3587.	1.7	6
142	Olive leaf extract inhibits metastatic melanoma spread through suppression of epithelial to mesenchymal transition. Phytotherapy Research, 2022, 36, 4002-4013.	2.8	8
143	Copy Number Analysis in Cancer Diagnostic Testing. Clinics in Laboratory Medicine, 2022, 42, 451-468.	0.7	2
144	A novel glycosylated indolocarbazole derivative LCS1269 effectively inhibits growth of human cancer cells in vitro and in vivo through driving of both apoptosis and senescence by inducing of DNA damage and modulating of AKT/mTOR/S6K and ERK pathways. Chemico-Biological Interactions, 2022, 364, 110056.	1.7	3
145	KRAS as a Key Oncogene in the Clinical Precision Diagnosis and Treatment of Pancreatic Cancer. Journal of Cancer, 2022, 13, 3209-3220.	1.2	10
146	A Perspective Study on the RTK, PI3K, Bâ€Raf, CDK and the Multiâ€Protein Targeting in Medicinal Chemistry. Chemistry and Biodiversity, 2022, 19, .	1.0	2
147	Role of extracellular matrix architecture and signaling in melanoma therapeutic resistance. Frontiers in Oncology, 0, 12, .	1.3	5
148	Lineage-coupled clonal capture identifies clonal evolution mechanisms and vulnerabilities of BRAFV600E inhibition resistance in melanoma. Cell Discovery, 2022, 8, .	3.1	2
149	Melanoma classification and management in the era of molecular medicine. Dermatologic Clinics, 2023, 41, 49-63.	1.0	15
150	Targeting the epigenome in malignant melanoma: Facts, challenges and therapeutic promises. , 2022, 240, 108301.		9
151	Phase I pharmacokinetic study of an oral, small-molecule MEK inhibitor tunlametinib in patients with advanced NRAS mutant melanoma. Frontiers in Pharmacology, 0, 13, .	1.6	3

#	Article	IF	CITATIONS
152	Piezoelectric MoS2 Nanoflowers (NF's) for Targeted Cancer Therapy by Gelatin-based Shear Thinning Hydrogels. In vitro and In vivo trials. Reactive and Functional Polymers, 2022, 181, 105435.	2.0	3
153	Identification of Dihydrolipoamide Dehydrogenase as Potential Target of Vemurafenib-Resistant Melanoma Cells. Molecules, 2022, 27, 7800.	1.7	3
154	Triple Combination of Immune Checkpoint Inhibitors and BRAF/MEK Inhibitors in BRAFV600 Melanoma: Current Status and Future Perspectives. Cancers, 2022, 14, 5489.	1.7	4
155	Chromomycin A5 induces bona fide immunogenic cell death in melanoma. Frontiers in Immunology, 0, 13, .	2.2	8
156	Pediatric low-grade glioma: Targeted therapeutics and clinical trials in the molecular era. Neoplasia, 2023, 36, 100857.	2.3	13
157	Overall survival with first-line atezolizumab in combination with vemurafenib and cobimetinib in BRAFV600 mutation-positive advanced melanoma (IMspire150): second interim analysis of a multicentre, randomised, phase 3 study. Lancet Oncology, The, 2023, 24, 33-44.	5.1	32
158	The role of angiogenesis in melanoma: Clinical treatments and future expectations. Frontiers in Pharmacology, 0, 13, .	1.6	4
159	Increased MARCKS Activity in BRAF Inhibitor-Resistant Melanoma Cells Is Essential for Their Enhanced Metastatic Behavior Independent of Elevated WNT5A and IL-6 Signaling. Cancers, 2022, 14, 6077.	1.7	4
160	p53 Family in Resistance to Targeted Therapy of Melanoma. International Journal of Molecular Sciences, 2023, 24, 65.	1.8	8
161	The Therapeutic Potential of Pyroptosis in Melanoma. International Journal of Molecular Sciences, 2023, 24, 1285.	1.8	3
162	Tumor-Type Agnostic, Targeted Therapies: BRAF Inhibitors Join the Group. Acta Medica Academica, 2023, 51, 217-231.	0.3	2
163	miRNAs as potential game-changers in melanoma: A comprehensive review. Pathology Research and Practice, 2023, 244, 154424.	1.0	46
164	Neoadjuvant plus adjuvant combined or sequenced vemurafenib, cobimetinib and atezolizumab in patients with high-risk, resectable BRAF-mutated and wild-type melanoma: NEO-TIM, a phase II randomized non-comparative study. Frontiers in Oncology, 0, 13, .	1.3	1
165	RIDR-PI-103, ROS-activated prodrug PI3K inhibitor inhibits cell growth and impairs the PI3K/Akt pathway in BRAF and MEK inhibitor-resistant BRAF-mutant melanoma cells. Anti-Cancer Drugs, 2023, 34, 519-531.	0.7	1
166	LIMK2 promotes melanoma tumor growth and metastasis through G3BP1-ESM1 pathway-mediated apoptosis inhibition. Oncogene, 2023, 42, 1478-1491.	2.6	1
167	Phenolic Compounds Contribution to Portuguese Propolis Anti-Melanoma Activity. Molecules, 2023, 28, 3107.	1.7	3
174	MEK inhibitors in cancer treatment: structural insights, regulation, recent advances and future perspectives. RSC Medicinal Chemistry, 2023, 14, 1837-1857.	1.7	1