Options for keeping the food system within environme

Nature 562, 519-525 DOI: 10.1038/s41586-018-0594-0

Citation Report

#	Article	IF	Citations
1	New ideotypes of oil & amp; protein crops. OCL - Oilseeds and Fats, Crops and Lipids, 2018, 25, D601.	0.6	1
2	Impact of Religious Participation, Social Interactions and Globalisation on Meat Consumption: Evidence from India. SSRN Electronic Journal, 0, , .	0.4	5
3	Sustainable protein provisioning. Nature Sustainability, 2018, 1, 733-734.	11.5	1
4	Transforming the global food system. Nature, 2018, 562, 501-502.	13.7	14
5	Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planetary Health, The, 2018, 2, e451-e461.	5.1	475
6	The role of farm animals in a circular food system. Global Food Security, 2019, 21, 18-22.	4.0	141
7	Impact of Mineral P Fertilization on Trace Elements in Cropland Soils. Sustainable Agriculture Reviews, 2019, , 93-110.	0.6	1
8	An Exploratory Study into the Use of Black Soldier Fly (Hermetia illucens) Larvae in the Production of a Vienna-Style Sausage. Meat and Muscle Biology, 2019, 3, .	0.7	17
9	Loading natural emulsions with nutraceuticals using the pH-driven method: formation & stability of curcumin-loaded soybean oil bodies. Food and Function, 2019, 10, 5473-5484.	2.1	33
10	Using scenario analyses to address the future of food. EFSA Journal, 2019, 17, e170703.	0.9	13
11	A systems approach to assessing environmental and economic effects of food loss and waste interventions in the United States. Science of the Total Environment, 2019, 685, 1240-1254.	3.9	75
12	Modelling the drivers of a widespread shift to sustainable diets. Nature Sustainability, 2019, 2, 725-735.	11.5	91
13	Environmental footprint family to address local to planetary sustainability and deliver on the SDGs. Science of the Total Environment, 2019, 693, 133642.	3.9	245
14	Simple Eco-Labels to Nudge Customers Toward the Most Environmentally Friendly Warm Dishes: An Empirical Study in a Cafeteria Setting. Frontiers in Sustainable Food Systems, 2019, 3, .	1.8	25
15	Environmental life cycle assessment of production, processing, distribution and consumption of apples, sweet cherries and plums from conventional agriculture in Norway. Journal of Cleaner Production, 2019, 238, 117773.	4.6	33
16	A Provegetarian Food Pattern Emphasizing Preference for Healthy Plant-Derived Foods Reduces the Risk of Overweight/Obesity in the SUN Cohort. Nutrients, 2019, 11, 1553.	1.7	54
17	Developing the knowledge base needed to sustainably manage mesopelagic resources. ICES Journal of Marine Science, 2019, 76, 609-615.	1.2	80
18	The concerns of the young protesters are justified: A statement by <i>Scientists for Future</i> concerning the protests for more climate protection. Gaia, 2019, 28, 79-87.	0.3	56

ATION RED

#	Article	IF	CITATIONS
19	Local Challenges and Successes Associated with Transitioning to Sustainable Food System Practices for a West Australian Context: Multi-Sector Stakeholder Perceptions. International Journal of Environmental Research and Public Health, 2019, 16, 2051.	1.2	15
20	Towards a Baseline for Food-Waste Quantification in the Hospitality Sector—Quantities and Data Processing Criteria. Sustainability, 2019, 11, 3541.	1.6	46
21	Stable Polyelectrolyte Multilayer-Based Hollow Fiber Nanofiltration Membranes for Produced Water Treatment. ACS Applied Polymer Materials, 2019, 1, 2230-2239.	2.0	51
22	Telecoupled impacts of livestock trade on non-communicable diseases. Globalization and Health, 2019, 15, 43.	2.4	8
23	Greenhouse gas emissions from a rice-rice-green manure cropping system in South China. Geoderma, 2019, 353, 331-339.	2.3	41
24	Deliver Me from food waste: Model framework for comparing the energy use of meal-kit delivery and groceries. Journal of Cleaner Production, 2019, 236, 117587.	4.6	23
25	Rising adoption and retention of meat-free diets in online recipe data. Nature Sustainability, 2019, 2, 621-627.	11.5	19
26	Transforming agricultural land use through marginal gains in the food system. Global Environmental Change, 2019, 57, 101932.	3.6	29
27	Healthy diets and sustainable food systems $\hat{a} \in$ "Authors' reply. Lancet, The, 2019, 394, 215-216.	6.3	42
28	Gaps between fruit and vegetable production, demand, and recommended consumption at global and national levels: an integrated modelling study. Lancet Planetary Health, The, 2019, 3, e318-e329.	5.1	176
29	Soft condensed matter physics of foods and macronutrients. Nature Reviews Physics, 2019, 1, 551-566.	11.9	42
30	A World of Cobenefits: Solving the Global Nitrogen Challenge. Earth's Future, 2019, 7, 865-872.	2.4	122
31	A New Era for Mild Strain Cross-Protection. Viruses, 2019, 11, 670.	1.5	67
32	Meat Consumption and Vegaphobia: An Exploration of the Characteristics of Meat Eaters, Vegaphobes, and Their Social Environment. Sustainability, 2019, 11, 3936.	1.6	33
33	Trade war threatens sustainability. Science, 2019, 364, 1242-1243.	6.0	4
34	Meat Analogs from Different Protein Sources: A Comparison of Their Sustainability and Nutritional Content. Sustainability, 2019, 11, 3231.	1.6	57
35	Generating political commitment for ending malnutrition in all its forms: A system dynamics approach for strengthening nutrition actor networks. Obesity Reviews, 2019, 20, 30-44.	3.1	30
36	Can diets be both healthy and sustainable? Solving the dilemma between healthy diets versus sustainable diets. , 2019, , 197-227.		3

#	Article	IF	CITATIONS
37	The consumptive water footprint of the European Union energy sector. Environmental Research Letters, 2019, 14, 104016.	2.2	29
38	Plant-Protein Diversity Is Critical to Ensuring the Nutritional Adequacy of Diets When Replacing Animal With Plant Protein: Observed and Modeled Diets of French Adults (INCA3). Journal of Nutrition, 2020, 150, 536-545.	1.3	37
39	Cross-cutting Issues. , 2019, , 74-103.		1
40	Socio-economic drivers of pig production and their effects on achieving sustainable development goals in China. Journal of Integrative Environmental Sciences, 2019, 16, 141-155.	1.0	19
41	Diet Quality and Water Scarcity: Evidence from a Large Australian Population Health Survey. Nutrients, 2019, 11, 1846.	1.7	33
42	Reviewing Vietnam's Nationally Determined Contribution: A New Perspective Using the Marginal Cost of Abatement. Frontiers in Sustainable Food Systems, 2019, 3, .	1.8	11
43	Chefs as change-makers from the kitchen: indigenous knowledge and traditional food as sustainability innovations. Global Sustainability, 2019, 2, .	1.6	26
45	Impact of rainfall to the effectiveness of pig slurry shallow injection method for NH3 mitigation in a Mediterranean soil. Atmospheric Environment, 2019, 216, 116913.	1.9	15
46	Wartime Interaction: Confrontation, Collusion, Cooperation/Interactions en Temps de Guerre: Confrontation, Connivence Et Coopération (1870–1970). French History, 2019, 33, 318-320.	0.1	0
47	Helsinki by nature: The Nature Step to Respiratory Health. Clinical and Translational Allergy, 2019, 9, 57.	1.4	36
48	Private lands conservation: A vision for the future. Wildlife Society Bulletin, 2019, 43, 398-407.	1.6	18
49	Impact of religious participation, social interactions and globalization on meat consumption: Evidence from India. Energy Economics, 2019, 84, 104550.	5.6	11
50	Climate impact from diet in relation to background and sociodemographic characteristics in the VÃ s terbotten Intervention Programme. Public Health Nutrition, 2019, 22, 3288-3297.	1.1	12
51	Four perspectives on water for global food production and international trade: incommensurable objectives and implications. Current Opinion in Environmental Sustainability, 2019, 40, 30-36.	3.1	9
52	Water pollution from food production: lessons for optimistic and optimal solutions. Current Opinion in Environmental Sustainability, 2019, 40, 88-94.	3.1	15
53	Efficiency of different breeding strategies in improving the faba bean productivity for sustainable agriculture. Euphytica, 2019, 215, 1.	0.6	6
54	Healthy and Sustainable Diets and Food Systems: the Key to Achieving Sustainable Development Goal 2?. Food Ethics, 2019, 4, 159-174.	1.2	80
55	Multiple health and environmental impacts of foods. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23357-23362.	3.3	440

#	Article	IF	CITATIONS
56	Plantâ€based Milks: A Review of the Science Underpinning Their Design, Fabrication, and Performance. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 2047-2067.	5.9	196
57	Where the Wild Things were is Where Humans are Now: an Overview. Human Ecology, 2019, 47, 669-679.	0.7	19
58	"Legumix― <i>Stylosanthes</i> pellets: A healthier and more sustainable animal feed. Outlook on Agriculture, 2019, 48, 229-236.	1.8	2
60	The Future of Feed: Integrating Technologies to Decouple Feed Production from Environmental Impacts. Industrial Biotechnology, 2019, 15, 52-62.	0.5	13
61	From Food Chains to Food Webs: Regulating Capitalist Production and Consumption in the Food System. Annual Review of Law and Social Science, 2019, 15, 205-225.	0.8	15
62	Science-based intensive agriculture: Sustainability, food security, and the role of technology. Clobal Food Security, 2019, 23, 236-244.	4.0	56
63	Tackling food consumption inequality to fight hunger without pressuring the environment. Nature Sustainability, 2019, 2, 826-833.	11.5	49
64	Sustainable, resilient food systems for healthy diets: the transformation agenda. Public Health Nutrition, 2019, 22, 2916-2920.	1.1	42
65	Four steps to food security for swelling cities. Nature, 2019, 566, 31-33.	13.7	89
66	Effective climate change mitigation through cover cropping and integrated fertilization: A global warming potential assessment from a 10-year field experiment. Journal of Cleaner Production, 2019, 241, 118307.	4.6	43
67	Environmental Sustainability Perspectives of the Nordic Diet. Nutrients, 2019, 11, 2248.	1.7	42
68	Long-term changes in greenhouse gas emissions from French agriculture and livestock (1852–2014): From traditional agriculture to conventional intensive systems. Science of the Total Environment, 2019, 660, 1486-1501.	3.9	72
69	Transforming the food system to fight non-communicable diseases. BMJ: British Medical Journal, 2019, 364, 1296.	2.4	168
70	Agriculturally productive yet biodiverse: human benefits and conservation values along a forest-agriculture gradient in Southern Ethiopia. Landscape Ecology, 2019, 34, 341-356.	1.9	20
71	Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet, The, 2019, 393, 447-492.	6.3	5,421
72	Food Preferences in Finland: Sustainable Diets and their Differences between Groups. Sustainability, 2019, 11, 1259.	1.6	20
73	The Moral Complexity of Agriculture: A Challenge for Corporate Social Responsibility. Journal of Agricultural and Environmental Ethics, 2019, 32, 413-430.	0.9	25
74	Global urbanization and food production in direct competition for land: Leverage places to mitigate impacts on SDG2 and on the Earth System. Infrastructure Asset Management, 2019, 6, 71-97.	1.2	69

#	Article	IF	CITATIONS
75	Review of high-value food waste and food residues biorefineries with focus on unavoidable wastes from processing. Resources, Conservation and Recycling, 2019, 149, 413-426.	5.3	112
76	Linking environmental sustainability and nutritional quality of the Atlantic diet recommendations and real consumption habits in Galicia (NW Spain). Science of the Total Environment, 2019, 683, 71-79.	3.9	36
77	Country-Specific Sustainable Diets Using Optimization Algorithm. Environmental Science & Technology, 2019, 53, 7694-7703.	4.6	45
78	Innovating for Sustainable Agriculture. , 2019, , 171-182.		0
79	Environmental Sustainability of Insects as Human Food. , 2019, , .		4
80	Cellulose Fibers Enable Near-Zero-Cost Electrical Sensing of Water-Soluble Gases. ACS Sensors, 2019, 4, 1662-1669.	4.0	114
81	Perspective: The Public Health Case for Modernizing the Definition of Protein Quality. Advances in Nutrition, 2019, 10, 755-764.	2.9	46
82	Multi-Party Agroforestry: Emergent Approaches to Trees and Tenure on Farms in the Midwest USA. Sustainability, 2019, 11, 2449.	1.6	12
83	A unified framework of life cycle assessment. International Journal of Life Cycle Assessment, 2019, 24, 620-626.	2.2	18
84	Heat-induced and acid-induced gelation of dairy/plant protein dispersions and emulsions. Current Opinion in Food Science, 2019, 27, 43-48.	4.1	32
85	Nutrition and Vulnerable Groups. Nutrients, 2019, 11, 1066.	1.7	13
87	Key determinants of global land-use projections. Nature Communications, 2019, 10, 2166.	5.8	123
88	Systems thinking for education about the molecular basis of sustainability. Nature Sustainability, 2019, 2, 362-370.	11.5	95
89	The global nexus of food–trade–water sustaining environmental flows by 2050. Nature Sustainability, 2019, 2, 499-507.	11.5	161
90	Low-cost carbonized kelp for highly efficient solar steam generation. AIP Advances, 2019, 9, .	0.6	39
91	Lessons from the past and the future of food. World Archaeology, 2019, 51, 1-16.	0.5	20
92	The value of manure - Manure as co-product in life cycle assessment. Journal of Environmental Management, 2019, 241, 293-304.	3.8	33
93	Greenhouse Gas Emissions in the United States Food System: Current and Healthy Diet Scenarios. Environmental Science & Technology, 2019, 53, 5493-5503.	4.6	45

		CITATION R	EPORT	
#	Article		IF	CITATIONS
94	Planetary health and reduction in meat consumption. Sustainable Earth, 2019, 2, .		1.3	44
95	The potential of neglected and underutilized species for improving diets and nutrition. 250, 709-729.	Planta, 2019,	1.6	130
96	Dietary Change Scenarios and Implications for Environmental, Nutrition, Human Health Dimensions of Food Sustainability. Nutrients, 2019, 11, 856.	ı and Economic	1.7	123
97	Water Footprint of Meat Analogs: Selected Indicators According to Life Cycle Assessm (Switzerland), 2019, 11, 728.	ent. Water	1.2	27
98	Methane budget of East Asia, 1990–2015: A bottom-up evaluation. Science of the To 2019, 676, 40-52.	otal Environment,	3.9	34
99	Reduction of the carbon footprint of college freshman diets after a food-based environ science course. Climatic Change, 2019, 154, 547-564.	mental	1.7	24
100	"More crop per dropâ€: Exploring India's cereal water use since 2005. Science of th 2019, 673, 207-217.	e Total Environment,	3.9	44
101	Interfacial Supramolecular Structures of Amphiphilic Receptors Drive Aqueous Phospha Recognition. Journal of the American Chemical Society, 2019, 141, 7876-7886.	ite	6.6	42
102	Making the case for edible microorganisms as an integral part of a more sustainable ar food production system. Food Security, 2019, 11, 265-278.	d resilient	2.4	79
103	Waste not, want not: A bio-economic impact assessment of household food waste red EU. Resources, Conservation and Recycling, 2019, 146, 514-522.	uctions in the	5.3	67
104	"Animals are friends, not food― Anthropomorphism leads to less favorable attituc consumption by inducing feelings of anticipatory guilt. Appetite, 2019, 138, 153-173.	es toward meat	1.8	46
105	Determining the climate impact of food for use in a climate tax—design of a consiste transparent model. International Journal of Life Cycle Assessment, 2019, 24, 1715-172	nt and 8.	2.2	39
106	The livestock sector and planetary boundaries: A †limits to growth' perspective v implications. Ecological Economics, 2019, 160, 128-136.	vith dietary	2.9	46
107	Drivers of water and land use embodied in international soybean trade. Journal of Clear Production, 2019, 223, 83-93.	her	4.6	68
108	Food and Earth Systems: Priorities for Climate Change Adaptation and Mitigation for A Food Systems. Sustainability, 2019, 11, 1372.	griculture and	1.6	87
109	Hormesis can enhance agricultural sustainability in a changing world. Global Food Secu 150-155.	ırity, 2019, 20,	4.0	47
110	Clinical Ecology—Transforming 21st-Century Medicine with Planetary Health in Mind. 2019, 10, 15.	Challenges,	0.9	16
111	Greenhouse gas abatement optimal deployment of biofuels from crops in Germany. Tra Research, Part D: Transport and Environment, 2019, 69, 265-275.	ansportation	3.2	19

#	Article	IF	CITATIONS
112	Nitrogen in the environment. Science, 2019, 363, 578-580.	6.0	242
113	A comparison of the Mediterranean diet and current food consumption patterns in Spain from a nutritional and water perspective. Science of the Total Environment, 2019, 664, 1020-1029.	3.9	75
114	Effects of urbanization on phosphorus metabolism in a typical agricultural area. Journal of Cleaner Production, 2019, 214, 803-815.	4.6	14
115	The consequences of land sparing for birds in the United Kingdom. Journal of Applied Ecology, 2019, 56, 1870-1881.	1.9	11
116	Supporting sustainable expansion of livestock production in South Asia and Sub-Saharan Africa: Scenario analysis of investment options. Global Food Security, 2019, 20, 114-121.	4.0	52
117	Future global pig production systems according to the Shared Socioeconomic Pathways. Science of the Total Environment, 2019, 665, 739-751.	3.9	55
118	Availability of disaggregated greenhouse gas emissions from beef cattle production: A systematic review. Environmental Impact Assessment Review, 2019, 76, 69-78.	4.4	56
119	Ethics and responsibilisation in agri-food governance: the single-use plastics debate and strategies to introduce reusable coffee cups in UK retail chains. Agriculture and Human Values, 2019, 36, 301-312.	1.7	17
120	Gender differences in taste and foods habits. Nutrition and Food Science, 2019, 50, 229-239.	0.4	41
121	Unprocessed Red Meat and Processed Meat Consumption: Dietary Guideline Recommendations From the Nutritional Recommendations (NutriRECS) Consortium. Annals of Internal Medicine, 2019, 171, 756.	2.0	227
122	23. Urban food governance and the de-animalisation of the food system. , 2019, , .		1
123	Bioeconomy Transitions through the Lens of Coupled Social-Ecological Systems: A Framework for Place-Based Responsibility in the Global Resource System. Sustainability, 2019, 11, 5705.	1.6	17
124	Impacts of Global Food Systems on Biodiversity and Water: The Vision of Two Reports and Future Aims. One Earth, 2019, 1, 298-302.	3.6	16
125	Cooking up Diverse Diets: Advancing Biodiversity in Food and Agriculture through Collaborations with Chefs. Crop Science, 2019, 59, 2381-2386.	0.8	6
126	Sustainable Diets in the UK—Developing a Systematic Framework to Assess the Environmental Impact, Cost and Nutritional Quality of Household Food Purchases. Sustainability, 2019, 11, 4974.	1.6	13
127	Comparing the Environmental Impacts of Meatless and Meat-Containing Meals in the United States. Sustainability, 2019, 11, 6235.	1.6	21
129	Assessing the sustainability of post-Green Revolution cereals in India. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25034-25041.	3.3	75
130	Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nature Climate Change, 2019, 9, 993-998.	8.1	229

ARTICLE IF CITATIONS # Comparing the cost of essential nutrients from different food sources in the American diet using 131 1.5 25 NHANES 2011–2014. Nutrition Journal, 2019, 18, 68. Vegetarian Diets: Planetary Health and Its Alignment with Human Health. Advances in Nutrition, 2019, 10, \$380-\$388. The Dynamics of Climate Change Adaptation in Sub-Saharan Africa: A Review of Climate-Smart 133 1.2 68 Agriculture among Small-Scale Farmers. Climate, 2019, 7, 132. Meat Consumption Does Not Explain Differences in Household Food Carbon Footprints in Japan. One 134 34 Earth, 2019, 1, 464-471. We Can't Keep Meating Like This: Attitudes towards Vegetarian and Vegan Diets in the United Kingdom. 135 1.6 135 Sustainability, 2019, 11, 6844. Opportunity for a Dietary Win-Win-Win in Nutrition, Environment, and Animal Welfare. One Earth, 2019, 1, 349-360. 3.6 36 The Water Footprint of Diets: A Global Systematic Review and Meta-analysis. Advances in Nutrition, 137 2.9 85 2020, 11, 375-386. Anatomy and resilience of the global production ecosystem. Nature, 2019, 575, 98-108. 13.7 138 203 Target Strength and swimbladder morphology of Mueller's pearlside (Maurolicus muelleri). Scientific 139 1.6 25 Reports, 2019, 9, 17311. Improving phosphorus sustainability of sugarcane production in Brazil. GCB Bioenergy, 2019, 11, 140 2.5 1444-1455. Cash transfers for pro-poor carbon taxes in Latin America and the Caribbean. Nature Sustainability, 141 11.5 49 2019, 2, 941-948. Food Neophobia or Distrust of Novelties? Exploring Consumers' Attitudes toward GMOs, Insects and 1.3 39 Cultured Meat. Applied Sciences (Switzerland), 2019, 9, 4440. SDG 2: Zero Hunger – Challenging the Hegemony of Monoculture Agriculture for Forests and People. 143 8 , 2019, , 48-71. The effect of bigger human bodies on the future global calorie requirements. PLoS ONE, 2019, 14, 144 1.1 e0223188. The impact of reduced red and processed meat consumption on cardiovascular risk factors; an 145 2.1 12 intervention trial in healthy volunteers. Food and Function, 2019, 10, 6690-6698. Association Mapping Considering Allele Dosage: An Example of Forage Traits in an Interspecific 146 Segmental Allotetraploid Urochloa spp. Panel. Crop Science, 2019, 59, 2062-2076. A model for cutting food waste in municipal kitchens: The Gothenburg case study. Advances in Food 147 0.7 1 Security and Sustainability, 2019, 4, 193-218. 148 From myths to action. Nature Climate Change, 2019, 9, 8-9. 8.1

#	Article	IF	CITATIONS
149	To be or not to be for humankind - organic diets revisited for a sustainable development. Sustainable Earth, 2019, 2, .	1.3	3
150	Leveraging total factor productivity growth for sustainable and resilient farming. Nature Sustainability, 2019, 2, 22-28.	11.5	93
151	Technologically achievable soil organic carbon sequestration in world croplands and grasslands. Land Degradation and Development, 2019, 30, 25-32.	1.8	34
152	Optimization of the environmental performance of food diets in Peru combining linear programming and life cycle methods. Science of the Total Environment, 2020, 699, 134231.	3.9	20
153	Linking global crop and livestock consumption to local production hotspots. Global Food Security, 2020, 25, 100323.	4.0	23
154	Towards resolving the phosphorus chaos created by food systems. Ambio, 2020, 49, 1076-1089.	2.8	41
155	Efficiency assessment of diets in the Spanish regions: A multi-criteria cross-cutting approach. Journal of Cleaner Production, 2020, 242, 118491.	4.6	18
156	Effect of food-related behavioral activation therapy on food intake and the environmental impact of the diet: results from the MooDFOOD prevention trial. European Journal of Nutrition, 2020, 59, 2579-2591.	1.8	15
157	Growth in human population and consumption both need to be addressed to reach an ecologically sustainable future. Environment, Development and Sustainability, 2020, 22, 4979-4998.	2.7	41
158	Emerging chemical and physical disinfection technologies of fruits and vegetables: a comprehensive review. Critical Reviews in Food Science and Nutrition, 2020, 60, 2481-2508.	5.4	131
159	Making Sense of â€~Food' Animals. , 2020, , .		18
160	Phosphorus recovered from digestate by hydrothermal processes with struvite crystallization and its potential as a fertilizer. Science of the Total Environment, 2020, 698, 134240.	3.9	69
161	Projecting terrestrial biodiversity intactness with GLOBIO 4. Global Change Biology, 2020, 26, 760-771.	4.2	94
162	Benefits and tradeâ€offs of replacing synthetic fertilizers by animal manures in crop production in China: A metaâ€analysis. Global Change Biology, 2020, 26, 888-900.	4.2	217
163	Which practices coâ€deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification?. Global Change Biology, 2020, 26, 1532-1575.	4.2	164
164	Towards redesign at scale through zero budget natural farming in Andhra Pradesh, India. International Journal of Agricultural Sustainability, 2020, 18, 1-20.	1.3	41
165	Restaurant's Multidimensional Evaluation Concerning Food Quality, Service, and Sustainable Practices: A Cross-National Case Study of Poland and Lithuania. Sustainability, 2020, 12, 234.	1.6	32
166	Arbuscular mycorrhiza contributes to the control of phosphorus loss in paddy fields. Plant and Soil, 2020, 447, 623-636.	1.8	22

#	Article	IF	CITATIONS
167	Improving the recipe for culinary and food tourism? The need for a new menu. Tourism Recreation Research, 2020, 45, 284-287.	3.3	27
168	Importance and vulnerability of the worldâ \in ^M s water towers. Nature, 2020, 577, 364-369.	13.7	885
169	How Consumers in the UK and Spain Value the Coexistence of the Claims Low Fat, Local, Organic and Low Greenhouse Gas Emissions. Nutrients, 2020, 12, 120.	1.7	20
170	Diversity of the metabolic profiles of a broad range of lactic acid bacteria in soy juice fermentation. Food Microbiology, 2020, 89, 103410.	2.1	38
171	Changes in dietary carbon footprint over ten years relative to individual characteristics and food intake in the VA s terbotten Intervention Programme. Scientific Reports, 2020, 10, 20.	1.6	32
172	Comment on "Powering sustainable development within planetary boundaries―by I. M. Algunaibet, C. Pozo, A. Galán-MartÃn, M. A. J. Huijbregts, N. Mac Dowell and G. Guillén-Gosálbez, Energy Environ. Sci., 2019, 12, 1890. Energy and Environmental Science, 2020, 13, 310-312.	15.6	1
173	Scientists call for renewed Paris pledges to transform agriculture. Lancet Planetary Health, The, 2020, 4, e9-e10.	5.1	15
174	Organic amendment mitigates the negative impacts of mineral fertilization on bacterial communities in Shajiang black soil. Applied Soil Ecology, 2020, 150, 103457.	2.1	24
175	Potential of faba bean lipase and lipoxygenase to promote formation of volatile lipid oxidation products in food models. Food Chemistry, 2020, 311, 125982.	4.2	44
176	Modelling alternative management scenarios of economic and environmental sustainability of beef finishing systems. Journal of Cleaner Production, 2020, 253, 119888.	4.6	18
177	Assessing the environmental impacts of halving food loss and waste along the food supply chain. Science of the Total Environment, 2020, 712, 136255.	3.9	109
178	A systems examination of school food recovery in Northern Colorado. Resources, Conservation and Recycling, 2020, 154, 104529.	5.3	9
179	Using an anaerobic digestion tank as the anodic chamber of an algae-assisted microbial fuel cell to improve energy production from food waste. Water Research, 2020, 170, 115305.	5.3	30
180	TowardÂsustainable dietary patterns under a water–energy–food nexus life cycle thinking approach. Current Opinion in Environmental Science and Health, 2020, 13, 61-67.	2.1	25
181	Barley production in Spain and Italy: Environmental comparison between different cultivation practices. Science of the Total Environment, 2020, 707, 135982.	3.9	16
182	Healthy low nitrogen footprint diets. Clobal Food Security, 2020, 24, 100342.	4.0	17
183	The Effects of Oil Extraction Methods on Recovery Yield and Emulsifying Properties of Proteins from Rapeseed Meal and Press Cake. Foods, 2020, 9, 19.	1.9	48
184	A method to estimate the environmental impacts from genetic change in pig production systems. International Journal of Life Cycle Assessment, 2020, 25, 523-537.	2.2	15

#	Article	IF	CITATIONS
185	Towards the circular nitrogen economy – A global meta-analysis of composting technologies reveals much potential for mitigating nitrogen losses. Science of the Total Environment, 2020, 704, 135401.	3.9	54
186	Human impacts on planetary boundaries amplified by Earth system interactions. Nature Sustainability, 2020, 3, 119-128.	11.5	217
187	Human ecology and food discourses in a smallholder agricultural system in Leyte, The Philippines. Agriculture and Human Values, 2020, 37, 719-741.	1.7	7
188	Climate change enforces to look beyond the plant – the example of pollinators. Current Opinion in Plant Biology, 2020, 56, 162-167.	3.5	5
189	Dynamics of the double burden of malnutrition and the changing nutrition reality. Lancet, The, 2020, 395, 65-74.	6.3	753
190	Exploring (nonâ€)meat eating and "translated cuisines―out of home: Evidence from three English cities. International Journal of Consumer Studies, 2020, 44, 25-32.	7.2	7
191	Novel entities and technologies: Environmental benefits and risks. Environmental Science and Policy, 2020, 105, 134-143.	2.4	25
192	A global environmental health perspective and optimisation of stress. Science of the Total Environment, 2020, 704, 135263.	3.9	97
193	The Ethics of Laying Hen Genetics. Journal of Agricultural and Environmental Ethics, 2020, 33, 15-36.	0.9	29
194	Using local initiatives to envision sustainable and resilient food systems in the Stockholm city-region. Global Food Security, 2020, 24, 100334.	4.0	26
195	Reviewing the impact of sustainability certification on food security in developing countries. Global Food Security, 2020, 24, 100337.	4.0	52
196	Delivering on the Promise of Biological Control in Asia's Food Systems: A Humboldtian Perspective. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	2
197	Nutrition-Oriented Reformulation of Extruded Cereals and Associated Environmental Footprint: A Case Study. Foods, 2020, 9, 1260.	1.9	0
198	Towards Win–Win Policies for Healthy and Sustainable Diets in Switzerland. Nutrients, 2020, 12, 2745.	1.7	12
199	Impact of a Scalable, Multi-Campus "Foodprint―Seminar on College Students' Dietary Intake and Dietary Carbon Footprint. Nutrients, 2020, 12, 2890.	1.7	22
200	A Worldwide Hotspot Analysis on Food Loss and Waste, Associated Greenhouse Gas Emissions, and Protein Losses. Sustainability, 2020, 12, 7488.	1.6	23
201	How Will Mechanizing Mung Bean Harvesting Affect Women Hired Laborers in Myanmar and Bangladesh?. Sustainability, 2020, 12, 7870.	1.6	6
202	The Water Footprint of Global Food Production. Water (Switzerland), 2020, 12, 2696.	1.2	90

#	Article	IF	CITATIONS
203	Energy perspective of Sino-US trade imbalance in global supply chains. Energy Economics, 2020, 92, 104959.	5.6	20
204	Vegetable-Oil-Based Intelligent Ink for Oxygen Sensing. ACS Sensors, 2020, 5, 3274-3280.	4.0	5
205	No Home without Hormones: How Plant Hormones Control Legume Nodule Organogenesis. Plant Communications, 2020, 1, 100104.	3.6	58
206	Plant extinction excels plant speciation in the Anthropocene. BMC Plant Biology, 2020, 20, 430.	1.6	18
207	Yield, yield stability and farmers' preferences of evolutionary populations of bread wheat: A dynamic solution to climate change. European Journal of Agronomy, 2020, 121, 126156.	1.9	25
208	SIMPLE-G: A multiscale framework for integration of economic and biophysical determinants of sustainability. Environmental Modelling and Software, 2020, 133, 104805.	1.9	19
209	China at a Crossroads: An Analysis of China's Changing Seafood Production and Consumption. One Earth, 2020, 3, 32-44.	3.6	70
210	Mobilizing Ecological Processes for Herbivore Production: Farmers and Researchers Learning Together. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	15
211	Beyond Sustainability in Food Systems: Perspectives from Agroecology and Social Innovation. Sustainability, 2020, 12, 7524.	1.6	31
212	Characterization of the Nutritional Composition of a Biotechnologically Produced Oyster Mushroom and its Physiological Effects in Obese Zucker Rats. Molecular Nutrition and Food Research, 2020, 64, e2000591.	1.5	7
213	Transformation of agricultural landscapes in the Anthropocene: Nature's contributions to people, agriculture and food security. Advances in Ecological Research, 2020, 63, 193-253.	1.4	56
214	A proposal for enhanced EU herbage VCU and DUS testing procedures. Grass and Forage Science, 2020, 75, 227-241.	1.2	15
215	Optimized crop rotations increase biomass production without significantly changing soil carbon and nitrogen stock. Ecological Indicators, 2020, 117, 106669.	2.6	28
216	The healthiness and sustainability of national and global food based dietary guidelines: modelling study. BMJ, The, 2020, 370, m2322.	3.0	225
217	Tracking the carbon emissions of Denmark's five regions from a producer and consumer perspective. Ecological Economics, 2020, 177, 106778.	2.9	11
218	A research vision for food systems in the 2020s: Defying the status quo. Global Food Security, 2020, 26, 100397.	4.0	78
219	Plant-based food and protein trend from a business perspective: markets, consumers, and the challenges and opportunities in the future. Critical Reviews in Food Science and Nutrition, 2021, 61, 3119-3128.	5.4	234
221	Food systems for resilient futures. Food Security, 2020, 12, 853-857.	2.4	11

#	Article	IF	CITATIONS
222	Nutrition in New Zealand: Can the Past Offer Lessons for the Present and Guidance for the Future?. Nutrients, 2020, 12, 3433.	1.7	3
223	The ongoing nutrition transition thwarts long-term targets for food security, public health and environmental protection. Scientific Reports, 2020, 10, 19778.	1.6	85
224	Changes in Phosphorus Fractions and Its Availability Status in Relation to Long Term P Fertilization in Loess Plateau of China. Agronomy, 2020, 10, 1818.	1.3	26
225	A new understanding and evaluation of food sustainability in six different food systems in Kenya and Bolivia. Scientific Reports, 2020, 10, 19145.	1.6	14
227	Restoring farmlands for food and nature. One Earth, 2020, 3, 665-668.	3.6	8
228	Defining healthy and sustainable diets for infants, children and adolescents. Global Food Security, 2020, 27, 100401.	4.0	31
229	Water Resources for Sustainable Healthy Diets: State of the Art and Outlook. Water (Switzerland), 2020, 12, 3224.	1.2	13
230	Sustainable Agricultural Systems: A Bibliometrics Analysis of Ecological Modernization Approach. Sustainability, 2020, 12, 9635.	1.6	20
231	The Future of Food: Environmental Lessons from E-Commerce. Environmental Science & Technology, 2020, 54, 14776-14784.	4.6	15
232	Human carnivory as a major driver of vertebrate extinction. Perspectives in Ecology and Conservation, 2020, 18, 283-293.	1.0	3
233	Bridging the gap between the science of cultured meat and public perceptions. Trends in Food Science and Technology, 2020, 104, 144-152.	7.8	61
234	How to protect both health and food system sustainability? A holistic â€~global health'-based approach via the 3V rule proposal. Public Health Nutrition, 2020, 23, 3028-3044.	1.1	22
235	Transboundary Environmental Footprints of the Urban Food Supply Chain and Mitigation Strategies. Environmental Science & Technology, 2020, 54, 10460-10471.	4.6	28
236	Holistic assessment of the microbiome dynamics in the substrates used for commercial champignon (<i>Agaricus bisporus</i>) cultivation. Microbial Biotechnology, 2020, 13, 1933-1947.	2.0	31
237	Moral judgments of food wasting predict food wasting behavior. British Food Journal, 2020, 122, 3547-3565.	1.6	14
238	Biorefinery-assisted soil management for enhancing food security. Journal of Soils and Sediments, 2020, 20, 4007-4010.	1.5	3
239	Consumer's food waste in different restaurants configuration: A comparison between different levels of incentive and interaction. Waste Management, 2020, 114, 263-273.	3.7	49
240	Challenges of Food Waste Governance: An Assessment of European Legislation on Food Waste and Recommendations for Improvement by Economic Instruments. Land, 2020, 9, 231.	1.2	52

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
241	The role of reducing food waste for resilient food systems. Ecosystem Services, 2020, 4	15, 101140.	2.3	48
242	Estimating the global potential of water harvesting from successful case studies. Globa Environmental Change, 2020, 63, 102121.	ł	3.6	33
243	Demographic Scenarios of Future Environmental Footprints of Healthy Diets in China. I 1021.	⁻ oods, 2020, 9,	1.9	8
244	Changing diets and the transformation of the global food system. Annals of the New Yo Sciences, 2020, 1478, 3-17.	ork Academy of	1.8	55
245	Slaughter cattle to secure food calories and reduce agricultural greenhouse gas emissi prospective estimates for France. Review of Agricultural Food and Environmental Studi 67-90.	ons? Some es, 2020, 101,	0.2	2
246	Insects as food and feed, a new emerging agricultural sector: a review. Journal of Insect Feed, 2020, 6, 27-44.	is As Food and	2.1	239
247	Eating to save the planet: Evidence from a randomized controlled trial using individual- purchase data. Food Policy, 2020, 95, 101950.	level food	2.8	50
248	Managing Soils for Recovering from the COVID-19 Pandemic. Soil Systems, 2020, 4, 46	5.	1.0	51
249	Is there a win–win scenario with increased beef quality and reduced consumption?. R Agricultural Food and Environmental Studies, 2020, 101, 91-116.	eview of	0.2	3
250	Nutritional Quality and Health Effects of Low Environmental Impact Diets: The "Seg Universidad de Navarra―(SUN) Cohort. Nutrients, 2020, 12, 2385.	uimiento	1.7	10
251	Nutrition Transition and Climate Risks in Nigeria: Moving Towards Food Systems Policy Current Environmental Health Reports, 2020, 7, 392-403.	Coherence.	3.2	15
252	Children older than five years do not approve of wasting food: An experimental study c towards food wasting behavior in children and adults. Journal of Environmental Psycho 71, 101467.	n attitudes logy, 2020,	2.3	13
253	Veganism as Left Praxis. Capitalism, Nature, Socialism, 2022, 33, 56-75.		0.9	11
254	Transition from Animal-Based to Plant-Based Food Production to Reduce Greenhouse C from Agriculture—The Case of Denmark. Sustainability, 2020, 12, 8228.	as Emissions	1.6	19
255	Evaluating Animal-Based Foods and Plant-Based Alternatives Using Multi-Criteria and S International Journal of Environmental Research and Public Health, 2020, 17, 7969.	WOT Analyses.	1.2	21
256	Deciphering the Biodiversity–Production Mutualism in the Global Food Security Deba Ecology and Evolution, 2020, 35, 1011-1020.	ate. Trends in	4.2	54
257	Healthy diets can create environmental trade-offs, depending on how diet quality is me Nutrition Journal, 2020, 19, 117.	asured.	1.5	26
258	Is global dietary change an effective strategy to curb climate change?. BMJ Nutrition, P Health, 2020, 3, 121-122.	revention and	1.9	2

#	Article	IF	CITATIONS
259	A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System. Biophysical Economics and Sustainability, 2020, 5, 1.	0.7	8
261	Embodied public experiments on sustainable eating: demonstrating alternative proteins in Finnish schools. Sustainability: Science, Practice, and Policy, 2020, 16, 184-196.	1.1	4
262	From isolated labels and nudges to sustained tinkering: assessing long-term changes in sustainable eating at a lunch restaurant. British Food Journal, 2020, 122, 3313-3329.	1.6	28
263	Evaluating the Portuguese diet in the pursuit of a lower carbon and healthier consumption pattern. Climatic Change, 2020, 162, 2397-2409.	1.7	10
264	A Review of Antimicrobial Resistance in Poultry Farming within Low-Resource Settings. Animals, 2020, 10, 1264.	1.0	103
265	Transitioning European Protein-Rich Food Consumption and Production towards More Sustainable Patterns—Strategies and Policy Suggestions. Sustainability, 2020, 12, 1962.	1.6	13
266	Ecological pest control fortifies agricultural growth in Asia–Pacific economies. Nature Ecology and Evolution, 2020, 4, 1522-1530.	3.4	39
267	The Climate and Nutritional Impact of Beef in Different Dietary Patterns in Denmark. Foods, 2020, 9, 1176.	1.9	14
268	Mapping U.S. Food System Localization Potential: The Impact of Diet on Foodsheds. Environmental Science & Technology, 2020, 54, 12434-12446.	4.6	15
269	Improving Climate Change Mitigation Analysis: A Framework for Examining Feasibility. One Earth, 2020, 3, 325-336.	3.6	48
270	Evaluating recycling fertilizers for tomato cultivation in hydroponics, and their impact on greenhouse gas emissions. Environmental Science and Pollution Research, 2021, 28, 59284-59303.	2.7	20
271	The 10 Elements of Agroecology: enabling transitions towards sustainable agriculture and food systems through visual narratives. Ecosystems and People, 2020, 16, 230-247.	1.3	104
272	Food production in China requires intensified measures to be consistent with national and provincial environmental boundaries. Nature Food, 2020, 1, 572-582.	6.2	80
273	Strategies for food system sustainability in China. Nature Food, 2020, 1, 533-534.	6.2	2
274	Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature, 2020, 585, 551-556.	13.7	413
275	Strategies for Sustainable Substitution of Livestock Meat. Foods, 2020, 9, 1227.	1.9	37
276	Ecosystem Functions of Microbial Consortia in Sustainable Agriculture. Agronomy, 2020, 10, 1902.	1.3	30
277	Implications of Temperate Agroforestry on Sheep and Cattle Productivity, Environmental Impacts and Enterprise Economics. A Systematic Evidence Map. Forests, 2020, 11, 1321.	0.9	14

#	Article	IF	CITATIONS
278	The Role of Healthy Diets in Environmentally Sustainable Food Systems. Food and Nutrition Bulletin, 2020, 41, 31S-58S.	0.5	27
279	Calculation of external climate costs for food highlights inadequate pricing of animal products. Nature Communications, 2020, 11, 6117.	5.8	47
280	Use of Mineral Weathering Bacteria to Enhance Nutrient Availability in Crops: A Review. Frontiers in Plant Science, 2020, 11, 590774.	1.7	49
281	Human Rights and Precautionary Principle: Limits to Geoengineering, SRM, and IPCC Scenarios. Sustainability, 2020, 12, 8858.	1.6	37
282	Global food system emissions could preclude achieving the 1.5° and 2°C climate change targets. Science, 2020, 370, 705-708.	6.0	496
283	Stakeholder Perceptions of Policy Tools in Support of Sustainable Food Consumption in Europe: Policy Implications. Sustainability, 2020, 12, 7161.	1.6	14
284	The Balancing Act—Nutrition and Sustainability. Nutrition Today, 2020, 55, 86-92.	0.6	3
285	Sustainable food system policies need to address environmental pressures and impacts: The example of water use and water stress. Science of the Total Environment, 2020, 730, 139151.	3.9	29
286	Effects of single and multiple species inocula of arbuscular mycorrhizal fungi on the salinity tolerance of a Bangladeshi rice (Oryza sativa L.) cultivar. Mycorrhiza, 2020, 30, 431-444.	1.3	37
287	The Boundaries of the Planetary Boundary Framework: A Critical Appraisal of Approaches to Define a "Safe Operating Space―for Humanity. Annual Review of Environment and Resources, 2020, 45, 497-521.	5.6	88
288	Predicting Nutrient Incontinence in the Anthropocene at Watershed Scales. Frontiers in Environmental Science, 2020, 7, .	1.5	39
289	Cropland Footprints of Australian Dietary Choices. Nutrients, 2020, 12, 1212.	1.7	24
290	Modelling spatio-temporal patterns of soil carbon and greenhouse gas emissions in grazing lands: Current status and prospects. Science of the Total Environment, 2020, 739, 139092.	3.9	23
291	Advanced analytics, phenomics and biotechnology approaches to enhance genetic gains in plant breeding. Advances in Agronomy, 2020, 162, 89-142.	2.4	8
292	Innovation can accelerate the transition towards a sustainable food system. Nature Food, 2020, 1, 266-272.	6.2	285
293	Snakes and ladders: World development pathways' synergies and trade-offs through the lens of the Sustainable Development Goals. Journal of Cleaner Production, 2020, 267, 122147.	4.6	36
294	Food Waste: Ethical Imperatives & amp; Complexities. Physiology and Behavior, 2020, 223, 112927.	1.0	6
295	Regional land use efficiency and nutritional quality of protein production. Global Food Security, 2020, 26, 100386.	4.0	2

#	Article	IF	CITATIONS
296	Modeling nitrogen flow in a coastal city—A case study of Xiamen in 2015. Science of the Total Environment, 2020, 735, 139294.	3.9	11
297	Guiding the design space for nanotechnology to advance sustainable crop production. Nature Nanotechnology, 2020, 15, 801-810.	15.6	119
298	Soil science beyond COVID-19. Journal of Soils and Water Conservation, 2020, 75, 79A-81A.	0.8	24
299	The distribution of functional N-cycle related genes and ammonia and nitrate nitrogen in soil profiles fertilized with mineral and organic N fertilizer. PLoS ONE, 2020, 15, e0228364.	1.1	11
300	Feeding the melting pot: inclusive strategies for the multi-ethnic city. Agriculture and Human Values, 2020, 37, 1027-1040.	1.7	10
301	Is India Ready for Alt-Meat? Preferences and Willingness to Pay for Meat Alternatives. Sustainability, 2020, 12, 4377.	1.6	35
302	Policy packaging can make food system transformation feasible. Nature Food, 2020, 1, 173-182.	6.2	55
303	Intensive farming drives long-term shifts in avian community composition. Nature, 2020, 579, 393-396.	13.7	81
304	Perspectives on "Game Changer―Global Challenges for Sustainable 21st Century: Plant-Based Diet, Unavoidable Food Waste Biorefining, and Circular Economy. Sustainability, 2020, 12, 1976.	1.6	67
305	Agriculture and the Disruption of Plant–Microbial Symbiosis. Trends in Ecology and Evolution, 2020, 35, 426-439.	4.2	81
306	Social and environmental analysis of food waste abatement via the peer-to-peer sharing economy. Nature Communications, 2020, 11, 1156.	5.8	65
307	Development perspectives for the bio-based economy. , 2020, , 41-78.		4
308	Greenhouse gas emissions, energy demand and land use associated with omnivorous, pesco-vegetarian, vegetarian, vegetarian, and vegan diets accounting for farming practices. Sustainable Production and Consumption, 2020, 22, 138-146.	5.7	48
309	Multi-Scale Evaluation of Suzhou City's Sustainable Development Level Based on the Sustainable Development Goals Framework. Sustainability, 2020, 12, 976.	1.6	7
310	Roadmap for Accelerated Domestication of an Emerging Perennial Grain Crop. Trends in Plant Science, 2020, 25, 525-537.	4.3	65
311	Quantifying Nutrient Budgets for Sustainable Nutrient Management. Global Biogeochemical Cycles, 2020, 34, e2018GB006060.	1.9	96
312	Investigating the potential for genetic improvement of nitrogen and phosphorus efficiency in a Swiss large white pig population using chemical analysis. Journal of Animal Breeding and Genetics, 2020, 137, 545-558.	0.8	17
313	Livestock policy for sustainable development. Nature Food, 2020, 1, 160-165.	6.2	97

#	Article	IF	CITATIONS
314	Sustainable development must account for pandemic risk. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3888-3892.	3.3	223
315	A Knowledge Brokering Framework for Integrated Landscape Management. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	20
316	Agroecology for adaptation to climate change and resource depletion in the Mediterranean region. A review. Agricultural Systems, 2020, 181, 102809.	3.2	90
317	Drivers of the Growing Water, Carbon and Ecological Footprints of the Chinese Diet from 1961 to 2017. International Journal of Environmental Research and Public Health, 2020, 17, 1803.	1.2	33
318	Trends in the food nitrogen and phosphorus footprints for Asia's giants: China, India, and Japan. Resources, Conservation and Recycling, 2020, 157, 104752.	5.3	36
319	Nutritional and environmental co-benefits of shifting to "Planetary Health―Spanish tapas. Journal of Cleaner Production, 2020, 271, 122561.	4.6	10
320	Will the plant-based movement redefine physicians' understanding of chronic disease?. New Bioethics, 2020, 26, 141-157.	0.5	17
321	Prospects for the accelerated improvement of the resilient crop quinoa. Journal of Experimental Botany, 2020, 71, 5333-5347.	2.4	49
322	Delineating the Plate Boundaries: A Review of Integrated Metrics for Healthy and Environmentally Sustainable Diets. , 2020, , 339-350.		0
323	A History of Pigs in China: From Curious Omnivores to Industrial Pork. Journal of Asian Studies, 2020, 79, 865-889.	0.0	17
324	Nitrogen emissions along global livestock supply chains. Nature Food, 2020, 1, 437-446.	6.2	160
325	Exploring the future of land use and food security: A new set of global scenarios. PLoS ONE, 2020, 15, e0235597.	1.1	71
326	Toward Healthy Diets from Sustainable Food Systems. Current Developments in Nutrition, 2020, 4, nzaa083.	0.1	39
327	Combustion behavior and fire security of storage grains before and after mildew. Journal of Fire Sciences, 2020, 38, 395-411.	0.9	8
328	Thermodynamic Signatures of the Origin of <i>Anti</i> -Hofmeister Selectivity for Phosphate at Aqueous Interfaces. Journal of Physical Chemistry A, 2020, 124, 5621-5630.	1.1	23
330	Artificial intelligence in the design of the transitions to sustainable food systems. Journal of Cleaner Production, 2020, 271, 122574.	4.6	61
331	Evaluating and expanding the European Union's protectedâ€area network toward potential postâ€2020 coverage targets. Conservation Biology, 2020, 34, 654-665.	2.4	22
332	How to transition to reduced-meat diets that benefit people and the planet. Science of the Total Environment, 2020, 718, 137208.	3.9	80

#	Article	IF	CITATIONS
333	Circular bioâ€based production systems in the context of current biomass and fossil demand. Biofuels, Bioproducts and Biorefining, 2020, 14, 187-197.	1.9	27
334	Palatable disruption: the politics of plant milk. Agriculture and Human Values, 2020, 37, 945-962.	1.7	38
335	The role of resilience in food system studies in low- and middle-income countries. Global Food Security, 2020, 24, 100356.	4.0	33
336	Treenuts and groundnuts in the EAT-Lancet reference diet: Concerns regarding sustainable water use. Global Food Security, 2020, 24, 100357.	4.0	40
337	Comparing the Recommended Eating Patterns of the EAT-Lancet Commission and Dietary Guidelines for Americans: Implications for Sustainable Nutrition. Current Developments in Nutrition, 2020, 4, nzaa015.	0.1	40
338	Benchmarking the Swedish Diet Relative to Global and National Environmental Targets—Identification of Indicator Limitations and Data Gaps. Sustainability, 2020, 12, 1407.	1.6	43
339	Prospects for sustainability of pig production in relation to climate change and novel feed resources. Journal of the Science of Food and Agriculture, 2020, 100, 3575-3586.	1.7	56
340	Stackelberg equilibrium-based eco-economic approach for sustainable development of kitchen waste disposal with subsidy policy: A case study from China. Energy, 2020, 196, 117071.	4.5	24
341	Beyond fangs: beef and soybean trade drive jaguar extinction. Frontiers in Ecology and the Environment, 2020, 18, 67-68.	1.9	10
342	Disgusting or delicious? Examining attitudinal ambivalence towards entomophagy among Danish consumers. Food Quality and Preference, 2020, 83, 103913.	2.3	51
343	Diet shift: Considering environment, health and food culture. Science of the Total Environment, 2020, 719, 137484.	3.9	45
344	A framework for nitrogen futures in the shared socioeconomic pathways. Global Environmental Change, 2020, 61, 102029.	3.6	30
345	Milk and Health. New England Journal of Medicine, 2020, 382, 644-654.	13.9	124
346	Cellular agriculture — industrial biotechnology for food and materials. Current Opinion in Biotechnology, 2020, 61, 128-134.	3.3	108
347	Breeding animals to feed people: The many roles of animal reproduction in ensuring global food security. Theriogenology, 2020, 150, 27-33.	0.9	27
348	Flowering Plants in the Anthropocene: A Political Agenda. Trends in Plant Science, 2020, 25, 349-368.	4.3	28
349	Conservationists must address meat and dairy. Science, 2020, 367, 374-374.	6.0	1
350	Digging Deeper for Agricultural Resources, the Value of Deep Rooting. Trends in Plant Science, 2020, 25, 406-417.	4.3	127

#	Article	IF	CITATIONS
351	Tipping positive change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190123.	1.8	70
352	Downscaling the planetary boundaries (Pbs) framework to city scale-level: De-risking MENA region's environment future. Environmental and Sustainability Indicators, 2020, 5, 100023.	1.7	21
353	Evolution and Future Needs of Food Chemistry in a Changing World. Journal of Agricultural and Food Chemistry, 2020, 68, 12956-12971.	2.4	7
354	Planet-proofing the global food system. Nature Food, 2020, 1, 3-5.	6.2	205
355	Physical and virtual carbon metabolism of global cities. Nature Communications, 2020, 11, 182.	5.8	62
356	Multiple long-term observations reveal a strategy for soil pH-dependent fertilization and fungal communities in support of agricultural production. Agriculture, Ecosystems and Environment, 2020, 293, 106837.	2.5	57
357	Urban water management: Can UN SDG 6 be met within the Planetary Boundaries?. Environmental Science and Policy, 2020, 106, 36-39.	2.4	23
358	Future food self-sufficiency in Iran: A model-based analysis. Global Food Security, 2020, 24, 100351.	4.0	26
359	Can we produce more beef without increasing its environmental impact? Argentina as a case study. Perspectives in Ecology and Conservation, 2020, 18, 1-11.	1.0	8
360	Fish as an alternative protein – A consumer-oriented perspective on its role in a transition towards more healthy and sustainable diets. Appetite, 2020, 152, 104721.	1.8	21
361	Can Attributional Life Cycle Assessment Tell us How to Farm and Eat Sustainably?. Integrated Environmental Assessment and Management, 2020, 16, 400-402.	1.6	1
362	Forest Conservation, Rights, and Diets: Untangling the Issues. Frontiers in Forests and Global Change, 2020, 3, .	1.0	15
363	Quantities and Quantification Methodologies of Food Waste in Swedish Hospitals. Sustainability, 2020, 12, 3116.	1.6	22
364	The Solution to Sustainable Eating Is Not a One-Way Street. Frontiers in Psychology, 2020, 11, 531.	1.1	25
365	Potential benefits of using Hermetia illucens frass as a soil amendment on food production and for environmental impact reduction. Current Opinion in Green and Sustainable Chemistry, 2020, 25, 100335.	3.2	50
366	Cropland footprints from the perspective of productive land scarcity, malnutrition-related health impacts and biodiversity loss. Journal of Cleaner Production, 2020, 260, 121150.	4.6	21
367	Nutrients, Foods, Diets, People: Promoting Healthy Eating. Current Developments in Nutrition, 2020, 4, nzaa069.	0.1	16
368	Toward Comprehensive Plant Microbiome Research. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	35

ARTICLE IF CITATIONS # Agriculture's Historic Twin-Challenge Toward Sustainable Water Use and Food Supply for All. 369 1.8 30 Frontiers in Sustainable Food Systems, 2020, 4, . Food Environment Typology: Advancing an Expanded Definition, Framework, and Methodological Approach for Improved Characterization of Wild, Cultivated, and Built Food Environments toward 370 1.9 Sustainable Diets. Foods, 2020, 9, 532. Role of New Plant Breeding Technologies for Food Security and Sustainable Agricultural 371 3.1 217 Development. Applied Economic Perspectives and Policy, 2020, 42, 129-150. Environmental effects of sustainability-oriented diet transition in China. Resources, Conservation and Recycling, 2020, 158, 104802. Daily cost of consumer food wasted, inedible, and consumed in the United States, 2001–2016. 373 1.5 35 Nutrition Journal, 2020, 19, 35. 374 The global cropland-sparing potential of high-yield farming. Nature Sustainability, 2020, 3, 281-289. 11.5 375 Digital agriculture to design sustainable agricultural systems. Nature Sustainability, 2020, 3, 254-256. 11.5 214 Local food crop production can fulfil demand for less than one-third of the population. Nature Food, 6.2 2020, 1, 229-237. 377 Research meetings must be more sustainable. Nature Food, 2020, 1, 187-189. 6.2 7 Global drivers of food system (un)sustainability: A multi-country correlation analysis. PLoS ONE, 378 1.1 2020, 15, e0231071. Development of Next-Generation Nutritionally Fortified Plant-Based Milk Substitutes: Structural 379 102 1.9 Design Principles. Foods, 2020, 9, 421. Sustainable food protein supply reconciling human and ecosystem health: A Leibniz Position. Global 380 4.0 Food Security, 2020, 25, 100367. Global food waste across the income spectrum: Implications for food prices, production and 381 2.8 100 resource use. Food Policy, 2021, 98, 101874. The environmental impact of reducing food loss and waste: A critical assessment. Food Policy, 2021, 2.8 98, 101890. Edible insects: applying Bakhtin's carnivalesque to understand how education practices can help 383 7 1.6 transform young people's eating habits. Children's Geographies, 2021, 19, 13-23. Imagining a habitable planet through food and health. European Journal of Clinical Nutrition, 2021, 75, 384 219-229. Using food loss reduction to reach food security and environmental objectives – A search for 385 2.8 42 promising leverage points. Food Policy, 2021, 98, 101915. Prospects of insects as food and feed. Organic Agriculture, 2021, 11, 301-308. 1.2

#	Article	IF	CITATIONS
387	Integrating climate and food policies in higher education: a case study of the University of California. Climate Policy, 2021, 21, 16-32.	2.6	10
388	Identifying the links between consumer food waste, nutrition, and environmental sustainability: a narrative review. Nutrition Reviews, 2021, 79, 301-314.	2.6	31
389	Scenarios for Global Aquaculture and Its Role in Human Nutrition. Reviews in Fisheries Science and Aquaculture, 2021, 29, 122-138.	5.1	92
390	Integrating sustainability into the multi-criteria assessment of urban dietary patterns. Renewable Agriculture and Food Systems, 2021, 36, 69-76.	0.8	3
391	Understanding land use volatility and agglomeration in northern Southeast Asia. Journal of Environmental Management, 2021, 278, 111536.	3.8	11
392	Environmental and nutritional profile of food consumption patterns in the different climatic zones of Spain. Journal of Cleaner Production, 2021, 279, 123580.	4.6	11
393	Sub-Saharan Africa's food nitrogen and phosphorus footprints: A scenario analysis for 2050. Science of the Total Environment, 2021, 752, 141964.	3.9	18
394	Methodological framework for identifying sustainability intervention priority areas on coastal landscapes and its application in China. Science of the Total Environment, 2021, 766, 142603.	3.9	3
395	Drip fertigation significantly increased crop yield, water productivity and nitrogen use efficiency with respect to traditional irrigation and fertilization practices: A meta-analysis in China. Agricultural Water Management, 2021, 244, 106534.	2.4	86
396	From surplus-to-waste: A study of systemic overproduction, surplus and food waste in horticultural supply chains. Journal of Cleaner Production, 2021, 278, 123952.	4.6	53
397	Could the economic crisis explain the reduction in the carbon footprint of food? Evidence from Spain in the last decade. Science of the Total Environment, 2021, 755, 142680.	3.9	13
398	Urban water and food security in this century and beyond: Resource-smart cities and residents. Ambio, 2021, 50, 679-692.	2.8	8
399	Global environmental and nutritional assessment of national food supply patterns: Insights from a data envelopment analysis approach. Science of the Total Environment, 2021, 755, 142826.	3.9	16
400	Potential for using guest attendance forecasting in Swedish public catering to reduce overcatering. Sustainable Production and Consumption, 2021, 25, 162-172.	5.7	8
401	A land-based approach for climate change mitigation in the livestock sector. Journal of Cleaner Production, 2021, 283, 124622.	4.6	19
402	â€~Rotatinuous' stocking as a climate-smart grazing management strategy for sheep production. Science of the Total Environment, 2021, 753, 141790.	3.9	13
403	A study on the effectiveness of a defined microbial consortium to enhance the microbiological safety of cattle manure. Journal of the Science of Food and Agriculture, 2021, 101, 2614-2620.	1.7	1
404	Multi-criteria evaluation of plant-based foods –use of environmental footprint and LCA data for consumer guidance. Journal of Cleaner Production, 2021, 280, 124721.	4.6	21

#	Article	IF	Citations
405	Legacy effects of soil fertility management on cereal dry matter and nitrogen grain yield of organic arable cropping systems. European Journal of Agronomy, 2021, 122, 126169.	1.9	16
406	The 2020 report of The Lancet Countdown on health and climate change: responding to converging crises. Lancet, The, 2021, 397, 129-170.	6.3	1,030
407	Enhanced phosphate removal from wastewater by recyclable fiber supported quaternary ammonium salts: Highlighting the role of surface polarity. Chemical Engineering Journal, 2021, 416, 127889.	6.6	11
408	A systematic review on consumer acceptance of alternative proteins: Pulses, algae, insects, plant-based meat alternatives, and cultured meat. Appetite, 2021, 159, 105058.	1.8	386
409	Estimation of the spatial and temporal water footprint of rice production in Bangladesh. Sustainable Production and Consumption, 2021, 25, 511-524.	5.7	12
410	The role of nitrogen in achieving sustainable food systems for healthy diets. Global Food Security, 2021, 28, 100408.	4.0	11
411	Landscape modification and nutrientâ€driven instability at a distance. Ecology Letters, 2021, 24, 398-414.	3.0	30
412	Replacing synthetic fertilizer by manure requires adjusted technology and incentives: A farm survey across China. Resources, Conservation and Recycling, 2021, 168, 105301.	5.3	39
413	Consumption pattern and acceptability of winged termites (Macroterme bellicosus)-enriched infant complementary foods in Ekiti State, Nigeria. International Journal of Tropical Insect Science, 2021, 41, 2039-2050.	0.4	3
414	Consumer preferences for new fermented food products that mix animal and plant protein sources. Food Quality and Preference, 2021, 90, 104117.	2.3	23
415	Coping with multiple identities related to meat consumption. Psychology and Marketing, 2021, 38, 159-182.	4.6	20
416	A Human Ecological Approach to Policy in the Context of Food and Nutrition Security. , 2021, , 1-26.		1
417	Analysing European Union circular economy policies: words versus actions. Sustainable Production and Consumption, 2021, 27, 337-353.	5.7	182
418	Steering the restoration of degraded agroecosystems during the United Nations Decade on Ecosystem Restoration. Journal of Environmental Management, 2021, 280, 111798.	3.8	34
419	Where is the Planetary Boundary for freshwater being exceeded because of livestock farming?. Science of the Total Environment, 2021, 760, 144035.	3.9	10
420	Viral infection can reduce the net nitrogen inputs of legume break crops and cover crops. Ecological Applications, 2021, 31, e02241.	1.8	2
421	An explorative assessment of environmental and nutritional benefits of introducing low-carbon meals to Barcelona schools. Science of the Total Environment, 2021, 756, 143879.	3.9	23
422	Innovative management programme reduces environmental impacts in Chinese vegetable production. Nature Food, 2021, 2, 47-53.	6.2	53

#	Article	IF	CITATIONS
423	The scarcity-weighted water footprint provides unreliable water sustainability scoring. Science of the Total Environment, 2021, 756, 143992.	3.9	43
424	What is a footprint? A conceptual analysis of environmental footprint indicators. Journal of Cleaner Production, 2021, 285, 124833.	4.6	62
425	A food system fit for the future. , 2021, , 135-148.		2
426	National-level consumption-based and production-based utilisation of the land-system change planetary boundary: patterns and trends. Ecological Indicators, 2021, 121, 106981.	2.6	15
427	Embracing organisational environmental sustainability: Experiences in green human resource management. Business Strategy and Development, 2021, 4, 123-135.	2.2	20
428	Animal Agriculture and Climate Change in the US and UK Elite Media: Volume, Responsibilities, Causes and Solutions. Environmental Communication, 2021, 15, 153-172.	1.2	34
429	How many chickens does it take to make an egg? Animal welfare and environmental benefits of replacing eggs with plant foods at the University of California, and beyond. Agriculture and Human Values, 2021, 38, 157-174.	1.7	6
430	National Sustainable Development Strategies. Encyclopedia of the UN Sustainable Development Goals, 2021, , 777-787.	0.0	0
431	Fate and Effects of Engineered Nanomaterials in Agricultural Systems. Nanotechnology in the Life Sciences, 2021, , 269-292.	0.4	0
432	Advancing a toolkit of diverse futures approaches for global environmental assessments. Ecosystems and People, 2021, 17, 191-204.	1.3	29
433	Food waste management, valorization, and sustainability in the food industry. , 2021, , 3-19.		16
434	A Human Ecological Approach to Policy in the Context of Food and Nutrition Security. , 2021, , 419-444.		0
435	Slow Food Movement and Sustainability. , 2021, , 1-13.		1
436	Climate Change and Food Systems: Implications on Food Security. , 2021, , 73-111.		2
437	Future Food Systems. , 2021, , 1-29.		0
438	Root-endophytes and their contribution to plant abiotic stress tolerance. , 2021, , 119-129.		1
439	Optimizing Agricultural Landscapes: Measures Towards Prosperity and Sustainability. Innovations in Landscape Research, 2021, , 91-130.	0.2	2
440	The health impact of substituting unprocessed red meat by pulses in the Danish diet. European Journal of Nutrition, 2021, 60, 3107-3118.	1.8	4

#	Article	IF	CITATIONS
441	Enhancing Nationally Determined Contributions: Opportunities for Ocean-Based Climate Action. , 0, , .		6
442	An Overview of the Problems and Prospects for Circular Agriculture in Sustainable Food Systems in the Anthropocene. Circular Agricultural Systems, 2021, 1, 1-11.	0.5	11
443	Review and future directions of consumer acceptance of insect-based foods. Shinrigaku Kenkyu, 2021, 92, 52-67.	0.1	2
444	Yield and water use gaps in cereal multicrop systems in sub-Saharan Africa under climate change. , 2021, , 313-329.		0
445	Sustainable Cropping Intensification and Its Role on Profitability of Cassava-Based Farms in a Changing Climate: Evidence from Rivers State, Nigeria. World Sustainability Series, 2021, , 445-460.	0.3	0
446	Transdisciplinary participatory-action-research from questions to actionable knowledge for sustainable viticulture development. Humanities and Social Sciences Communications, 2021, 8, .	1.3	12
447	Including Biodiversity Food in the Brazilian School Feeding: A Strategy to Ensure Food and Nutritional Security in Childhood. Ethnobiology, 2021, , 361-375.	0.4	0
448	Potential Development of Sustainable 3D-Printed Meat Analogues: A Review. Sustainability, 2021, 13, 938.	1.6	81
449	Sustainable Diets: Aligning Food Systems and the Environment. Palgrave Studies in Agricultural Economics and Food Policy, 2021, , 155-168.	0.2	0
451	Environmental impact of food waste. , 2021, , 261-283.		0
452	The protein challenge: matching future demand and supply in Indonesia. Biofuels, Bioproducts and Biorefining, 2021, 15, 341-356.	1.9	6
453	Can green defaults reduce meat consumption?. SSRN Electronic Journal, 0, , .	0.4	2
454	Opportunities for control engineering in arable precision agriculture. Annual Reviews in Control, 2021, 51, 47-55.	4.4	9
455	Is Meat Too Cheap? Towards Optimal Meat Taxation. SSRN Electronic Journal, 0, , .	0.4	11
457	How environmental values influence trust and beliefs about societal oversight and need for regulation of the Australian cattle industry. Environmental Research Letters, 2021, 16, 034006.	2.2	4
458	Rated-M for mesocosm: allowing the multimodal analysis of mature root systems in 3D. Emerging Topics in Life Sciences, 2021, 5, 249-260.	1.1	13
459	The public health implications of the Paris Agreement: a modelling study. Lancet Planetary Health, The, 2021, 5, e74-e83.	5.1	85
460	Agriculture's Contribution to Climate Change and Role in Mitigation Is Distinct From Predominantly Fossil CO2-Emitting Sectors. Frontiers in Sustainable Food Systems, 2021, 4, 518039.	1.8	139

#	Article	IF	CITATIONS
461	People, nature and large herbivores in a shared landscape: A mixedâ€method study of the ecological and social outcomes from agriculture and conservation. People and Nature, 2021, 3, 418-430.	1.7	12
462	Priorities for social science and humanities research on the challenges of moving beyond animal-based food systems. Humanities and Social Sciences Communications, 2021, 8, .	1.3	19
463	An assessment of the water use associated with Australian diets using a planetary boundary framework. Public Health Nutrition, 2021, 24, 1570-1575.	1.1	11
464	Beyond Supporting Access to Land in Socio-Technical Transitions. How Polish Grassroots Initiatives Help Farmers and New Entrants in Transitioning to Sustainable Models of Agriculture. Land, 2021, 10, 214.	1.2	9
465	The state of agricultural landscapes in the Mediterranean: smallholder agriculture and land abandonment in terraced landscapes of the Ricote Valley, southeast Spain. Regional Environmental Change, 2021, 21, 1.	1.4	22
466	Standardized methods for testing the quality attributes of plantâ€based foods: Milk and cream alternatives. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 2206-2233.	5.9	28
468	TOR coordinates nucleotide availability with ribosome biogenesis in plants. Plant Cell, 2021, 33, 1615-1632.	3.1	38
469	Weathering Climate Change in Archaeology: Conceptual Challenges and an East African Case Study. Cambridge Archaeological Journal, 2021, 31, 437-454.	0.6	4
470	Relevant characteristics of food products based on alternative proteins according to European consumers. Journal of the Science of Food and Agriculture, 2022, 102, 5034-5043.	1.7	10
471	Reducing climate impacts of beef production: A synthesis of life cycle assessments across management systems and global regions. Global Change Biology, 2021, 27, 1721-1736.	4.2	38
472	Urban agriculture may change food consumption towards low carbon diets. Global Food Security, 2021, 28, 100507.	4.0	28
473	Conceptualising value chain research to integrate multiple food system elements. Global Food Security, 2021, 28, 100500.	4.0	16
474	Sustainability Indicators for Foods Benefiting Climate and Health. Sustainability, 2021, 13, 3621.	1.6	16
475	Five Steps to Inject Transformative Change into the Post-2020 Global Biodiversity Framework. BioScience, 2021, 71, 637-646.	2.2	15
476	Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food, 2021, 2, 198-209.	6.2	964
477	Quantifying environmental impacts of cleaner fish used as sea lice treatments in salmon aquaculture with life cycle assessment. Journal of Industrial Ecology, 2022, 26, 1992-2005.	2.8	11
478	Impacts of climate change on the livestock food supply chain; a review of the evidence. Global Food Security, 2021, 28, 100488.	4.0	177
479	Ancient WEF: Water–Energy–Food Nexus in the Distant Past. Water (Switzerland), 2021, 13, 925. 	1.2	10

	CITATION R	EPORT	
#	Article	IF	CITATIONS
480	Genome engineering for crop improvement and future agriculture. Cell, 2021, 184, 1621-1635.	13.5	405
481	Food waste reduction and economic savings in times of crisis: The potential of machine learning methods to plan guest attendance in Swedish public catering during the Covid-19 pandemic. Socio-Economic Planning Sciences, 2022, 82, 101041.	2.5	19
482	Payments by modelled results: A novel design for agri-environmental schemes. Land Use Policy, 2021, 102, 105230.	2.5	44
483	Moving beyond organic – A food system approach to assessing sustainable and resilient farming. Global Food Security, 2021, 28, 100487.	4.0	22
485	Towards net zero nutrition: The contribution of demand-side change to mitigating UK food emissions. Journal of Cleaner Production, 2021, 290, 125672.	4.6	9
486	Diets within Environmental Limits: The Climate Impact of Current and Recommended Australian Diets. Nutrients, 2021, 13, 1122.	1.7	22
487	Development and Reliability of the Oxford Meat Frequency Questionnaire. Nutrients, 2021, 13, 922.	1.7	7
488	Current research on the ecosystem service potential of legume inclusive cropping systems in Europe. A review. Agronomy for Sustainable Development, 2021, 41, 1.	2.2	32
489	Assessment of acceptability and nutrient content of palm weevil (Rhyncophorus phoenicis) larvae enriched complementary foods. International Journal of Tropical Insect Science, 2021, 41, 2263-2276.	0.4	4
490	Nitrogen and the future of agriculture: 20Âyears on. Ambio, 2022, 51, 17-24.	2.8	38
491	A revised integrated framework to evaluate the sustainability of given cropping systems. Journal of Cleaner Production, 2021, 289, 125716.	4.6	16
492	Strategic foresight for agriculture: Past ghosts, present challenges, and future opportunities. Global Food Security, 2021, 28, 100489.	4.0	12
493	Stratégie-cadre d'éducation relative à l'environnement auprès des adultes pour la construction de systèmes agroalimentaires socialement équitables et écologiquement responsables. Éducation Relative à L'environnement, 2021, , .	0.0	1
494	What differentiates food-related environmental footprints of rural Chinese households?. Resources, Conservation and Recycling, 2021, 166, 105347.	5.3	18
495	Climate Change, Food Supply, and Dietary Guidelines. Annual Review of Public Health, 2021, 42, 233-255.	7.6	46
496	Region-specific nutritious, environmentally friendly, and affordable diets in India. One Earth, 2021, 4, 531-544.	3.6	19
497	Water quality related to Conservation Reserve Program (CRP) and cropland areas: Evidence from multi-temporal remote sensing. International Journal of Applied Earth Observation and Geoinformation, 2021, 96, 102272.	1.4	7
498	Combined innovations in public policy, the private sector and culture can drive sustainability transitions in food systems. Nature Food, 2021, 2, 282-290.	6.2	30

#	Article	IF	CITATIONS
499	Legume-Modified Rotations Deliver Nutrition With Lower Environmental Impact. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	14
500	Life expectancy and agricultural environmental impacts in Addis Ababa can be improved through optimized plant and animal protein consumption. Nature Food, 2021, 2, 291-298.	6.2	5
501	Mitigating greenhouse gas emissions from croplands and pasturelands — climate-smart agriculture. Pedosphere, 2021, 31, 227-230.	2.1	9
502	Animal-based foods have high social and climate costs. Nature Food, 2021, 2, 274-281.	6.2	25
503	Animal Design Through Functional Dietary Diversity for Future Productive Landscapes. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	16
504	The Contribution of Thai Fisheries to Sustainable Seafood Consumption: National Trends and Future Projections. Foods, 2021, 10, 880.	1.9	7
505	Willingness among food consumers to recycle human urine as crop fertiliser: Evidence from a multinational survey. Science of the Total Environment, 2021, 765, 144438.	3.9	25
506	Microbes: Food for the Future. Foods, 2021, 10, 971.	1.9	40
507	Farm use of calcium hydroxide as an effective barrier against pathogens. Scientific Reports, 2021, 11, 7941.	1.6	14
508	Fostering local crop-livestock integration via legume exchanges using an innovative integrated assessment and modelling approach based on the MAELIA platform. Agricultural Systems, 2021, 189, 103066.	3.2	14
509	Diets benefiting health and climate relate to longevity in northern Sweden. American Journal of Clinical Nutrition, 2021, 114, 515-529.	2.2	13
510	Eating healthy or wasting less? Reducing resource footprints of food consumption. Environmental Research Letters, 2021, 16, 054033.	2.2	17
511	Changes in the nitrogen footprint of green tea consumption in Japan from 1965 to 2016. Environmental Science and Pollution Research, 2021, 28, 44936-44948.	2.7	9
512	Temporal-spatial dynamics of anthropogenic nitrogen inputs and hotspots in a large river basin. Chemosphere, 2021, 269, 129411.	4.2	16
513	Optimizing Carbon Sequestration in Croplands: A Synthesis. Agronomy, 2021, 11, 882.	1.3	61
514	Energy implications of the 21st century agrarian transition. Nature Communications, 2021, 12, 2319.	5.8	28
515	Effects of farm type on food production, landscape openness, grassland biodiversity, and greenhouse gas emissions in mixed agricultural-forestry regions. Agricultural Systems, 2021, 189, 103071.	3.2	14
516	Reducing Water Scarcity by Reducing Food Loss and Waste. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	17

#	Article	IF	CITATIONS
518	Mitigation of Multiple Environmental Footprints for China's Pig Production Using Different Land Use Strategies. Environmental Science & Technology, 2021, 55, 4440-4451.	4.6	11
519	Cost-effectiveness of four food waste interventions: Is food waste reduction a "win–win?― Resources, Conservation and Recycling, 2021, 168, 105448.	5.3	36
520	Producing more potatoes with lower inputs and greenhouse gases emissions by regionalized cooperation in China. Journal of Cleaner Production, 2021, 299, 126883.	4.6	19
521	When Machines Take the Beans: Ex-Ante Socioeconomic Impact Evaluation of Mechanized Harvesting of Mungbean in Bangladesh and Myanmar. Agronomy, 2021, 11, 925.	1.3	8
522	What's the beef?: Debating meat, matters of concern and the emergence of online issue publics. Journal of Rural Studies, 2021, 84, 134-146.	2.1	21
523	Substituting Meat or Dairy Products with Plant-Based Substitutes Has Small and Heterogeneous Effects on Diet Quality and Nutrient Security: A Simulation Study in French Adults (INCA3). Journal of Nutrition, 2021, 151, 2435-2445.	1.3	35
524	A Plant Leaf-Mimetic Membrane with Controllable Gas Permeation for Efficient Preservation of Perishable Products. ACS Nano, 2021, 15, 8742-8752.	7.3	79
525	Selecting low-carbon technologies and measures for high agricultural carbon productivity in Taihu Lake Basin, China. Environmental Science and Pollution Research, 2021, 28, 49913-49920.	2.7	20
526	Food systems in archaeology. Examining production and consumption in the past. Archaeological Dialogues, 2021, 28, 51-75.	0.2	7
527	Higher Fine Particle Fraction in Sediment Increased Phosphorus Flux to Estuary in Restored Yellow River Basin. Environmental Science & Technology, 2021, 55, 6783-6790.	4.6	25
528	A Reinterpretation of Hindu Spirituality for Addressing Environmental Problems. Religions, 2021, 12, 358.	0.3	2
529	The role of livestock in sustainable food production systems in Canada. Canadian Journal of Animal Science, 2021, 101, 591-601.	0.7	7
530	Campus Decarbonization: Students' Perceptions for Reducing Meat Consumption in a Portuguese University. Sustainability, 2021, 13, 6048.	1.6	7
531	Nitrogen Fertilization. A Review of the Risks Associated with the Inefficiency of Its Use and Policy Responses. Sustainability, 2021, 13, 5625.	1.6	73
532	Economic policy instruments for sustainable phosphorus management: taking into account climate and biodiversity targets. Environmental Sciences Europe, 2021, 33, .	2.6	39
533	Non-linearity in Marginal LCA: Application of a Spatial Optimization Model. Frontiers in Sustainability, 2021, 2, .	1.3	5
534	Transition paths towards a bio-based economy in Germany: A model-based analysis. Biomass and Bioenergy, 2021, 148, 106002.	2.9	9
535	Scenarios for transforming the UK food system to meet global agreements. Nature Food, 2021, 2, 310-312.	6.2	4

#	Article	IF	CITATIONS
536	In pursuit of a better world: crop improvement and the CGIAR. Journal of Experimental Botany, 2021, 72, 5158-5179.	2.4	35
537	The usual suspect: How to co-create healthier meat products. Food Research International, 2021, 143, 110304.	2.9	31
538	The science of plantâ€based foods: Constructing nextâ€generation meat, fish, milk, and egg analogs. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 4049-4100.	5.9	198
539	Food Loss and Waste Prevention Strategies from Farm to Fork. Sustainability, 2021, 13, 5443.	1.6	61
540	Examining Nutrition and Food Waste Trade-offs Using an Obesity Prevention Context. Journal of Nutrition Education and Behavior, 2021, 53, 434-444.	0.3	17
541	The role and limits of strategic framing for promoting sustainable consumption and policy. Global Environmental Change, 2021, 68, 102266.	3.6	27
542	Effects of Phosphorus Ensembled Nanomaterials on Nutrient Uptake and Distribution in Glycine max L. under Simulated Precipitation. Agronomy, 2021, 11, 1086.	1.3	8
543	Environmental and nutritional analysis of the EAT-Lancet diet at the individual level: insights from the NutriNet-Santé study. Journal of Cleaner Production, 2021, 296, 126555.	4.6	29
544	To meat or not to meat? Processed meat and risk of dementia. American Journal of Clinical Nutrition, 2021, 114, 7-8.	2.2	1
545	Contrary to ultra-processed foods, the consumption of unprocessed or minimally processed foods is associated with favorable patterns of protein intake, diet quality and lower cardiometabolic risk in French adults (INCA3). European Journal of Nutrition, 2021, 60, 4055-4067.	1.8	28
546	Chimeric Double-Stranded RNAs Could Act as Tailor-Made Pesticides for Controlling Storage Insects. Journal of Agricultural and Food Chemistry, 2021, 69, 6166-6171.	2.4	7
547	Combining Protein Content and Grain Yield by Genetic Dissection in Bread Wheat under Low-Input Management. Foods, 2021, 10, 1058.	1.9	7
548	Sustainable Diets for Cardiovascular Disease Prevention and Management. Current Atherosclerosis Reports, 2021, 23, 31.	2.0	8
549	Specialization in food production affects global food security and food systems sustainability. World Development, 2021, 141, 105411.	2.6	45
550	Varying the amount of solid fat in animal fat mimetics for plant-based salami analogues influences texture, appearance and sensory characteristics. LWT - Food Science and Technology, 2021, 143, 111140.	2.5	32
551	Eating your greens: a global sustainability assessment. Resources, Conservation and Recycling, 2021, 168, 105460.	5.3	13
552	Lessons from Globalization and the COVID-19 Pandemic for Economic, Environmental and Social Policy. World, 2021, 2, 308-333.	1.0	11
553	Agricultural Trade and Environmental Sustainability. Annual Review of Resource Economics, 2021, 13, 379-401.	1.5	17

#	Article	IF	CITATIONS
554	Photovoltaic-driven microbial protein production can use land and sunlight more efficiently than conventional crops. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	68
555	"lt's not as simple as something like sugarâ€! values and conflict in the UK meat tax debate. International Journal of Health Governance, 2021, 26, 307-322.	0.6	7
556	Tools for Nano-Enabled Agriculture: Fertilizers Based on Calcium Phosphate, Silicon, and Chitosan Nanostructures. Agronomy, 2021, 11, 1239.	1.3	48
557	Commercial afforestation can deliver effective climate change mitigation under multiple decarbonisation pathways. Nature Communications, 2021, 12, 3831.	5.8	63
558	The problem with growing corporate concentration and power in the global food system. Nature Food, 2021, 2, 404-408.	6.2	106
559	Dark times for cosmopolitanism? An ethical framework to address private agriâ€food governance and planetary stewardship. Business Ethics, Environment and Responsibility, 2021, 30, 697-715.	1.6	2
560	One CGIAR and the Integrated Agri-food Systems Initiative: From short-termism to transformation of the world's food systems. PLoS ONE, 2021, 16, e0252832.	1.1	17
561	llmastokestääjoukkoruokailu ja ruokakulttuurin muutos Suomessa. Alue Ja Ympästö, 2021, 50, 89-110.	0.1	0
562	Preliminary Analysis on a Paper-based Ammonia Sensor for Future Food Smart Packaging. , 2021, , .		2
563	Using social media audience data to analyse the drivers of low-carbon diets. Environmental Research Letters, 2021, 16, 074001.	2.2	15
564	SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. Soil, 2021, 7, 217-240.	2.2	511
565	A brief review of the science behind the design of healthy and sustainable plant-based foods. Npj Science of Food, 2021, 5, 17.	2.5	138
566	2. Adapting agriculture to a changing climate: a social justice perspective. , 2021, , .		2
567	Small-scale integrated farming systems can abate continental-scale nutrient leakage. PLoS Biology, 2021, 19, e3001264.	2.6	2
568	Governing plant entred eating at the urban scale in the UK: The Sustainable Food Cities network and the reframing of dietary biopower. Geographical Journal, 0, , .	1.6	2
569	A new dataset of global irrigation areas from 2001 to 2015. Advances in Water Resources, 2021, 152, 103910.	1.7	27
570	Soils and sustainable development goals of the United Nations: An International Union of Soil Sciences perspective. Geoderma Regional, 2021, 25, e00398.	0.9	133
571	Effects of vegetal- versus animal-derived protein hydrolysate on sweet basil morpho-physiological and metabolic traits. Scientia Horticulturae, 2021, 284, 110123.	1.7	42

#	Article	IF	CITATIONS
572	Research on food redistribution model based on principal component analysis and factor analysis. Journal of Physics: Conference Series, 2021, 1952, 042038.	0.3	1
573	Eating inequity: The injustice that brings us our food. Journal of Agriculture, Food Systems, and Community Development, 0, , 1-14.	2.4	2
574	Dietary Fiber and Prebiotic Compounds in Fruits and Vegetables Food Waste. Sustainability, 2021, 13, 7219.	1.6	29
575	Environmental degradation of indigenous protected areas of the Amazon as a slow onset event. Current Opinion in Environmental Sustainability, 2021, 50, 260-271.	3.1	8
576	Changing Dietary Behavior for Better Biodiversity Preservation: A Preliminary Study. Nutrients, 2021, 13, 2076.	1.7	17
577	Agriculture and forest land use change in the continental United States: Are there tipping points?. IScience, 2021, 24, 102772.	1.9	10
578	Habitat value of bivalve shellfish and seaweed aquaculture for fish and invertebrates: Pathways, synthesis and next steps. Reviews in Aquaculture, 2022, 14, 54-72.	4.6	81
579	Food Systems for Human and Planetary Health: Economic Perspectives and Challenges. Annual Review of Resource Economics, 2021, 13, 131-156.	1.5	20
580	An informed thought experiment exploring the potential for a paradigm shift in aquatic food production. Ocean and Coastal Management, 2021, 206, 105574.	2.0	5
581	Emissions from Animal Agriculture—16.5% Is the New Minimum Figure. Sustainability, 2021, 13, 6276.	1.6	32
582	Urban Organic Waste for Urban Farming: Growing Lettuce Using Vermicompost and Thermophilic Compost. Agronomy, 2021, 11, 1175.	1.3	12
583	A mixed model-based Johnson's relative weights for eco-efficiency assessment: The case for global food consumption. Environmental Impact Assessment Review, 2021, 89, 106588.	4.4	12
584	Global bioenergy with carbon capture and storage potential is largely constrained by sustainable irrigation. Nature Sustainability, 2021, 4, 884-891.	11.5	35
585	Agroecological measures and circular economy strategies to ensure sufficient nitrogen for sustainable farming. Global Environmental Change, 2021, 69, 102313.	3.6	19
586	Nudging plant-based meals through the menu. International Journal of Gastronomy and Food Science, 2021, 24, 100346.	1.3	14
587	Plant-based dietary patterns in Flemish adults: a 10-year trend analysis. European Journal of Nutrition, 2022, 61, 561-565.	1.8	13
588	Bioenergy for climate change mitigation: Scale and sustainability. GCB Bioenergy, 2021, 13, 1346-1371.	2.5	43
589	The potential benefits of dietary shift in China: Synergies among acceptability, health, and environmental sustainability. Science of the Total Environment, 2021, 779, 146497.	3.9	18

#	Article	IF	CITATIONS
590	Food Systems and Land Use. , 2021, , 310-359.		0
591	Assessment of environmental and economic aspects of household food waste using a new Environmental-Economic Footprint (EN-EC) index: A case study of Daegu, South Korea. Science of the Total Environment, 2021, 776, 145928.	3.9	27
592	Overview of Research on Sustainable Agriculture in Developing Countries. The Case of Mexico. Sustainability, 2021, 13, 8563.	1.6	1
593	Sparing or sharing land? Views from agricultural scientists. Biological Conservation, 2021, 259, 109167.	1.9	19
594	The future is bright: Biofortification of common foods can improve vitamin D status. Critical Reviews in Food Science and Nutrition, 2023, 63, 505-521.	5.4	12
595	Nudging fisheries and aquaculture research towards food systems. Fish and Fisheries, 2022, 23, 34-53.	2.7	18
596	In-vitro meat: a promising solution for sustainability of meat sector. Journal of Animal Science and Technology, 2021, 63, 693-724.	0.8	37
597	Changes of lipids in noodle dough and dried noodles during industrial processing. Journal of Food Science, 2021, 86, 3517-3528.	1.5	6
598	Simulating land use changes, sediment yields, and pesticide use in the Upper Paraguay River Basin: Implications for conservation of the Pantanal wetland. Agriculture, Ecosystems and Environment, 2021, 314, 107405.	2.5	11
599	Towards sustainable consumption of legumes: How origin, processing and transport affect the environmental impact of pulses. Sustainable Production and Consumption, 2021, 27, 496-508.	5.7	30
600	Exploring sustainable aquaculture development using a nutrition-sensitive approach. Global Environmental Change, 2021, 69, 102285.	3.6	10
601	Greenhouse gas emissions from Mediterranean agriculture: Evidence of unbalanced research efforts and knowledge gaps. Global Environmental Change, 2021, 69, 102319.	3.6	31
602	The role of planetary boundaries in assessing absolute environmental sustainability across scales. Environment International, 2021, 152, 106475.	4.8	45
603	Modelling the links between farm characteristics, respiratory health and pig production traits. Scientific Reports, 2021, 11, 13789.	1.6	4
604	Public–private partnership model for intensive maize production in China: A synergistic strategy for food security and ecosystem economic budget. Food and Energy Security, 2021, 10, e317.	2.0	5
605	China's food loss and waste embodies increasing environmental impacts. Nature Food, 2021, 2, 519-528.	6.2	142
606	Impact of a College Course on the Sustainability of Student Diets in Terms of the Planetary Boundaries for Climate Change and Land, Water, Nitrogen and Phosphorus Use. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	1
607	Risk assessment of soil erosion by using CORINE model in the western part of Syrian Arab Republic. Agriculture and Food Security, 2021, 10, .	1.6	5

#	Article	IF	CITATIONS
608	Policies for Sustainable Agriculture and Livelihood in Marginal Lands: A Review. Sustainability, 2021, 13, 8692.	1.6	12
609	Measuring ammonia and odours emissions during full field digestate use in agriculture. Science of the Total Environment, 2021, 782, 146882.	3.9	18
610	Seasonal Nitrous Oxide Emissions From Hydroponic Tomato and Cucumber Cultivation in a Commercial Greenhouse Company. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	6
611	Fate of 15N-labelled urea when applied to long-term fertilized soils of varying fertility. Nutrient Cycling in Agroecosystems, 2021, 121, 151-165.	1.1	9
612	Resistance, resilience, and functional redundancy of freshwater bacterioplankton communities facing a gradient of agricultural stressors in a mesocosm experiment. Molecular Ecology, 2021, 30, 4771-4788.	2.0	12
613	The Ecology of Meat. American Biology Teacher, 2021, 83, 418-422.	0.1	0
614	Healthier and more sustainable diets: What changes are needed in highâ€income countries?. Nutrition Bulletin, 2021, 46, 279-309.	0.8	46
615	Guess What …?—How Guessed Norms Nudge Climate-Friendly Food Choices in Real-Life Settings. Sustainability, 2021, 13, 8669.	1.6	8
616	Environmental impacts of animal-based food supply chains with market characteristics. Science of the Total Environment, 2021, 783, 147077.	3.9	15
617	Small targeted dietary changes can yield substantial gains for human health and the environment. Nature Food, 2021, 2, 616-627.	6.2	57
618	Lowering the Consumption of Animal Products without Sacrificing Consumer Freedom – A Pragmatic Proposal. Ethics, Policy and Environment, 0, , 1-19.	0.8	0
619	Which diet has the lower water footprint in Mediterranean countries?. Resources, Conservation and Recycling, 2021, 171, 105631.	5.3	25
620	Controversy around climate change reports: a case study of Twitter responses to the 2019 IPCC report on land. Climatic Change, 2021, 167, 59.	1.7	19
621	Soil microbial community and network changes after long-term use of plastic mulch and nitrogen fertilization on semiarid farmland. Geoderma, 2021, 396, 115086.	2.3	65
622	Unfolding hidden environmental impacts of food waste: An assessment for fifteen countries of the world. Journal of Cleaner Production, 2021, 310, 127523.	4.6	28
623	Finding flexitarians: Current studies on meat eaters and meat reducers. Trends in Food Science and Technology, 2021, 114, 530-539.	7.8	108
624	"There Are Many People Like Me, Who Feel They Want to Do Something Bigger†An Exploratory Study of Choosing Not to Have Children Based on Environmental Concerns. Ecopsychology, 2021, 13, 200-209.	0.8	9
625	A steady-state N balance approach for sustainable smallholder farming. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	49

#	Article	IF	CITATIONS	
626	Reconciling food production and environmental boundaries for nitrogen in the European Union. Science of the Total Environment, 2021, 786, 147427.	3.9	21	
627	Plant proteins and their colloidal state. Current Opinion in Colloid and Interface Science, 2021, 56, 101510.	3.4	20	
628	Farming with Alternative Pollinators benefits pollinators, natural enemies, and yields, and offers transformative change to agriculture. Scientific Reports, 2021, 11, 18206.	1.6	8	
629	Reconciling regional nitrogen boundaries with global food security. Nature Food, 2021, 2, 700-711.	6.2	51	
630	Agricultural methane emissions and the potential formitigation. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200451.	1.6	21	
631	Food system resilience thinking: from digital to integral. Journal of the Science of Food and Agriculture, 2022, 102, 887-891.	1.7	8	
632	Sustainable food systems and nutrition in the 21st century: a report from the 22nd annual Harvard Nutrition Obesity Symposium. American Journal of Clinical Nutrition, 2022, 115, 18-33.	2.2	43	
633	Sustaining planetary health through systems thinking: Public health's critical role. SSM - Population Health, 2021, 15, 100844.	1.3	24	
634	Beyond productivism versus agroecology: lessons for sustainable food systems from Lovins' soft path energy policies. Environmental Research Letters, 2021, 16, 091003.	2.2	5	
635	Understanding the trends in Denmark's global food trade-related greenhouse gas and resource footprint. Journal of Cleaner Production, 2021, 313, 127785.	4.6	7	
636	Coupled social and land use dynamics affect dietary choice and agricultural land-use extent. Communications Earth & Environment, 2021, 2, .	2.6	2	
637	The Importance of Citizen Scientists in the Move Towards Sustainable Diets and a Sustainable Food System. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	5	
638	Environmental performance of blue foods. Nature, 2021, 597, 360-365.	13.7	233	
639	Exploring the multiple land degradation pathways across the planet. Earth-Science Reviews, 2021, 220, 103689.	4.0	104	
640	Revisiting the application and methodological extensions of the planetary boundaries for sustainability assessment. Science of the Total Environment, 2021, 788, 147886.	3.9	15	
641	Quantitative assessment of agricultural sustainability reveals divergent priorities among nations. One Earth, 2021, 4, 1262-1277.	3.6	63	
642	The future of farming: Who will produce our food?. Food Security, 2021, 13, 1073-1099.	2.4	167	
643	Reuse and recycle: Integrating aquaculture and agricultural systems to increase production and reduce nutrient pollution. Science of the Total Environment. 2021, 785, 146859.	3.9	8	
		CITATION F	Report	
-----	--	----------------------------	--------	-----------
#	Article		IF	CITATIONS
644	Spatial frameworks for robust estimation of yield gaps. Nature Food, 2021, 2, 773-779.		6.2	32
645	How does market power affect the resilience of food supply?. Global Food Security, 2021	., 30, 100556.	4.0	6
646	Youth demand political action on healthy sustainable diets. Nature Food, 0, , .		6.2	2
647	A Molecular Survey of Bacterial Species in the Guts of Black Soldier Fly Larvae (Hermetia Reared on Two Urban Organic Waste Streams in Kenya. Frontiers in Microbiology, 2021,	illucens) 12, 687103.	1.5	4
648	Nutritional Quality of Plant-Based Cheese Available in Spanish Supermarkets: How Do Th Dairy Cheese?. Nutrients, 2021, 13, 3291.	ey Compare to	1.7	27
649	The overlooked importance of food disadoption for the environmental sustainability of n Environmental Research Letters, 2021, 16, 104022.	ew foods.	2.2	5
650	Feeding the world in a narrowing safe operating space. One Earth, 2021, 4, 1193-1196.		3.6	6
651	Diets within planetary boundaries: What is the potential of dietary change alone?. Sustai Production and Consumption, 2021, 28, 802-810.	nable	5.7	19
652	The key drivers for the changes in global water scarcity: Water withdrawal versus water a Journal of Hydrology, 2021, 601, 126658.	vailability.	2.3	73
653	Mitigating "displaced―land degradation and the risk of spillover through the decom land products. Land Use Policy, 2021, 109, 105659.	moditization of	2.5	4
654	Greenhouse gas emissions from vegetables production in China. Journal of Cleaner Produ 317, 128449.	iction, 2021,	4.6	34
655	Optimising diets to reach absolute planetary environmental sustainability through consu Sustainable Production and Consumption, 2021, 28, 877-892.	mers.	5.7	15
656	Triple bottom-line consideration of sustainable plant disease management: From econom sociological and ecological perspectives. Journal of Integrative Agriculture, 2021, 20, 258	nic, }1-2591.	1.7	10
657	Are UK retailers well placed to deliver â€~less and better' meat and dairy to consume Production and Consumption, 2021, 28, 154-163.	rs?. Sustainable	5.7	15
658	The carbon footprint of meat and dairy proteins: A practical perspective to guide low car footprint dietary choices. Journal of Cleaner Production, 2021, 321, 128766.	oon	4.6	29
659	Viewpoint: Rigorous monitoring is necessary to guide food system transformation in the to the 2030 global goals. Food Policy, 2021, 104, 102163.	countdown	2.8	110
660	Enabling circularity in grain production systems with novel technologies and policy. Agric Systems, 2021, 193, 103244.	ultural	3.2	20
661	Integrating institutional approaches and decision science to address climate change: a m collective action research agenda. Current Opinion in Environmental Sustainability, 2021	ulti-level , 52, 19-26.	3.1	25

#	Article	IF	CITATIONS
662	Toward Zero Hunger Through Coupled Ecological Sanitation-Agriculture Systems. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	7
663	Growing phosphorus dilemma: The opportunity from aquatic systems' secondary phosphorus retention capacity. Science of the Total Environment, 2021, 796, 148938.	3.9	3
664	The climate impact of excess food intake - An avoidable environmental burden. Resources, Conservation and Recycling, 2021, 174, 105777.	5.3	13
665	Root and arbuscular mycorrhizal effects on soil nutrient loss are modulated by soil texture. Applied Soil Ecology, 2021, 167, 104097.	2.1	8
666	Food loss and waste and the modernization of vegetable value chains in Thailand. Resources, Conservation and Recycling, 2021, 174, 105714.	5.3	12
667	Exploring the option space for land system futures at regional to global scales: The diagnostic agro-food, land use and greenhouse gas emission model BioBaM-GHG 2.0. Ecological Modelling, 2021, 459, 109729.	1.2	10
668	Quality and environmental footprints of diets by socio-economic status in Argentina. Science of the Total Environment, 2021, 801, 149686.	3.9	15
669	Spatial differentiation identification of influencing factors of agricultural carbon productivity at city level in Taihu lake basin, China. Science of the Total Environment, 2021, 800, 149610.	3.9	29
670	Virtual carbon emissions in the big cities of middle-income countries. Urban Climate, 2021, 40, 100986.	2.4	19
671	Co-benefits of a flexitarian diet for air quality and human health in Europe. Ecological Economics, 2022, 191, 107232.	2.9	18
672	How urbanization and ecological conditions affect urban diet-linked GHG emissions: New evidence from China. Resources, Conservation and Recycling, 2022, 176, 105903.	5.3	27
673	Entangling the interaction between essential and nonessential nutrients: implications for global food security. , 2022, , 1-25.		0
674	Impact of Reactive Nitrogen and Nitrogen Footprint. Structure and Function of Mountain Ecosystems in Japan, 2021, , 67-86.	0.1	0
675	Solar Photovoltaics in 100% Renewable Energy Systems. , 2021, , 1-30.		16
676	A review of the interactions between biodiversity, agriculture, climate change, and international trade: research and policy priorities. One Earth, 2021, 4, 88-101.	3.6	103
677	Nachhaltige Entwicklung. , 2021, , 71-91.		1
678	Integrating Consumer Food Experience with Health and Sustainability Outcomes: The Critical Role of Design Imperatives. , 2021, , 195-210.		1
679	Organic agriculture: impact on the environment and food quality. , 2021, , 31-58.		1

#	Article	IF	Citations
680	An empirical study of food consumption in urban households of Zhengzhou city. Journal of Natural Resources, 2021, 36, 1976.	0.4	2
681	Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems. Nature Food, 2021, 2, 28-37.	6.2	120
682	ECOWASTE4FOOD Project: Cases for Food Waste Reduction at City and Regional Levels in the EU. , 2020, , 389-414.		1
683	Importance of Insects as Food in Africa. , 2020, , 1-17.		7
684	The Food System Grand Challenge: A Climate Smart and Sustainable Food System for a Healthy Europe. Contributions To Management Science, 2020, , 1-25.	0.4	4
685	National Sustainable Development Strategies. Encyclopedia of the UN Sustainable Development Goals, 2020, , 1-12.	0.0	3
686	Soil Quality and Regenerative, Sustainable Farming Systems. Encyclopedia of the UN Sustainable Development Goals, 2020, , 823-832.	0.0	2
687	Soil carbon sequestration in grazing systems: managing expectations. Climatic Change, 2020, 161, 385-391.	1.7	29
688	Resolving the twin human and environmental health hazards of a plant-based diet. Environment International, 2020, 144, 106081.	4.8	25
689	Food systems everywhere: Improving relevance in practice. Global Food Security, 2020, 26, 100398.	4.0	59
690	Meeting the food security challenge for nine billion people in 2050: What impact on forests?. Global Environmental Change, 2020, 62, 102056.	3.6	86
691	Environmental sustainability of European production and consumption assessed against planetary boundaries. Journal of Environmental Management, 2020, 269, 110686.	3.8	85
692	Assessing the impact of industrial waste on environment and mitigation strategies: A comprehensive review. Journal of Hazardous Materials, 2020, 398, 123019.	6.5	92
693	Food affordability and nutritional values within the functional unit of a food LCA. An application on regional diets in Spain Resources, Conservation and Recycling, 2020, 160, 104856.	5.3	13
694	Nutritional and environmental losses embedded in global food waste. Resources, Conservation and Recycling, 2020, 160, 104912.	5.3	162
695	A food system revolution for China in the post-pandemic world. Resources, Environment and Sustainability, 2020, 2, 100013.	2.9	14
696	Development and evaluation of a new dietary index assessing nutrient security by aggregating probabilistic estimates of the risk of nutrient deficiency in two French adult populations. British Journal of Nutrition, 2021, 126, 1225-1236.	1.2	12
697	Agricultural Development and Land Use Change in India: A Scenario Analysis of Tradeâ€Offs Between UN Sustainable Development Goals (SDGs). Earth's Future, 2020, 8, e2019EF001287.	2.4	66

#	Article	IF	CITATIONS
698	Feeding ten billion people is possible within four terrestrial planetary boundaries. Nature Sustainability, 2020, 3, 200-208.	11.5	306
699	Global food self-sufficiency in the 21st century under sustainable intensification of agriculture. Environmental Research Letters, 2020, 15, 095004.	2.2	100
700	The U.S. consumer phosphorus footprint: where do nitrogen and phosphorus diverge?. Environmental Research Letters, 2020, 15, 105022.	2.2	19
701	The importance of food systems and the environment for nutrition. American Journal of Clinical Nutrition, 2021, 113, 7-16.	2.2	90
702	The human exposome and health in the Anthropocene. International Journal of Epidemiology, 2021, 50, 378-389.	0.9	24
705	Territorial and Sustainable Healthy Diets. Food and Nutrition Bulletin, 2020, 41, 87S-103S.	0.5	21
706	An evaluation of Chile's Law of Food Labeling and Advertising on sugar-sweetened beverage purchases from 2015 to 2017: A before-and-after study. PLoS Medicine, 2020, 17, e1003015.	3.9	254
707	Novel Affordable, Reliable and Efficient Technologies to Help Addressing the Water-Energy-Food Nexus. European Journal of Sustainable Development (discontinued), 2019, 8, 1.	0.4	8
708	Development and challenges of green food in China. Frontiers of Agricultural Science and Engineering, 2020, 7, 56.	0.9	10
709	A green eco-environment for sustainable development: framework and action. Frontiers of Agricultural Science and Engineering, 2020, 7, 67.	0.9	13
710	The urgency of Agriculture Green Development. Frontiers of Agricultural Science and Engineering, 2020, 7, 108.	0.9	2
711	Health and Economic Impacts of Overweight/Obesity. , 2020, , 69-94.		5
712	The Effects of Policy Design Complexity on Public Support for Climate Policy. SSRN Electronic Journal, O, , .	0.4	2
713	Biodiversity in Tomatoes: Is It Reflected in Nutrient Density and Nutritional Yields Under Organic Outdoor Production?. Frontiers in Plant Science, 2020, 11, 589692.	1.7	13
714	A Critical Appraisal of the Evidence Supporting Consumer Motivations for Alternative Proteins. Foods, 2021, 10, 24.	1.9	62
715	Meat analog as future food: a review. Journal of Animal Science and Technology, 2020, 62, 111-120.	0.8	176
717	Consumer acceptability and nutrient content of Westwood (Cirina forda) larva-enriched Amaranthus hybridus vegetable soups. African Journal of Food Science, 2020, 14, 244-255.	0.4	3
718	Justice in transitions: Widening considerations of justice in dietary transition. Environmental Innovation and Societal Transitions, 2021, 40, 474-485.	2.5	31

#	Article	IF	CITATIONS
720	Food biodiversity and total and cause-specific mortality in 9 European countries: An analysis of a prospective cohort study. PLoS Medicine, 2021, 18, e1003834.	3.9	7
721	Culturally appropriate shifts in staple grain consumption can improve multiple sustainability outcomes. Environmental Research Letters, 2021, 16, 125006.	2.2	3
722	The food we eat, the air we breathe: a review of the fine particulate matter-induced air quality health impacts of the global food system. Environmental Research Letters, 2021, 16, 103004.	2.2	17
723	Ideological Dilemmas Actualised by the Idea of Living Environmentally Childfree. Human Arenas, 2023, 6, 886-910.	1.1	3
724	The nutrition transition to a stage of high obesity and noncommunicable disease prevalence dominated by ultraâ€processed foods is not inevitable. Obesity Reviews, 2022, 23, e13366.	3.1	122
725	The global and regional costs of healthy and sustainable dietary patterns: a modelling study. Lancet Planetary Health, The, 2021, 5, e797-e807.	5.1	90
726	Flexitarianism in the Netherlands in the 2010 decade: Shifts, consumer segments and motives. Food Quality and Preference, 2022, 96, 104445.	2.3	34
727	Concentrating vs. spreading our footprint: how to meet humanity's needs at least cost to nature. Journal of Zoology, 2021, 315, 79-109.	0.8	40
728	Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation. Nature Food, 2021, 2, 886-893.	6.2	68
729	Potential Role of Technology Innovation in Transformation of Sustainable Food Systems: A Review. Agriculture (Switzerland), 2021, 11, 984.	1.4	41
730	Trends in UK meat consumption: analysis of data from years 1–11 (2008–09 to 2018–19) of the National Diet and Nutrition Survey rolling programme. Lancet Planetary Health, The, 2021, 5, e699-e708.	5.1	78
731	Land use intensification increasingly drives the spatiotemporal patterns of the global human appropriation of net primary production in the last century. Global Change Biology, 2022, 28, 307-322.	4.2	33
732	Breeding Canola (Brassica napus L.) for Protein in Feed and Food. Plants, 2021, 10, 2220.	1.6	14
733	Global water and energy losses from consumer avoidable food waste. Journal of Cleaner Production, 2021, 326, 129342.	4.6	19
734	A Study of Environmental Humanities on Flexitarian Diet in the Anthropocene Epoch. Environmental Philosophy, 2018, null, 35-58.	0.0	0
736	Eating To Save The Planet: Evidence from a Randomized Controlled Trial Using Individual-Level Food Purchase Data. SSRN Electronic Journal, 0, , .	0.4	1
737	The transformation of China's grain production since reform and opening-up and its prospects. Journal of Natural Resources, 2019, 34, 658.	0.4	2
738	Why Do People Eat (So Much) Meat?—And How Can We Eat (Much) Less?. Journal of Agriculture, Food Systems, and Community Development, 0, , 1-4.	2.4	0

#	APTICLE	IF	CITATION
739	Estimation of the Carbon Dioxide Emission Change due to the Change of the Meat Consumption Behavior in North Korea. Journal of Korean Society for Atmospheric Environment, 2019, 35, 1-15.	0.2	1
740	The Problem with â€~Food' Animals. , 2020, , 31-54.		0
741	Soil Quality and Regenerative, Sustainable Farming Systems. Encyclopedia of the UN Sustainable Development Goals, 2020, , 1-10.	0.0	0
742	The influence of hydro-climatological balances and Nature-based solutions (NBS) in the management of water resources. Meteorology Hydrology and Water Management, 0, , .	0.4	0
746	Klimaschutz in der Gemeinschaftsgastronomie. Management-Reihe Corporate Social Responsibility, 2020, , 369-378.	0.1	0
747	Beneficial Microbes as Alternative Food Flavour Ingredients for Achieving Sustainability. Environmental and Microbial Biotechnology, 2020, , 79-90.	0.4	Ο
749	Agricultural Land Use and Management Practice Influence on Efflux and Influx of Carbon between Soil and the Atmosphere: A Review. International Journal of Plant & Soil Science, 0, , 31-48.	0.2	1
751	Upcoming Challenges in Land Use Science—An International Perspective. Human-environment Interactions, 2021, , 319-336.	1.2	0
752	Plant-based diets add to the wastewater phosphorus burden. Environmental Research Letters, 2020, 15, 094018.	2.2	12
753	Nutrient Budgeting of Primary Nutrients and Their Use Efficiency in India. International Research Journal of Pure and Applied Chemistry, 0, , 92-114.	0.2	3
754	Uncovering the roles of hemoglobins in soybean facing water stress. Gene, 2022, 810, 146055.	1.0	2
755	Agriculture in the European Union: Seven More Years of Environmental Austerity?. , 2020, , 201-210.		0
756	Sustainability, health and consumer insights for plant-based food innovation. International Journal of Food Design, 2020, 5, 139-148.	0.6	11
757	Understanding the Political Challenge of Red and Processed Meat Reduction for Healthy and Sustainable Food Systems: A Narrative Review of the Literature. International Journal of Health Policy and Management, 2020, , .	0.5	19
758	Taxing Twenty-First Century Sins. , 2021, , 153-176.		0
759	Riesgo, desigualdad y sabor. Herramientas sociológicas para explicar el "efecto dorito― Revista Temas SociolÁ³gicos, 2020, , 595-621.	0.1	Ο
760	Climate impact from agricultural management practices in the Canadian Prairies: Carbon equivalence due to albedo change. Journal of Environmental Management, 2022, 302, 113938.	3.8	3
761	Five mechanisms blocking the transition towards â€~nature-inclusive' agriculture: A systemic analysis of Dutch dairy farming. Agricultural Systems, 2022, 195, 103280.	3.2	35

#	Article	IF	CITATIONS
762	The economic, environmental and social performance of European certified food. Ecological Economics, 2022, 191, 107244.	2.9	15
763	The lipids. , 2022, , 303-467.		18
764	Simulating grazing beef and sheep systems. Agricultural Systems, 2022, 195, 103307.	3.2	10
765	Testing interventions to reduce food waste in school catering. Resources, Conservation and Recycling, 2022, 177, 105997.	5.3	17
766	Biorefining within food loss and waste frameworks: A review. Renewable and Sustainable Energy Reviews, 2022, 154, 111781.	8.2	12
767	Electrochemical biosensors for food bioprocess monitoring. Current Opinion in Food Science, 2022, 43, 18-26.	4.1	30
768	Quantifying supply chain food loss in China with primary data: A large-scale, field-survey based analysis for staple food, vegetables, and fruits. Resources, Conservation and Recycling, 2022, 177, 106006.	5.3	28
769	Climate-Friendly Seafood: The Potential for Emissions Reduction and Carbon Capture in Marine Aquaculture. BioScience, 2022, 72, 123-143.	2.2	51
770	Socio-Environmental Food Systems Under Anthropogenic Climate Change: The Water-Energy-Food Nexus Perspective. Encyclopedia of the UN Sustainable Development Goals, 2020, , 1-11.	0.0	1
771	The Multiple Dimensions of Social Justice Affected by Agricultural Innovation. The International Library of Environmental, Agricultural and Food Ethics, 2020, , 1-26.	0.1	0
772	Agriculture Production and Consumption. Encyclopedia of the UN Sustainable Development Goals, 2020, , 1-11.	0.0	4
773	The Environmental Threats Our World Is Facing Today. , 2020, , 1-20.		0
775	Agroecology: Relocalizing Agriculture Accordingly to Places. , 2020, , 81-99.		2
776	A Human Ecological Approach to Policy in the Context of Food and Nutrition Security. , 2020, , 1-26.		2
777	Valuing Waste – A Multi-method Analysis of the Use of Household Refuse from Cooking and Sanitation for Soil Fertility Management in Tanzanian Smallholdings. , 2020, , 91-122.		0
778	Why This Report Now?. , 2020, , 19-28.		1
781	Forests and food security: a review. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , .	0.6	0
783	Meat-free diets and their relationship with the meaning of food and eco-friendly purchase and consumption behaviours. British Food Journal, 2022, 124, 2761-2771.	1.6	3

#	Article	IF	CITATIONS
784	Closing productivity gaps among Dutch dairy farms can boost profit and reduce nitrogen pollution. Environmental Research Letters, 2021, 16, 124003.	2.2	8
785	Transition Pathways for the Farmed Salmon Value Chain: Industry Perspectives and Sustainability Implications. Sustainability, 2021, 13, 12106.	1.6	6
786	Transforming landscapes and mindscapes through regenerative agriculture. Agriculture and Human Values, 2022, 39, 809-826.	1.7	24
787	Changing dietary patterns is necessary to improve the sustainability of Western diets from a One Health perspective. Science of the Total Environment, 2022, 811, 151437.	3.9	27
788	Biochar — An effective additive for improving quality and reducing ecological risk of compost: A global meta-analysis. Science of the Total Environment, 2022, 806, 151439.	3.9	44
789	EXPLORING AGRICULTURAL OPPORTUNITIES IN THE CLAY BELT OF ONTARIO, CANADA. WIT Transactions on Ecology and the Environment, 2020, , .	0.0	1
791	A recipe to reverse the loss of nature. Nature, 2020, 585, 503-504.	13.7	0
792	Sustainable and healthy diets: Synergies and tradeâ€offs in Switzerland. Systems Research and Behavioral Science, 2020, 37, 908-927.	0.9	6
793	Scope for Circular Economy Model in Urban Agri-Food Value Chains. , 2021, , 75-97.		1
794	Socio-environmental Food Systems Under Anthropogenic Climate Change: The Water-Energy-Food Nexus Perspective. Encyclopedia of the UN Sustainable Development Goals, 2021, , 906-916.	0.0	0
795	Linking seagrass ecosystem services to food security: The example of southwestern Madagascar's small-scale fisheries. Ecosystem Services, 2022, 53, 101381.	2.3	7
796	Lowering soil greenhouse gas emissions without sacrificing yields by increasing crop rotation diversity in the North China Plain. Field Crops Research, 2022, 276, 108366.	2.3	19
797	World scientists' warnings into action, local to global. Science Progress, 2021, 104, 003685042110562.	1.0	13
798	Assessing the Environmental Efficiency of Grain Production and Their Spatial Effects: Case Study of Major Grain Production Areas in China. Frontiers in Environmental Science, 2021, 9, .	1.5	8
799	Environmental footprints of improving dietary quality of Chinese rural residents: A modeling study. Resources, Conservation and Recycling, 2022, 179, 106074.	5.3	6
800	Changing Chinese Diets to Achieve a Win–Win Solution for Health and the Environment. China and World Economy, 2021, 29, 34-52.	0.9	15
801	Community-Level Impacts of Climate-Smart Agriculture Interventions on Food Security and Dietary Diversity in Climate-Smart Villages in Myanmar. Climate, 2021, 9, 166.	1.2	4
802	The role of seafood in sustainable diets. Environmental Research Letters, 2022, 17, 035003.	2.2	36

#	Article	IF	CITATIONS
804	Environmental footprint of critical agro-export products in the Peruvian hyper-arid coast: A case study for green asparagus and avocado. Science of the Total Environment, 2022, 818, 151686.	3.9	8
805	Developing water, energy, and food sustainability performance indicators for agricultural systems. Scientific Reports, 2021, 11, 22831.	1.6	7
806	Designing Just Transition Pathways: A Methodological Framework to Estimate the Impact of Future Scenarios on Employment in the French Dairy Sector. Agriculture (Switzerland), 2021, 11, 1119.	1.4	4
807	Differences in Environmental Impact between Plant-Based Alternatives to Dairy and Dairy Products: A Systematic Literature Review. Sustainability, 2021, 13, 12599.	1.6	23
808	Building a Global Food Systems Typology: A New Tool for Reducing Complexity in Food Systems Analysis. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	29
809	Nutrient Adequacy of Global Food Production. Frontiers in Nutrition, 2021, 8, 739755.	1.6	4
810	HortResearch4Future – how can we respond to societal demand?. Acta Horticulturae, 2021, , 1-14.	0.1	0
811	Citizen-Driven Food System Approaches in Cities. , 2022, , 349-381.		2
812	Development of an EAT-Lancet index and its relation to mortality in a Swedish population. American Journal of Clinical Nutrition, 2022, 115, 705-716.	2.2	54
813	Global Strategies to Minimize Environmental Impacts of Ruminant Production. Annual Review of Animal Biosciences, 2022, 10, 227-240.	3.6	6
814	Harmonizing climate-smart and sustainable agriculture. Nature Food, 2021, 2, 853-854.	6.2	6
815	Textured wheat and pea proteins for meat alternative applications. Cereal Chemistry, 2022, 99, 37-66.	1.1	30
816	Life cycle assessment of animalâ€based foods and plantâ€based proteinâ€rich alternatives: a socioâ€economic perspective. Journal of the Science of Food and Agriculture, 2022, 102, 5111-5120.	1.7	12
817	Examining the Environmental Impacts of the Dairy and Baby Food Industries: Are First-Food Systems a Crucial Missing Part of the Healthy and Sustainable Food Systems Agenda Now Underway?. International Journal of Environmental Research and Public Health, 2021, 18, 12678.	1.2	21
818	Impacts of supply-side climate change mitigation practices and trade policy regimes under dietary transition: the case of European agriculture. Environmental Research Letters, 2021, 16, 124048.	2.2	15
819	Impacts of harmful algal blooms on marine aquaculture in a low-carbon future. Harmful Algae, 2021, 110, 102143.	2.2	13
820	Animal and plant-sourced nutrition: complementary not competitive. Animal Production Science, 2022, 62, 701-711.	0.6	8
821	Future Food Systems. , 2021, , 603-630.		0

	Article	IF	CITATIONS
822	Toward resilient food systems after COVID-19. Current Research in Environmental Sustainability, 2022, 4, 100110.	1.7	3
823	Rewilding staple crops for the lost halophytism: Toward sustainability and profitability of agricultural production systems. Molecular Plant, 2022, 15, 45-64.	3.9	23
824	Fallacies of Consumerism. Impact of Meat Consumption on Health and Environmental Sustainability, 2022, , 78-101.	0.4	2
825	Sustainable growth of non-fed aquaculture can generate valuable ecosystem benefits. Ecosystem Services, 2022, 53, 101396.	2.3	42
826	Life cycle assessment of plant cell cultures. Science of the Total Environment, 2022, 808, 151990.	3.9	12
827	Coupling circularity performance and climate action: From disciplinary silos to transdisciplinary modelling science. Sustainable Production and Consumption, 2022, 30, 269-277.	5.7	11
828	A Randomized Controlled Trial to Address Consumer Food Waste with a Technology-aided Tailored Sustainability Intervention. Resources, Conservation and Recycling, 2022, 179, 106121.	5.3	18
829	Biochar incorporation increases winter wheat (Triticum aestivum L.) production with significantly improving soil enzyme activities at jointing stage. Catena, 2022, 211, 105979.	2.2	19
830	A scoping review of the digital agricultural revolution and ecosystem services: implications for Canadian policy and research agendas. Facets, 2021, 6, 1955-1985.	1.1	17
831	Creen Postqurante 2021 1-22		
			0
832	Multi-Objective Synergistic Strategy for the Economic and Environmental Benefit of Pear Farmers in the Yangtze River Basin, China. SSRN Electronic Journal, 0, , .	0.4	0
832 834	Multi-Objective Synergistic Strategy for the Economic and Environmental Benefit of Pear Farmers in the Yangtze River Basin, China. SSRN Electronic Journal, 0, , . Sustainability of Vertical Farming in Comparison with Conventional Farming: A Case Study in Miyagi Prefecture, Japan, on Nitrogen and Phosphorus Footprint. Sustainability, 2022, 14, 1042.	0.4	0 0 5
832 834 835	Multi-Objective Synergistic Strategy for the Economic and Environmental Benefit of Pear Farmers in the Yangtze River Basin, China. SSRN Electronic Journal, O, , . Sustainability of Vertical Farming in Comparison with Conventional Farming: A Case Study in Miyagi Prefecture, Japan, on Nitrogen and Phosphorus Footprint. Sustainability, 2022, 14, 1042. The health, environmental, and economic dimensions of future dietary transitions in Argentina. Sustainability Science, 2022, , 1-17.	0.4 1.6 2.5	0 0 5 6
832 834 835 836	Oreen Restaurants., 2021, 1722. Multi-Objective Synergistic Strategy for the Economic and Environmental Benefit of Pear Farmers in the Yangtze River Basin, China. SSRN Electronic Journal, 0, , . Sustainability of Vertical Farming in Comparison with Conventional Farming: A Case Study in Miyagi Prefecture, Japan, on Nitrogen and Phosphorus Footprint. Sustainability, 2022, 14, 1042. The health, environmental, and economic dimensions of future dietary transitions in Argentina. Sustainability Science, 2022, , 1-17. Compliance with EAT–Lancet dietary guidelines would reduce global water footprint but increase it for 40% of the world population. Nature Food, 2022, 3, 143-151.	0.4 1.6 2.5 6.2	0 0 5 6 20
832 834 835 836 837	Multi-Objective Synergistic Strategy for the Economic and Environmental Benefit of Pear Farmers in the Yangtze River Basin, China. SSRN Electronic Journal, 0, , . Sustainability of Vertical Farming in Comparison with Conventional Farming: A Case Study in Miyagi Prefecture, Japan, on Nitrogen and Phosphorus Footprint. Sustainability, 2022, 14, 1042. The health, environmental, and economic dimensions of future dietary transitions in Argentina. Sustainability Science, 2022, , 1-17. Compliance with EAT–Lancet dietary guidelines would reduce global water footprint but increase it for 40% of the world population. Nature Food, 2022, 3, 143-151. Whether Cities are in Sustainable Grain Security. SSRN Electronic Journal, 0, , .	0.4 1.6 2.5 6.2 0.4	0 0 5 6 20 0
832 834 835 836 837	Multi-Objective Synergistic Strategy for the Economic and Environmental Benefit of Pear Farmers in Sustainability of Vertical Farming in Comparison with Conventional Farming: A Case Study in Miyagi Prefecture, Japan, on Nitrogen and Phosphorus Footprint. Sustainability, 2022, 14, 1042. The health, environmental, and economic dimensions of future dietary transitions in Argentina. Sustainability Science, 2022, , 1-17. Compliance with EAT–Lancet dietary guidelines would reduce global water footprint but increase it for 40% of the world population. Nature Food, 2022, 3, 143-151. Whether Cities are in Sustainable Grain Security. SSRN Electronic Journal, 0, , . Mycoprotein: A futuristic portrayal. , 2022, , 287-303.	0.4 1.6 2.5 6.2 0.4	0 0 5 6 20 0 2
832 834 835 836 837 838 839	Multi-Objective Synergistic Strategy for the Economic and Environmental Benefit of Pear Farmers in Sustainability of Vertical Farming in Comparison with Conventional Farming: A Case Study in Miyagi Prefecture, Japan, on Nitrogen and Phosphorus Footprint. Sustainability, 2022, 14, 1042. The health, environmental, and economic dimensions of future dietary transitions in Argentina. Sustainability Science, 2022, , 1-17. Compliance with EAT〓Lancet dietary guidelines would reduce global water footprint but increase it for 40% of the world population. Nature Food, 2022, 3, 143-151. Whether Cities are in Sustainable Grain Security. SSRN Electronic Journal, 0, , . Mycoprotein: A futuristic portrayal. , 2022, , 287-303. Approaches for sustainable food production and consumption systems. , 2022, , 23-38.	0.4 1.6 2.5 6.2 0.4	0 0 5 6 20 0 2 6

#	Article	IF	CITATIONS
841	Less but better – Debating the role of taxation in reducing and transforming the consumption of meat and dairy products. SSRN Electronic Journal, 0, , .	0.4	0
842	Saving species beyond the protected area fence: Threats must be managed across multiple land tenure types to secure Australia's endangered species. Conservation Science and Practice, 2022, 4, .	0.9	14
843	Options for reforming agricultural subsidies from health, climate, and economic perspectives. Nature Communications, 2022, 13, 82.	5.8	38
844	Meat alternatives. , 2022, , 351-373.		2
845	Influencing Factors for Sustainable Dietary Transformation—A Case Study of German Food Consumption. Foods, 2022, 11, 227.	1.9	10
847	Embodied Hanpp of Feed and Animal Products: Tracing Pressure on Ecosystems Along Trilateral Livestock Supply Chains 1986-2013. SSRN Electronic Journal, 0, , .	0.4	0
848	CRISPR/Cas System: Applications and Prospects for Maize Improvement. ACS Agricultural Science and Technology, 2022, 2, 174-183.	1.0	11
849	Understanding the relationship between globalization and biophysical resource consumption within safe operating limits for major Belt and Road Initiative countries. Environmental Science and Pollution Research, 2022, 29, 40654-40673.	2.7	3
850	Modeling biophysical and socioeconomic interactions in food systems with the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT). , 2022, , 213-230.		0
851	Mediterranean Diet as a Healthy, Sustainable, and Secure Food Pattern. Impact of Meat Consumption on Health and Environmental Sustainability, 2022, , 185-205.	0.4	0
852	A global meta-analysis of animal manure application and soil microbial ecology based on random control treatments. PLoS ONE, 2022, 17, e0262139.	1.1	7
853	National-level action is needed to achieve food system transformation. American Journal of Clinical Nutrition, 2022, 115, 983-984.	2.2	1
854	Rapid global phaseout of animal agriculture has the potential to stabilize greenhouse gas levels for 30 years and offset 68 percent of CO2 emissions this century. , 2022, 1, e0000010.		62
855	Defining a sustainable development target space for 2030 and 2050. One Earth, 2022, 5, 142-156.	3.6	54
856	Influencing mechanism of non-CO2 greenhouse gas emissions and mitigation strategies of livestock sector in developed regions of eastern China: a case study of Jiangsu province. Environmental Science and Pollution Research, 2022, 29, 39937-39947.	2.7	9
857	Leveraging intrinsically rewarding symbolic attributes to promote consumer adoption of plant-based food innovations. Cleaner and Responsible Consumption, 2022, 4, 100050.	1.6	3
858	An analysis of the transformative potential of major food system report recommendations. Global Food Security, 2022, 32, 100610.	4.0	14
859	Global reactive nitrogen loss in orchard systems: A review. Science of the Total Environment, 2022, 821, 153462.	3.9	22

		CITATION RE	PORT	
#	Article		IF	CITATIONS
860	Food systems and rural wellbeing: challenges and opportunities. Food Security, 2022, 1	4, 1099-1121.	2.4	15
861	Policy framing, design and feedback can increase public support for costly food waste r Nature Food, 2022, 3, 227-235.	egulation.	6.2	23
862	Return to Agrobiodiversity: Participatory Plant Breeding. Diversity, 2022, 14, 126.		0.7	17
863	Methods matter: Improved practices for environmental evaluation of dietary patterns. C Environmental Change, 2022, 73, 102482.	Global	3.6	4
864	Maintaining market legitimacy: A discursive-hegemonic perspective on meat. Journal of Research, 2022, 144, 391-402.	Business	5.8	7
865	Replacing meat with alternative plant-based products (RE-MAP): a randomized controlle multicomponent behavioral intervention to reduce meat consumption. American Journa Nutrition, 2022, 115, 1357-1366.	ed trial of a al of Clinical	2.2	16
866	Aerosol Jet Printed and Photonic Cured Paper-Based Ammonia Sensor for Food Smart P Transactions on Instrumentation and Measurement, 2022, 71, 1-10.	ackaging. IEEE	2.4	5
867	A Novel Approach to Examining Retail Benefits of Different Expiration Date Modes: Insig Trade-Offs between Food Waste and Food Safety. SSRN Electronic Journal, 0, , .	ghts into	0.4	0
869	Meat-Reduced Dietary Practices and Efforts in 5 Countries: Analysis of Cross-Sectional S and 2019. Journal of Nutrition, 2022, 152, 57S-66S.	Surveys in 2018	1.3	10
870	Signaling molecules and transcriptional reprogramming for stomata operation under sa Advances in Botanical Research, 2022, , .	lt stress.	0.5	0
871	Upcycling from Chitin-Waste Biomass into Bioethanol and Mushroom Via Solid-State Fe with Pleurotus Ostreatus. SSRN Electronic Journal, 0, , .	ermentation	0.4	0
873	Black Soldier Fly (Hermetia Illucens) larva as Ecological, Immune Booster and Economic for Aquaculture. Marine Science and Technology Bulletin, 0, , .	al Feedstuff	0.2	2
874	The effects of policy design complexity on public support for climate policy. Behavioura Policy, 0, , 1-26.	l Public	1.6	13
875	Chapter 4. Conversion of food waste into new food in a closed loop. , 2022, , 103-146.			0
876	True cost accounting in agri-food networks: a German case study on informational cam responsible implementation. Sustainability Science, 2022, 17, 2269-2285.	paigning and	2.5	11
877	The role of cover crops for cropland soil carbon, nitrogen leaching, and agricultural yield global simulation study with LPJmL (V. 5.0-tillage-cc). Biogeosciences, 2022, 19, 957-97	ls – a ?7.	1.3	15
878	Conceptual System Dynamics and Agent-Based Modelling Simulation of Interorganisati Food Value Chains: Research Agenda and Case Studies. Agriculture (Switzerland), 2022	onal Fairness in 1, 12, 280.	1.4	2
879	Protein Quality in Perspective: A Review of Protein Quality Metrics and Their Application 2022, 14, 947.	ns. Nutrients,	1.7	43

#	Article	IF	CITATIONS
880	Differences between Vegetarians and Omnivores in Food Choice Motivation and Dietarian Identity. Foods, 2022, 11, 539.	1.9	10
881	Coproduction of Food, Cultural Heritage and Biodiversity by Livestock Grazing in Swedish Semi-natural Grasslands. Frontiers in Sustainable Food Systems, 2022, 6, .	1.8	6
882	The complex challenge of governing food systems: The case of South African food policy. Food Security, 2022, 14, 883-896.	2.4	6
883	Transformation archetypes in global food systems. Sustainability Science, 2022, 17, 1827-1840.	2.5	8
884	Kitchen waste: sustainable bioconversion to value-added product and economic challenges. Biomass Conversion and Biorefinery, 0, , 1.	2.9	5
885	National water shortage for low to high environmental flow protection. Scientific Reports, 2022, 12, 3037.	1.6	15
886	An Evaluation of Probability of Adequate Nutrient Intake (PANDiet) Scores as a Diet Quality Metric in Irish National Food Consumption Data. Nutrients, 2022, 14, 994.	1.7	1
887	Global cropland could be almost halved: Assessment of land saving potentials under different strategies and implications for agricultural markets. PLoS ONE, 2022, 17, e0263063.	1.1	10
888	Quality of plant-based diet determines mortality risk in Chinese older adults. Nature Aging, 2022, 2, 197-198.	5.3	0
890	Nitrogen Footprint of a Recycling System Integrated with Cropland and Livestock in the North China Plain. Plants, 2022, 11, 842.	1.6	5
891	Meating Conflict: Toward a Model of Ambivalence-Motivated Reduction of Meat Consumption. Foods, 2022, 11, 921.	1.9	7
892	Food versus wildlife: Will biodiversity hotspots benefit from healthier diets?. Global Ecology and Biogeography, 0, , .	2.7	1
893	Beef–cattle ranching in the Paraguayan Chaco: typological approach to a livestock frontier. Environment, Development and Sustainability, 2023, 25, 5185-5210.	2.7	2
894	Public meals as a platform for culinary action? Tweens' and teens' acceptance of a new plant-based food. International Journal of Gastronomy and Food Science, 2022, 27, 100485.	1.3	3
895	The 2018 Revision of Italian Dietary Guidelines: Development Process, Novelties, Main Recommendations, and Policy Implications. Frontiers in Nutrition, 2022, 9, 861526.	1.6	16
896	Relocating croplands could drastically reduce the environmental impacts of global food production. Communications Earth & Environment, 2022, 3, .	2.6	39
898	Quantifying synergies and trade-offs in the global water-land-food-climate nexus using a multi-model scenario approach. Environmental Research Letters, 2022, 17, 045004.	2.2	11
899	Responsible agriculture must adapt to the wetland character of mid″atitude peatlands. Global Change Biology, 2022, 28, 3795-3811.	4.2	23

#	Article	IF	CITATIONS
900	Spatiotemporal heterogeneities in water and land appropriations related to food losses and waste in China. Environmental Research Letters, 2022, 17, 054020.	2.2	2
901	Community-Based Nutrition Education and Hands-On Cooking Intervention Increases Farmers' Market Use and Vegetable Servings. Public Health Nutrition, 2022, , 1-30.	1.1	3
902	Solutions to world-wide fisheries problems are mostly local or regional. ICES Journal of Marine Science, 2022, 79, 997-1004.	1.2	3
903	Menu Choice and Meat-Eating Habits: Results of a Field Experiment in Two University Canteens. Sustainability, 2022, 14, 3296.	1.6	5
904	Declining greenhouse gas emissions in the US diet (2003–2018): Drivers and demographic trends. Journal of Cleaner Production, 2022, 351, 131465.	4.6	9
905	Amino Acid Signaling for TOR in Eukaryotes: Sensors, Transducers, and a Sustainable Agricultural fuTORe. Biomolecules, 2022, 12, 387.	1.8	12
906	Bacterial-Assisted Extraction of Bioactive Compounds from Cauliflower. Plants, 2022, 11, 816.	1.6	4
907	Biodiversity effects of food system sustainability actions from farm to fork. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2113884119.	3.3	15
908	Robotics for a Quality-Driven Post-harvest Supply Chain. Current Robotics Reports, 2022, 3, 39-48.	5.1	9
909	Pleasure vs. identity: More eating simulation language in meat posts than plant-based posts on social media #foodtalk. Appetite, 2022, 175, 106024.	1.8	6
910	Fad, Food, or Feed: Alternative Seafood and Its Contribution to Food Systems. Frontiers in Sustainable Food Systems, 2022, 6, .	1.8	3
911	Livestock Use on Public Lands in the Western USA Exacerbates Climate Change: Implications for Climate Change Mitigation and Adaptation. Environmental Management, 2022, 69, 1137-1152.	1.2	6
912	An Environmental and Nutritional Evaluation of School Food Menus in Bahia, Brazil That Contribute to Local Public Policy to Promote Sustainability. Nutrients, 2022, 14, 1519.	1.7	4
913	Towards new carbon–neutral food systems: Combining carbon capture and utilization with microbial protein production. Bioresource Technology, 2022, 349, 126853.	4.8	24
914	Regional food preferences influence environmental impacts of diets. Food Security, 2022, 14, 1063-1083.	2.4	5
915	Disentangling the sources of dynamics in the agricultural output of the BRIICS and EU countries: The ecological footprint perspective with Shapley value decomposition. Journal of Cleaner Production, 2022, 346, 131198.	4.6	4
916	Diets with Higher Vegetable Intake and Lower Environmental Impact: Evidence from a Large Australian Population Health Survey. Nutrients, 2022, 14, 1517.	1.7	6
917	A framework to quantify mass flow and assess food loss and waste in the US food supply chain. Communications Earth & Environment, 2022, 3, .	2.6	10

<u> </u>	 	D	
	ON		דעהע
		NLF	

#	Article	IF	CITATIONS
918	Widening capabilities through a food and sustainability education initiative. Educational Action Research, 0, , 1-19.	0.8	0
919	Can the Right Composition and Diversity of Farmed Species Improve Food Security Among Smallholder Farmers?. Frontiers in Sustainable Food Systems, 2022, 6, .	1.8	2
920	Mapping the spatial distribution of global mariculture production. Aquaculture, 2022, 553, 738066.	1.7	20
921	Sustainable food systems science based on physics' principles. Trends in Food Science and Technology, 2022, 123, 382-392.	7.8	4
922	Red seaweed: A promising alternative protein source for global food sustainability. Trends in Food Science and Technology, 2022, 123, 37-56.	7.8	51
923	Low-disturbance farming regenerates healthy deep soil toward sustainable agriculture - Evidence from long-term no-tillage with stover mulching in Mollisols. Science of the Total Environment, 2022, 825, 153929.	3.9	14
924	Nudging more sustainable grocery purchases: Behavioural innovations in a supermarket setting. Technological Forecasting and Social Change, 2022, 179, 121605.	6.2	13
925	Food fermentation – Significance to public health and sustainability challenges of modern diet and food systems. International Journal of Food Microbiology, 2022, 371, 109666.	2.1	17
926	Changes in China's Food Self-Sufficiency Rate in the Context of a Changing Dietary Structure. Journal of Global Information Management, 2022, 30, 1-19.	1.4	1
928	The future of fish in Africa: Employment and investment opportunities. PLoS ONE, 2021, 16, e0261615.	1.1	15
929	Historical food consumption declines and the role of alternative foods. Environmental Research Letters, 2022, 17, 014020.	2.2	0
930	What Skills Do Agricultural Professionals Need in the Transition towards a Sustainable Agriculture? A Qualitative Literature Review. Sustainability, 2021, 13, 13556.	1.6	14
931	Dietary shifts can reduce premature deaths related to particulate matter pollution in China. Nature Food, 2021, 2, 997-1004.	6.2	19
932	Is high adaptation to the Mediterranean diet effective in increasing ecological footprint awareness? A crossâ€sectional study from Turkey. Journal of the Science of Food and Agriculture, 2022, 102, 3724-3729.	1.7	4
933	Consumer strategies towards a more sustainable food system: insights from Switzerland. American Journal of Clinical Nutrition, 2022, 115, 1039-1047.	2.2	12
934	Fish Nutritional Value as an Approach to Children's Nutrition. Frontiers in Nutrition, 2021, 8, 780844.	1.6	46
935	A new green revolution or agribusiness as usual? Uncovering alignment issues and potential transition complications in agri-food system transitions. Agronomy for Sustainable Development, 2021, 41, 1.	2.2	30
936	Arbuscular Mycorrhiza Reduced Nitrogen Loss via Runoff, Leaching, and Emission of N2O and NH3 from Microcosms of Paddy Fields. Water, Air, and Soil Pollution, 2022, 233, 1.	1.1	0

#	Article	IF	CITATIONS
937	Consumer willingness to pay for plant-based foods produced using microbial applications to replace synthetic chemical inputs. PLoS ONE, 2021, 16, e0260488.	1.1	6
938	Short- and long-term warming effects of methane may affect the cost-effectiveness of mitigation policies and benefits of low-meat diets. Nature Food, 2021, 2, 970-980.	6.2	21
939	Calculating Mexico City's Food Supply: Methodological Insights for Regionalizing Food Data at the Urban Scale. Papers in Applied Geography, 0, , 1-16.	0.8	0
940	Effectiveness of Strategies to Decrease Animal-Sourced Protein and/or Increase Plant-Sourced Protein in Foodservice Settings: A Systematic Literature Review. Journal of the Academy of Nutrition and Dietetics, 2022, 122, 1013-1048.	0.4	6
941	Fatty acid profile and lipid indices of the porker meat supplemented with pro-health herbal probiotics, ascorbic acid and allicin. British Food Journal, 2022, 124, 3841-3854.	1.6	1
942	Edible insects: Challenges and prospects. Entomological Research, 2022, 52, 161-177.	0.6	43
943	The Multifunctionality and Territoriality of Peri-Urban Agri-Food Systems: The Metropolitan Region of Madrid, Spain. Land, 2022, 11, 588.	1.2	6
944	Enabling sustainable food transitions in schools: aÂsystemic approach. British Food Journal, 2022, 124, 322-339.	1.6	11
945	Dynamics and Determinants of the Grain Yield Gap in Major Grain-Producing Areas: A Case Study in Hunan Province, China. Foods, 2022, 11, 1122.	1.9	12
946	Increasing the Selection of Low-Carbon-Footprint Entrées through the Addition of New Menu Items and a Social Marketing Campaign in University Dining. Journal of the Association for Consumer Research, 2022, 7, 461-470.	1.0	2
947	The Policy Implications of the Dasgupta Review: Land Use Change and Biodiversity. Environmental and Resource Economics, 2022, 83, 911-935.	1.5	9
948	"Take Extinction off Your Plateâ€: How International Environmental Campaigns Connect Food, Farming, and Fishing to Wildlife Extinction. Environmental Communication, 2023, 17, 910-929.	1.2	3
949	Averting wildlife-borne infectious disease epidemics requires a focus on socio-ecological drivers and a redesign of the global food system. EClinicalMedicine, 2022, 47, 101386.	3.2	22
950	An expanded framing of ecosystem services is needed for a sustainable urban future. Renewable and Sustainable Energy Reviews, 2022, 162, 112418.	8.2	17
951	Trade-off between human health and environmental health in global diets. Resources, Conservation and Recycling, 2022, 182, 106336.	5.3	7
958	Consumers' Motivations Towards Environment-Friendly Dietary Changes: An Assessment of Trends Related to the Consumption of Animal Products. Climate Change Management, 2022, , 305-319.	0.6	2
959	A New Diet: News on Food Habits and Climate Change. Climate Change Management, 2022, , 39-53.	0.6	1
960	The Impact of Personal Dietary Changes on Mitigating Climate Change. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
961	Evaluating the Impact of Refrigerated Transport Trucks (Rtts) in China on Climate Change from the Life Cycle Perspective. SSRN Electronic Journal, 0, , .	0.4	0
962	Robotics and Autonomous Systems for Net Zero Agriculture. Current Robotics Reports, 2022, 3, 57-64.	5.1	13
963	Meat Consumption and Sustainability. Annual Review of Resource Economics, 2022, 14, 17-41.	1.5	86
964	More Than Fish—Framing Aquatic Animals within Sustainable Food Systems. Foods, 2022, 11, 1413.	1.9	8
965	Optimizing nitrogen fertilizer use for more grain and less pollution. Journal of Cleaner Production, 2022, 360, 132180.	4.6	49
966	Learning from the future: mainstreaming disruptive solutions for the transition to sustainable food systems. Environmental Research Letters, 2022, 17, 051002.	2.2	6
967	Conquering compacted soils: uncovering the molecular components of root soil penetration. Trends in Plant Science, 2022, 27, 814-827.	4.3	13
968	We need a food system transformation—In the face of the Russia-Ukraine war, now more than ever. One Earth, 2022, 5, 470-472.	3.6	34
969	Learning from the Dirt: Initiating university food gardens as a cross-disciplinary tertiary teaching tool. Journal of Outdoor and Environmental Education, 2022, 25, 199-217.	0.7	2
970	Dynamic Responses of Ammonia-Oxidizing Archaea and Bacteria Populations to Organic Material Amendments Affect Soil Nitrification and Nitrogen Use Efficiency. Frontiers in Microbiology, 2022, 13, .	1.5	4
971	Plant proteins make a difference. Journal of Agriculture and Food Research, 2022, , 100318.	1.2	1
972	Review on milk substitutes from an environmental and nutritional point of view. Applied Food Research, 2022, 2, 100105.	1.4	15
973	Optimization of residents' dietary structure with consideration of greenhouse gas mitigation and nutritional requirements. Sustainable Production and Consumption, 2022, 32, 424-435.	5.7	4
974	Demand side options to reduce greenhouse gas emissions and the land footprint of urban food systems: A scenario analysis for the City of Vienna. Journal of Cleaner Production, 2022, 359, 132064.	4.6	10
975	Food sustainability perception at universities: Education and demographic features effects. International Journal of Management Education, 2022, 20, 100653.	2.2	2
976	Co-benefits of the EAT-Lancet diet for environmental protection in the framework of the Spanish dietary pattern. Science of the Total Environment, 2022, 836, 155683.	3.9	6
977	How vegans and vegetarians negotiate eating-related social norm conflicts in their social networks. Appetite, 2022, 175, 106081.	1.8	6
978	Synergies in sustainable phosphorus use and greenhouse gas emissions mitigation in China: Perspectives from the entire supply chain from fertilizer production to agricultural use. Science of the Total Environment, 2022, 838, 155997.	3.9	3

#	Article	IF	CITATIONS
979	Deep-C storage: Biological, chemical and physical strategies to enhance carbon stocks in agricultural subsoils. Soil Biology and Biochemistry, 2022, 170, 108697.	4.2	57
980	Evidence of a vegan diet for health benefits and risks – an umbrella review of meta-analyses of observational and clinical studies. Critical Reviews in Food Science and Nutrition, 2023, 63, 9926-9936.	5.4	26
981	Integrating degrowth and efficiency perspectives enables an emission-neutral food system by 2100. Nature Food, 2022, 3, 341-348.	6.2	28
982	A global and regional view of the opportunity for climate-smart mariculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210128.	1.8	5
983	Healthy and sustainable diets from today to 2050—The role of international trade. PLoS ONE, 2022, 17, e0264729.	1.1	2
984	Sustainability outcomes of the United States food system: A systematic review. Journal of Agriculture, Food Systems, and Community Development, 0, , 1-30.	2.4	0
985	Multi-Scenario Simulation Analysis of Grain Production and Demand in China during the Peak Population Period. Foods, 2022, 11, 1566.	1.9	6
986	Toward sustainable crop production in China: A co-benefits evaluation. Journal of Cleaner Production, 2022, 361, 132285.	4.6	9
987	Edible mushroom industry in China: current state and perspectives. Applied Microbiology and Biotechnology, 2022, 106, 3949-3955.	1.7	38
988	Ten-Year Changes in Global Warming Potential of Dietary Patterns Based on Food Consumption in Ontario, Canada. Sustainability, 2022, 14, 6290.	1.6	2
989	Plant-Bacterial Symbiosis: An Ecologically Sustainable Agriculture Production Alternative to Chemical Fertilizers. , 0, , .		1
990	Goal frames and sustainability transitions: how cognitive lock-ins can impede crop diversification. Sustainability Science, 2022, 17, 2203-2219.	2.5	15
991	Adapting agriculture to climate change via sustainable irrigation: biophysical potentials and feedbacks. Environmental Research Letters, 2022, 17, 063008.	2.2	51
992	Evaluation of plant-based recipes meeting nutritional requirements for dog food: The effect of fractionation and ingredient constraints. Animal Feed Science and Technology, 2022, 290, 115345.	1.1	2
993	Proposed diets for sustainable agriculture and food security in Iran. Sustainable Production and Consumption, 2022, 32, 755-764.	5.7	2
994	Consumer preferences for visually sub-optimal food: Role of information framing and personal goals. Resources, Conservation and Recycling, 2022, 184, 106426.	5.3	4
995	Impact of structural flexibility in the adsorption of wheat and sunflower proteins at an air/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129317.	2.3	2
996	Harnessing natural attenuation to reduce CAFOs nitrate emissions: An integrated modeling approach. Ecological Economics, 2022, 199, 107505.	2.9	2

#	Article	IF	CITATIONS
997	Systematic Engineering approach for optimization of multi-component alternative protein-fortified 3D printing food Ink. Food Hydrocolloids, 2022, 131, 107803.	5.6	17
999	A New Dietary Guideline Balancing Sustainability and Nutrition for China's Rural and Urban Residents. SSRN Electronic Journal, 0, , .	0.4	0
1000	Renal health benefits of sustainable diets in Japan: a review. Renal Replacement Therapy, 2022, 8, .	0.3	1
1001	Plant-based meat alternatives: Compositional analysis, current development and challenges. Applied Food Research, 2022, 2, 100154.	1.4	47
1002	Moral Reasons for Individuals in High-Income Countries to Limit Beef Consumption. Food Ethics, 2022, 7, .	1.2	0
1003	Crop Rotational Diversity Influences Wheat–Maize Production Through Soil Legacy Effects in the North China Plain. International Journal of Plant Production, 2022, 16, 415-427.	1.0	4
1004	Differentiated responsibilities of US citizens in the country's sustainable dietary transition. Environmental Research Letters, 2022, 17, 074037.	2.2	1
1005	Culturally adapting the Mediterranean Diet pattern – a way of promoting more †sustainable' dietary change?. British Journal of Nutrition, 2022, 128, 693-703.	1.2	8
1006	Amplifying actions for food system transformation: insights from the Stockholm region. Sustainability Science, 2022, 17, 2379-2395.	2.5	2
1007	Predicting nitrate leaching loss in temperate rainfed cereal crops: relative importance of management and environmental drivers. Environmental Research Letters, 2022, 17, 064043.	2.2	7
1008	Compositional Analysis of Street Market Food Waste in Brazil. Sustainability, 2022, 14, 7014.	1.6	4
1009	Proximal and distal mechanisms through which arbuscular mycorrhizal associations alter terrestrial denitrification. Plant and Soil, 2022, 476, 315-336.	1.8	7
1010	Choice of health metrics for combined health and environmental assessment of foods and diets: A systematic review of methods. Journal of Cleaner Production, 2022, 365, 132622.	4.6	6
1011	A slow road from meat dominance to more sustainable diets: An analysis of purchase preferences among Finnish loyalty-card holders. , 2022, 1, e0000015.		14
1012	A systematic review of the definitions and interpretations in scientific literature of †less but better' meat in high-income settings. Nature Food, 2022, 3, 454-460.	6.2	12
1013	Adjusting agricultural emissions for trade matters for climate change mitigation. Nature Communications, 2022, 13, .	5.8	28
1014	Are crop deep roots always beneficial for combating drought: A review of root structure and function, regulation and phenotyping. Agricultural Water Management, 2022, 271, 107781.	2.4	16
1015	Food waste changes in the Swedish public catering sector in relation to global reduction targets. Resources, Conservation and Recycling, 2022, 185, 106463.	5.3	5

	CITATION REI	PORT	
#	Article	IF	CITATIONS
1016	Microalgae-based products: Food and public health. Future Foods, 2022, 6, 100157.	2.4	34
1017	Feasibility and Effectiveness Assessment of Multi-Sectoral Climate Change Adaptation for Food Security and Nutrition. Current Climate Change Reports, 2022, 8, 35-52.	2.8	6
1018	L'enfant et la consommation de viandeÂ: enjeux sociétaux. Management & Avenir, 2022, Nº 129, 81-103.	0.0	0
1019	Sustainability Dimensions of the Mediterranean Diet: A Systematic Review of the Indicators Used and Its Results. Advances in Nutrition, 2022, 13, 2015-2038.	2.9	19
1020	De Novo Domestication in the Multi-Omics Era. Plant and Cell Physiology, 0, , .	1.5	4
1021	Long-term evidence for ecological intensification as a pathway to sustainable agriculture. Nature Sustainability, 2022, 5, 770-779.	11.5	48
1022	Setting life cycle assessment (LCA) in a future-oriented context: the combination of qualitative scenarios and LCA in the agri-food sector. European Journal of Futures Research, 2022, 10, .	1.5	12
1023	Challenges associated with Rhynchophorus phoenicis Fabricius (Coleoptera: Curculionidae) farming: a case study of the Ejisu-Juaben Municipality. Journal of Insects As Food and Feed, 2023, 9, 15-24.	2.1	4
1024	Developing an agricultural water pricing model considering both physical and virtual water: A case study of an irrigation district in China. Journal of Cleaner Production, 2022, 368, 133043.	4.6	6
1025	Can e-commerce alleviate agricultural non-point source pollution? — A quasi-natural experiment based on a China's E-Commerce Demonstration City. Science of the Total Environment, 2022, 846, 157423.	3.9	23
1026	Dietary changes could compensate for potential yield reductions upon global river flow protection. Global Sustainability, 0, , 1-27.	1.6	0
1027	Expert perceptions of seaweed farming for sustainable development. Journal of Cleaner Production, 2022, 368, 133052.	4.6	13
1028	Dietary Change and Global Sustainable Development Goals. Frontiers in Sustainable Food Systems, 0, 6,	1.8	16
1029	Power to the people? Food democracy initiatives' contributions to democratic goods. Agriculture and Human Values, 2022, 39, 1477-1489.	1.7	9
1030	A review of megatrends in the global dairy sector: what are the socioecological implications?. Agriculture and Human Values, 2023, 40, 373-394.	1.7	6
1031	Improvement of resource use efficiency versus mitigation of environmental impacts in rice production of Fujian Province, China. Journal of Cleaner Production, 2022, 368, 133154.	4.6	4
1032	Review: Do green defaults reduce meat consumption?. Food Policy, 2022, 110, 102298.	2.8	10
1033	Household fermentation of leftover bread to nutritious food. Waste Management, 2022, 150, 39-47.	3.7	7

		CITATION REPORT	
#	Article	IF	CITATIONS
1034	Inputs for staple crop production in China drive burden shifting of water and carbon footprints transgressing part of provincial planetary boundaries. Water Research, 2022, 221, 118803.	5.3	14
1035	Upcycling from chitin-waste biomass into bioethanol and mushroom via solid-state fermentation Pleurotus ostreatus. Fuel, 2022, 326, 125061.	on with 3.4	9
1036	Recycled plastic packaging from the Dutch food sector pollutes Asian oceans. Resources, Conservation and Recycling, 2022, 185, 106508.	5.3	14
1037	Consumer attitudes and beliefs towards plant-based food in different degrees of processing ât case of Sweden. Food Quality and Preference, 2022, 102, 104673.	E" The 2.3	14
1038	Traditional Sources of Ingredients for the Food Industry: Animal Sources. , 2023, , .		2
1039	Environmental Issues: Greenhouse Gas Emissions. , 2023, , .		0
1040	Comparative environmental footprints of lettuce supplied by hydroponic controlled-environme agriculture and field-based supply chains. Journal of Cleaner Production, 2022, 369, 133214.	nt 4.6	15
1041	Lessons to learn from roadmapping in cleaning and decontamination. Food and Bioproducts Processing, 2022, 135, 156-164.	1.8	5
1042	The potential contribution of food wastage reductions driven by information technology on reductions of energy consumption and greenhouse gas emissions in Japan. Environmental Cha 2022, 8, 100588.	llenges, 2.0	3
1043	Thinking Health-related Behaviors in a Climate Change Context: A Narrative Review. Annals of Behavioral Medicine, 2023, 57, 193-204.	1.7	20
1044	Latin American Cattle Ranching Sustainability Debate: An Approach to Social-Ecological Syster Spatial-Temporal Scales. Sustainability, 2022, 14, 8924.	ns and 1.6	2
1045	Aquaculture: Externalities and Policy Options. Review of Environmental Economics and Policy, 16, 282-305.	2022, <u>3.1</u>	61
1046	â€~We're meat, so we need to eat meat to be who we are': Understanding motivations tha reduce meat consumption among emerging adults in the University of Ghana food environmer Science, 2022, 193, 108927.	nt increase or nt. Meat 2.7	8
1047	Examining the trade-offs in potential retail benefits of different expiration date modes: Insights multidimensional scenarios. Resources, Conservation and Recycling, 2022, 186, 106511.	s into 5.3	2
1048	The Relationship Between Knowledge and Behaviors on Sustainable Nutrition with Food Choic Undergraduate Students: A Single Centre Study. European Journal of Science and Technology,	es of 0.5	0
1049	Toward Optimal Meat Pricing: Is It Time to Tax Meat Consumption?. Review of Environmental Economics and Policy, 2022, 16, 219-240.	3.1	21
1050	Linkage Mapping Reveals QTL for Flowering Time-Related Traits under Multiple Abiotic Stress Conditions in Maize. International Journal of Molecular Sciences, 2022, 23, 8410.	1.8	8
1051	True Cost Accounting of a healthy and sustainable diet in Italy. Frontiers in Nutrition, 0, 9, .	1.6	7

#	Article	IF	CITATIONS
1052	Lower Non-Heme Iron Absorption in Healthy Females from Single Meals with Texturized Fava Bean Protein Compared to Beef and Cod Protein Meals: Two Single-Blinded Randomized Trials. Nutrients, 2022, 14, 3162.	1.7	11
1053	Biomass Carbon and Tree Cover Dynamics Assessment (2000–2010) on Agriculture Landscape in India: Geospatial Interpretation. Biophysical Economics and Sustainability, 2022, 7, .	0.7	0
1054	Food security vulnerability due to trade dependencies on Russia and Ukraine. Food Security, 2022, 14, 1503-1510.	2.4	64
1055	The Chilean Diet: Is It Sustainable?. Nutrients, 2022, 14, 3103.	1.7	7
1056	Addressing the food security and conservation challenges: Can be aligned instead of apposed?. Frontiers in Conservation Science, 0, 3, .	0.9	1
1057	Consumer Perception and Acceptability of Plant-Based Alternatives to Chicken. Foods, 2022, 11, 2271.	1.9	10
1058	Impact of cropping system diversification on productivity and resource use efficiencies of smallholder farmers in south-central Bangladesh: a multi-criteria analysis. Agronomy for Sustainable Development, 2022, 42, .	2.2	6
1059	Estimating the environmental impacts of 57,000 food products. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	95
1060	Good for the heart, good for the Earth: proposal of a dietary pattern able to optimize cardiovascular disease prevention and mitigate climate change. Nutrition, Metabolism and Cardiovascular Diseases, 2022, 32, 2772-2781.	1.1	4
1062	Consumer acceptance of new food trends resulting from the fourth industrial revolution technologies: A narrative review of literature and future perspectives. Frontiers in Nutrition, 0, 9, .	1.6	31
1063	Sustainable agrifood systems for a post-growth world. Nature Sustainability, 2022, 5, 1011-1017.	11.5	63
1064	Emerging proteins as precursors of bioactive peptides/hydrolysates with health benefits. Current Opinion in Food Science, 2022, 48, 100914.	4.1	11
1065	Hierarchical Linkage between the Basic Characteristics of Smallholders and Technology Awareness Determines Small-Holders' Willingness to Adopt Green Production Technology. Agriculture (Switzerland), 2022, 12, 1275.	1.4	9
1066	Chitin Isolation and Chitosan Production from House Crickets (Acheta domesticus) by Environmentally Friendly Methods. Molecules, 2022, 27, 5005.	1.7	12
1067	Combining <i>ex-ante</i> and <i>ex-post</i> assessments to support the sustainable transformation of agriculture: the case of Swiss pesticide-free wheat production. Q Open, 0, , .	0.7	3
1068	Association between adherence to the EAT-Lancet diet and risk of cancer and cardiovascular outcomes in the prospective NutriNet-Santé cohort. American Journal of Clinical Nutrition, 2022, 116, 980-991.	2.2	13
1069	Targeted formulation of plant-based protein-foods: Supporting the food system's transformation in the context of human health, environmental sustainability and consumer trends. Trends in Food Science and Technology, 2022, 128, 238-252.	7.8	22
1070	Lignin-Based Hydrogen-Bonded Covalent Organic Polymers as Functional "Switches―of Modified Atmosphere Packaging Membranes for Preservation of Perishable Foods. ACS Sustainable Chemistry and Engineering, 2022, 10, 10803-10815.	3.2	9

		CITATION R	EPORT	
# 1071	ARTICLE The heritability of pescetarianism and vegetarianism. Food Quality and Preference, 202	3, 103, 104705.	IF 2.3	Citations 3
1072	Ethical and economic implications of the adoption of novel plant-based beef substitute general equilibrium modelling study. Lancet Planetary Health, The, 2022, 6, e658-e669.	s in the USA: a	5.1	11
1073	Eco-energy and environmental evaluation of cantaloupe production by life cycle assess Environmental Science and Pollution Research, 2023, 30, 1854-1870.	ment method.	2.7	7
1074	On-farm circular technologies for enhanced sustainability: The case of Uruguay. Journal Production, 2022, 372, 133470.	of Cleaner	4.6	3
1075	Embodied HANPP of feed and animal products: Tracing pressure on ecosystems along t livestock supply chains 1986–2013. Science of the Total Environment, 2022, 851, 15	rilateral 58198.	3.9	6
1076	Temperate Regenerative Agriculture practices increase soil carbon but not crop yieldâ€ Environmental Research Letters, 2022, 17, 093001.	"a meta-analysis.	2.2	1
1077	Knowledge mapping of planetary boundaries based on bibliometrics analysis. Environm and Pollution Research, 2022, 29, 67728-67750.	ental Science	2.7	5
1078	Food processing and value generation align with nutrition and current environmental p boundaries. Sustainable Production and Consumption, 2022, 33, 964-977.	lanetary	5.7	6
1079	Three perspectives on regime destabilisation governance: A metatheoretical analysis of pesticide policy. Environmental Innovation and Societal Transitions, 2022, 44, 245-264	German	2.5	6
1080	The rise of processed meat alternatives: A narrative review of the manufacturing, comp nutritional profile and health effects of newer sources of protein, and their place in hea Trends in Food Science and Technology, 2022, 127, 263-271.	osition, Ithier diets.	7.8	25
1081	Global vegetable supply towards sustainable food production and a healthy diet. Journa Production, 2022, 369, 133212.	al of Cleaner	4.6	11
1082	Consumer perceptions and attitudes towards climate information on food. Journal of C Production, 2022, 370, 133441.	leaner	4.6	6
1083	Food waste interventions in low-and-middle-income countries: A systematic literature r Resources, Conservation and Recycling, 2022, 186, 106534.	eview.	5.3	10
1084	Evaluating the impact of refrigerated transport trucks in China on climate change from perspective. Environmental Impact Assessment Review, 2022, 97, 106866.	the life cycle	4.4	4
1085	A framework for assessing sustainable agriculture and rural development: A case study Beijing-Tianjin-Hebei region, China. Environmental Impact Assessment Review, 2022, 97	of the 7, 106861.	4.4	44
1086	The nitrogen footprint of Swedish food consumption. Environmental Research Letters, 104030.	2022, 17,	2.2	1
1087	A new dietary guideline balancing sustainability and nutrition for China's rural and IScience, 2022, 25, 105048.	urban residents.	1.9	6
1088	Carbon footprint assessment of a whole dairy farming system with a biogas plant and t fraction of digestate as a recycled bedding material. Resources, Conservation & Recycli 2022, 15, 200115.	he use of solid ng Advances,	1.1	4

#	Article	IF	CITATIONS
1089	How do companies implement their zero-deforestation commitments. Journal of Cleaner Production, 2022, 375, 134056.	4.6	7
1090	A geographical traceability method for Lanmaoa asiatica mushrooms from 20 township-level geographical origins by near infrared spectroscopy and ResNet image analysis techniques. Ecological Informatics, 2022, 71, 101808.	2.3	5
1091	Dietary environmental impacts relative to planetary boundaries for six environmental indicators – A population-based study. Journal of Cleaner Production, 2022, 373, 133949.	4.6	7
1092	Evaluating carbon footprint embodied in Japanese food consumption based on global supply chain. Structural Change and Economic Dynamics, 2022, 63, 56-65.	2.1	8
1093	An integrated straw-tillage management increases maize crop productivity, soil organic carbon, and net ecosystem carbon budget. Agriculture, Ecosystems and Environment, 2022, 340, 108175.	2.5	10
1094	Beyond the eco-design of case-ready beef packaging: The relationship between food waste and shelf-life as a key element in life cycle assessment. Food Packaging and Shelf Life, 2022, 34, 100943.	3.3	7
1095	The leader, the keeper, and the follower? A legitimacy perspective on the governance of varietal innovation systems for climate changes adaptation. The case of sunflower hybrids in France. Agricultural Systems, 2022, 203, 103498.	3.2	2
1096	Contributions of integrated soil fertility management (ISFM) to various sustainable intensification impact domains in Tanzania. Agricultural Systems, 2022, 203, 103496.	3.2	5
1097	Food Security and the COVID-19 Pandemic in Singapore. , 2022, , 1-11.		0
1098	Exploring the Theoretical Link between Profitability and Luxury Emissions. SSRN Electronic Journal, 0,	0.4	1
1099	Genetic analysis of maize grain yield components and physiological determinants under contrasting nitrogen availability. Crop and Pasture Science, 2023, 74, 182-193.	0.7	1
1100	On the History and Future of 100% Renewable Energy Systems Research. IEEE Access, 2022, 10, 78176-78218.	2.6	138
1101	Global implications of biodiversity loss on pandemic disease: COVID-19. , 2022, , 305-322.		1
1102	Below zero. Environmental Science Advances, 2022, 1, 612-619.	1.0	4
1103	Interdisciplinary system and network perspectives in food and agricultural economics. Handbook of Agricultural Economics, 2022, , 4705-4779.	0.9	3
1104	Food (In)Security: The Role of Novel Foods on Sustainability. , 2022, , 59-79.		0
1105	Can closed-loop microbial protein provide sustainable protein security against the hunger pandemic?. Current Research in Biotechnology, 2022, 4, 365-376.	1.9	5
1106	A WAY TO SUSTAINABLE CROP PRODUCTION THROUGH SCIENTIST-FARMER ENGAGEMENT. Frontiers of Agricultural Science and Engineering, 2022, .	0.9	0

#	Article	IF	CITATIONS
1107	Acceptance of Meat Reduction Policies in Switzerland. SSRN Electronic Journal, 0, , .	0.4	0
1108	Phosphorus supply chain for sustainable food production will have mitigated environmental pressure with region-specific phosphorus management. Resources, Conservation and Recycling, 2023, 188, 106686.	5.3	3
1109	The contribution of fish and seaweed mariculture to the coastal fluxes of biogenic elements in two important aquaculture areas, China. Science of the Total Environment, 2023, 856, 159056.	3.9	7
1110	Environmental impacts of meat and meat replacements. , 2023, , 365-397.		2
1111	How Does Income Heterogeneity Affect Future Perspectives on Food Consumption? Empirical Evidence from Urban China. Foods, 2022, 11, 2597.	1.9	3
1112	Exploring Biblioshiny for Historical Assessment of Global Research on Sustainable Use of Water in Agriculture. Sustainability, 2022, 14, 10651.	1.6	16
1113	Consumers' Attitude towards Sustainability in Italy: Process of Validation of a Duly Designed Questionnaire. Foods, 2022, 11, 2629.	1.9	3
1114	A Multi-Control Strategy to Achieve Autonomous Field Operation. AgriEngineering, 2022, 4, 770-788.	1.7	0
1115	The triple benefits of slimming and greening the Chinese food system. Nature Food, 2022, 3, 686-693.	6.2	10
1116	Sustainability Governance: Insights from a Cocoa Supply Chain. Sustainability, 2022, 14, 10763.	1.6	5
1117	Optimizing water and nitrogen productivity of wheat and triticale across diverse production environments to improve the sustainability of baked products. Frontiers in Plant Science, 0, 13, .	1.7	0
1118	Fermented foods and cardiometabolic health: Definitions, current evidence, and future perspectives. Frontiers in Nutrition, 0, 9, .	1.6	7
1119	Nudging Finnish Adults into Replacing Red Meat with Plant-Based Protein via Presenting Foods as Dish of the Day and Altering the Dish Sequence. Nutrients, 2022, 14, 3973.	1.7	2
1120	13. Food system resilience and governance: a pork story in China. , 2022, , .		0
1121	The use of wheatgrass (<i>Thinopyrum intermedium</i>) in breeding. Vavilovskii Zhurnal Genetiki I Selektsii, 2022, 26, 413-421.	0.4	4
1122	A Tale of Two Urgent Food System Challenges: Comparative Analysis of Approaches to Reduce High-Meat Diets and Wasted Food as Covered in U.S. Newspapers. Sustainability, 2022, 14, 12083.	1.6	1
1124	Edible Insect Consumption for Human and Planetary Health: A Systematic Review. International Journal of Environmental Research and Public Health, 2022, 19, 11653.	1.2	14
1125	Blockchain Framework for Certification of Organic Agriculture Production. Sustainability, 2022, 14, 11823.	1.6	5

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1126	Meat, myself, and I: The role of multiple identities in meat consumption. Appetite, 2023	3, 180, 106319.	1.8	7
1127	Randomized national land management strategies for net-zero emissions. Nature Susta 5, 973-980.	inability, 2022,	11.5	11
1128	Industry 4.0 Technology Enablers' Guardian Role in Food Fraud Prevention. , 2022, , 91-	·120.		0
1129	Emerging Water Pollutants from Food and Packaging Industry. , 2022, , 53-76.			0
1130	Consumption Corridors and the Case of Meat. Journal of Consumer Policy, 2022, 45, 62	19-653.	0.6	3
1131	Planetary Health, Nutrition, and Chronic Kidney Disease: Connecting the Dots for a Sus Future. , 2023, 33, S40-S48.	tainable		11
1132	Does Mexico have the agricultural land resources to feed its population with a healthy a sustainable diet?. Sustainable Production and Consumption, 2022, 34, 371-384.	and	5.7	2
1133	Limited impacts of climatic conditions on commercial oil palm yields in Malaysian plant. Agriculture and Bioscience, 2022, 3, .	ations. CABI	1.1	2
1134	Assessing the Mycotoxin-related Health Impact of Shifting from Meat-based Diets to Sc Analogues in a Model Scenario Based on Italian Consumption Data. Exposure and Healt 661-675.	y-based Meat h, 2023, 15,	2.8	9
1136	Sustainable strategies related to soil fertility, economic benefit, and environmental imp orchards at the farmer scale in the Yangtze River Basin, China. Environmental Science a Research, 0, , .	act on pear nd Pollution	2.7	1
1137	New plantâ Ebased and alternative protein foodsâ E"Realising the benefits and avoiding and Dietetics, 0, , .	the risks. Nutrition	0.9	3
1138	Influences of hydrothermal carbonization on phosphorus availability of swine manure-d hydrochar: Insights into reaction time and temperature. Materials Science for Energy Te 2022, 5, 416-423.	erived echnologies,	1.0	0
1139	Adherence to EAT-Lancet dietary recommendations for health and sustainability in the C Environmental Research Letters, 2022, 17, 104043.	Gambia.	2.2	8
1140	The market effectiveness of regulatory certification for sustainable food supply: A conjo approach. Sustainable Production and Consumption, 2022, 34, 300-309.	bint analysis	5.7	1
1141	How diet portfolio shifts combined with land-based climate change mitigation strategie reduce climate burdens in Germany. Journal of Cleaner Production, 2022, 376, 134200.	es could	4.6	6
1142	Halving nitrogen waste in the European Union food systems requires both dietary shifts level actions. Global Food Security, 2022, 35, 100648.	s and farm	4.0	11
1143	Flexitarianism – the sustainable food consumption?. Elelmiszervizsgalati Kozlemenye 4075-4091.	k, 2022, 68,	0.1	2
1144	Entomoculture: A Preliminary Techno-Economic Assessment. Foods, 2022, 11, 3037.		1.9	3

#	Article	IF	CITATIONS
1145	The elephant in the room is really a cow: using consumption corridors to define sustainable meat consumption in the European Union. Sustainability Science, 0, , .	2.5	3
1146	Effect of increasing plant protein intake on protein quality and nutrient intake of US adults. Applied Physiology, Nutrition and Metabolism, 2023, 48, 49-61.	0.9	3
1147	A Method of Evaluating Safe Operating Space: Focus on Geographic Regions, Income Levels and Developing Pathway. Environmental Management, 0, , .	1.2	0
1148	The politics of enabling tipping points for sustainable development. One Earth, 2022, 5, 1100-1108.	3.6	15
1149	Food security and sustainability in times of multiple crises. Annals of Nutrition and Metabolism, 0, , .	1.0	0
1150	Trends Shaping Western European Agrifood Systems of the Future. Sustainability, 2022, 14, 13976.	1.6	2
1151	Biotechnological Advances to Improve Abiotic Stress Tolerance in Crops. International Journal of Molecular Sciences, 2022, 23, 12053.	1.8	20
1152	From planetary to regional boundaries for agricultural nitrogen pollution. Nature, 2022, 610, 507-512.	13.7	78
1153	Lignin-based nano-enabled agriculture: A mini-review. Frontiers in Plant Science, 0, 13, .	1.7	4
1154	Global trends of cropland phosphorus use and sustainability challenges. Nature, 2022, 611, 81-87.	13.7	69
1155	The impact of phosphorus on projected Sub-Saharan Africa food security futures. Nature Communications, 2022, 13, .	5.8	9
1156	Regionalised greenhouse gas emissions from food production in South-Eastern Australia. Sustainable Production and Consumption, 2023, 35, 116-128.	5.7	3
1157	Healthier and Sustainable Food Systems: Integrating Underutilised Crops in a †Theory of Change Approach'. , 2023, , 275-323.		0
1158	An Equality-Based Approach to Analysing the Global Food System's Fair Share, Overshoot, and Responsibility for Exceeding the Climate Change Planetary Boundary. Foods, 2022, 11, 3459.	1.9	2
1159	Environmental footprinting of agri-food products traded in the European market. Frontiers in Environmental Science, 0, 10, .	1.5	6
1160	Plant-based school meals as levers of sustainable food transitions: A narrative review and conceptual framework. Journal of Agriculture and Food Research, 2022, 10, 100429.	1.2	4
1161	Diagnostic, regenerative or fossil-free - exploring stakeholder perceptions of Swedish food system sustainability. Ecological Economics, 2023, 203, 107623.	2.9	2
1162	Protein pluralism and food systems transition: A review of sustainable protein meta-narratives. World Development, 2023, 161, 106121.	2.6	7

#	Article	IF	Citations
1163	Pro-environmental food practices in EU countries strongly suggest mutually reinforcing improvements in gender equality and environmental sustainability. Appetite, 2023, 180, 106350.	1.8	3
1164	Eating sustainably: Conviction or convenience?. Appetite, 2023, 180, 106335.	1.8	3
1165	Transcription factors: master regulators of disease resistance in crop plants. , 2023, , 419-444.		1
1166	Carbon sequestration via shellfish farming: A potential negative emissions technology. Renewable and Sustainable Energy Reviews, 2023, 171, 113018.	8.2	8
1167	Will greenhouse concerns impact meat consumption? Best-worst scaling analysis of Australian consumers. Food Quality and Preference, 2023, 104, 104755.	2.3	8
1168	Terrestrial carbon sequestration under future climate, nutrient and land use change and management scenarios: a national-scale UK case study. Environmental Research Letters, 2022, 17, 114054.	2.2	3
1170	Realizing Emergent Ecologies: Nature-Based Solutions from Design to Implementation. Land, 2022, 11, 1972.	1.2	1
1171	Editorial: Microbial communities and functions contribute to plant performance under various stresses. Frontiers in Microbiology, 0, 13, .	1.5	1
1172	Plant-based default nudges effectively increase the sustainability of catered meals on college campuses: Three randomized controlled trials. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	0
1173	International demand for food and services drives environmental footprints of pesticide use. Communications Earth & Environment, 2022, 3, .	2.6	9
1174	Comparing meat abstainers with avid meat eaters and committed meat reducers. Frontiers in Nutrition, 0, 9, .	1.6	8
1175	Effects of pulsed ultrasonic treatment on the structural and functional properties of cottonseed protein isolate. LWT - Food Science and Technology, 2022, 172, 114143.	2.5	6
1176	Can digital farming technologies enhance the willingness to buy products from current farming systems?. PLoS ONE, 2022, 17, e0277731.	1.1	2
1177	Local innovation in food system policies: A case study of six Australian local governments. Journal of Agriculture, Food Systems, and Community Development, 0, , 1-25.	2.4	2
1178	Transcriptomic analysis reveals the contribution of QMrl-7B to wheat root growth and development. Frontiers in Plant Science, 0, 13, .	1.7	0
1179	European Green Transition Implications on Africa's Livestock Sector Development and Resilience to Climate Change. Sustainability, 2022, 14, 14401.	1.6	0
1180	The Effect of Heterogeneous Environmental Regulations on Carbon Emission Efficiency of the Grain Production Industry: Evidence from China's Inter-Provincial Panel Data. Sustainability, 2022, 14, 14492.	1.6	5
1181	Comparison of common classification strategies for large-scale vegetation mapping over the Google Earth Engine platform. International Journal of Applied Earth Observation and Geoinformation, 2022, 115, 103092.	0.9	0

#	Article	IF	CITATIONS
1182	Calculating the sustainability of products based on their efficiency and function. One Earth, 2022, 5, 1260-1270.	3.6	1
1183	Green Restaurants. , 2023, , 1-23.		1
1184	Making food waste illegal in Sweden – Potential gains from enforcing best practice in the public catering sector. Sustainable Production and Consumption, 2023, 35, 229-237.	5.7	7
1185	Planetary health and health education in Brazil: Facing inequalities. One Health, 2022, 15, 100461.	1.5	1
1186	Game Design for a Museum Visit: Insights into the Co-design of AL2049, a Game About Food Systems. Lecture Notes in Computer Science, 2022, , 22-31.	1.0	0
1187	Disparate history of transgressing planetary boundaries for nutrients. Global Environmental Change, 2023, 78, 102628.	3.6	6
1188	The potential for livestock manure valorization and phosphorus recovery by hydrothermal technology - a critical review. Materials Science for Energy Technologies, 2023, 6, 94-104.	1.0	1
1189	How seasonality affects the environmental performance of fresh appetite: Insights from cherry consumption in China. Journal of Environmental Management, 2023, 327, 116868.	3.8	0
1190	Changes in inorganic and organic matters in processed water from hydrothermal-treated biogas slurry. Materials Science for Energy Technologies, 2023, 6, 145-157.	1.0	1
1191	Agricultural environmental footprint index based on planetary boundary: Framework and case on Chinese agriculture. Journal of Cleaner Production, 2023, 385, 135699.	4.6	5
1192	Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness. Applied Energy, 2023, 331, 120401.	5.1	37
1193	Energy scarcity and rising cost: Towards a paradigm shift for livestock. Agricultural Systems, 2023, 205, 103585.	3.2	10
1194	Indicators of water use efficiency across diverse agroecosystems and spatiotemporal scales. Science of the Total Environment, 2023, 864, 160992.	3.9	14
1195	A comparative investigation of seed storage protein fractions: The synergistic impact of molecular properties and composition on anisotropic structuring. Food Hydrocolloids, 2023, 137, 108400.	5.6	8
1196	Understanding food sustainability from a consumer perspective: A cross cultural exploration. International Journal of Gastronomy and Food Science, 2023, 31, 100646.	1.3	9
1197	The Linkages Between Social Protection Program and Environmental Impacts in Food Systems: A Conceptual Model. , 2021, , .		0
1198	Teachers' Perceptions and Educational Practices on Sustainable Nutrition in Cyprus. Journal of Education for Sustainable Development, 2022, 16, 61-79.	0.8	1
1199	China's Trade of Agricultural Products Drives Substantial Greenhouse Gas Emissions. International Journal of Environmental Research and Public Health, 2022, 19, 15774.	1.2	1

#	Article	IF	CITATIONS
1200	COVID-19 Changes Public Awareness about Food Sustainability and Dietary Patterns: A Google Trends Analysis. Nutrients, 2022, 14, 4898.	1.7	5
1201	EU climate plan sacrifices carbon storage and biodiversity for bioenergy. Nature, 2022, 612, 27-30.	13.7	9
1202	Highly degradable chitosan-montmorillonite (MMT) nano-composite hydrogel for controlled fertilizer release. Frontiers of Environmental Science and Engineering, 2023, 17, .	3.3	11
1203	Enviroscore: normalization, weighting, and categorization algorithm to evaluate the relative environmental impact of food and drink products. Npj Science of Food, 2022, 6, .	2.5	5
1204	Enhanced mitigation in nutrient surplus driven by multilateral crop trade patterns. Communications Earth & Environment, 2022, 3, .	2.6	1
1205	Putting permanent grassland at the heart of a European agroecological transition: Findings and questions arising from the †Ten Years for Agroecology' (<scp>TYFA</scp>) scenario. Grass and Forage Science, 0, , .	1.2	3
1206	Diet and Diabetes Prevention: Is a Plant-Based Diet the Solution?. Diabetes Care, 2023, 46, 6-8.	4.3	3
1207	Toward a More Climate-Sustainable Diet: Possible Deleterious Impacts on Health When Diet Quality Is Ignored. Journal of Nutrition, 2022, , .	1.3	0
1208	The Role of Income and Food Prices in Diet-Related Greenhouse Gas Emissions in China: A Path towards a Sustainable Diet. Foods, 2022, 11, 4051.	1.9	1
1209	EAT-Lancet Healthy Reference Diet score and diabetes incidence in a cohort of Mexican women. European Journal of Clinical Nutrition, 2023, 77, 348-355.	1.3	9
1210	Insects as Human Food. , 2023, , 65-106.		0
1211	Quebec Nurses' Perceptions of the Integration of Sustainable Diet Promotion Into Clinical Appointments: A Qualitative Study. Science of Nursing and Health Practices - Science Infirmière Et Pratiques En Santé, 2022, 5, 70-88.	0.0	0
1212	Measuring Adherence to Sustainable Healthy Diets: A Scoping Review of Dietary Metrics. Advances in Nutrition, 2023, 14, 147-160.	2.9	5
1213	The Potential Role of Iceland in Northern Europe's Protein Self-Sufficiency: Feasibility Study of Large-Scale Production of Spirulina in a Novel Energy-Food System. Foods, 2023, 12, 38.	1.9	0
1214	Framing Food in the News: Still Keeping the Politics out of the Broccoli. Journalism Practice, 0, , 1-23.	1.5	1
1215	Climate-friendly and nutrition-sensitive interventions can close the global dietary nutrient gap while reducing GHG emissions. Nature Food, 2023, 4, 61-73.	6.2	8
1216	Navigating sustainability and health trade-offs in global seafood systems. Environmental Research Letters, 2022, 17, 124042.	2.2	4
1217	Animal- and Plant-Based Protein Sources: A Scoping Review of Human Health Outcomes and Environmental Impact. Nutrients, 2022, 14, 5115.	1.7	17

#	Article	IF	CITATIONS
1218	Achieving win-win outcomes for biodiversity and yield through diversified farming. Basic and Applied Ecology, 2023, 67, 14-31.	1.2	12
1219	Unraveling Tradeâ€Offs Among Reforestation, Urbanization, and Food Security in the South China Karst Region: How Can a Hinterland Province Achieve SDGs?. Earth's Future, 2022, 10, .	2.4	5
1220	Developing Decision-Making Tools for Food Waste Management via Spatially Explicit Integration of Experimental Hydrothermal Carbonization Data and Computational Models Using New York as a Case Study. ACS Sustainable Chemistry and Engineering, 2022, 10, 16578-16587.	3.2	3
1221	PotencjaÅ, agroekosystemów do naturalnej regulacji liczebnoÅ›ci szkodników. Analiza na poziomie krajobrazowym dla Polski. Rozwój Regionalny I Polityka Regionalna, 2022, 15, 11-22.	0.0	0
1222	A low-carbon and hunger-free future for Bangladesh: An ex- ante assessment of synergies and trade-offs in different transition pathways. Frontiers in Environmental Science, 0, 10, .	1.5	1
1223	How to feed the world while reducing nitrogen pollution. Nature, 2023, 613, 34-35.	13.7	15
1224	The True Cost of Food: A Preliminary Assessment. , 2023, , 581-601.		5
1225	Peak and fall of China's agricultural GHG emissions. Journal of Cleaner Production, 2023, 389, 136035.	4.6	16
1226	Integrated modeling to achieve global goals: lessons from the Food, Agriculture, Biodiversity, Land-use, and Energy (FABLE) initiative. Sustainability Science, 2023, 18, 323-333.	2.5	4
1227	The relationship between sustainable nutrition and healthy food choice: a cross-sectional study. The European Research Journal, 2023, 9, 192-199.	0.1	1
1228	The Consequences for Climate of Meat Consumption. , 2023, , 17-56.		0
1229	A Shift to Healthy and Sustainable Consumption Patterns. , 2023, , 59-85.		1
1230	Apoptosis-Inducing Effects of Short-Chain Fatty Acids-Rich Fermented Pistachio Milk in Human Colon Carcinoma Cells. Foods, 2023, 12, 189.	1.9	5
1231	Livestock and Sustainable Food Systems: Status, Trends, and Priority Actions. , 2023, , 375-399.		2
1232	Food Systems Innovation Hubs in Low- and Middle-Income Countries. , 2023, , 455-468.		0
1233	Political Conceptions of Human and Animal Rights: Principled and Prudential Reasons. SpringerBriefs in Law, 2023, , 49-90.	0.0	0
1234	Sufficiency in China's Energy Provision: A Service Understanding of Sustainable Consumption and Production. , 2023, , 111-133.		0
1237	Cost-effective mitigation of nitrogen pollution from global croplands. Nature, 2023, 613, 77-84.	13.7	91

ARTICLE IF CITATIONS Organic agriculture in a low-emission world: exploring combined measures to deliver a sustainable 1238 2.5 12 food system in Sweden. Sustainability Science, 2023, 18, 501-519. Development of plant-based meat analogs using 3D printing: Status and opportunities. Trends in Food Science and Technology, 2023, 132, 76-92. 1239 New approaches for safe use of food by-products and biowaste in the feed production chain. Journal 1240 4.6 8 of Cleaner Production, 2023, 388, 135954. High-resolution maps of intensive and extensive livestock production in China. Resources, 1241 Environment and Sustainability, 2023, 12, 100104. Meyve Üretiminde Soliter Arıların Önemi. Meyve Bilimi, 0, , . 1242 0.0 0 SOS: EMERGENCIA CLIMÃTICA EN LAS AULAS DE EDUCACIÓN SECUNDARIA. Investigacoes Em Ensino De 1243 Ciencias, 2022, 27, 44-58. What's to Eat and Drink on Campus? Public and Planetary Health, Public Higher Education, and the 1244 1.7 2 Public Good. Nutrients, 2023, 15, 196. $Un\hat{e}$ vielding: Evidence for the agriculture transformation we need. Annals of the New York Academy of 1245 1.8 Sciences, 2023, 1520, 89-104. Ecologically unequal exchanges driven by EU consumption. Nature Sustainability, 2023, 6, 587-598. 1247 11.5 11 The politics of adaptiveness in agroecosystems and its role in transformations to sustainable food 1248 2.1 systems. Earth System Governance, 2023, 15, 100164. Traffic-light front-of-pack environmental labelling across food categories triggers more environmentally friendly food choices: a randomised controlled trial in virtual reality supermarket. 1249 4 2.0 International Journal of Behavioral Nutrition and Physical Activity, 2023, 20, . Goal-oriented insect farming and processing can alleviate the dilemma faced by the industrialization 0.5 of insect resources. Circular Agricultural Systems, 2023, 3, 1-8. Neglected and underutilized crops and global food security., 2023, , 3-19. 1251 4 Policy Impacts of High-Standard Farmland Construction on Agricultural Sustainability: Total Factor 1.2 Productivity-Based Analysis. Land, 2023, 12, 283. Climate-friendly, health-promoting, and culturally acceptable diets for German adult omnivores, 1253 2 1.1 pescatarians, vegetarians, and vegans – a linear programming approach. Nutrition, 2023, 109, 111977. Chicken Eggs Substitute Using Vegetable OriginÂâ[^] A Review. Food and Bioprocess Technology, 2023, 16, 1254 2.6 1652-1667 The Alignment of Recommendations of Dietary Guidelines with Sustainability Aspects: Lessons Learned 1255 1.7 9 from Italy's Example and Proposals for Future Development. Nutrients, 2023, 15, 542. From Smart Grids to Super Smart Grids: A Roadmap for Strategic Demand Management for Next Generation SAARC and European Power Infrastructure. IEEE Access, 2023, 11, 12303-12341.

#	Article	IF	CITATIONS
1257	The circular economy operating and stakeholder model "eco-5HM―to avoid circular fallacies that prevent sustainability. Journal of Cleaner Production, 2023, 391, 136096.	4.6	6
1258	The Triple Challenge: synergies, trade-offs and integrated responses for climate, biodiversity, and human wellbeing goals. Climate Policy, 2023, 23, 782-799.	2.6	11
1259	Can the Wild Perennial, Rhizomatous Rice Species Oryza longistaminata be a Candidate for De Novo Domestication?. Rice, 2023, 16, .	1.7	4
1260	Smart packaging â^' A pragmatic solution to approach sustainable food waste management. Food Packaging and Shelf Life, 2023, 36, 101044.	3.3	17
1261	Anthropogenic atmospheric deposition caused the nutrient and toxic metal enrichment of the enclosed lakes in North China. Journal of Hazardous Materials, 2023, 448, 130972.	6.5	2
1263	Spatial variation in the association between agricultural activities and bird communities in Canada. Science of the Total Environment, 2023, 881, 163413.	3.9	2
1264	Comparison of crop productivity, economic benefit and environmental footprints among diversified multi-cropping systems in South China. Science of the Total Environment, 2023, 874, 162407.	3.9	6
1265	Consumer perception of plant-based yoghurt: Sensory drivers of liking and emotional, holistic and conceptual associations. Food Research International, 2023, 167, 112666.	2.9	14
1266	From attitude to identity? A field experiment on attitude activation, identity formation, and meat reduction. Journal of Environmental Psychology, 2023, 87, 101996.	2.3	2
1267	Insights into parents' and teachers' support for policies promoting increased plant-based eating in schools. Appetite, 2023, 184, 106511.	1.8	2
1268	Life cycle assessment of urban food supply: Key findings and recommendations from a French metropolitan area case study. Journal of Cleaner Production, 2023, 401, 136788.	4.6	0
1269	Towards a circular economy in virgin olive oil production: Valorization of the olive mill waste (OMW) "alpeorujo―through polyphenol recovery with natural deep eutectic solvents (NADESs) and vermicomposting. Science of the Total Environment, 2023, 872, 162198.	3.9	8
1270	Targeting 1.5 degrees with the global carbon footprint of the Australian Capital Territory. Environmental Science and Policy, 2023, 144, 137-150.	2.4	1
1271	Chemical safety and the exposome. Emerging Contaminants, 2023, 9, 100225.	2.2	1
1272	Sustainability assessment of surplus food donation: A transfer system generating environmental, economic, and social values. Sustainable Production and Consumption, 2023, 38, 41-54.	5.7	3
1273	Harnessing the connectivity of climate change, food systems and diets: Taking action to improve human and planetary health. Anthropocene, 2023, 42, 100381.	1.6	4
1274	Nitrogen management in farming systems under the use of agricultural wastes and circular economy. Science of the Total Environment, 2023, 876, 162666.	3.9	19
1275	Transitions to plant-based diets: the role of societal tipping points. Current Opinion in Food Science, 2023, 51, 101015.	4.1	2

#	Article	IF	Citations
1277	Relationship Between Climate Change and Agriculture at the EU Level. Economic Themes, 2022, 60, 323-342.	0.6	0
1278	Circularity in Europe strengthens the sustainability of the global food system. Nature Food, 2023, 4, 320-330.	6.2	15
1279	Oat: Current state and challenges in plant-based food applications. Trends in Food Science and Technology, 2023, 134, 56-71.	7.8	22
1280	Towards circular food systems in Europe. Nature Food, 0, , .	6.2	0
1281	Prospective life cycle assessment of viticulture under climate change scenarios, application on two case studies in France. Science of the Total Environment, 2023, 880, 163288.	3.9	2
1282	Exploring the environmental impact associated with the abandonment of the Mediterranean Diet, and how to reduce it with alternative sustainable diets. Ecological Economics, 2023, 209, 107818.	2.9	3
1283	How much environmental burden does the shifting to nutritional diet bring? Evidence of dietary transformation in rural China. Environmental Science and Policy, 2023, 145, 129-138.	2.4	1
1284	Rural system sustainability evaluation based on emergy analysis: An empirical study of 321 villages in China. Journal of Cleaner Production, 2023, 389, 136088.	4.6	9
1285	Climate Impact of Plant-based Meat Analogues: A Review of Life Cycle Assessments. Sustainable Production and Consumption, 2023, 36, 328-337.	5.7	5
1286	Information about health and environmental benefits has minimal impact on consumer responses to commercial plant-based yoghurts. Food Quality and Preference, 2023, 106, 104820.	2.3	8
1287	Riceâ€Animal Co ulture Systems Benefit Global Sustainable Intensification. Earth's Future, 2023, 11, .	2.4	7
1289	New label, new target group? The case of the organic label and the Nutri-Score. Organic Agriculture, 2023, 13, 221-235.	1.2	1
1290	Acceptance of meat reduction policies in Switzerland. IScience, 2023, 26, 106129.	1.9	3
1291	Enhancing the ecological value of oil palm agriculture through set-asides. Nature Sustainability, 2023, 6, 513-525.	11.5	3
1292	The Environmental Sustainability of Plant-Based Dietary Patterns: A Scoping Review. Journal of Nutrition, 2023, 153, 857-869.	1.3	12
1294	Food Insecurity in Latin America: Proposals Linked to Sustainable Management in COVID-19 Times. Advanced Series in Management, 2023, 30, 123-135.	0.8	0
1295	Enhancing Food Security through Digital Inclusive Finance: Evidence from Agricultural Enterprises in China. International Journal of Environmental Research and Public Health, 2023, 20, 2956.	1.2	2
1296	Potential of existing strategies to reduce net anthropogenic inputs of phosphorus to land in the United States. Environmental Research: Infrastructure and Sustainability, 2023, 3, 015005.	0.9	0

#	Article	IF	CITATIONS
1297	Agricultural intensification, Indigenous stewardship and land sparing in tropical dry forests. Nature Sustainability, 2023, 6, 671-682.	11.5	11
1298	Environmental footprints of farmed chicken and salmon bridge the land and sea. Current Biology, 2023, 33, 990-997.e4.	1.8	2
1301	Novel Lines of Research on the Environmental and Human Health Impacts of Nut Consumption. Nutrients, 2023, 15, 955.	1.7	1
1302	The effect of meat-shaming on meat eaters' emotions and intentions to adapt behavior. Food Quality and Preference, 2023, 107, 104831.	2.3	4
1303	Towards Sustainable Food Security through Regional Grain Supply and Demand Analysis in China. International Journal of Environmental Research and Public Health, 2023, 20, 3434.	1.2	0
1304	THE RELEVANCE OF THE APPEARANCE OF A VEGETABLE ANALOGUE OF MEAT. , 2023, , .		0
1305	Animal welfare is a stronger determinant of public support for meat taxation than climate change mitigation in Germany. Nature Food, 2023, 4, 160-169.	6.2	17
1306	Action collective foncière et émergence de projets agri-alimentaires dans le dispositif PAEN. Le cas de l'aire métropolitaine lyonnaise. Économie Rurale, 2023, , 51-68.	0.1	0
1308	High yield with efficient nutrient use: Opportunities and challenges for wheat. IScience, 2023, 26, 106135.	1.9	3
1309	An interactive model to assess pathways for agriculture and food sector contributions to country-level net-zero targets. Communications Earth & Environment, 2023, 4, .	2.6	1
1310	Shifts from conventional horticulture to agroecology impacts soil fungal diversity in Central Argentina. Mycological Progress, 2023, 22, .	0.5	2
1311	Creating and <i>De Novo</i> Improvement of New Allopolyploid Crops for Future Agriculture. Critical Reviews in Plant Sciences, 2023, 42, 53-64.	2.7	0
1312	Can knowledge-based practices achieve high yields with lower input and GHG emissions in the Chinese orchard system?. Ecosystem Health and Sustainability, 0, , .	0.0	0
1313	The political economy of taxing meat. Nature Food, 2023, 4, 209-210.	6.2	3
1314	A Review of Cultured Meat and its Current Public Perception. Current Nutrition and Food Science, 2023, 19, .	0.3	0
1315	Bioavailability of vitamin D biofortified pork meat: results of an acute human crossover study in healthy adults. International Journal of Food Sciences and Nutrition, 2023, 74, 279-290.	1.3	2
1317	Preventing Agricultural Non-Point Source Pollution in China: The Effect of Environmental Regulation with Digitization. International Journal of Environmental Research and Public Health, 2023, 20, 4396.	1.2	0
1318	Scalable Knowledge Management to Meet Global 21st Century Challenges in Agriculture. Land, 2023, 12, 588.	1.2	1

#	Article	IF	CITATIONS
1320	The EU sustainable food systems framework - potential for climate action. , 2023, 2, .		2
1321	Environmental Assessment of Local Food Policies through a Territorial Life Cycle Approach. Sustainability, 2023, 15, 4740.	1.6	3
1322	The Pathway to China's Carbon–Neutral Agriculture: Measures, Potential and Future Strategies. Chinese Political Science Review, 2023, 8, 304-324.	2.0	7
1323	The effect of social norms on vegetarian choices is moderated by intentions to follow a vegetarian diet in the future: Evidence from a laboratory and field study. Frontiers in Psychology, 0, 14, .	1.1	0
1324	Recent Advances in Mycotoxin Determination in Fish Feed Ingredients. Molecules, 2023, 28, 2519.	1.7	3
1325	Prediction of Irrigation Water Requirements for Green Beans-Based Machine Learning Algorithm Models in Arid Region. Water Resources Management, 2023, 37, 1557-1580.	1.9	7
1326	Cradle-to-grave emissions from food loss and waste represent half of total greenhouse gas emissions from food systems. Nature Food, 2023, 4, 247-256.	6.2	28
1327	The impact of salient labels and choice overload on sustainability judgments: An online experiment investigating consumers' knowledge and overconfidence. Food Quality and Preference, 2023, 107, 104846.	2.3	2
1328	Sustainability Research in the Wine Industry: A Bibliometric Approach. Agronomy, 2023, 13, 871.	1.3	8
1329	Sustainable consumption by product substitution? An exploration of the appropriation of plant-based â€~mylk' in everyday life. , 2023, 2, 78-101.		0
1330	Formation and characterization of solid fat mimetic based on pea protein isolate/polysaccharide emulsion gels. Frontiers in Nutrition, 0, 9, .	1.6	8
1331	Allocation of U.S. Biomass Production to Food, Feed, Fiber, Fuel and Exports. Land, 2023, 12, 695.	1.2	0
1332	Oxygen Nanobubble-Loaded Biochars Mitigate Copper Transfer from Copper-Contaminated Soil to Rice and Improve Rice Growth. ACS Sustainable Chemistry and Engineering, 2023, 11, 5032-5044.	3.2	1
1333	Increasing crop rotational diversity can enhance cereal yields. Communications Earth & Environment, 2023, 4, .	2.6	10
1334	A better use of fertilizers is needed for global food security and environmental sustainability. Agriculture and Food Security, 2023, 12, .	1.6	17
1335	Healthy diets for sustainable food systems: a narrative review. Environmental Science Advances, 0, , .	1.0	0
1336	Climate changes and nutrition sustainibility. Journal of Endocrinological Investigation, 0, , .	1.8	0
1337	Perceived Value of Cultured Proteins as Novel Food in Canada: Generation Z Consumers in a Cross Generational Perspective. Journal of International Food and Agribusiness Marketing, <u>0</u> , <u>1</u> -28.	1.0	Ο
#	Article	IF	CITATIONS
------	--	-----	-----------
1338	Dietary transition requires work: exploring the practice-transition processes of young Danish meat reducers. Food, Culture & Society, 0, , 1-19.	0.6	5
1339	The future of carbon labeling – Factors to consider. Agricultural and Resource Economics Review, 2023, 52, 151-167.	0.6	6

1340 食ç""ãŠã, ĩã³é£¼æ–™ç""ã®ãŸã,ã®æ~†è™«ã®ç"Ÿç"£ãëå^©ç""ã«é−¢ã™ã,‹ç"ç©¶å•ååãë今後ã®èª2éjŒ. Nihon **Głu**kusan Gakkaiho, 2

1341	Cage Culture of Finfish: Its Importance, Distributions and Future Modifications in Ongoing Climate Change. , 2023, , 1-33.		2
1342	Global contributions of milk to nutrient supplies and greenhouse gas emissions. Journal of Dairy Science, 2023, 106, 3287-3300.	1.4	2
1343	Conceptualisation of an Ecodesign Framework for Sustainable Food Product Development across the Supply Chain. Environments - MDPI, 2023, 10, 59.	1.5	4
1344	Strategies for reducing meat consumption within college and university settings: A systematic review and meta-analysis. Frontiers in Sustainable Food Systems, 0, 7, .	1.8	4
1345	Environmental context and herbivore traits mediate the strength of associational effects in a metaâ€analysis of crop diversity. Journal of Applied Ecology, 2023, 60, 875-885.	1.9	6
1346	Eco-Hydrological Modelling of a Highly Managed Mediterranean Basin Using the SWAT+ Model: A Preliminary Approach. , 0, , .		0
1347	Green Restaurants. , 2023, , 2043-2065.		0
1348	Research needs for a food system transition. Climatic Change, 2023, 176, .	1.7	3
1349	How far are green products from the Chinese dinner table? ——Chinese farmers' acceptance of green planting technology. Journal of Cleaner Production, 2023, 410, 137141.	4.6	9
1350			
	Genetic mapping and functional genomics of soybean seed protein. Molecular Breeding, 2023, 43, .	1.0	5
1351	Genetic mapping and functional genomics of soybean seed protein. Molecular Breeding, 2023, 43, . Recycling $\hat{a} \in $ The future urban sink for wastewater and organic waste. City and Environment Interactions, 2023, 19, 100104.	1.0 1.8	5
1351 1352	Genetic mapping and functional genomics of soybean seed protein. Molecular Breeding, 2023, 43, . Recycling – The future urban sink for wastewater and organic waste. City and Environment Interactions, 2023, 19, 100104. Multifunctional edible chitin nanofibers/ferulic acid composite coating for fruit preservation. Journal of Polymer Science, 2024, 62, 338-352.	1.0 1.8 2.0	5 1 4
1351 1352 1353	Genetic mapping and functional genomics of soybean seed protein. Molecular Breeding, 2023, 43, . Recycling – The future urban sink for wastewater and organic waste. City and Environment Interactions, 2023, 19, 100104. Multifunctional edible chitin nanofibers/ferulic acid composite coating for fruit preservation. Journal of Polymer Science, 2024, 62, 338-352. ENVIRONMENTAL ASPECTS IN THE DEVELOPMENT OF SUSTAINABLE FOOD SYSTEMS. Balanced Nature Using, 2022, , 119-128.	1.0 1.8 2.0 0.1	5 1 4 0
1351 1352 1353 1354	Genetic mapping and functional genomics of soybean seed protein. Molecular Breeding, 2023, 43, .Recycling â€" The future urban sink for wastewater and organic waste. City and Environment Interactions, 2023, 19, 100104.Multifunctional edible chitin nanofibers/ferulic acid composite coating for fruit preservation. Journal of Polymer Science, 2024, 62, 338-352.ENVIRONMENTAL ASPECTS IN THE DEVELOPMENT OF SUSTAINABLE FOOD SYSTEMS. Balanced Nature Using, 2022, , 119-128.Toward a Better Understanding of Phosphorus Nonpoint Source Pollution from Soil to Water and the Application of Amendment Materials: Research Trends. Water (Switzerland), 2023, 15, 1531.	1.0 1.8 2.0 0.1 1.2	5 1 4 0 3

#	Article	IF	CITATIONS
1356	The Potential Contribution of Smart Animal Nutrition in Reducing the Environmental Impacts of Livestock Systems. , 2023, , 311-336.		1
1357	Meat tenderization using acetaminophen (paracetamol/APAP): A review on deductive biochemical mechanisms, toxicological implications and strategies for mitigation. Heliyon, 2023, 9, e15628.	1.4	1
1358	How information, social norms, and experience with novel meat substitutes can create positive political feedback and demand-side policy change. Food Policy, 2023, 117, 102445.	2.8	3
1366	Shaping a resilient future in response to COVID-19. Nature Sustainability, 2023, 6, 897-907.	11.5	7
1381	Spillover effects of dietary transitions. Nature Food, 2023, 4, 458-459.	6.2	0
1408	Production of plant-based meat: functionality, limitations and future prospects. European Food Research and Technology, 2023, 249, 2189-2213.	1.6	6
1409	Introduction: The Sustainability Challenges of Brazilian Agriculture. Environment & Policy, 2023, , 1-16.	0.4	0
1410	A Sustainable Ocean Economy for 2050: Approximating Its Benefits and Costs. , 2023, , 681-714.		0
1411	The Ocean as a Solution to Climate Change: Five Opportunities for Action. , 2023, , 619-680.		0
1412	The Brazilian Way of Farming: Potential and Challenges to Agricultural Decarbonization. Environment & Policy, 2023, , 145-163.	0.4	1
1423	Protein from land—unconventional plant protein. , 2023, , 69-85.		0
1424	Protein from seafood. , 2023, , 107-129.		0
1435	Supply chain disruptions would increase agricultural greenhouse gas emissions. Regional Environmental Change, 2023, 23, .	1.4	1
1457	Climate Change and Health in the Tropics: Current Status and Future Trends. , 2024, , 33-42.		0
1487	Population and food systems: what does the future hold?. Population and Environment, 2023, 45, .	1.3	3
1504	From Agroecology to Food Systems Sustainability: An Evolutionary Path Shifting Toward Sustainable Agriculture and Development. , 2023, , 1441-1458.		0
1510	Prospects of Insect Farming for Food Security, Environmental Sustainability, and as an Alternative to Agrochemical Use. Sustainable Development and Biodiversity, 2023, , 565-600.	1.4	0
1511	Kapitel 5. ErnÃ ¤ rung. , 2023, , 245-269.		0

#	Article	IF	CITATIONS
1514	The Ecology of Agri-Food System. Sustainable Development Goals Series, 2023, , 485-488.	0.2	0
1520	Sustainable Food Systems. , 2023, , 1-4.		0
1529	Food Security and the COVID-19 Pandemic in Singapore. , 2023, , 2425-2435.		0
1537	Reduction of Both Health and Environmental Risk from the Med-Waste Technology of COVID-19. , 2023,		0
1541	A rebalanced discussion of the roles of livestock in society. Nature Food, 0, , .	6.2	0
1573	Plant Tissue Culture and Crop Improvement. , 2023, , 841-862.		0
1578	Slow Food Movement and Sustainability. , 2023, , 2933-2945.		0
1579	Plant Molecular Farming for Developing Countries: Current Status and Future Perspectives. Concepts and Strategies in Plant Sciences, 2023, , 273-297.	0.6	0
1603	The future of foods. , 2024, 2, 253-265.		0
1627	Generation Z and novel plant-based food alternatives. , 2024, , 105-129.		0
1642	Potential benefits of cellular agriculture. , 2024, , 423-434.		0
1643	Offer me Inspiring Values; I do not care about Branding! What the different types of meat-free diet segments want. , 2024, , 59-81.		0
1647	Assessing the Environmental Impact of Plant-Based Diets: A Comprehensive Analysis. , 2023, , .		0
1648	Research progress in assessment and strategies for sustainable food system within planetary boundaries. Science China Earth Sciences, 2024, 67, 375-386.	2.3	0
1649	Digital Agriculture for the Years to Come. , 2024, , 1-45.		0
1656	CRISPR/Cas-mediated germplasm improvement and new strategies for crop protection. , 2024, 2, .		0
1659	Innovative computational tools provide new insights into the polyploid wheat genome. ABIOTECH, 2024, 5, 52-70.	1.8	0
1661	Sustainable Food Systems. , 2023, , 7062-7065.		0

CITATION REPORT

IF

ARTICLE

1664 SantÃ et environnement. , 2022, , 361-369.

0

CITATIONS