Perovskite light-emitting diodes with external quantum

Nature 562, 245-248 DOI: 10.1038/s41586-018-0575-3

Citation Report

			_
#	ARTICLE	IF	CITATIONS
6	Metalâ€Halide Perovskites: Emerging Lightâ€Emitting Materials. Information Display, 2018, 34, 18-22.	0.1	0
7	All-solution-processed perovskite light-emitting diodes with all metal oxide transport layers. Chemical Communications, 2018, 54, 13283-13286.	2.2	42
8	Hybrid perovskite light emitting diodes under intense electrical excitation. Nature Communications, 2018, 9, 4893.	5.8	146
9	Polymer-Assisted In Situ Growth of All-Inorganic Perovskite Nanocrystal Film for Efficient and Stable Pure-Red Light-Emitting Devices. ACS Applied Materials & Interfaces, 2018, 10, 42564-42572.	4.0	86
10	LED technology breaks performance barrier. Nature, 2018, 562, 197-198.	13.7	22
11	Luminescent perovskites: recent advances in theory and experiments. Inorganic Chemistry Frontiers, 2019, 6, 2969-3011.	3.0	185
12	Stable and bright formamidinium-based perovskite light-emitting diodes with high energy conversion efficiency. Nature Communications, 2019, 10, 3624.	5.8	104
13	Roomâ€Temperature Stimulated Emission and Lasing in Recrystallized Cesium Lead Bromide Perovskite Thin Films. Advanced Materials, 2019, 31, e1903717.	11.1	148
14	Surface engineering towards highly efficient perovskite light-emitting diodes. Nano Energy, 2019, 65, 104029.	8.2	26
15	Energetics of Nonradiative Surface Trap States in Nanoparticles Monitored by Time-of-Flight Photoconduction Measurements on Nanoparticle–Polymer Blends. ACS Applied Materials & Interfaces, 2019, 11, 37184-37192.	4.0	4
16	Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nature Photonics, 2019, 13, 760-764.	15.6	483
17	Highly Luminescent and Water-Resistant CsPbBr ₃ –CsPb ₂ Br ₅ Perovskite Nanocrystals Coordinated with Partially Hydrolyzed Poly(methyl methacrylate) and Polyethylenimine. ACS Nano, 2019, 13, 10386-10396.	7.3	110
18	Surface-Emitting Perovskite Random Lasers for Speckle-Free Imaging. ACS Nano, 2019, 13, 10653-10661.	7.3	87
19	Photophysics of lead-free tin halide perovskite films and solar cells. APL Materials, 2019, 7, .	2.2	32
20	Dual Emission of Waterâ€6table 2D Organic–Inorganic Halide Perovskites with Mn(II) Dopant. Advanced Functional Materials, 2019, 29, 1904768.	7.8	66
21	Hole Transport Bilayer Structure for Quasiâ€⊉D Perovskite Based Blue Lightâ€Emitting Diodes with High Brightness and Good Spectral Stability. Advanced Functional Materials, 2019, 29, 1905339.	7.8	92
22	Highly stable hybrid perovskite light-emitting diodes based on Dion-Jacobson structure. Science Advances, 2019, 5, eaaw8072.	4.7	188
23	Electronic structure of CsPbBr _{3â^'x} Cl _x perovskites: synthesis, experimental characterization, and DFT simulations. Physical Chemistry Chemical Physics, 2019, 21, 18930-18938.	1.3	68

ATION RE

#	Article	IF	CITATIONS
24	Sodium Ion Modifying In Situ Fabricated CsPbBr ₃ Nanoparticles for Efficient Perovskite Light Emitting Diodes. Advanced Optical Materials, 2019, 7, 1900747.	3.6	59
25	Ligand-Induced Surface Charge Density Modulation Generates Local Type-II Band Alignment in Reduced-Dimensional Perovskites. Journal of the American Chemical Society, 2019, 141, 13459-13467.	6.6	62
26	Laserâ€Generated Nanocrystals in Perovskite: Universal Embedding of Ligandâ€Free and Subâ€10 nm Nanocrystals in Solutionâ€Processed Metal Halide Perovskite Films for Effectively Modulated Optoelectronic Performance. Advanced Energy Materials, 2019, 9, 1901341.	10.2	42
27	2D Ruddlesden–Popper Perovskite Nanoplate Based Deepâ€Blue Lightâ€Emitting Diodes for Light Communication. Advanced Functional Materials, 2019, 29, 1903861.	7.8	101
28	<i>In situ</i> growth of luminescent perovskite fibers in natural hollow templates. Chemical Communications, 2019, 55, 11056-11058.	2.2	6
29	Ultrafast Carrier Dynamics and Terahertz Photoconductivity of Mixed-Cation and Lead Mixed-Halide Hybrid Perovskites. Chinese Physics Letters, 2019, 36, 028401.	1.3	2
30	Phase Engineering for Highly Efficient Quasi-Two-Dimensional All-Inorganic Perovskite Light-Emitting Diodes via Adjusting the Ratio of Cs Cation. Nanoscale Research Letters, 2019, 14, 255.	3.1	10
31	Orange to Red, Emission-Tunable Mn-Doped Two-Dimensional Perovskites with High Luminescence and Stability. ACS Applied Materials & Interfaces, 2019, 11, 34109-34116.	4.0	75
32	Vapor-Phase Incommensurate Heteroepitaxy of Oriented Single-Crystal CsPbBr ₃ on GaN: Toward Integrated Optoelectronic Applications. ACS Nano, 2019, 13, 10085-10094.	7.3	59
33	Two-Dimensional Dion–Jacobson Hybrid Lead Iodide Perovskites with Aromatic Diammonium Cations. Journal of the American Chemical Society, 2019, 141, 12880-12890.	6.6	241
34	The optical properties of Cs ₄ PbBr ₆ –CsPbBr ₃ perovskite composites. Nanoscale, 2019, 11, 14676-14683.	2.8	40
35	A crystal-growth boundary-fusion strategy to prepare high-quality MAPbI3 films for excellent Vis-NIR photodetectors. Nano Energy, 2019, 64, 103914.	8.2	30
36	Towards green antisolvent for efficient CH3NH3PbBr3 perovskite light emitting diodes: A comparison of toluene, chlorobenzene, and ethyl acetate. Applied Physics Letters, 2019, 115, .	1.5	22
37	Improving the Stability of Organic–Inorganic Hybrid Perovskite Lightâ€Emitting Diodes Using Doped Electron Transport Materials. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900426.	0.8	11
38	Using Polar Alcohols for the Direct Synthesis of Cesium Lead Halide Perovskite Nanorods with Anisotropic Emission. ACS Nano, 2019, 13, 8237-8245.	7.3	84
39	Growth modes and quantum confinement in ultrathin vapour-deposited MAPbI ₃ films. Nanoscale, 2019, 11, 14276-14284.	2.8	51
40	Device Engineering for All-Inorganic Perovskite Light-Emitting Diodes. Nanomaterials, 2019, 9, 1007.	1.9	31
41	The Future Is Blue (LEDs): Why Chemistry Is the Key to Perovskite Displays. Chemistry of Materials, 2019, 31, 6003-6032.	3.2	91

#	Article	IF	CITATIONS
42	Self-contained InGaN/GaN micro-crystal arrays as individually addressable multi-color emitting pixels on a deformable substrate. Journal of Alloys and Compounds, 2019, 803, 826-833.	2.8	5
43	Effective electron extraction from active layer for enhanced photodetection of photoconductive type detector with structure of Au/CH3NH3PbI3/Au. Organic Electronics, 2019, 74, 197-203.	1.4	6
44	Improved Efficiency of Perovskite Light-Emitting Diodes Using a Three-Step Spin-Coated CH3NH3PbBr3 Emitter and a PEDOT:PSS/MoO3-Ammonia Composite Hole Transport Layer. Micromachines, 2019, 10, 459.	1.4	15
45	Copper(I)-Based Highly Emissive All-Inorganic Rare-Earth Halide Clusters. Matter, 2019, 1, 180-191.	5.0	35
46	Mechanistic Insight into Surface Defect Control in Perovskite Nanocrystals: Ligands Terminate the Valence Transition from Pb ²⁺ to Metallic Pb ⁰ . Journal of Physical Chemistry Letters, 2019, 10, 4222-4228.	2.1	51
47	Carrier-gas assisted vapor deposition for highly tunable morphology of halide perovskite thin films. Sustainable Energy and Fuels, 2019, 3, 2447-2455.	2.5	12
48	Single Crystal Perovskite Microplate for Highâ€Order Multiphoton Excitation. Small Methods, 2019, 3, 1900396.	4.6	17
49	A transient-electroluminescence study on perovskite light-emitting diodes. Applied Physics Letters, 2019, 115, .	1.5	51
50	Recent Progress on Cesium Lead Halide Perovskites for Photodetection Applications. ACS Applied Electronic Materials, 2019, 1, 1348-1366.	2.0	42
51	Highly Efficient Light Emitting Diodes Based on In Situ Fabricated FAPbI 3 Nanocrystals: Solvent Effects of On hip Crystallization. Advanced Optical Materials, 2019, 7, 1900774.	3.6	34
52	Effect of interfacial recombination, bulk recombination and carrier mobility on the <i>J</i> – <i>V</i> hysteresis behaviors of perovskite solar cells: a drift-diffusion simulation study. Physical Chemistry Chemical Physics, 2019, 21, 17836-17845.	1.3	37
53	Monochromatic LEDs based on perovskite quantum dots: Opportunities and challenges. Journal of the Society for Information Display, 2019, 27, 667-678.	0.8	7
54	Performance boosting strategy for perovskite light-emitting diodes. Applied Physics Reviews, 2019, 6, 031402.	5.5	88
55	Aqueous Phase Exfoliating Quasiâ€⊋D CsPbBr ₃ Nanosheets with Ultrahigh Intrinsic Water Stability. Small, 2019, 15, e1901994.	5.2	45
56	Efficient Hole Injection of MoO _x -Doped Organic Layer for Printable Red Quantum Dot Light-Emitting Diodes. IEEE Electron Device Letters, 2019, 40, 1147-1150.	2.2	10
57	Electrohydrodynamically Printed Highâ€Resolution Fullâ€Color Hybrid Perovskites. Advanced Functional Materials, 2019, 29, 1903294.	7.8	97
58	Quantum Dots Supply Bulk- and Surface-Passivation Agents for Efficient and Stable Perovskite Solar Cells. Joule, 2019, 3, 1963-1976.	11.7	222
59	Perovskite Light-Emitting Diodes Based on FAPb _{1â~'} <i> _x </i> Sn <i> _x </i> Br ₃ Nanocrystals Synthesized at Room Temperature. IEEE Nanotechnology Magazine, 2019, 18, 1050-1056.	1.1	12

#	Article	IF	CITATIONS
60	Recent advances and prospects toward blue perovskite materials and lightâ€emitting diodes. InformaÄnÃ- Materiály, 2019, 1, 211-233.	8.5	84
61	Oxalic Acid Enabled Emission Enhancement and Continuous Extraction of Chloride from Cesium Lead Chloride/Bromide Perovskite Nanocrystals. Small, 2019, 15, e1901828.	5.2	24
62	Defect Engineering in 2D Perovskite by Mn(II) Doping for Light-Emitting Applications. CheM, 2019, 5, 2146-2158.	5.8	78
63	Solutionâ€Processed Laminated Perovskite Layers for Highâ€Performance Solar Cells. Advanced Functional Materials, 2019, 29, 1903330.	7.8	10
64	Highâ€Throughput Combinatorial Optimizations of Perovskite Lightâ€Emitting Diodes Based on Allâ€Vacuum Deposition. Advanced Functional Materials, 2019, 29, 1903607.	7.8	72
65	Degradation Mechanisms in Organic Lead Halide Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2019, 7, 1900902.	3.6	50
66	Halogenâ€Hotâ€Injection Synthesis of Mnâ€Doped CsPb(Cl/Br) ₃ Nanocrystals with Blue/Orange Dualâ€Color Luminescence and High Photoluminescence Quantum Yield. Advanced Optical Materials, 2019, 7, 1901082.	3.6	41
67	Fetal phenotype of Galloway-Mowat syndrome 3 caused by a specific OSGEP variant. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2019, 242, 182-184.	0.5	1
68	Spectrally Tunable and Stable Electroluminescence Enabled by Rubidium Doping of CsPbBr ₃ Nanocrystals. Advanced Optical Materials, 2019, 7, 1901440.	3.6	51
69	Colloidal Synthesis and Optical Properties of Allâ€Inorganic Lowâ€Dimensional Cesium Copper Halide Nanocrystals. Angewandte Chemie, 2019, 131, 16233-16237.	1.6	78
70	51.5: <i>Invited Paper:</i> Fabrication of High Performance Perovskite Optoelectronic Devices. Digest of Technical Papers SID International Symposium, 2019, 50, 570-570.	0.1	0
71	Colloidal synthesis of lead-free all-inorganic Cs3Sb2Brxl9-x nanocrystals. Journal of Information Display, 2019, 20, 201-207.	2.1	10
72	Improved Charge Injection and Transport of Light-Emitting Diodes Based on Two-Dimensional Materials. Applied Sciences (Switzerland), 2019, 9, 4140.	1.3	5
73	Direct Synthesis of Quaternary Alkylammonium-Capped Perovskite Nanocrystals for Efficient Blue and Green Light-Emitting Diodes. ACS Energy Letters, 2019, 4, 2703-2711.	8.8	161
74	Ferroic twin domains in metal halide perovskites. MRS Advances, 2019, 4, 2817-2830.	0.5	7
75	Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications. Nano Materials Science, 2019, 1, 268-287.	3.9	118
76	How to Make Dense and Flat Perovskite Layers for >20% Efficient Solar Cells: Oriented, Crystalline Perovskite Intermediates and Their Thermal Conversion. Bulletin of the Chemical Society of Japan, 2019, 92, 1972-1979.	2.0	17
77	Fiberâ€Spinningâ€Chemistry Method toward In Situ Generation of Highly Stable Halide Perovskite Nanocrystals. Advanced Science, 2019, 6, 1901694.	5.6	55

#	Article	IF	CITATIONS
78	Halogen Vacancies Enable Ligandâ€Assisted Selfâ€Assembly of Perovskite Quantum Dots into Nanowires. Angewandte Chemie, 2019, 131, 16223-16227.	1.6	16
79	A rare case of acute respiratory distress syndrome caused by use of gadoliniumâ€based magnetic resonance imaging contrast media. Respirology Case Reports, 2019, 7, e00483.	0.3	6
80	Light Generation in Lead Halide Perovskite Nanocrystals: LEDs, Color Converters, Lasers, and Other Applications. Small, 2019, 15, e1902079.	5.2	81
81	Dimensionally Engineered Perovskite Heterostructure for Photovoltaic and Optoelectronic Applications. Advanced Energy Materials, 2019, 9, 1902470.	10.2	40
82	CH3NH3Br solution as a novel platform for the selective fluorescence detection of Pb2+ ions. Scientific Reports, 2019, 9, 15840.	1.6	11
83	Pâ€5.1: Enhanced Nickel Oxide Hole Injection Layer via the rGO Combustion Method for Perovskite QDs Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2019, 50, 724-727.	0.1	0
84	Exploring Organic Metal Halides with Reversible Temperatureâ€Responsive Dualâ€Emissive Photoluminescence. ChemSusChem, 2019, 12, 5228-5232.	3.6	37
85	Flexible Thin Film and Bulk Switchable Relaxor Coexisting Most Optimal 473 nm Blue Light without Blue-Light Hazard/Visual Injury. Journal of Physical Chemistry C, 2019, 123, 28385-28391.	1.5	9
86	Methylammonium-Mediated Crystallization of Cesium-Based 2D/3D Perovskites toward High-Efficiency Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 43452-43459.	4.0	8
87	Influence of Work Function of Carrier Transport Materials with Perovskite on Switchable Photovoltaic Phenomena. Journal of Physical Chemistry C, 2019, 123, 28668-28676.	1.5	13
88	Luminescence of perovskite light-emitting diodes with quasi-core/shell structure enhanced by Al–TiO2–Ag Bimetallic Nanoparticle. Superlattices and Microstructures, 2019, 136, 106323.	1.4	7
89	Bright and Effectual Perovskite Light-Emitting Electrochemical Cells Leveraging Ionic Additives. ACS Energy Letters, 2019, 4, 2922-2928.	8.8	47
90	Efficient halide perovskite light-emitting diodes with emissive layer consisted of multilayer coatings. Journal of Applied Physics, 2019, 126, 165502.	1.1	4
91	CsPbBr ₃ –Cs ₄ PbBr ₆ composite nanocrystals for highly efficient pure green light emission. Nanoscale, 2019, 11, 22899-22906.	2.8	35
92	Two-Photon Pumped Amplified Spontaneous Emission and Lasing from Formamidinium Lead Bromine Nanocrystals. ACS Photonics, 2019, 6, 3150-3158.	3.2	43
93	Scale-Up Synthesis of Organometal Halide Perovskite Nanocrystals (MAPbX ₃ , X = Cl, Br,) Tj ETQq1	1 0,78431 3.2	4 rgBT /Over
94	Halogen Vacancies Enable Ligandâ€Assisted Selfâ€Assembly of Perovskite Quantum Dots into Nanowires. Angewandte Chemie - International Edition, 2019, 58, 16077-16081.	7.2	49
95	Engineering Green-to-Blue Emitting CsPbBr ₃ Quantum-Dot Films with Efficient Ligand Passivation. ACS Energy Letters, 2019, 4, 2731-2738.	8.8	43

#	Article	IF	CITATIONS
96	Highly Efficient and Stable White Lightâ€Emitting Diodes Using Perovskite Quantum Dot Paper. Advanced Science, 2019, 6, 1902230.	5.6	56
97	Dual-Band Luminescent Lead-Free Antimony Chloride Halides with Near-Unity Photoluminescence Quantum Efficiency. Chemistry of Materials, 2019, 31, 9363-9371.	3.2	206
98	Tolerance factor and phase stability of the garnet structure. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 1353-1358.	0.2	67
99	Halogenatedâ€Methylammonium Based 3D Halide Perovskites. Advanced Materials, 2019, 31, e1903830.	11.1	40
100	3D Nanoprinting of Perovskites. Advanced Materials, 2019, 31, e1904073.	11.1	64
101	Multifunctional pâ€Type Carbon Quantum Dots: a Novel Hole Injection Layer for Highâ€Performance Perovskite Lightâ€Emitting Diodes with Significantly Enhanced Stability. Advanced Optical Materials, 2019, 7, 1901299.	3.6	52
102	Nanoreactors for Chemical Synthesis and Biomedical Applications. Chemistry - an Asian Journal, 2019, 14, 3240-3250.	1.7	11
103	Stable Perovskite Quantum Dots Coated with Superhydrophobic Organosilica Shells for White Lightâ€Emitting Diodes. Chemistry - an Asian Journal, 2019, 14, 3830-3834.	1.7	9
104	Current Oscillations and Intermittent Emission Near an Electrode Interface in a Hybrid Organic–Inorganic Perovskite Single Crystal. ACS Applied Materials & Interfaces, 2019, 11, 42838-42845.	4.0	6
105	Two-dimensional lead-free halide perovskite materials and devices. Journal of Materials Chemistry A, 2019, 7, 23563-23576.	5.2	65
106	Highâ€Quality Ruddlesden–Popper Perovskite Films Based on In Situ Formed Organic Spacer Cations. Advanced Materials, 2019, 31, e1904243.	11.1	35
107	Colloidal Synthesis and Optical Properties of Allâ€Inorganic Lowâ€Dimensional Cesium Copper Halide Nanocrystals. Angewandte Chemie - International Edition, 2019, 58, 16087-16091.	7.2	192
108	General Mild Reaction Creates Highly Luminescent Organic-Ligand-Lacking Halide Perovskite Nanocrystals for Efficient Light-Emitting Diodes. Journal of the American Chemical Society, 2019, 141, 15423-15432.	6.6	121
109	Influence of indium-tin-oxide and emitting-layer thicknesses on light outcoupling of perovskite light-emitting diodes. Nano Convergence, 2019, 6, 26.	6.3	21
110	Material Design and Optoelectronic Properties of Three-Dimensional Quadruple Perovskite Halides. Journal of Physical Chemistry Letters, 2019, 10, 5219-5225.	2.1	70
111	Enhanced yield-mobility products in hybrid halide Ruddlesden–Popper compounds with aromatic ammonium spacers. Dalton Transactions, 2019, 48, 14019-14026.	1.6	20
112	Promoting photoluminescence quantum yields of glass-stabilized CsPbX ₃ (X = Cl, Br, I) perovskite quantum dots through fluorine doping. Nanoscale, 2019, 11, 17216-17221.	2.8	127
113	High-performance and stable CsPbBr ₃ light-emitting diodes based on polymer additive treatment. RSC Advances, 2019, 9, 27684-27691.	1.7	25

#	Article	IF	CITATIONS
114	Enabling Self-passivation by Attaching Small Grains on Surfaces of Large Grains toward High-Performance Perovskite LEDs. IScience, 2019, 19, 378-387.	1.9	26
115	PbS quantum dots as additives in methylammonium halide perovskite solar cells: the effect of quantum dot capping. Nanoscale Advances, 2019, 1, 4109-4118.	2.2	32
116	Simultaneous Triplet Exciton–Phonon and Exciton–Photon Photoluminescence in the Individual Weak Confinement CsPbBr ₃ Micro/Nanowires. Journal of Physical Chemistry C, 2019, 123, 25349-25358.	1.5	47
117	Highly Emissive and Stable Organic–Perovskite Nanocomposite Thin Films with Phosphonium Passivation. Journal of Physical Chemistry Letters, 2019, 10, 5923-5928.	2.1	13
118	Mechanism of Single-Photon Upconversion Photoluminescence in All-Inorganic Perovskite Nanocrystals: The Role of Self-Trapped Excitons. Journal of Physical Chemistry Letters, 2019, 10, 5989-5996.	2.1	34
119	Active meta-optics and nanophotonics with halide perovskites. Applied Physics Reviews, 2019, 6, 031307.	5.5	68
120	Understanding the Improvement in the Stability of a Self-Assembled Multiple-Quantum Well Perovskite Light-Emitting Diode. Journal of Physical Chemistry Letters, 2019, 10, 6857-6864.	2.1	42
121	Surface depletion field in 2D perovskite microplates: Structural phase transition, quantum confinement and Stark effect. Nano Research, 2019, 12, 2858-2865.	5.8	11
122	Highly Efficient Flexible Perovskite Light-Emitting Diodes Using the Modified PEDOT:PSS Hole Transport Layer and Polymer–Silver Nanowire Composite Electrode. ACS Applied Materials & Interfaces, 2019, 11, 39274-39282.	4.0	24
123	High-Rubidium–Formamidinium-Ratio Perovskites for High-Performance Photodetection with Enhanced Stability. ACS Applied Materials & Interfaces, 2019, 11, 39875-39881.	4.0	21
124	Organic composition tailored perovskite solar cells and light-emitting diodes: Perspectives and advances. Materials Today Energy, 2019, 14, 100338.	2.5	9
125	Highly efficient perovskite light-emitting devices containing a cuprous thiocyanate hole injection layer. Organic Electronics, 2019, 75, 105420.	1.4	6
126	High-Performance Quantum-Dot Light-Emitting Transistors Based on Vertical Organic Thin-Film Transistors. ACS Applied Materials & Interfaces, 2019, 11, 35888-35895.	4.0	27
127	Large metal halide perovskite crystals for field-effect transistor applications. Applied Physics Letters, 2019, 115, .	1.5	34
128	Blue perovskite light-emitting diodes: progress, challenges and future directions. Nanoscale, 2019, 11, 2109-2120.	2.8	211
129	Influence of mixed organic cations on the structural and optical properties of lead tri-iodide perovskites. Nanoscale, 2019, 11, 5215-5221.	2.8	11
130	Engineering Perovskite Nanocrystal Surface Termination for Lightâ€Emitting Diodes with External Quantum Efficiency Exceeding 15%. Advanced Functional Materials, 2019, 29, 1807284.	7.8	80
131	Organicâ€Inorganic Hybrid Perovskite Single Crystals: Crystallization, Molecular Structures, and Bandgap Engineering. ChemNanoMat, 2019, 5, 278-289.	1.5	29

#	Article	IF	CITATIONS
132	Efficient and Tunable Electroluminescence from In Situ Synthesized Perovskite Quantum Dots. Small, 2019, 15, e1804947.	5.2	23
133	Bismuth Halide Perovskiteâ€Like Materials: Current Opportunities and Challenges. ChemSusChem, 2019, 12, 1612-1630.	3.6	98
134	High-Performance All-Inorganic CsPbCl ₃ Perovskite Nanocrystal Photodetectors with Superior Stability. ACS Nano, 2019, 13, 1772-1783.	7.3	105
135	Perovskite Lightâ€Emitting Diodes with Improved Outcoupling Using a Highâ€Index Contrast Nanoarray. Small, 2019, 15, e1900135.	5.2	53
136	Enhanced photoluminescence and thermal properties due to size mismatch in Mg2TixGe1â^'xO4:Mn4+ deep-red phosphors. Journal of Materials Chemistry C, 2019, 7, 2345-2352.	2.7	28
137	Highly Luminescent and Stable Halide Perovskite Nanocrystals. ACS Energy Letters, 2019, 4, 673-681.	8.8	129
138	Bright perovskite light-emitting diodes with improved film morphology and reduced trap density via surface passivation using quaternary ammonium salts. Organic Electronics, 2019, 67, 187-193.	1.4	28
139	Perseverance of direct bandgap in multilayer 2D PbI ₂ under an experimental strain up to 7.69%. 2D Materials, 2019, 6, 025014.	2.0	20
140	Constructing CsPbBr _x I _{3â^'x} nanocrystal/carbon nanotube composites with improved charge transfer and light harvesting for enhanced photoelectrochemical activity. Journal of Materials Chemistry A, 2019, 7, 5409-5415.	5.2	34
141	Room-temperature synthesized formamidinium lead halide perovskite quantum dots with bright luminescence and color-tunability for efficient light emitting. Organic Electronics, 2019, 68, 76-84.	1.4	21
142	Realizing a highly luminescent perovskite thin film by controlling the grain size and crystallinity through solvent vapour annealing. Nanoscale, 2019, 11, 5861-5867.	2.8	25
143	All-inorganic cesium lead halide perovskite nanocrystals: synthesis, surface engineering and applications. Journal of Materials Chemistry C, 2019, 7, 757-789.	2.7	193
144	Luminescent perovskite quantum dots: synthesis, microstructures, optical properties and applications. Journal of Materials Chemistry C, 2019, 7, 1413-1446.	2.7	182
145	Metal Ions in Halide Perovskite Materials and Devices. Trends in Chemistry, 2019, 1, 394-409.	4.4	44
146	Low-dimensional iodide perovskite nanocrystals enable efficient red emission. Nanoscale, 2019, 11, 12793-12797.	2.8	13
147	Ultrahigh-Performance Optoelectronics Demonstrated in Ultrathin Perovskite-Based Vertical Semiconductor Heterostructures. ACS Nano, 2019, 13, 7996-8003.	7.3	64
148	Room-Temperature Cavity Polaritons with 3D Hybrid Perovskite: Toward Large-Surface Polaritonic Devices. ACS Photonics, 2019, 6, 1804-1811.	3.2	30
149	An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy and Environmental Science, 2019, 12, 2192-2199.	15.6	542

#	Article	IF	CITATIONS
150	Boosting the external quantum efficiency in perovskite light-emitting diodes by an exciton retrieving layer. Journal of Materials Chemistry C, 2019, 7, 8705-8711.	2.7	6
151	Silica encapsulation of metal perovskite nanocrystals in a photoluminescence type display application. Nanotechnology, 2019, 30, 395702.	1.3	10
152	Perovskite Bifunctional Device with Improved Electroluminescent and Photovoltaic Performance through Interfacial Energyâ€Band Engineering. Advanced Materials, 2019, 31, e1902543.	11.1	62
153	Toward air-stable field-effect transistors with a tin iodide-based hybrid perovskite semiconductor. Journal of Applied Physics, 2019, 125, .	1.1	23
154	(INVITED) Stability: A desiderated problem for the lead halide perovskites. Optical Materials: X, 2019, 1, 100023.	0.3	35
155	Giant Enhancement of Photoluminescence Emission in WS ₂ -Two-Dimensional Perovskite Heterostructures. Nano Letters, 2019, 19, 4852-4860.	4.5	72
156	Multiple-engineering controlled growth of tunable-bandgap perovskite nanowires for high performance photodetectors. RSC Advances, 2019, 9, 19772-19779.	1.7	5
157	Luminescent inorganic-organic hybrid semiconductor materials for energy-saving lighting applications. EnergyChem, 2019, 1, 100008.	10.1	76
158	Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes. Nature Communications, 2019, 10, 2818.	5.8	129
159	Synthesis and Near-Infrared Emission of Yb-Doped Cs ₂ AgInCl ₆ Double Perovskite Microcrystals and Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 15787-15793.	1.5	136
160	Vivid and Fully Saturated Blue Light-Emitting Diodes Based on Ligand-Modified Halide Perovskite Nanocrystals. ACS Applied Materials & Interfaces, 2019, 11, 23401-23409.	4.0	60
161	Two-dimensional Ruddlesden-Popper perovskite nanosheets: Synthesis, optoelectronic properties and miniaturized optoelectronic devices. FlatChem, 2019, 17, 100116.	2.8	13
162	Refractive index change dominates the transient absorption response of metal halide perovskite thin films in the near infrared. Physical Chemistry Chemical Physics, 2019, 21, 14663-14670.	1.3	27
163	Poly(ethylene oxide)-assisted energy funneling for efficient perovskite light emission. Journal of Materials Chemistry C, 2019, 7, 8287-8293.	2.7	11
164	Efficient perovskite nanocrystal light-emitting diodes using a benzimidazole-substituted anthracene derivative as the electron transport material. Journal of Materials Chemistry C, 2019, 7, 8938-8945.	2.7	12
165	Surfaceâ€Plasmonâ€Assisted Metal Halide Perovskite Small Lasers. Advanced Optical Materials, 2019, 7, 1900279.	3.6	35
166	Lead Halide Perovskiteâ€Based Dynamic Metasurfaces. Laser and Photonics Reviews, 2019, 13, 1900079.	4.4	42
167	Green Emitting Single-Crystalline Bulk Assembly of Metal Halide Clusters with Near-Unity Photoluminescence Quantum Efficiency. ACS Energy Letters, 2019, 4, 1579-1583.	8.8	117

#	Article	IF	CITATIONS
168	Spectral-Stable Blue Emission from Moisture-Treated Low-Dimensional Lead Bromide-Based Perovskite Films. ACS Photonics, 2019, 6, 1728-1735.	3.2	21
169	Could Nanocomposites Continue the Success of Halide Perovskites?. ACS Energy Letters, 2019, 4, 1446-1454.	8.8	9
170	Recent advances in controlling the crystallization of two-dimensional perovskites for optoelectronic device. Frontiers of Physics, 2019, 14, 1.	2.4	42
171	An Improved Strategy for High-Quality Cesium Bismuth Bromine Perovskite Quantum Dots with Remarkable Electrochemiluminescence Activities. Analytical Chemistry, 2019, 91, 8607-8614.	3.2	66
172	Centimeter-size square 2D layered Pb-free hybrid perovskite single crystal (CH ₃ NH ₃) ₂ MnCl ₄ for red photoluminescence. CrystEngComm, 2019, 21, 4085-4091.	1.3	31
173	Enhancing the efficiency of CsPbX ₃ (X = Cl, Br, I) nanocrystals <i>via</i> simultaneous surface peeling and surface passivation. Nanoscale, 2019, 11, 11464-11469.	2.8	48
174	Self-assembly of a robust hydrogen-bonded octylphosphonate network on cesium lead bromide perovskite nanocrystals for light-emitting diodes. Nanoscale, 2019, 11, 12370-12380.	2.8	67
175	Improving electron injection in all-inorganic perovskite light-emitting diode via electron transport layer modulation. Optik, 2019, 191, 68-74.	1.4	2
176	Layered Germanium Hybrid Perovskite Bromides: Insights from Experiments and Firstâ€Principles Calculations. Advanced Functional Materials, 2019, 29, 1903528.	7.8	26
177	CsPbBr ₃ Quantum Dots 2.0: Benzenesulfonic Acid Equivalent Ligand Awakens Complete Purification. Advanced Materials, 2019, 31, e1900767.	11.1	329
178	Facile and Controllable Fabrication of Highâ€Performance Methylammonium Lead Triiodide Films Using Lead Acetate Precursor for Lowâ€Threshold Amplified Spontaneous Emission and Distributedâ€Feedback Lasers. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900176.	1.2	3
179	Vacuumâ€Drying Processed Micrometerâ€Thick Stable CsPbBr 3 Perovskite Films with Efficient Blueâ€Toâ€Green Photoconversion. Small, 2019, 15, 1901954.	5.2	21
180	LEDs using halide perovskite nanocrystal emitters. Nanoscale, 2019, 11, 11402-11412.	2.8	41
181	The Rise of Perovskite Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2019, 10, 3035-3042.	2.1	101
182	Bright Free Exciton Electroluminescence from Mn-Doped Two-Dimensional Layered Perovskites. Journal of Physical Chemistry Letters, 2019, 10, 3171-3175.	2.1	35
183	Engineering Color-Stable Blue Light-Emitting Diodes with Lead Halide Perovskite Nanocrystals. ACS Applied Materials & Interfaces, 2019, 11, 21655-21660.	4.0	98
184	Efficient modulation of photoluminescence by hydrogen bonding interactions between inorganic [MnBr ₄] ^{2â~} anions and organic cations. Chemical Communications, 2019, 55, 7303-7306.	2.2	107
185	Compositional and Dimensional Control of 2D and Quasiâ€2D Lead Halide Perovskites in Water. Advanced Functional Materials, 2019, 29, 1900966.	7.8	27

#	Article	IF	CITATIONS
186	Stabilizing perovskite nanocrystals by controlling protective surface ligands density. Nano Research, 2019, 12, 1461-1465.	5.8	56
187	Stable mixed-cation perovskite light-emitting diodes. Organic Electronics, 2019, 71, 58-64.	1.4	15
188	Direct Vapor–Liquid–Solid Synthesis of All-Inorganic Perovskite Nanowires for High-Performance Electronics and Optoelectronics. ACS Nano, 2019, 13, 6060-6070.	7.3	93
189	Lead-free double perovskites Cs ₂ InCuCl ₆ and (CH ₃ NH ₃) ₂ InCuCl ₆ : electronic, optical, and electrical properties. Nanoscale, 2019, 11, 11173-11182.	2.8	35
190	Pure Bromideâ€Based Perovskite Nanoplatelets for Blue Lightâ€Emitting Diodes. Small Methods, 2019, 3, 1900196.	4.6	34
191	Resonance-enhanced three-photon luminesce via lead halide perovskite metasurfaces for optical encoding. Nature Communications, 2019, 10, 2085.	5.8	91
192	Exploiting Two‣tep Processed Mixed 2D/3D Perovskites for Bright Green Light Emitting Diodes. Advanced Optical Materials, 2019, 7, 1900465.	3.6	18
193	Properties of Excitons and Photogenerated Charge Carriers in Metal Halide Perovskites. Advanced Materials, 2019, 31, e1806671.	11.1	134
194	Antimony doped Cs2SnCl6 with bright and stable emission. Frontiers of Optoelectronics, 2019, 12, 352-364.	1.9	103
195	Compositional, Processing, and Interfacial Engineering of Nanocrystal- and Quantum-Dot-Based Perovskite Solar Cells. Chemistry of Materials, 2019, 31, 6387-6411.	3.2	82
196	Enhancing stability of red perovskite nanocrystals through copper substitution for efficient light-emitting diodes. Nano Energy, 2019, 62, 434-441.	8.2	103
197	Effects of Organic Cations on the Structure and Performance of Quasi-Two-Dimensional Perovskite-Based Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2019, 10, 2892-2897.	2.1	56
198	Phase-Pure Hybrid Layered Lead Iodide Perovskite Films Based on a Two-Step Melt-Processing Approach. Chemistry of Materials, 2019, 31, 4267-4274.	3.2	37
199	Electric field hotspots of all-inorganic off-stoichiometric APbX3 (A = Cs, Rb and X = Cl, Br, I) perovskite quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 113, 65-71.	1.3	2
200	(C ₆ H ₅ NH ₃)Bil ₄ : a lead-free perovskite with >330 days humidity stability for optoelectronic applications. Journal of Materials Chemistry A, 2019, 7, 15722-15730.	5.2	33
201	Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate. Journal of Semiconductors, 2019, 40, 052201.	2.0	16
202	Giant Nonlinear Optical Response in 2D Perovskite Heterostructures. Advanced Optical Materials, 2019, 7, 1900398.	3.6	58
203	Role of Quantum Confinement in 10 nm Scale Perovskite Optoelectronics. Journal of Physical Chemistry Letters, 2019, 10, 2745-2752.	2.1	8

#	ARTICLE	IF	CITATIONS
204	Enhancing the performance of mixed-halide perovskite-based light-emitting devices by organic additive inclusion. Synthetic Metals, 2019, 253, 88-93.	2.1	5
205	Inorganic and Layered Perovskites for Optoelectronic Devices. Advanced Materials, 2019, 31, e1807095.	11.1	94
206	Color Patterning of Luminescent Perovskites via Lightâ€Mediated Halide Exchange with Haloalkanes. Advanced Materials, 2019, 31, e1901247.	11.1	35
207	Highâ€Efficiency Perovskite Lightâ€Emitting Diodes with Synergetic Outcoupling Enhancement. Advanced Materials, 2019, 31, e1901517.	11.1	188
208	Dual-functional light-emitting perovskite solar cells enabled by soft-covered annealing process. Nano Energy, 2019, 61, 251-258.	8.2	14
209	Spectra stable blue perovskite light-emitting diodes. Nature Communications, 2019, 10, 1868.	5.8	344
210	47-Fold EQE improvement in CsPbBr3 perovskite light-emitting diodes via double-additives assistance. Organic Electronics, 2019, 70, 264-271.	1.4	10
211	Small Cyclic Diammonium Cation Templated (110)-Oriented 2D Halide (X = I, Br, Cl) Perovskites with White-Light Emission. Chemistry of Materials, 2019, 31, 3582-3590.	3.2	101
212	Improving the Stability of CsPbBr ₃ Nanocrystals in Ethanol by Capping with PbBr ₂ -Adlayers. Journal of Physical Chemistry C, 2019, 123, 11959-11967.	1.5	49
213	Controllable Growth of Centimeter-Sized 2D Perovskite Heterostructures for Highly Narrow Dual-Band Photodetectors. ACS Nano, 2019, 13, 5473-5484.	7.3	110
214	Bio-Inspired Flexible Fluoropolymer Film for All-Mode Light Extraction Enhancement. ACS Applied Materials & Interfaces, 2019, 11, 19623-19630.	4.0	16
215	Temperature-Dependent Band Gap in Two-Dimensional Perovskites: Thermal Expansion Interaction and Electron–Phonon Interaction. Journal of Physical Chemistry Letters, 2019, 10, 2546-2553.	2.1	90
216	Recent Progress in Metal Halide Perovskite Micro―and Nanolasers. Advanced Optical Materials, 2019, 7, 1900080.	3.6	95
217	Room temperature synthesis of Mn-doped Cs ₃ Pb _{6.48} Cl ₁₆ perovskite nanocrystals with pure dopant emission and temperature-dependent photoluminescence. CrystEngComm, 2019, 21, 3568-3575.	1.3	8
218	Morphology control of CsPbBr3 films by a surface active Lewis base for bright all-inorganic perovskite light-emitting diodes. Applied Physics Letters, 2019, 114, .	1.5	14
219	A Novel Phototransistor Device with Dual Active Layers Composited of CsPbBr3 and ZnO Quantum Dots. Materials, 2019, 12, 1215.	1.3	12
220	A comprehensive review of doping in perovskite nanocrystals/quantum dots: evolution of structure, electronics, optics, and light-emitting diodes. Materials Today Nano, 2019, 6, 100036.	2.3	118
221	Reducing Defects in Halide Perovskite Nanocrystals for Light-Emitting Applications. Journal of Physical Chemistry Letters, 2019, 10, 2629-2640.	2.1	162

#	Article	IF	CITATIONS
222	Boosting Efficiency in Polycrystalline Metal Halide Perovskite Light-Emitting Diodes. ACS Energy Letters, 2019, 4, 1134-1149.	8.8	68
223	All-optical control of lead halide perovskite microlasers. Nature Communications, 2019, 10, 1770.	5.8	104
224	Identifying and Reducing Interfacial Losses to Enhance Color-Pure Electroluminescence in Blue-Emitting Perovskite Nanoplatelet Light-Emitting Diodes. ACS Energy Letters, 2019, 4, 1181-1188.	8.8	115
225	Perovskites for Next-Generation Optical Sources. Chemical Reviews, 2019, 119, 7444-7477.	23.0	640
226	Low-reflection, (110)-orientation-preferred CsPbBr ₃ nanonet films for application in high-performance perovskite photodetectors. Nanoscale, 2019, 11, 9302-9309.	2.8	38
227	Metal Halide Perovskite Lightâ€Emitting Devices: Promising Technology for Nextâ€Generation Displays. Advanced Functional Materials, 2019, 29, 1902008.	7.8	296
228	Conjugated Polyelectrolytes as Multifunctional Passivating and Holeâ€Transporting Layers for Efficient Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2019, 31, e1900067.	11.1	44
229	Blue perovskite light-emitting diodes based on RbX-doped polycrystalline CsPbBr ₃ perovskite films. Journal of Materials Chemistry C, 2019, 7, 5596-5603.	2.7	47
230	Hydration of mixed halide perovskites investigated by Fourier transform infrared spectroscopy. APL Materials, 2019, 7, 031107.	2.2	17
231	Highly bright perovskite light-emitting diodes based on quasi-2D perovskite film through synergetic solvent engineering. RSC Advances, 2019, 9, 8373-8378.	1.7	15
232	Direct Evidence of Ion-Migration-Induced Degradation of Ultrabright Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 11667-11673.	4.0	59
233	Hybrid organic-inorganic perovskites: Polar properties and applications. Coordination Chemistry Reviews, 2019, 387, 398-414.	9.5	84
234	Acoustic phonon–exciton interaction by extremely strong exciton confinement and large phonon energy in CsPbBr ₃ perovskite. Applied Physics Express, 2019, 12, 052003.	1.1	9
235	Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%. Nature Communications, 2019, 10, 1027.	5.8	425
236	Enhanced UV Detection of Perovskite Photodetector Arrays via Inorganic CsPbBr ₃ Quantum Dot Down onversion Layer. Advanced Optical Materials, 2019, 7, 1801812.	3.6	55
237	Tunable Halide Perovskites for Miniaturized Solidâ€State Laser Applications. Advanced Optical Materials, 2019, 7, 1900099.	3.6	47
238	Fullâ€6pectrum Persistent Luminescence Tuning Using Allâ€Inorganic Perovskite Quantum Dots. Angewandte Chemie, 2019, 131, 7017-7021.	1.6	13
239	Full‧pectrum Persistent Luminescence Tuning Using Allâ€Inorganic Perovskite Quantum Dots. Angewandte Chemie - International Edition, 2019, 58, 6943-6947.	7.2	106

#	Article	IF	CITATIONS
240	Synthesis of Colloidal Halide Perovskite Quantum Dots/Nanocrystals: Progresses and Advances. Israel Journal of Chemistry, 2019, 59, 649-660.	1.0	25
241	Rational molecular passivation for high-performance perovskite light-emitting diodes. Nature Photonics, 2019, 13, 418-424.	15.6	970
242	Distinct green electroluminescence from lead-free CsCuBr ₂ halide micro-crosses. Chemical Communications, 2019, 55, 4554-4557.	2.2	52
243	Suppressing defect states in CsPbBr ₃ perovskite <i>via</i> magnesium substitution for efficient all-inorganic light-emitting diodes. Nanoscale Horizons, 2019, 4, 924-932.	4.1	34
244	Temperature-dependent photoluminescence and lasing properties of CsPbBr3 nanowires. Applied Physics Letters, 2019, 114, .	1.5	59
245	Concurrent Inhibition and Redistribution of Spontaneous Emission from All Inorganic Perovskite Photonic Crystals. ACS Photonics, 2019, 6, 1331-1337.	3.2	39
246	Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3 based flexible perovskite light-emitting devices with excellent mechanical bending durability. Chemical Physics Letters, 2019, 723, 33-38.	1.2	9
247	A MAPbBr ₃ :poly(ethylene oxide) composite perovskite quantum dot emission layer: enhanced film stability, coverage and device performance. Nanoscale, 2019, 11, 9103-9114.	2.8	35
248	Rapid Growth of Halide Perovskite Single Crystals: From Methods to Optimization Control. Chinese Journal of Chemistry, 2019, 37, 616-629.	2.6	24
249	Tin(IV)-Tolerant Vapor-Phase Growth and Photophysical Properties of Aligned Cesium Tin Halide Perovskite (CsSnX ₃ ; X = Br, I) Nanowires. ACS Energy Letters, 2019, 4, 1045-1052.	8.8	84
250	Dual effect of humidity on cesium lead bromide: enhancement and degradation of perovskite films. Journal of Materials Chemistry A, 2019, 7, 12292-12302.	5.2	74
251	Mn ²⁺ Doping Enhances the Brightness, Efficiency, and Stability of Bulk Perovskite Light-Emitting Diodes. ACS Photonics, 2019, 6, 1111-1117.	3.2	61
252	Verification and mitigation of ion migration in perovskite solar cells. APL Materials, 2019, 7, .	2.2	179
253	Recent progress in perovskite-based photodetectors: the design of materials and structures. Advances in Physics: X, 2019, 4, 1592709.	1.5	42
254	Leadâ€Free Cs ₂ BiAgBr ₆ Double Perovskiteâ€Based Humidity Sensor with Superfast Recovery Time. Advanced Functional Materials, 2019, 29, 1902234.	7.8	143
255	Shortâ€Chain Ligandâ€Passivated Stable α sPbl ₃ Quantum Dot for Allâ€Inorganic Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1900991.	7.8	216
256	Giant reduction of the random lasing threshold in CH ₃ NH ₃ PbBr ₃ perovskite thin films by using a patterned sapphire substrate. Nanoscale, 2019, 11, 10636-10645.	2.8	28
257	Efficient Ruddlesden–Popper Perovskite Lightâ€Emitting Diodes with Randomly Oriented Nanocrystals. Advanced Functional Materials, 2019, 29, 1901225.	7.8	95

#	Article	IF	CITATIONS
258	Stable and Highly Efficient Photocatalysis with Leadâ€Free Doubleâ€Perovskite of Cs ₂ AgBiBr ₆ . Angewandte Chemie - International Edition, 2019, 58, 7263-7267.	7.2	283
259	Increasing Photoluminescence Quantum Yield by Nanophotonic Design of Quantum-Confined Halide Perovskite Nanowire Arrays. Nano Letters, 2019, 19, 2850-2857.	4.5	67
260	Efficient Perovskite Lightâ€Emitting Diodes Using Polycrystalline Core–Shellâ€Mimicked Nanograins. Advanced Functional Materials, 2019, 29, 1902017.	7.8	76
261	Improved Performance of Perovskite Light-Emitting Diodes by Dual Passivation with an Ionic Additive. ACS Applied Energy Materials, 2019, 2, 3336-3342.	2.5	21
262	Chlorine Passivation of Grain Boundary Suppresses Electron–Hole Recombination in CsPbBr ₃ Perovskite by Nonadiabatic Molecular Dynamics Simulation. ACS Applied Energy Materials, 2019, 2, 3419-3426.	2.5	32
263	Optically pumped lasing of segregated quasi-2D perovskite microcrystals in vertical microcavity at room temperature. Applied Physics Letters, 2019, 114, 131107.	1.5	18
264	Stable and Highly Efficient Photocatalysis with Leadâ€Free Doubleâ€Perovskite of Cs ₂ AgBiBr ₆ . Angewandte Chemie, 2019, 131, 7341-7345.	1.6	187
265	Large area perovskite light-emitting diodes by gas-assisted crystallization. Journal of Materials Chemistry C, 2019, 7, 3795-3801.	2.7	21
266	Epitaxial Growth of CsPbX ₃ (X = Cl, Br, I) Perovskite Quantum Dots via Surface Chemical Conversion of Cs ₂ GeF ₆ Double Perovskites: A Novel Strategy for the Formation of Leadless Hybrid Perovskite Phosphors with Enhanced Stability. Advanced Materials, 2019, 31, e1807592.	11.1	81
267	Blinking Beats Bleaching: The Control of Superoxide Generation by Photoâ€ionized Perovskite Nanocrystals. Angewandte Chemie, 2019, 131, 4929-4933.	1.6	9
268	Blinking Beats Bleaching: The Control of Superoxide Generation by Photoâ€ionized Perovskite Nanocrystals. Angewandte Chemie - International Edition, 2019, 58, 4875-4879.	7.2	23
269	Fluorescent Microarrays of <i>in Situ</i> Crystallized Perovskite Nanocomposites Fabricated for Patterned Applications by Using Inkjet Printing. ACS Nano, 2019, 13, 2042-2049.	7.3	120
270	Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nature Communications, 2019, 10, 665.	5.8	350
271	Recent progress toward perovskite light-emitting diodes with enhanced spectral and operational stability. Materials Today Nano, 2019, 5, 100028.	2.3	86
272	Two-dimensional organic–inorganic hybrid perovskite field-effect transistors with polymers as bottom-gate dielectrics. Journal of Materials Chemistry C, 2019, 7, 4004-4012.	2.7	45
273	Solution Route to Singleâ€Crystalline Ethylammonium Lead Halide Microstructures. ChemistrySelect, 2019, 4, 2174-2180.	0.7	1
274	Postsynthesis Mn-doping in CsPbI ₃ nanocrystals to stabilize the black perovskite phase. Nanoscale, 2019, 11, 4278-4286.	2.8	127
275	Tin-assisted growth of all-inorganic perovskite nanoplatelets with controllable morphologies and complementary emissions. CrystEngComm, 2019, 21, 2388-2397.	1.3	14

ARTICLE IF CITATIONS Blue quantum dot light-emitting diodes with high luminance by improving the charge transfer 276 2.2 49 balance. Chemical Communications, 2019, 55, 3501-3504. Continuous wave amplified spontaneous emission in phase-stable lead halide perovskites. Nature 278 5.8 Communications, 2019, 10, 988. Highly luminescent red emissive perovskite quantum dots-embedded composite films: ligands capping 279 2.8 20 and caesium doping-controlled crystallization process. Nanoscale, 2019, 11, 4942-4947. Interaction between Colloidal Quantum Dots and Halide Perovskites: Looking for Constructive 280 Synergies. Journal of Physical Chemistry Letters, 2019, 10, 1099-1108. Structure optimization of perovskite quantum dot light-emitting diodes. Nanoscale, 2019, 11, 5021-5029. 281 2.8 48 Interfacial engineering for highly efficient quasi-two dimensional organic–inorganic hybrid perovskite light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 4344-4349. High-Efficiency Red Light-Emitting Diodes Based on Multiple Quantum Wells of 283 3.2 69 Phenylbutylammonium-Cesium Lead Iodide Perovskites. ACS Photonics, 2019, 6, 587-594. Efficient metal halide perovskite light-emitting diodes with significantly improved light extraction on 284 5.8 179 nanophotonic substrates. Nature Communications, 2019, 10, 727. Interfacial Synthesis of Monodisperse CsPbBr₃ Nanorods with Tunable Aspect Ratio and 285 Clean Surface for Efficient Light-Emitting Diode Applications. Chemistry of Materials, 2019, 31, 3.2 78 1575-1583. Structural and Optoelectron Properties of Hybrid Perovskite Crystals. Optoelectronics, 0.2 Instrumentation and Data Processing, 2019, 55, 441-446. Solvents driven structural, morphological, optical and dielectric properties of lead free perovskite CH₃NH₃SnCl₃ for optoelectronic applications: experimental and 287 0.8 5 DFT study. Materials Research Express, 2019, 6, 125921. Blue emitting CsPbBr3 perovskite quantum dot inks obtained from sustained release tablets. Nano 5.8 Research, 2019, 12, 3129-3134. Understanding the Ligand Effects on Photophysical, Optical, and Electroluminescent Characteristics 290 of Hybrid Lead Halide Perovskite Nanocrystal Solids. Journal of Physical Chemistry Letters, 2019, 10, 2.1 49 7560-7567. Vacuum-Deposited Blue Inorganic Perovskite Light-Emitting Diodes. ACS Applied Materials & amp; Interfaces, 2019, 11, 47083-47090. 68 Effective Control of the Growth and Photoluminescence Properties of 292 CsPbBr₃/Cs₄PbBr₆ Nanocomposites by Solvent Engineering. ACS 20 1.6 Omega, 2019, 4, 19641-19646. Highly efficient Zn2SnO4 perovskite solar cells through band alignment engineering. Chemical 2.2 Communications, 2019, 55, 14673-14676. The role of excitons in 3D and 2D lead halide perovskites. Journal of Materials Chemistry C, 2019, 7, 294 2.7 80 12006-12018. Inorganic perovskite engineering through incorporation of a carboxylic acid containing ligand for 295 performance enhancement in perovskite light-emitting diodes. Journal of Materials Chemistry C, 2019,

CITATION REPORT

17

, 14141-14147.

#	Article	IF	CITATIONS
296	Dopant-induced localized light absorption in CsPbX ₃ (X = Cl, Br, I) perovskite quantum dots. New Journal of Chemistry, 2019, 43, 18268-18276.	1.4	13
297	Exciton–phonon interaction in quasi-two dimensional layered (PEA) ₂ (CsPbBr ₃) _{nâ~1} PbBr ₄ perovskite. Nanoscale, 2019, 11, 21867-21871.	2.8	34
298	Sb ₂ S ₃ solar cells: functional layer preparation and device performance. Inorganic Chemistry Frontiers, 2019, 6, 3381-3397.	3.0	33
299	Direct emission from quartet excited states triggered by upconversion phenomena in solid-phase synthesized fluorescent lead-free organic–inorganic hybrid compounds. Journal of Materials Chemistry A, 2019, 7, 26504-26512.	5.2	35
300	Coffee ring elimination and crystalline control of electrohydrodynamically printed high-viscosity perovskites. Journal of Materials Chemistry C, 2019, 7, 14867-14873.	2.7	38
301	Surfacial ligand management of a perovskite film for efficient and stable light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 14725-14730.	2.7	10
302	Solvothermal synthesis of cesium lead halide nanocrystals with controllable dimensions: a stoichiometry defined growth mechanism. Journal of Materials Chemistry C, 2019, 7, 14493-14498.	2.7	23
303	Unconventional route to dual-shelled organolead halide perovskite nanocrystals with controlled dimensions, surface chemistry, and stabilities. Science Advances, 2019, 5, eaax4424.	4.7	116
304	Best practices for measuring emerging light-emitting diode technologies. Nature Photonics, 2019, 13, 818-821.	15.6	59
305	Lasing from reduced dimensional perovskite microplatelets: Fabry-Pérot or whispering-gallery-mode?. Journal of Chemical Physics, 2019, 151, 211101.	1.2	12
306	Efficient and Stable Low-Bandgap Perovskite Solar Cells Enabled by a CsPbBr ₃ -Cluster Assisted Bottom-up Crystallization Approach. Journal of the American Chemical Society, 2019, 141, 20537-20546.	6.6	79
307	Picosecond electron trapping limits the emissivity of CsPbCl3 perovskite nanocrystals. Journal of Chemical Physics, 2019, 151, 194701.	1.2	26
308	Regulating Vertical Domain Distribution in Ruddlesden–Popper Perovskites for Electroluminescence Devices. Journal of Physical Chemistry Letters, 2019, 10, 7949-7955.	2.1	5
309	Self-Healing of Photocurrent Degradation in Perovskite Solar Cells: The Role of Defect-Trapped Excitons. Journal of Physical Chemistry Letters, 2019, 10, 7774-7780.	2.1	23
310	Slot-Die-Printed Two-Dimensional ZrS ₃ Charge Transport Layer for Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 48021-48028.	4.0	13
311	Amplified Spontaneous Emission Threshold Reduction and Operational Stability Improvement in CsPbBr3 Nanocrystals Films by Hydrophobic Functionalization of the Substrate. Scientific Reports, 2019, 9, 17964.	1.6	46
312	Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nature Communications, 2019, 10, 5633.	5.8	267
313	Upconverted excitonic photoluminescence from a two-dimensional lead-halide perovskite. Journal of Chemical Physics, 2019, 151, 234709.	1.2	11

#	Article	IF	CITATIONS
314	Excited-state stability of quasi-two-dimensional metal halide perovskite films under optical and electrical excitations. Applied Physics Letters, 2019, 115, .	1.5	9
315	Carrier accumulation enhanced Auger recombination and inner self-heating-induced spectrum fluctuation in CsPbBr3 perovskite nanocrystal light-emitting devices. Applied Physics Letters, 2019, 115,	1.5	15
316	Improved photoelectric performance of all-inorganic perovskite through different additives for green light-emitting diodes. RSC Advances, 2019, 9, 34506-34511.	1.7	15
317	Enhancing the performance of perovskite light-emitting devices through 1,3,5-tris(2- <i>N</i> -phenylbenzimidazolyl)benzene interlayer incorporation. RSC Advances, 2019, 9, 29037-29043.	1.7	2
318	Widely applicable phosphomolybdic acid doped poly(9-vinylcarbazole) hole transport layer for perovskite light-emitting devices. RSC Advances, 2019, 9, 30398-30405.	1.7	2
319	Cs ₄ PbBr ₆ /CsPbBr ₃ perovskite composites for WLEDs: pure white, high luminous efficiency and tunable color temperature. RSC Advances, 2019, 9, 42430-42437.	1.7	14
320	Highly compact and smooth all-inorganic perovskite films for low threshold amplified spontaneous emission from additive-assisted solution processing. Journal of Materials Chemistry C, 2019, 7, 15350-15356.	2.7	13
321	Two-Dimensional Mixed Lead-Tin Halide Perovskites for Visble Light-Emitting Diodes. , 2019, , .		0
322	Exciton tunneling behaviors in two dimensional halide perovskite. , 2019, , .		0
323	Green Solution-Processed Tin-Based Perovskite Films for Lead-Free Planar Photovoltaic Devices. ACS Applied Materials & Interfaces, 2019, 11, 3053-3060.	4.0	27
324	Two dimensional metal halide perovskites: Promising candidates for light-emitting diodes. Journal of Energy Chemistry, 2019, 37, 97-110.	7.1	52
325	Two-Dimensional Lead-Free Perovskite (C ₆ H ₅ C ₂ H ₄ NH ₃) ₂ CsSn ₂ With High Hole Mobility. Journal of Physical Chemistry Letters, 2019, 10, 7-12.	subal <sub< td=""><td>><i>7</i>34/sub></td></sub<>	> <i>7</i> 34/sub>
326	Defect Passivation for Red Perovskite Light-Emitting Diodes with Improved Brightness and Stability. Journal of Physical Chemistry Letters, 2019, 10, 380-385.	2.1	55
327	Chemical Formation and Multiple Applications of Organic–Inorganic Hybrid Perovskite Materials. Journal of the American Chemical Society, 2019, 141, 1406-1414.	6.6	61
328	Mixed Lead–Tin Halide Perovskites for Efficient and Wavelengthâ€Tunable Nearâ€Infrared Lightâ€Emitting Diodes. Advanced Materials, 2019, 31, e1806105.	11.1	66
329	A Single Nonblinking Cs ₄ PbBr ₆ Nanoparticle as a Nanothermometer. ChemNanoMat, 2019, 5, 364-369.	1.5	3
330	Tin-Based Multiple Quantum Well Perovskites for Light-Emitting Diodes with Improved Stability. Journal of Physical Chemistry Letters, 2019, 10, 453-459.	2.1	72
331	Zero-dimensional cesium lead halide perovskites: Phase transformations, hybrid structures, and applications. Journal of Solid State Chemistry, 2019, 271, 361-377.	1.4	28

#	Article	IF	CITATIONS
332	Photoexcited Dynamics in Metal Halide Perovskites: From Relaxation Mechanisms to Applications. Journal of Physical Chemistry C, 2019, 123, 3255-3269.	1.5	9
333	Effect of perovskite film morphology on device performance of perovskite light-emitting diodes. Nanoscale, 2019, 11, 1505-1514.	2.8	32
334	An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chemical Society Reviews, 2019, 48, 310-350.	18.7	845
335	2D Perovskiteâ€Based Selfâ€Aligned Lateral Heterostructure Photodetectors Utilizing Vapor Deposition. Advanced Optical Materials, 2019, 7, 1801356.	3.6	50
336	Gram-scale and solvent-free synthesis of Mn-doped lead halide perovskite nanocrystals. Journal of Alloys and Compounds, 2020, 815, 152393.	2.8	11
337	Recent Developments and Novel Applications of Thin Film, Lightâ€Emitting Transistors. Advanced Functional Materials, 2020, 30, 1905269.	7.8	53
338	Emerging Selfâ€Emissive Technologies for Flexible Displays. Advanced Materials, 2020, 32, e1902391.	11.1	131
339	Multipleâ€Quantumâ€Well Perovskites for Highâ€Performance Lightâ€Emitting Diodes. Advanced Materials, 2020, 32, e1904163.	11.1	129
340	Enhancing Photovoltaic Performance of Aromatic Ammoniumâ€based Twoâ€Dimensional Organicâ€Inorganic Hybrid Perovskites via Tuning CH··΀ Interaction. Solar Rrl, 2020, 4, 1900374.	3.1	15
341	2D and Quasiâ€2D Halide Perovskites: Applications and Progress. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900435.	1.2	37
342	Spectrally Stable Ultraâ€Pure Blue Perovskite Lightâ€Emitting Diodes Boosted by Squareâ€Wave Alternating Voltage. Advanced Optical Materials, 2020, 8, 1901094.	3.6	37
343	CsPbBr ₃ Perovskite Quantum Dot Lightâ€Emitting Diodes Using Atomic Layer Deposited Al ₂ O ₃ and ZnO Interlayers. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900573.	1.2	19
344	Tri-chromatic quantum-dot synthesized sun-like white light-emitting diodes reaching maximum spectral similarity of 0.98. Optics and Laser Technology, 2020, 121, 105828.	2.2	4
345	Efficient blue perovskite LEDs from quantum confined structures. Science China Chemistry, 2020, 63, 3-4.	4.2	1
346	Channel-Length-Dependent Performances of Planar Photodiodes Based on Perovskite. Lecture Notes in Electrical Engineering, 2020, , 187-193.	0.3	0
347	Energyâ€Level Modulation in Diboronâ€Modified SnO ₂ for Highâ€Efficiency Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900217.	3.1	28
348	Advances in metal halide perovskite nanocrystals: Synthetic strategies, growth mechanisms, and optoelectronic applications. Materials Today, 2020, 32, 204-221.	8.3	114
350	Efficient Allâ€Solutionâ€Processed Perovskite Lightâ€Emitting Diodes Enabled by Smallâ€Molecule Doped Electron Injection Layers. Advanced Optical Materials, 2020, 8, 1900567.	3.6	25

#	Article	IF	CITATIONS
351	Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nature Photonics, 2020, 14, 82-88.	15.6	326
352	Lead-free double perovskite Cs2AgBiBr6/RGO composite for efficient visible light photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2020, 268, 118399.	10.8	166
353	Highly oriented perovskites for efficient light-emitting diodes with balanced charge transport. Organic Electronics, 2020, 77, 105529.	1.4	5
354	Efficient light-emitting devices based on mixed-cation lead halide perovskites. Organic Electronics, 2020, 77, 105546.	1.4	8
355	Spectral Signatures of Positive and Negative Polarons in Lead-Halide Perovskite Nanocrystals. Journal of Physical Chemistry C, 2020, 124, 1027-1041.	1.5	11
356	Pink all-inorganic halide perovskite nanocrystals with adjustable characteristics: Fully reversible cation exchange, improving the stability of dopant emission and light-emitting diode application. Journal of Alloys and Compounds, 2020, 818, 152913.	2.8	16
357	Efficient Nearâ€Infrared Lightâ€Emitting Diodes based on In(Zn)As–In(Zn)P–GaP–ZnS Quantum Dots. Advanced Functional Materials, 2020, 30, 1906483.	7.8	28
358	Efficient and stable planar all-inorganic perovskite solar cells based on high-quality CsPbBr3 films with controllable morphology. Journal of Energy Chemistry, 2020, 46, 8-15.	7.1	89
359	Stability Issue of Perovskite Solar Cells under Realâ€World Operating Conditions. Energy Technology, 2020, 8, 1900744.	1.8	25
360	Metal Halide Perovskites for Solarâ€ŧo hemical Fuel Conversion. Advanced Energy Materials, 2020, 10, 1902433.	10.2	115
361	Preparation and Characterization of Mixed Halide MAPbI _{3â^'<i>x</i>} Cl _{<i>x</i>} Perovskite Thin Films by Threeâ€6ource Vacuum Deposition. Energy Technology, 2020, 8, 1900784.	1.8	12
362	Modulation of Electronic States of Hybrid Lead Halide Perovskite Embedded in Organic Matrix. Energy Technology, 2020, 8, 1900894.	1.8	4
363	Tuning the optical properties of Cs2SnCl6:Bi and Cs2SnCl6:Sb lead-free perovskites via post-annealing for white LEDs. Journal of Alloys and Compounds, 2020, 822, 153528.	2.8	46
364	Solution processed lead-free cesium titanium halide perovskites and their structural, thermal and optical characteristics. Journal of Materials Chemistry C, 2020, 8, 1591-1597.	2.7	67
365	Strain engineering and epitaxial stabilization of halide perovskites. Nature, 2020, 577, 209-215.	13.7	417
366	The Rise of Textured Perovskite Morphology: Revolutionizing the Pathway toward Highâ€Performance Optoelectronic Devices. Advanced Energy Materials, 2020, 10, 1902256.	10.2	34
367	Edge stabilization in reduced-dimensional perovskites. Nature Communications, 2020, 11, 170.	5.8	147
368	Observation of long spin lifetime in MAPbBr ₃ single crystals at room temperature. JPhys Materials, 2020, 3, 015012.	1.8	15

#	Article	IF	CITATIONS
369	Insights into the role of the lead/surfactant ratio in the formation and passivation of cesium lead bromide perovskite nanocrystals. Nanoscale, 2020, 12, 623-637.	2.8	48
370	Improved current efficiency of quasi-2D multi-cation perovskite light-emitting diodes: the effect of Cs and K. Nanoscale, 2020, 12, 1571-1579.	2.8	19
371	Printable CsPbBr ₃ perovskite quantum dot ink for coffee ring-free fluorescent microarrays using inkjet printing. Nanoscale, 2020, 12, 2569-2577.	2.8	73
372	CsPbBr ₃ nanocrystal inks for printable light harvesting devices. Sustainable Energy and Fuels, 2020, 4, 171-176.	2.5	4
373	Nucleation and crystal growth control for scalable solution-processed organic–inorganic hybrid perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 1578-1603.	5.2	112
374	Mixed-ligand engineering of quasi-2D perovskites for efficient sky-blue light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 1319-1325.	2.7	39
375	Direct Growth of Perovskite Crystals on Metallic Electrodes for Highâ€Performance Electronic and Optoelectronic Devices. Small, 2020, 16, e1906185.	5.2	20
376	Origin and tunability of dual color emission in highly stable Mn doped CsPbCl3 nanocrystals grown by a solid-state process. Journal of Colloid and Interface Science, 2020, 564, 357-370.	5.0	34
377	Photon recycling in perovskite CH3NH3PbX3 (X = I, Br, Cl) bulk single crystals and polycrystalline films. Journal of Luminescence, 2020, 220, 116987.	1.5	33
378	Intermediate Phase Enhances Inorganic Perovskite and Metal Oxide Interface for Efficient Photovoltaics. Joule, 2020, 4, 222-234.	11.7	88
379	Pressure-Induced Ultra-Broad-Band Emission of a Cs ₂ AgBiBr ₆ Perovskite Thin Film. Journal of Physical Chemistry C, 2020, 124, 1732-1738.	1.5	25
380	Efficient Quasi-Two-Dimensional Perovskite Light-Emitting Diodes with Improved Multiple Quantum Well Structure. ACS Applied Materials & amp; Interfaces, 2020, 12, 1721-1727.	4.0	25
381	Origin of Broad-Band Emission and Impact of Structural Dimensionality in Tin-Alloyed Ruddlesden–Popper Hybrid Lead Iodide Perovskites. ACS Energy Letters, 2020, 5, 347-352.	8.8	55
382	Record High External Quantum Efficiency of 19.2% Achieved in Lightâ€Emitting Diodes of Colloidal Quantum Wells Enabled by Hotâ€Injection Shell Growth. Advanced Materials, 2020, 32, e1905824.	11.1	95
383	Controlling Spatial Crystallization Uniformity and Phase Orientation of Quasiâ€2D Perovskiteâ€Based Lightâ€Emitting Diodes Using Lewis Bases. Advanced Materials Interfaces, 2020, 7, 1901860.	1.9	11
384	Highâ€Performance Perovskite Lightâ€Emitting Diode with Enhanced Operational Stability Using Lithium Halide Passivation. Angewandte Chemie, 2020, 132, 4128-4134.	1.6	8
385	Highâ€Performance Perovskite Lightâ€Emitting Diode with Enhanced Operational Stability Using Lithium Halide Passivation. Angewandte Chemie - International Edition, 2020, 59, 4099-4105.	7.2	130
386	Perovskite nanostructures: Leveraging quantum effects to challenge optoelectronic limits. Materials Today, 2020, 33, 122-140.	8.3	26

#	Article	IF	CITATIONS
387	From Pb to Bi: A Promising Family of Pbâ€Free Optoelectronic Materials and Devices. Advanced Energy Materials, 2020, 10, 1902496.	10.2	108
388	Role of Excess FAI in Formation of Highâ€Efficiency FAPbI ₃ â€Based Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 1906875.	7.8	44
389	A Review of Diverse Halide Perovskite Morphologies for Efficient Optoelectronic Applications. Small Methods, 2020, 4, 1900662.	4.6	69
390	Surfaceâ€2D/Bulkâ€3D Heterophased Perovskite Nanograins for Longâ€Termâ€Stable Lightâ€Emitting Diodes. Advanced Materials, 2020, 32, e1905674.	11.1	59
391	Strong Collectivity of Optical Transitions in Lead Halide Perovskite Quantum Dots. Plasmonics, 2020, 15, 581-590.	1.8	5
392	Exciton-Polariton Properties in Planar Microcavity of Millimeter-Sized Two-Dimensional Perovskite Sheet. ACS Applied Materials & Interfaces, 2020, 12, 5081-5089.	4.0	14
393	Welding Perovskite Nanowires for Stable, Sensitive, Flexible Photodetectors. ACS Nano, 2020, 14, 2777-2787.	7.3	90
394	Molecule occupancy by a <i>n</i> -butylamine treatment to facilitate the conversion of Pbl ₂ to perovskite in sequential deposition. Physical Chemistry Chemical Physics, 2020, 22, 981-984.	1.3	4
395	Potassium Bromide Surface Passivation on CsPbl _{3-x} Br _{<i>x</i>} Nanocrystals for Efficient and Stable Pure Red Perovskite Light-Emitting Diodes. Journal of the American Chemical Society, 2020, 142, 2956-2967.	6.6	236
396	Trivalentâ€Neodymium Additive Modulated MAPbBr ₃ Perovskite Nucleation and Growth: Ultrawide Processing Window for Oneâ€6tep Fabrication of Efficient Lightâ€Emitting Perovskites. Advanced Electronic Materials, 2020, 6, 1901162.	2.6	9
397	Modulation of Growth Kinetics of Vacuum-Deposited CsPbBr ₃ Films for Efficient Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 1944-1952.	4.0	33
398	Operational stability of perovskite light emitting diodes. JPhys Materials, 2020, 3, 012002.	1.8	95
399	Effective Singlet Oxygen Generation in Silicaâ€Coated CsPbBr ₃ Quantum Dots through Energy Transfer for Photocatalysis. ChemSusChem, 2020, 13, 682-687.	3.6	24
400	Improving the efficiency of perovskite light emitting diode using polyvinylpyrrolidone as an interlayer. Applied Surface Science, 2020, 507, 145071.	3.1	13
401	Perovskite Quantum Dots Exhibiting Strong Hole Extraction Capability for Efficient Inorganic Thin Film Solar Cells. Cell Reports Physical Science, 2020, 1, 100001.	2.8	28
402	Fabrication of CH 3 NH 3 PbBr 3 â€Based Perovskite Singleâ€Crystal Arrays by Spinâ€Coating Method Using Hydrophobic Patterned Substrate. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900511.	0.8	5
403	Elucidating the performance limits of perovskite nanocrystal light emitting diodes. Journal of Luminescence, 2020, 220, 116939.	1.5	19
404	Ultra-stable phosphor of h-BN white graphene-loaded all-inorganic perovskite nanocrystals for white LEDs. Journal of Luminescence, 2020, 219, 116941.	1.5	17

#	Article	IF	CITATIONS
405	Distinguish the Quenching and Degradation of CH ₃ NH ₃ Pbl ₃ Perovskite by Simultaneous Absorption and Photoluminescence Measurements. Journal of Physical Chemistry C, 2020, 124, 1207-1213.	1.5	6
406	Homo- and Heterovalent Doping-Mediated Self-Trapped Exciton Emission and Energy Transfer in Mn-Doped Cs ₂ Na _{1–<i>x</i>} Ag _{<i>x</i>} BiCl ₆ Double Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 340-348.	2.1	104
407	Dark Subgap States in Metal-Halide Perovskites Revealed by Coherent Multidimensional Spectroscopy. Journal of the American Chemical Society, 2020, 142, 777-782.	6.6	14
408	Highly Efficient Organic Afterglow from a 2D Layered Lead-Free Metal Halide in Both Crystals and Thin Films under an Air Atmosphere. ACS Applied Materials & Interfaces, 2020, 12, 1419-1426.	4.0	48
409	In Situ Observation of Emission Behavior during Anion-Exchange Reaction of a Cesium Lead Halide Perovskite Nanocrystal at the Single-Nanocrystal Level. Journal of Physical Chemistry Letters, 2020, 11, 530-535.	2.1	23
410	3D printed nanomaterial-based electronic, biomedical, and bioelectronic devices. Nanotechnology, 2020, 31, 172001.	1.3	52
411	Tracking the Fluorescence Lifetimes of Cesium Lead Halide Perovskite Nanocrystals During Their Synthesis Using a Fully Automated Optofluidic Platform. Chemistry of Materials, 2020, 32, 27-37.	3.2	41
412	Synthesis and Spectroscopy of Monodispersed, Quantum-Confined FAPbBr ₃ Perovskite Nanocrystals. Chemistry of Materials, 2020, 32, 549-556.	3.2	39
413	Large-area near-infrared perovskite light-emitting diodes. Nature Photonics, 2020, 14, 215-218.	15.6	263
414	Minimizing non-radiative recombination losses in perovskite solar cells. Nature Reviews Materials, 2020, 5, 44-60.	23.3	754
415	Luminescence properties, energy transfer and thermal stability of blue-green color tunable Sr3Y(BO3)3:Ce3+, Tb3+ phosphors. Optics and Laser Technology, 2020, 123, 105900.	2.2	14
416	Photoluminescence Origin of Zero-Dimensional Cs ₄ PbBr ₆ Perovskite. ACS Energy Letters, 2020, 5, 87-99.	8.8	128
417	Roadmap on halide perovskite and related devices. Nanotechnology, 2020, 31, 152001.	1.3	24
418	Electrically-Driven Violet Light-Emitting Devices Based on Highly Stable Lead-Free Perovskite Cs ₃ Sb ₂ Br ₉ Quantum Dots. ACS Energy Letters, 2020, 5, 385-394.	8.8	169
419	Synthesis and optical applications of low dimensional metal-halide perovskites. Nanotechnology, 2020, 31, 152002.	1.3	31
420	Synergistic Effect of Dual Ligands on Stable Blue Quasiâ€⊋D Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 1908339.	7.8	103
421	Two-photon-pumped high-quality, single-mode vertical cavity lasing based on perovskite monocrystalline films. Nano Energy, 2020, 68, 104334.	8.2	29
422	Ion Migration: A "Doubleâ€Edged Sword―for Halideâ€Perovskiteâ€Based Electronic Devices. Small Methods, 2020, 4, 1900552.	4.6	127

# 423	ARTICLE Laserâ€Processed Perovskite Solar Cells and Modules. Solar Rrl, 2020, 4, 1900432.	IF 3.1	CITATIONS 34
424	Crystallographic orientation and layer impurities in two-dimensional metal halide perovskite thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 010801.	0.9	19
425	Physical origins of high photoluminescence quantum yield in α-CsPbI3 nanocrystals and their stability. Applied Surface Science, 2020, 508, 145188.	3.1	13
426	Toward Understanding Space-Charge Limited Current Measurements on Metal Halide Perovskites. ACS Energy Letters, 2020, 5, 376-384.	8.8	211
427	Strontium Ion Bâ€Site Substitution for Spectralâ€Stable Blue Emitting Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2020, 8, 2001073.	3.6	28
428	Pâ€212: Lateâ€Newsâ€Poster: Study on the Ideal Structural Change of Perovskite LEDs for Enhanced Performances by Using Different Perovskite Composition. Digest of Technical Papers SID International Symposium, 2020, 51, 1783-1786.	0.1	0
429	Understanding the Role of Ion Migration in the Operation of Perovskite Light-Emitting Diodes by Transient Measurements. ACS Applied Materials & Interfaces, 2020, 12, 48845-48853.	4.0	37
430	Recent Progress in Emerging Near-Infrared Emitting Materials for Light-Emitting Diode Applications. Organic Materials, 2020, 02, 253-281.	1.0	25
431	Suppression of Electric Field-Induced Segregation in Sky-Blue Perovskite Light-Emitting Electrochemical Cells. Nanomaterials, 2020, 10, 1937.	1.9	14
432	Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nature Electronics, 2020, 3, 704-710.	13.1	143
433	Perovskite Light Emitting Diode Characteristics: The Effects of Electroluminescence Transient and Hysteresis. Advanced Optical Materials, 2020, 8, 2000941.	3.6	18
434	Dipolar cation accumulation at the interfaces of perovskite light-emitting solar cells. Journal of Materials Chemistry C, 2020, 8, 16992-16999.	2.7	7
435	Origin of the luminescence spectra width in perovskite nanocrystals with surface passivation. Nanoscale, 2020, 12, 21695-21702.	2.8	16
436	Full-Color Spectrum Coverage by High-Color-Purity Perovskite Nanocrystal Light-Emitting Diodes. Cell Reports Physical Science, 2020, 1, 100177.	2.8	24
437	Solid-State Ionic Rectification in Perovskite Nanowire Heterostructures. Nano Letters, 2020, 20, 8151-8156.	4.5	12
438	Formation of Stable Metal Halide Perovskite/Perovskite Heterojunctions. ACS Energy Letters, 2020, 5, 3443-3451.	8.8	35
439	A novel white Ba3-ySryY1-x(BO3)3:xDy3+ phosphor with lower correlated color temperature and superior thermal stability. Journal of Solid State Chemistry, 2020, 292, 121744.	1.4	6
440	Recent advances of lead-free metal halide perovskite single crystals and nanocrystals: synthesis, crystal structure, optical properties, and their diverse applications. Materials Today Chemistry, 2020, 18, 100363.	1.7	38

#	Article	IF	CITATIONS
441	Color-pure red light-emitting diodes based on two-dimensional lead-free perovskites. Science Advances, 2020, 6, .	4.7	135
442	Pâ€98: Inkjet Printed CsPbBr ₃ Quantum Dots for Full olor Display. Digest of Technical Papers SID International Symposium, 2020, 51, 1733-1734.	0.1	2
443	Pâ€106: Highly Luminescent Blue Lightâ€Emitting Diodes Based on Quasiâ€2D Multiâ€Cation Perovskites. Digest of Technical Papers SID International Symposium, 2020, 51, 1752-1754.	0.1	0
444	Water-stable polymer hole transport layer in organic and perovskite light-emitting diodes. Journal of Power Sources, 2020, 478, 228810.	4.0	6
445	Triboelectric charging behaviors and photoinduced enhancement of alkaline earth ions doped inorganic perovskite triboelectric nanogenerators. Nano Energy, 2020, 77, 105280.	8.2	39
446	Fabrication of centimeter-scale MAPbBr3 light-emitting device with high color purity. Organic Electronics, 2020, 86, 105931.	1.4	8
447	Traps in metal halide perovskites: characterization and passivation. Nanoscale, 2020, 12, 22425-22451.	2.8	26
448	Concrete perovskites for fabricating high-quality micro-laser arrays. Journal of Materials Chemistry C, 2020, 8, 16042-16047.	2.7	4
449	Blue electroluminescent metal halide perovskites. Journal of Applied Physics, 2020, 128, 120901.	1.1	4
450	Exciton Localization and Enhancement of the Exciton–LO Phonon Interaction in a CsPbBr ₃ Single Crystal. Journal of Physical Chemistry C, 2020, 124, 18257-18263.	1.5	22
451	Dual Functionalization of Electron Transport Layer <i>via</i> Tailoring Molecular Structure for High-Performance Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 37346-37353.	4.0	17
452	Curing the fundamental issue of impurity phases in two-step solution-processed CsPbBr3 perovskite films. Science Bulletin, 2020, 65, 726-737.	4.3	34
453	Chelating-agent-assisted control of CsPbBr3 quantum well growth enables stable blue perovskite emitters. Nature Communications, 2020, 11, 3674.	5.8	112
454	Ultrastable Zero-Dimensional Cs4PbBr6 Perovskite Quantum Dot Glass. ACS Sustainable Chemistry and Engineering, 2020, , .	3.2	3
455	Direct Spectroscopic Observation of the Hole Polaron in Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 6256-6261.	2.1	15
456	Engineering Architecture of Quantum Dot-Based Light-Emitting Diode for High Device Performance with Double-Sided Emission Fabricated by Nonvacuum Technique. ACS Applied Electronic Materials, 2020, 2, 2383-2389.	2.0	11
457	Core–Shell CsPbBr ₃ @CdS Quantum Dots with Enhanced Stability and Photoluminescence Quantum Yields for Optoelectronic Devices. ACS Applied Nano Materials, 2020, 3, 7563-7571.	2.4	45
458	Impact of Pressure and Temperature on the Compaction Dynamics and Layer Properties of Powder-Pressed Methylammonium Lead Halide Thick Films. ACS Applied Electronic Materials, 2020, 2, 2619-2628.	2.0	14

#	Article	IF	CITATIONS
459	Simultaneous Low-Order Phase Suppression and Defect Passivation for Efficient and Stable Blue Light-Emitting Diodes. ACS Energy Letters, 2020, 5, 2569-2579.	8.8	89
460	Improved performance of flexible perovskite light-emitting diodes with modified PEDOT:PSS hole transport layer. Journal of Industrial and Engineering Chemistry, 2020, 90, 117-121.	2.9	17
461	Defect/Interface Recombination Limited Quasi-Fermi Level Splitting and Open-Circuit Voltage in Mono- and Triple-Cation Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 37647-37656.	4.0	28
462	Controlling and Optimizing Amplified Spontaneous Emission in Perovskites. ACS Applied Materials & Interfaces, 2020, 12, 35242-35249.	4.0	34
463	Growth kinetics of hybrid perovskite thin films on different substrates at elevated temperature and its direct correlation with the microstructure and optical properties. Applied Surface Science, 2020, 530, 147224.	3.1	13
464	Ligand passivation yields long-life perovskite light-emitting diodes. Science Bulletin, 2020, 65, 1691-1693.	4.3	7
465	Optimizing Performance and Operational Stability of CsPbI ₃ Quantum-Dot-Based Light-Emitting Diodes by Interface Engineering. ACS Applied Electronic Materials, 2020, 2, 2525-2534.	2.0	24
466	A new route for the shape differentiation of cesium lead bromide perovskite nanocrystals with near-unity photoluminescence quantum yield. Nanoscale, 2020, 12, 17053-17063.	2.8	16
467	Fluorescent methylammonium lead halide perovskite quantum dots as a sensing material for the detection of polar organochlorine pesticide residues. Analyst, The, 2020, 145, 6683-6690.	1.7	12
468	Ultrashort laser pulse doubling by metal-halide perovskite multiple quantum wells. Nature Communications, 2020, 11, 3361.	5.8	57
469	Hole injection in perovskite light-emitting device with PEDOT:PSS/perovskite interface via MS contact. Applied Physics Letters, 2020, 117, 012107.	1.5	3
470	Van der Waals Epitaxy of Horizontally Orientated Bismuth Iodide/Silicon Heterostructure for Nonvolatile Resistive‣witching Memory with Multistate Data Storage. Advanced Materials Interfaces, 2020, 7, 2000630.	1.9	6
471	Highly Luminescent CsPbBr ₃ @Cs ₄ PbBr ₆ Nanocrystals and Their Application in Electroluminescent Emitters. Journal of Physical Chemistry Letters, 2020, 11, 10196-10202.	2.1	30
472	Shining a light on perovskite devices. Nature Electronics, 2020, 3, 657-657.	13.1	3
473	Pressing challenges of halide perovskite thin film growth. APL Materials, 2020, 8, .	2.2	42
474	Enhanced hole injection assisted by electric dipoles for efficient perovskite light-emitting diodes. Communications Materials, 2020, 1, .	2.9	33
475	In Situ-Fabricated Perovskite Nanocrystals for Deep-Blue Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2020, 11, 10348-10353.	2.1	18
476	Cs ₄ PbBr ₆ /CsPbBr ₃ Nanocomposites for All-Inorganic Electroluminescent Perovskite Light-Emitting Diodes. ACS Applied Nano Materials, 2020, 3, 11760-11768.	2.4	21

#	Article	IF	CITATIONS
477	Detecting alcohol vapors using two-dimensional copper-based Ruddlesden–Popper perovskites. Applied Physics Letters, 2020, 117, .	1.5	7
478	External Field-Tunable Internal Orbit–Orbit Interaction in Flexible Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 10323-10328.	2.1	2
479	Structural, Electronic, and Optical Properties of CsPb(Br1â^'xClx)3 Perovskite: First-Principles Study with PBE–GGA and mBJ–GGA Methods. Materials, 2020, 13, 4944.	1.3	22
480	Origin and Suppression of External Quantum Efficiency Roll-Off in Quasi-Two-Dimensional Metal Halide Perovskite Light-Emitting Diodes. Journal of Physical Chemistry C, 2020, 124, 27422-27428.	1.5	11
481	Flash Formation of I-Rich Clusters during Multistage Halide Segregation Studied in MAPbI1.5Br1.5. Journal of Physical Chemistry C, 2020, 124, 24608-24615.	1.5	13
482	Vacuum Dual-Source Thermal-Deposited Lead-Free Cs ₃ Cu ₂ I ₅ Films with High Photoluminescence Quantum Yield for Deep-Blue Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 52967-52975.	4.0	50
483	Transient circular dichroism and exciton spin dynamics in all-inorganic halide perovskites. Nature Communications, 2020, 11, 5665.	5.8	29
484	Boosting the Efficiency of NiO _{<i>x</i>} -Based Perovskite Light-Emitting Diodes by Interface Engineering. ACS Applied Materials & Interfaces, 2020, 12, 53528-53536.	4.0	32
485	Nonradiative Relaxation Dynamics of a Cesium Lead Halide Perovskite Photovoltaic Architecture: Effect of External Electric Fields. Journal of Physical Chemistry Letters, 2020, 11, 9983-9989.	2.1	11
486	Elucidating and Mitigating Degradation Processes in Perovskite Lightâ€Emitting Diodes. Advanced Energy Materials, 2020, 10, 2002676.	10.2	28
487	Suppressing Defectsâ€Induced Nonradiative Recombination for Efficient Perovskite Solar Cells through Green Antisolvent Engineering. Advanced Materials, 2020, 32, e2003965.	11.1	123
488	Lead-free violet-emitting K2CuCl3 single crystal with high photoluminescence quantum yield. Organic Electronics, 2020, 86, 105903.	1.4	27
489	Planar Optical Waveguides Using Poly(styrene-ethylene-butylene-styrene) Activated with Inorganic Lead Halide Perovskite Nanoplates. ACS Photonics, 2020, 7, 2329-2336.	3.2	9
490	Influence of annealing process on the stable luminous CsPbCl3 perovskite films by thermal evaporation. Journal of Luminescence, 2020, 227, 117592.	1.5	9
491	In-situ passivation perovskite targeting efficient light-emitting diodes via spontaneously formed silica network. Nano Energy, 2020, 78, 105134.	8.2	28
492	A comprehensive review on synthesis and applications of single crystal perovskite halides. Progress in Solid State Chemistry, 2020, 60, 100286.	3.9	77
493	Halide perovskite-based photocatalysis systems for solar-driven fuel generation. Solar Energy, 2020, 208, 296-311.	2.9	31
494	Investigating the structure–function relationship in triple cation perovskite nanocrystals for light-emitting diode applications. Journal of Materials Chemistry C, 2020, 8, 11805-11821.	2.7	27

#	Article	IF	CITATIONS
495	Perovskite white light-emitting diodes with a perovskite emissive layer blended with rhodamine 6G. Journal of Materials Chemistry C, 2020, 8, 12951-12958.	2.7	26
496	Progress and perspective on CsPbX3 nanocrystals for light emitting diodes and solar cells. Journal of Applied Physics, 2020, 128, .	1.1	20
497	Dynamic Response of Alternating-Current-Driven Light-Emitting Diodes Based on Hybrid Halide Perovskites. Physical Review Applied, 2020, 14, .	1.5	11
498	Ultraefficient Singlet Oxygen Generation from Manganese-Doped Cesium Lead Chloride Perovskite Quantum Dots. ACS Nano, 2020, 14, 12596-12604.	7.3	20
499	Space-charge-limited electron and hole currents in hybrid organic-inorganic perovskites. Nature Communications, 2020, 11, 4023.	5.8	136
500	Shape Control of Metal Halide Perovskite Single Crystals: From Bulk to Nanoscale. Chemistry of Materials, 2020, 32, 7602-7617.	3.2	46
501	Emerging Functional Materials under High Pressure toward Enhanced Properties. , 2020, 2, 1233-1239.		30
502	Suppressing Ion Migration Enables Stable Perovskite Lightâ€Emitting Diodes with Allâ€Inorganic Strategy. Advanced Functional Materials, 2020, 30, 2001834.	7.8	76
503	Enhanced Charge Transportation towards High Luminescent 2D Perovskite Light-Emitting Diodes. Journal of Physics: Conference Series, 2020, 1549, 042101.	0.3	0
504	Broad-Band Photodetectors Based on Copper Indium Diselenide Quantum Dots in a Methylammonium Lead Iodide Perovskite Matrix. ACS Applied Materials & Interfaces, 2020, 12, 35201-35210.	4.0	21
505	White Electroluminescence from Perovskite–Organic Heterojunction. ACS Energy Letters, 2020, 5, 2690-2697.	8.8	21
506	Metal Halide Perovskites Functionalized by Patterning Technologies. Advanced Materials Technologies, 2020, 5, 2000513.	3.0	30
507	Inhibition of Phase Segregation in Cesium Lead Mixed-Halide Perovskites by B-Site Doping. IScience, 2020, 23, 101415.	1.9	18
508	A fabrication process for flexible single-crystal perovskite devices. Nature, 2020, 583, 790-795.	13.7	278
509	A Multi-functional Molecular Modifier Enabling Efficient Large-Area Perovskite Light-Emitting Diodes. Joule, 2020, 4, 1977-1987.	11.7	111
510	Lateral Epitaxial Heterostructures of Halide Perovskites for Diode Application. Matter, 2020, 3, 617-619.	5.0	7
511	The surface of halide perovskites from nano to bulk. Nature Reviews Materials, 2020, 5, 809-827.	23.3	224
512	A lead-free Cs ₂ PdBr ₆ perovskite-based humidity sensor for artificial fruit waxing detection. Journal of Materials Chemistry A, 2020, 8, 17675-17682.	5.2	45

#	Article	IF	CITATIONS
513	Electroplated Silver–Nickel Core–Shell Nanowire Network Electrodes for Highly Efficient Perovskite Nanoparticle Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 39479-39486.	4.0	21
514	In Situ Observation of a Photodegradation-Induced Blueshift in Perovskite Nanocrystals Using Single-Particle Spectroscopy Combined with Atomic Force Microscopy. Journal of Physical Chemistry C, 2020, 124, 18770-18776.	1.5	15
515	Effects of PEDOT:PSS:GO composite hole transport layer on the luminescence of perovskite light-emitting diodes. RSC Advances, 2020, 10, 26381-26387.	1.7	53
516	Phase-Selective Solution Synthesis of Perovskite-Related Cesium Cadmium Chloride Nanoparticles. Inorganic Chemistry, 2020, 59, 11688-11694.	1.9	30
517	Perovskite Nanocrystal Heterostructures: Synthesis, Optical Properties, and Applications. ACS Energy Letters, 2020, 5, 2858-2872.	8.8	107
518	A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes. Nature Communications, 2020, 11, 3902.	5.8	204
519	Tunable electroluminescence from an n-ZnO/p-GaN heterojunction with a CsPbBr ₃ interlayer grown by pulsed laser deposition. Journal of Materials Chemistry C, 2020, 8, 12240-12246.	2.7	14
520	Scalable Allâ€Evaporation Fabrication of Efficient Lightâ€Emitting Diodes with Hybrid 2D–3D Perovskite Nanostructures. Advanced Functional Materials, 2020, 30, 2002913.	7.8	40
521	Spectrally stable blue electroluminescence of mixed-halide perovskite light-emitting diodes featuring ion migration inhibition. Organic Electronics, 2020, 86, 105919.	1.4	4
522	Effects of Postdeposition Annealing on the Luminescence of Mixed-Phase CsPb ₂ Br ₅ /CsPbBr ₃ Thin Films. Journal of Physical Chemistry C, 2020, 124, 19514-19521.	1.5	21
523	Carbon-based fully printable self-powered ultraviolet perovskite photodetector: Manganese-assisted electron transfer and enhanced photocurrent. Nanomaterials and Nanotechnology, 2020, 10, 184798042092567.	1.2	6
524	Manipulating Photon Propagation via a Perovskite Microwire Array. Journal of Physical Chemistry C, 2020, 124, 24315-24321.	1.5	4
525	Improving the performances of CsPbBr3 solar cells fabricated in ambient condition. Journal of Materials Science: Materials in Electronics, 2020, 31, 21154-21167.	1.1	18
526	Recent Advancements in Near-Infrared Perovskite Light-Emitting Diodes. ACS Applied Electronic Materials, 2020, 2, 3470-3490.	2.0	40
527	Interfacial optimization of quantum dot and silica hybrid nanocomposite for simultaneous enhancement of fluorescence retention and stability. Applied Physics Letters, 2020, 117, .	1.5	9
528	Flat, Luminescent, and Defect-Less Perovskite Films on PVK for Light-Emitting Diodes with Enhanced Efficiency and Stability. ACS Applied Electronic Materials, 2020, 2, 3530-3537.	2.0	16
529	Broad Tunability of Carrier Effective Masses in Two-Dimensional Halide Perovskites. ACS Energy Letters, 2020, 5, 3609-3616.	8.8	54
530	Metastable alloying structures in MAPbI3â^'xClx crystals. NPG Asia Materials, 2020, 12, .	3.8	12

		CITATION RE	PORT	
#	Article		IF	Citations
531	Tunable luminescent lead bromide complexes. Journal of Materials Chemistry C, 2020,	8, 15996-16000.	2.7	6
532	Perovskites for printed flexible electronics. IOP Conference Series: Materials Science an 2020, 892, 012011.	nd Engineering,	0.3	1
533	Synthesis of post-processable metal halide perovskite nanocrystals via modified ligand re-precipitation method and their applications to self-powered panchromatic photoder of Industrial and Engineering Chemistry, 2020, 92, 167-173.		2.9	12
534	Blue-excitable-yellow-emitting copper iodide inorganic-organic hybrid structure with qu derivative. Inorganic Chemistry Communication, 2020, 121, 108185.	uinoxaline	1.8	0
535	Multifunctional Charge Transporting Materials for Perovskite Lightâ€Emitting Diodes. Materials, 2020, 32, e2002176.	Advanced	11.1	55
536	Mechanochemistry as a Green Route: Synthesis, Thermal Stability, and Postsynthetic R Transformation of Highly-Luminescent Cesium Copper Halides. Journal of Physical Che 2020, 11, 7723-7729.	eversible Phase mistry Letters,	2.1	55
537	Large Organic Cations in Quasi-2D Perovskites for High-Performance Light-Emitting Di Physical Chemistry Letters, 2020, 11, 8502-8510.	odes. Journal of	2.1	41
538	Ultrastable Lead-Free Double Perovskite Warm-White Light-Emitting Devices with a Lif Hours. ACS Applied Materials & Interfaces, 2020, 12, 46330-46339.	etime above 1000	4.0	61
539	Chemically Stable Black Phase CsPbI ₃ Inorganic Perovskites for Highâ€Ef Photovoltaics. Advanced Materials, 2020, 32, e2001025.	ficiency	11.1	123
540	Toward Seeâ€Through Optoelectronics: Transparent Lightâ€Emitting Diodes and Sola Optical Materials, 2020, 8, 2001122.	Cells. Advanced	3.6	35
541	Competition between Oxygen Curing and Ion Migration in MAPbI ₃ Induc Exposure. Journal of Physical Chemistry Letters, 2020, 11, 8477-8482.	ed by Irradiation	2.1	5
542	Single-emissive-layer all-perovskite white light-emitting diodes employing segregated r perovskite crystals. Chemical Science, 2020, 11, 11338-11343.	nixed halide	3.7	18
543	Enhancing stability of CsPbBr 3 nanocrystals lightâ€emitting diodes through polymeth physical adsorption. Nano Select, 2020, 1, 372-381.	ylmethacrylate	1.9	5
544	Flexible Ultrathin Single-Crystalline Perovskite Photodetector. Nano Letters, 2020, 20,	7144-7151.	4.5	117
545	Spectrally Wide-Range-Tunable, Efficient, and Bright Colloidal Light-Emitting Diodes of Nanoplatelets Enabled by Engineered Alloyed Heterostructures. Chemistry of Materials 7874-7883.	Quasi-2D s, 2020, 32,	3.2	29
546	Phenethylammonium Functionalization Enhances Near-Surface Carrier Diffusion in Hyl Perovskites. Journal of the American Chemical Society, 2020, 142, 16254-16264.	prid	6.6	42
547	Transparent near-infrared perovskite light-emitting diodes. Nature Communications, 2	020, 11, 4213.	5.8	40
548	Quasi-2D perovskite emitters: a boon for efficient blue light-emitting diodes. Journal of Chemistry C, 2020, 8, 14334-14347.	Materials	2.7	40

~			<u> </u>	
(\Box)	TAT	10N	REPC) R T
\sim			ILLI C	

#	Article	IF	CITATIONS
549	Highly efficient sky-blue light-emitting diodes based on Cu-treated halide perovskite nanocrystals. Journal of Materials Chemistry C, 2020, 8, 13445-13452.	2.7	17
550	Synthesis of halide perovskite microwires via methylammonium cations reaction. Frontiers of Materials Science, 2020, 14, 332-340.	1.1	1
551	Perovskite Single-Crystal Thin Film Devices Using Lithography Assisted Epitaxy. Matter, 2020, 3, 619-620.	5.0	7
552	Optoelectronic Properties of a van der Waals WS ₂ Monolayer/2D Perovskite Vertical Heterostructure. ACS Applied Materials & Interfaces, 2020, 12, 45235-45242.	4.0	49
553	Selfâ€Assembled Perovskite Nanowire Clusters for High Luminance Red Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 2005990.	7.8	67
554	2D layered all-inorganic halide perovskites: recent trends in their structure, synthesis and properties. Nanoscale, 2020, 12, 21094-21117.	2.8	45
555	A corona modulation device structure and mechanism based on perovskite quantum dots random laser pumped using an electron beam. Frontiers of Optoelectronics, 2020, 13, 291-302.	1.9	4
556	Thermal-induced interface degradation in perovskite light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 15079-15085.	2.7	30
557	Lateral Artificial Synapses on Hybrid Perovskite Platelets with Modulated Neuroplasticity. Advanced Functional Materials, 2020, 30, 2005413.	7.8	71
558	Sky-Blue-Emissive Perovskite Light-Emitting Diodes: Crystal Growth and Interfacial Control Using Conjugated Polyelectrolytes as a Hole-Transporting Layer. ACS Nano, 2020, 14, 13246-13255.	7.3	38
559	Phase Control and In Situ Passivation of Quasi-2D Metal Halide Perovskites for Spectrally Stable Blue Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 45056-45063.	4.0	49
560	Halide Perovskite Single Crystals: Optoelectronic Applications and Strategical Approaches. Energies, 2020, 13, 4250.	1.6	17
561	Composition engineering to obtain efficient hybrid perovskite light-emitting diodes. Frontiers of Optoelectronics, 2020, 13, 282-290.	1.9	15
562	Phase Modulation by Vacuum Poling toward Enhanced Performance of Quasi-Two-Dimensional Bromide Perovskite-Based Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2020, 11, 7583-7589.	2.1	9
563	Blue-emitting NH ₄ ⁺ -doped MAPbBr ₃ perovskite quantum dots with near unity quantum yield and super stability. Chemical Communications, 2020, 56, 11863-11866.	2.2	18
564	Long and Ultrastable All-Inorganic Single-Crystal CsPbBr ₃ Microwires: One-Step Solution In-Plane Self-Assembly at Low Temperature and Application for High-Performance Photodetectors. Journal of Physical Chemistry Letters, 2020, 11, 7224-7231.	2.1	13
565	Rearranging Low-Dimensional Phase Distribution of Quasi-2D Perovskites for Efficient Sky-Blue Perovskite Light-Emitting Diodes. ACS Nano, 2020, 14, 11420-11430.	7.3	206
566	Large cation ethylammonium incorporated perovskite for efficient and spectra stable blue light-emitting diodes. Nature Communications, 2020, 11, 4165.	5.8	217

#	Article	IF	CITATIONS
567	Solution-Processed Quasi-Two-Dimensional/Nanoscrystals Perovskite Composite Film Enhances the Efficiency and Stability of Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 39720-39729.	4.0	11
568	¹¹³ Cd Solid-State NMR at 21.1 T Reveals the Local Structure and Passivation Mechanism of Cadmium in Hybrid and All-Inorganic Halide Perovskites. ACS Energy Letters, 2020, 5, 2964-2971.	8.8	20
569	In Situ Green Synthesis of Niâ€Doped CsPbBr 3 @SiO 2 Composites with Superior Stability for Fabrication of White Lightâ€Emitting Diodes. ChemistrySelect, 2020, 5, 9920-9925.	0.7	2
570	Designing a Multifunctional Magnetic Microtube with Enhanced Conductivity through Local Heterojunction Decoration of CsPbBr3 Nanocrystals. Journal of Physical Chemistry C, 2020, 124, 28580-28588.	1.5	0
571	Comparative study of CsPbBr3: Bulk and 001 surface. AIP Conference Proceedings, 2020, , .	0.3	0
572	Optical Tunneling to Improve Light Extraction in Quantum Dot and Perovskite Light-Emitting Diodes. IEEE Photonics Journal, 2020, 12, 1-14.	1.0	5
573	Characteristics of a Hybrid Detector Combined with a Perovskite Active Layer for Indirect X-ray Detection. Sensors, 2020, 20, 6872.	2.1	7
574	Effectiveness of Solvent Vapor Annealing on Optoelectronic Properties for Quasi-2D Organic–Inorganic Hybrid Perovskite Light-Emitting Diodes. Journal of Physical Chemistry C, 2020, 124, 28417-28423.	1.5	21
575	Triboelectric behaviors of inorganic Cs _{1â^'x} A _x PbBr ₃ halide perovskites toward enriching the triboelectric series. Journal of Materials Chemistry A, 2020, 8, 25696-25705.	5.2	16
576	Alternating Current Electroluminescent Devices with Inorganic Phosphors for Deformable Displays. Cell Reports Physical Science, 2020, 1, 100213.	2.8	22
577	Nonlinear optical properties of halide perovskites and their applications. Applied Physics Reviews, 2020, 7, .	5.5	114
578	Double Electron Transport Layer and Optimized CsPbl ₃ Nanocrystal Emitter for Efficient Perovskite Light-Emitting Diodes. Journal of Physical Chemistry C, 2020, 124, 28277-28284.	1.5	25
579	Improved Electroluminescence Performance of Perovskite Light-Emitting Diodes by a New Hole Transporting Polymer Based on the Benzocarbazole Moiety. ACS Applied Materials & Interfaces, 2020, 12, 51756-51765.	4.0	22
580	Unraveling the antisolvent dripping delay effect on the Stranski–Krastanov growth of CH3NH3PbBr3 thin films: a facile route for preparing a textured morphology with improved optoelectronic properties. Physical Chemistry Chemical Physics, 2020, 22, 26592-26604.	1.3	16
581	Anomalous inclusion of chloride ions in ethylenediammonium lead iodide turns 1D non-perovskite into a 2D perovskite structure. CrystEngComm, 2020, 22, 8063-8071.	1.3	4
582	Solubilityâ€Controlled Roomâ€Temperature Synthesis of Cesium Lead Halide Perovskite Nanocrystals. ChemNanoMat, 2020, 6, 1863-1869.	1.5	15
583	High Phase Stability in CsPbI ₃ Enabled by Pb–I Octahedra Anchors for Efficient Inorganic Perovskite Photovoltaics. Advanced Materials, 2020, 32, e2000186.	11.1	90
584	Inkjet Printing Matrix Perovskite Quantum Dot Lightâ€Emitting Devices. Advanced Materials Technologies, 2020, 5, 2000099.	3.0	49

#	Article	IF	CITATIONS
585	Enhanced Operational Stability of Perovskite Lightâ€Emitting Electrochemical Cells Leveraging Ionic Additives. Advanced Optical Materials, 2020, 8, 2000226.	3.6	28
586	Blue Perovskite Nanocrystal Lightâ€Emitting Devices via the Ligand Exchange with Adamantane Diamine. Advanced Optical Materials, 2020, 8, 2000289.	3.6	52
587	Cation doping and strain engineering of CsPbBr ₃ -based perovskite light emitting diodes. Journal of Materials Chemistry C, 2020, 8, 6640-6653.	2.7	32
588	Zero-dimensional ionic antimony halide inorganic–organic hybrid with strong greenish yellow emission. Journal of Materials Chemistry C, 2020, 8, 7300-7303.	2.7	35
589	Multi-Cation Blue Perovskites Light-Emitting Diodes with Enhanced Luminescence. IOP Conference Series: Materials Science and Engineering, 2020, 782, 022046.	0.3	0
590	Photophysical properties of micron-sized CH3NH3PbBr3 single crystals. Chemical Physics, 2020, 537, 110852.	0.9	1
591	Peptide nucleic acid stabilized perovskite nanoparticles for nucleic acid sensing. Materials Today Chemistry, 2020, 17, 100272.	1.7	5
592	Solid-state synthesis of stable and color tunable cesium lead halide perovskite nanocrystals and the mechanism of high-performance photodetection in a monolayer MoS ₂ /CsPbBr ₃ vertical heterojunction. Journal of Materials Chemistry C, 2020. 8. 8917-8934.	2.7	51
593	Efficient Blue Perovskite Lightâ€Emitting Diodes Boosted by 2D/3D Energy Cascade Channels. Advanced Functional Materials, 2020, 30, 2001732.	7.8	118
594	Rapid Capillaryâ€Assisted Solution Printing of Perovskite Nanowire Arrays Enables Scalable Production of Photodetectors. Angewandte Chemie, 2020, 132, 15052-15059.	1.6	1
595	Recent Advancements and Challenges for Low-Toxicity Perovskite Materials. ACS Applied Materials & Interfaces, 2020, 12, 26776-26811.	4.0	89
596	Lead-Halide Scalar Couplings in 207Pb NMR of APbX3 Perovskites (A = Cs, Methylammonium,) Tj ETQq1	1.0,78431 1.6	l4rgBT /Ove
597	Mechanisms of LiF Interlayer Enhancements of Perovskite Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2020, 11, 4213-4220.	2.1	12
598	Stable Whispering Gallery Mode Lasing from Solutionâ€Processed Formamidinium Lead Bromide Perovskite Microdisks. Advanced Optical Materials, 2020, 8, 2000030.	3.6	32
599	Highly Efficient Self-Trapped Exciton Emission of a (MA) ₄ Cu ₂ Br ₆ Single Crystal. Journal of Physical Chemistry Letters, 2020, 11, 4703-4710.	2.1	138
600	Phase Selection of Cesium Lead Triiodides through Surface Ligand Engineering. Journal of Physical Chemistry Letters, 2020, 11, 4232-4238.	2.1	4
601	Micro-light-emitting diodes with quantum dots in display technology. Light: Science and Applications, 2020, 9, 83.	7.7	394
602	Preventing phase segregation in mixed-halide perovskites: a perspective. Energy and Environmental Science, 2020, 13, 2024-2046.	15.6	221

#	Article	IF	CITATIONS
603	Synthesis of monodisperse water-stable surface Pb-rich CsPbCl ₃ nanocrystals for efficient photocatalytic CO ₂ reduction. Nanoscale, 2020, 12, 11842-11846.	2.8	29
604	Extrinsic nature of the broad photoluminescence in lead iodide-based Ruddlesden–Popper perovskites. Nature Communications, 2020, 11, 2344.	5.8	101
605	Enhancing the performance of LARP-synthesized CsPbBr ₃ nanocrystal LEDs by employing a dual hole injection layer. RSC Advances, 2020, 10, 17653-17659.	1.7	13
607	Rapid Capillaryâ€Assisted Solution Printing of Perovskite Nanowire Arrays Enables Scalable Production of Photodetectors. Angewandte Chemie - International Edition, 2020, 59, 14942-14949.	7.2	36
608	Manganese Doping Stabilizes Perovskite Light-Emitting Diodes by Reducing Ion Migration. ACS Applied Electronic Materials, 2020, 2, 1522-1528.	2.0	37
609	Identifying, understanding and controlling defects and traps in halide perovskites for optoelectronic devices: a review. Journal Physics D: Applied Physics, 2020, 53, 373001.	1.3	20
610	Ionic-liquid induced enhanced performance of perovskite light-emitting diodes. Journal Physics D: Applied Physics, 2020, 53, 384002.	1.3	5
611	Active layer thickness dependence of optoelectronic performance in CH3NH3PbI3 perovskite-based planar heterojunction photodiodes. Optical Materials, 2020, 106, 109960.	1.7	8
612	All-Inorganic, Solution-Processed, Inverted CsPbl ₃ Quantum Dot Solar Cells with a PCE of 13.1% Achieved via a Layer-by-Layer FAI Treatment. ACS Applied Energy Materials, 2020, 3, 5620-5627.	2.5	41
613	Colloidal quantum dot hybrids: an emerging class of materials for ambient lighting. Journal of Materials Chemistry C, 2020, 8, 10676-10695.	2.7	46
614	Whether Addition of Phenethylammonium Ion is Always Beneficial to Stability Enhancement of MAPbI 3 Perovskite Film?. Advanced Materials Interfaces, 2020, 7, 2000197.	1.9	6
615	Solution-processed polarized light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 9147-9162.	2.7	5
616	Improved performance of perovskite photodetectors with a hybrid planar-mixed heterojunction. Materials Research Express, 2020, 7, 066201.	0.8	4
617	A controllable and reversible phase transformation between all-inorganic perovskites for white light emitting diodes. Journal of Materials Chemistry C, 2020, 8, 8374-8379.	2.7	48
618	Multiple Self-Trapped Emissions in the Lead-Free Halide Cs ₃ Cu ₂ I ₅ . Journal of Physical Chemistry Letters, 2020, 11, 4326-4330.	2.1	79
619	Mn-doped 2D Sn-based perovskites with energy transfer from self-trapped excitons to dopants for warm white light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 8502-8506.	2.7	22
620	All-Inorganic CsPbBr3 Perovskite Films Prepared by Single Source Thermal Ablation. Frontiers in Chemistry, 2020, 8, 313.	1.8	28
621	Recent Progress on Lightâ€Emitting Electrochemical Cells with Nonpolymeric Materials. Advanced Functional Materials, 2020, 30, 1908641.	7.8	33

#	Article	IF	CITATIONS
622	Blue perovskite light-emitting diodes (LEDs): A minireview. Instrumentation Science and Technology, 2020, 48, 616-636.	0.9	10
623	Jahn–Teller distortion-driven robust blue-light-emitting perovskite nanoplatelets. Applied Materials Today, 2020, 20, 100668.	2.3	11
624	Characterizing the Efficiency of Perovskite Solar Cells and Light-Emitting Diodes. Joule, 2020, 4, 1206-1235.	11.7	53
625	Strong performance enhancement in lead-halide perovskite solar cells through rapid, atmospheric deposition of n-type buffer layer oxides. Nano Energy, 2020, 75, 104946.	8.2	20
626	Establishing charge-transfer excitons in 2D perovskite heterostructures. Nature Communications, 2020, 11, 2618.	5.8	58
627	All-vacuum-deposited inorganic cesium lead halide perovskite light-emitting diodes. APL Materials, 2020, 8, .	2.2	28
628	Efficient Flexible Inorganic Perovskite Light-Emitting Diodes Fabricated with CsPbBr ₃ Emitters Prepared via Low-Temperature in Situ Dynamic Thermal Crystallization. Nano Letters, 2020, 20, 4673-4680.	4.5	55
629	Microcavity top-emission perovskite light-emitting diodes. Light: Science and Applications, 2020, 9, 89.	7.7	96
630	Long-Range Exciton Diffusion in Two-Dimensional Assemblies of Cesium Lead Bromide Perovskite Nanocrystals. ACS Nano, 2020, 14, 6999-7007.	7.3	57
631	Two-dimensional halide perovskites featuring semiconducting organic building blocks. Materials Chemistry Frontiers, 2020, 4, 3400-3418.	3.2	50
632	Two-dimensional tin perovskite nanoplate for pure red light-emitting diodes. Journal Physics D: Applied Physics, 2020, 53, 414005.	1.3	25
633	Giant efficiency and color purity enhancement in multicolor inorganic perovskite light-emitting diodes via heating-assisted vacuum deposition. Journal of Semiconductors, 2020, 41, 052205.	2.0	19
634	Thickness-Dependence of Exciton–Exciton Annihilation in Halide Perovskite Nanoplatelets. Journal of Physical Chemistry Letters, 2020, 11, 5361-5366.	2.1	23
635	Perovskite–Gallium Phosphide Platform for Reconfigurable Visible-Light Nanophotonic Chip. ACS Nano, 2020, 14, 8126-8134.	7.3	39
636	Lattice Distortion in Mixed-Anion Lead Halide Perovskite Nanorods Leads to their High Fluorescence Anisotropy. , 2020, 2, 814-820.		33
637	Potassium Doping to Enhance Green Photoemission of Lightâ€Emitting Diodes Based on CsPbBr ₃ Perovskite Nanocrystals. Advanced Optical Materials, 2020, 8, 2000742.	3.6	32
638	Interface Engineering Driven Stabilization of Halide Perovskites against Moisture, Heat, and Light for Optoelectronic Applications. Advanced Energy Materials, 2020, 10, 2000768.	10.2	62
639	Lead-Free Metal Halide Perovskites and Perovskite Derivatives as an Environmentally Friendly Emitter for Light-Emitting Device Applications. Journal of Physical Chemistry Letters, 2020, 11, 5517-5530.	2.1	59

#	Article	IF	Citations
640	One-Dimensional All-Inorganic K ₂ CuBr ₃ with Violet Emission as Efficient X-ray Scintillators. ACS Applied Electronic Materials, 2020, 2, 2242-2249.	2.0	77
641	Rapid Vapor-Phase Deposition of High-Mobility <i>p</i> -Type Buffer Layers on Perovskite Photovoltaics for Efficient Semitransparent Devices. ACS Energy Letters, 2020, 5, 2456-2465.	8.8	32
642	Surfaceâ€Plasmonâ€Enhanced Perovskite Lightâ€Emitting Diodes. Small, 2020, 16, e2001861.	5.2	30
643	Green perovskite light-emitting diodes with simultaneous high luminance and quantum efficiency through charge injection engineering. Science Bulletin, 2020, 65, 1832-1839.	4.3	24
644	Bifacial passivation towards efficient FAPbBr ₃ -based inverted perovskite light-emitting diodes. Nanoscale, 2020, 12, 14724-14732.	2.8	9
645	Synergistic morphology control and non-radiative defect passivation using a crown ether for efficient perovskite light-emitting devices. Journal of Materials Chemistry C, 2020, 8, 9986-9992.	2.7	9
646	Combustion procedure deposited SnO2 electron transport layers for high efficient perovskite solar cells. Journal of Alloys and Compounds, 2020, 844, 156032.	2.8	34
647	Exciton recombination mechanisms in solution grown single crystalline CsPbBr3 perovskite. Journal of Luminescence, 2020, 226, 117471.	1.5	20
648	Ion Migration-Induced Degradation and Efficiency Roll-off in Quasi-2D Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 33004-33013.	4.0	68
649	Revealing Factors Influencing the Operational Stability of Perovskite Light-Emitting Diodes. ACS Nano, 2020, 14, 8855-8865.	7.3	57
650	Black Phosphorus and Carbon Nitride Hybrid Photocatalysts for Photoredox Reactions. Advanced Functional Materials, 2020, 30, 2002021.	7.8	75
651	Organic–inorganic hybrid perovskite electronics. Physical Chemistry Chemical Physics, 2020, 22, 13347-13357.	1.3	23
652	CsPbBr ₃ /CH ₃ NH ₃ PbCl ₃ Double Layer Enhances Efficiency and Lifetime of Perovskite Light-Emitting Diodes. ACS Energy Letters, 2020, 5, 2191-2199.	8.8	44
653	Reversible Release and Fixation of Bromine in Vacancyâ€Ordered Bromide Perovskites. Energy and Environmental Materials, 2020, 3, 535-540.	7.3	23
654	Interaction engineering in organic–inorganic hybrid perovskite solar cells. Materials Horizons, 2020, 7, 2208-2236.	6.4	35
655	Pressure Engineered Optical Properties and Carrier Dynamics of FAPbBr ₃ Nanocrystals Encapsulated by Siliceous Nanosphere. Journal of Physical Chemistry C, 2020, 124, 14390-14399.	1.5	9
656	Enhanced stability and performance of light-emitting diodes based on <i>in situ</i> fabricated FAPbBr ₃ nanocrystals <i>via</i> ligand compensation with <i>n</i> -octylphosphonic acid. Journal of Materials Chemistry C, 2020, 8, 9936-9944.	2.7	11
657	Ultrafast charge carrier dynamics in quantum confined 2D perovskite. Journal of Chemical Physics, 2020, 152, 214705.	1.2	12

#	Article	IF	CITATIONS
658	A Cuâ€Doping Strategy to Enhance Photoelectric Performance of Selfâ€Powered Holeâ€Conductorâ€Free Perovskite Photodetector for Optical Communication Applications. Advanced Materials Technologies, 2020, 5, 2000260.	3.0	23
659	Bright Blue and Green Luminescence of Sb(III) in Double Perovskite Cs ₂ MInCl ₆ (M = Na, K) Matrices. Chemistry of Materials, 2020, 32, 5118-5124.	3.2	196
660	Size- and temperature-dependent photoluminescence spectra of strongly confined CsPbBr ₃ quantum dots. Nanoscale, 2020, 12, 13113-13118.	2.8	50
661	Examples and applications. , 2020, , 181-193.		0
662	Micro―and Nanopatterning of Halide Perovskites Where Crystal Engineering for Emerging Photoelectronics Meets Integrated Device Array Technology. Advanced Materials, 2020, 32, e2000597.	11.1	62
663	Focus on performance of perovskite light-emitting diodes. Frontiers of Optoelectronics, 2020, 13, 235-245.	1.9	37
665	Water-induced MAPbBr3@PbBr(OH) with enhanced luminescence and stability. Light: Science and Applications, 2020, 9, 44.	7.7	122
666	Theoretical study on the effect of the optical properties and electronic structure for the Bi-doped CsPbBr ₃ . Journal of Physics Condensed Matter, 2020, 32, 205504.	0.7	27
667	Manufacturing and Characterization on aThree-Dimensional Random Resonator of Porous Silicon/TiO ₂ Nanowires for Continuous Light Pumping Lasing of Perovskite Quantum Dots. Nano, 2020, 15, 2050016.	0.5	3
668	Crystal Systems and Lattice Parameters of CH ₃ NH ₃ Pb(I _{1–<i>x</i>} Br _{<i>x</i>}) ₃ Determined Using Single Crystals: Validity of Vegard's Law. Inorganic Chemistry, 2020, 59, 6709-6716.	1.9	25
669	Polymer Zwitterions for Stabilization of CsPbBr ₃ Perovskite Nanoparticles and Nanocomposite Films. Angewandte Chemie, 2020, 132, 10894-10898.	1.6	14
670	Green and sky blue perovskite light-emitting devices with a diamine additive. Journal of Materials Science, 2020, 55, 7691-7701.	1.7	16
671	Exciton Character and Highâ€Performance Stimulated Emission of Hybrid Lead Bromide Perovskite Polycrystalline Film. Advanced Optical Materials, 2020, 8, 1902026.	3.6	22
672	Sustainable and flexible hydrovoltaic power generator for wearable sensing electronics. Nano Energy, 2020, 72, 104663.	8.2	103
673	Chloride Insertion–Immobilization Enables Bright, Narrowband, and Stable Blue-Emitting Perovskite Diodes. Journal of the American Chemical Society, 2020, 142, 5126-5134.	6.6	116
674	Chiral-perovskite optoelectronics. Nature Reviews Materials, 2020, 5, 423-439.	23.3	445
675	Coâ€Interlayer Engineering toward Efficient Green Quasiâ€Twoâ€Dimensional Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 1910167.	7.8	52
676	A Leadâ€Free Allâ€Inorganic Metal Halide with Nearâ€Unity Green Luminescence. Laser and Photonics Reviews, 2020, 14, 2000027.	4.4	66

#	Article	IF	CITATIONS
677	Long Carrier Diffusion Length and Slow Hot Carrier Cooling in Thin Film Mixed Halide Perovskite. IEEE Journal of Photovoltaics, 2020, 10, 803-810.	1.5	16
678	Enhancing Carrier Transport Properties of Melt-grown CsPbBr ₃ Single Crystals by Eliminating Inclusions. Crystal Growth and Design, 2020, 20, 2424-2431.	1.4	35
679	Asymmetric Response Optoelectronic Device Based on Femtosecond-Laser-Irradiated Perovskite. ACS Applied Materials & Interfaces, 2020, 12, 17070-17076.	4.0	10
680	Bidirectional optical signal transmission between two identical devices using perovskite diodes. Nature Electronics, 2020, 3, 156-164.	13.1	126
681	Electroluminescence from double heterostructures of perovskite semiconductors and thiophene/phenylene co-oligomers. Japanese Journal of Applied Physics, 2020, 59, SDDC01.	0.8	0
682	Environmentally Friendly InP-Based Quantum Dots for Efficient Wide Color Gamut Displays. ACS Energy Letters, 2020, 5, 1316-1327.	8.8	141
683	Efficient All-Inorganic Perovskite Light-Emitting Diodes with Improved Operation Stability. ACS Applied Materials & Interfaces, 2020, 12, 18084-18090.	4.0	54
684	Density Functional Study of Cubic, Tetragonal, and Orthorhombic CsPbBr ₃ Perovskite. ACS Omega, 2020, 5, 7468-7480.	1.6	105
685	Ionic liquid assisted preparation and modulation of the photoluminescence kinetics for highly efficient CsPbX ₃ nanocrystals with improved stability. Nanoscale, 2020, 12, 9569-9580.	2.8	21
686	Efficient quantum-dot light-emitting diodes using ZnS–AgInS2 solid-solution quantum dots in combination with organic charge-transport materials. Applied Physics Letters, 2020, 116, .	1.5	14
687	Leadâ€Doped Titaniumâ€Oxo Clusters as Molecular Models of Perovskiteâ€Type PbTiO ₃ and Electronâ€Transport Material in Solar Cells. Chemistry - A European Journal, 2020, 26, 6894-6898.	1.7	24
688	Interface Engineering of CsPbBr ₃ Nanocrystal Lightâ€Emitting Diodes via Atomic Layer Deposition. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000083.	1.2	18
689	Large and Dense Organic–Inorganic Hybrid Perovskite CH ₃ NH ₃ PbI ₃ Wafer Fabricated by One-Step Reactive Direct Wafer Production with High X-ray Sensitivity. ACS Applied Materials & Interfaces, 2020, 12, 16592-16600.	4.0	94
690	Colloidal Synthesis of Ternary Copper Halide Nanocrystals for High-Efficiency Deep-Blue Light-Emitting Diodes with a Half-Lifetime above 100 h. Nano Letters, 2020, 20, 3568-3576.	4.5	200
691	Dual-Modal Photon Upconverting and Downshifting Emissions from Ultra-stable CsPbBr3 Perovskite Nanocrystals Triggered by Co-Growth of Tm:NaYbF4 Nanocrystals in Glass. ACS Applied Materials & Interfaces, 2020, 12, 18705-18714.	4.0	42
692	Rational Interface Engineering for Efficient Flexible Perovskite Light-Emitting Diodes. ACS Nano, 2020, 14, 6107-6116.	7.3	100
693	Quo vadis, perovskite emitters?. Journal of Chemical Physics, 2020, 152, 130901.	1.2	20
694	Boosting Efficiency and Curtailing the Efficiency Roll-Off in Green Perovskite Light-Emitting Diodes via Incorporating Ytterbium as Cathode Interface Layer. ACS Applied Materials & Interfaces, 2020, 12, 18761-18768.	4.0	23

#	Article	IF	Citations
695	Degradation Mechanism of Perovskite Lightâ€Emitting Diodes: An In Situ Investigation via Electroabsorption Spectroscopy and Device Modelling. Advanced Functional Materials, 2020, 30, 1910464.	7.8	41
696	Recent processes on light-emitting lead-free metal halide perovskites. Chemical Engineering Journal, 2020, 393, 124757.	6.6	65
697	Stable Yellow Light-Emitting Devices Based on Ternary Copper Halides with Broadband Emissive Self-Trapped Excitons. ACS Nano, 2020, 14, 4475-4486.	7.3	199
698	A Microchannelâ€Confined Crystallization Strategy Enables Blade Coating of Perovskite Single Crystal Arrays for Device Integration. Advanced Materials, 2020, 32, e1908340.	11.1	75
699	Allâ€Photonic Miniature Perovskite Encoder with a Terahertz Bandwidth. Laser and Photonics Reviews, 2020, 14, 1900398.	4.4	10
700	Modulation of ligand conjugation for efficient FAPbBr ₃ based green light-emitting diodes. Materials Chemistry Frontiers, 2020, 4, 1383-1389.	3.2	9
701	Polymer Zwitterions for Stabilization of CsPbBr ₃ Perovskite Nanoparticles and Nanocomposite Films. Angewandte Chemie - International Edition, 2020, 59, 10802-10806.	7.2	49
702	First principle-based calculations of the optoelectronic features of 2 x 2 x 2 CsPb(I1-xBrx)3 perovskite. Superlattices and Microstructures, 2020, 140, 106474.	1.4	15
703	Sensitized Molecular Triplet and Triplet Excimer Emission in Two-Dimensional Hybrid Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 2247-2255.	2.1	33
704	Improved Performance for Thermally Evaporated Perovskite Light-Emitting Devices via Defect Passivation and Carrier Regulation. ACS Applied Materials & Interfaces, 2020, 12, 15928-15933.	4.0	23
705	Novel Lewis Base Cyclam Self-Passivation of Perovskites without an Anti-Solvent Process for Efficient Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 14224-14232.	4.0	48
706	Room-temperature liquid diffused separation induced crystallization for high-quality perovskite single crystals. Nature Communications, 2020, 11, 1194.	5.8	133
707	Rapid synthesis and mechanochemical reactions of cesium copper halides for convenient chromaticity tuning and efficient white light emission. Journal of Materials Chemistry C, 2020, 8, 4895-4901.	2.7	49
708	Leadâ€Free Perovskite Variant Solid Solutions Cs ₂ Sn _{1–} <i>_x</i> Te <i>_x</i> Cl ₆ : Bright Luminescence and High Antiâ€Water Stability. Advanced Materials, 2020, 32, e2002443.	11.1	169
709	Analyzing Interface Recombination in Leadâ€Halide Perovskite Solar Cells with Organic and Inorganic Holeâ€Transport Layers. Advanced Materials Interfaces, 2020, 7, 2000366.	1.9	53
710	Tailoring the Surface Morphology and Phase Distribution for Efficient Perovskite Electroluminescence. Journal of Physical Chemistry Letters, 2020, 11, 5877-5882.	2.1	17
711	Recent Progresses on Metal Halide Perovskite-Based Material as Potential Photocatalyst. Catalysts, 2020, 10, 709.	1.6	65
712	Impacts of the Hole Transport Layer Deposition Process on Buried Interfaces in Perovskite Solar Cells. Cell Reports Physical Science, 2020, 1, 100103.	2.8	17

#	Article	IF	CITATIONS
713	Unveiling the Morphology Effect on the Negative Capacitance and Large Ideality Factor in Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 34265-34273.	4.0	37
714	Light Out oupling Management in Perovskite LEDs—What Can We Learn from the Past?. Advanced Functional Materials, 2020, 30, 2002570.	7.8	52
715	Effects of in-situ annealing on the electroluminescence performance of the Sn-based perovskite light-emitting diodes prepared by thermal evaporation. Journal of Luminescence, 2020, 226, 117493.	1.5	21
716	Improved photoemission and stability of 2D organic-inorganic lead iodide perovskite films by polymer passivation. Nanotechnology, 2020, 31, 42LT01.	1.3	14
717	High-Efficiency Perovskite Light-Emitting Diodes with Improved Interfacial Contact. ACS Applied Materials & Interfaces, 2020, 12, 36681-36687.	4.0	35
718	Photon Energy-Dependent Ultrafast Photoinduced Terahertz Response in a Microcrystalline Film of CH ₃ NH ₃ PbBr ₃ . Journal of Physical Chemistry Letters, 2020, 11, 6068-6076.	2.1	4
719	Functionalized PFN-X (X = Cl, Br, or I) for Balanced Charge Carriers of Highly Efficient Blue Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 35740-35747.	4.0	31
720	Proton-transfer-induced 3D/2D hybrid perovskites suppress ion migration and reduce luminance overshoot. Nature Communications, 2020, 11, 3378.	5.8	108
721	Significance of Ambient Temperature Control for Highly Reproducible Layered Perovskite Light-Emitting Diodes. ACS Photonics, 2020, 7, 2489-2497.	3.2	15
722	Determination of albedo parameters of the organometallic halide perovskite films. Radiation Physics and Chemistry, 2020, 177, 109091.	1.4	3
723	Emergence of Impurity-Doped Nanocrystal Light-Emitting Diodes. Nanomaterials, 2020, 10, 1226.	1.9	10
724	High Performance Quasiâ€2D Perovskite Skyâ€Blue Lightâ€Emitting Diodes Using a Dualâ€Ligand Strategy. Small, 2020, 16, e2002940.	5.2	65
725	High-Performance Perovskite Light-Emitting Diodes with Surface Passivation of CsPbBr <i>_x</i> _{3–<i>x</i>} Nanocrystals via Antisolvent-Triggered Ion-Exchange. ACS Applied Materials & Interfaces, 2020, 12, 31582-31590.	4.0	22
726	Y0.4Gd1.6O2S: Eu nanocrystals for ratiometric Pb2+ ions sensing via selectively non-radiative relaxation. Journal of Alloys and Compounds, 2020, 843, 156104.	2.8	2
727	Sensing of explosive vapor by hybrid perovskites: Effect of dimensionality. APL Materials, 2020, 8, .	2.2	19
728	Enabling seamless investigation of fast and complex flow fields in microfluidics via metal lead halide perovskite based micro-particles. Applied Materials Today, 2020, 20, 100736.	2.3	0
729	Narrow-band emitters in LED backlights for liquid-crystal displays. Materials Today, 2020, 40, 246-265.	8.3	118
730	Ligand Control of Room-Temperature Phosphorescence Violating Kasha's Rule in Hybrid Organic–Inorganic Metal Halides. Chemistry of Materials, 2020, 32, 1454-1460.	3.2	47

#	Article	IF	CITATIONS
731	Assessment of Crystalline Materials for Solid State Lighting Applications: Beyond the Rare Earth Elements. Crystals, 2020, 10, 559.	1.0	15
732	High-Performance Quasi-2D Perovskite Light-Emitting Diodes Via Poly(vinylpyrrolidone) Treatment. Nanoscale Research Letters, 2020, 15, 34.	3.1	13
733	A Cocktail of Multiple Cations in Inorganic Halide Perovskite toward Efficient and Highly Stable Blue Light-Emitting Diodes. ACS Energy Letters, 2020, 5, 1062-1069.	8.8	79
734	Multi-cation perovskites prevent carrier reflection from grain surfaces. Nature Materials, 2020, 19, 412-418.	13.3	100
735	Blue quantum dot-based electroluminescent light-emitting diodes. Materials Chemistry Frontiers, 2020, 4, 1340-1365.	3.2	40
736	Ligand Engineering for Mn ²⁺ Doping Control in CsPbCl ₃ Perovskite Nanocrystals via a Quasi-Solid–Solid Cation Exchange Reaction. Chemistry of Materials, 2020, 32, 2489-2500.	3.2	46
737	Highly Efficient Blue Emission from Self-Trapped Excitons in Stable Sb ³⁺ -Doped Cs ₂ NaInCl ₆ Double Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 2053-2061.	2.1	259
738	Ultrahigh detectivity ultraviolet photodetector based on orthorhombic phase CsPbI3 microwire using temperature self-regulating solar reactor. Solar Energy Materials and Solar Cells, 2020, 209, 110477.	3.0	15
739	Efficient Energy Funneling in Quasiâ€⊋D Perovskites: From Light Emission to Lasing. Advanced Materials, 2020, 32, e1906571.	11.1	134
740	Organic additive engineering toward efficient perovskite lightâ€emitting diodes. InformaÄnÃ-Materiály, 2020, 2, 1095-1108.	8.5	26
741	Magnetic-brightening and control of dark exciton in CsPbBr3 perovskite. Science China Materials, 2020, 63, 1503-1509.	3.5	8
742	Surface Termination of CsPbBr ₃ Perovskite Quantum Dots Determined by Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2020, 142, 6117-6127.	6.6	135
743	The enhancement of excitonic emission crossing Saha equilibrium in trap passivated CH3NH3PbBr3 perovskite. Communications Physics, 2020, 3, .	2.0	19
744	Origin of high piezoelectricity of inorganic halide perovskite thin films and their electromechanical energy-harvesting and physiological current-sensing characteristics. Energy and Environmental Science, 2020, 13, 2077-2086.	15.6	54
745	Enhancing photoluminescence quantum efficiency of metal halide perovskites by examining luminescence-limiting factors. APL Materials, 2020, 8, .	2.2	22
746	Electrically driven lasing in metal halide perovskites: Challenges and outlook. APL Materials, 2020, 8, .	2.2	46
747	Theoretical Study of Nonradiative Energy Transfer from Exciplex to Perovskites. Russian Physics Journal, 2020, 62, 1911-1916.	0.2	1
748	Low-temperature direct synthesis of perovskite nanocrystals in water and their application in light-emitting diodes. Nanoscale, 2020, 12, 6522-6528.	2.8	17

#	Article	IF	CITATIONS
749	Critical Role of Organic Spacers for Bright 2D Layered Perovskites Lightâ€Emitting Diodes. Advanced Science, 2020, 7, 1903202.	5.6	39
750	Two-Dimensional 111-Type In -Based Halide Perovskite Cs3In2X9(X=Cl,Br,I) with Optimal Band Gap for Photovoltaics and Defect-Insensitive Blue Emission. Physical Review Applied, 2020, 13, .	1.5	14
751	Effect of reabsorption and photon recycling on photoluminescence spectra and transients in lead-halide perovskite crystals. JPhys Materials, 2020, 3, 025003.	1.8	20
752	Giant Optical Anisotropy of Perovskite Nanowire Array Films. Advanced Functional Materials, 2020, 30, 1909275.	7.8	89
753	Stability of Perovskite Light Sources: Status and Challenges. Advanced Optical Materials, 2020, 8, 1902012.	3.6	54
754	Controllable synthesis of all inorganic lead halide perovskite nanocrystals and white light-emitting diodes based on CsPbBr3 nanocrystals. Journal of Luminescence, 2020, 222, 117132.	1.5	26
755	Hierarchical and scalable integration of nanostructures for energy and environmental applications: a review of processing, devices, and economic analyses. Nano Futures, 2020, 4, 012002.	1.0	12
756	Thermodynamic Control in the Synthesis of Quantum-Confined Blue-Emitting CsPbBr ₃ Perovskite Nanostrips. Journal of Physical Chemistry Letters, 2020, 11, 2036-2043.	2.1	39
757	Temperature-dependent nonmonotonous evolution of excitonic blue luminescence and Stokes shift in chlorine-based organometallic halide perovskite film. Applied Physics Letters, 2020, 116, .	1.5	2
758	Highly Stable Allâ€Inorganic Perovskite Quantum Dots Using a ZnX ₂ â€Trioctylphosphineâ€Oxide: Application for Highâ€Performance Fullâ€Color Lightâ€Emitting Diode. Advanced Optical Materials, 2020, 8, 1901897.	3.6	37
759	An effective strategy to boost 3D perovskite light-emitting diode performance via solvent mixing strategy. Journal of Luminescence, 2020, 222, 117120.	1.5	8
760	Interfacing Lowâ€Temperature Atomic Layer Deposited TiO ₂ Electron Transport Layers with Metal Electrodes. Advanced Materials Interfaces, 2020, 7, 1902054.	1.9	6
761	Uniform and Largeâ€Area Cesiumâ€Based Quasiâ€2D Perovskite Lightâ€Emitting Diodes Using Hotâ€Casting Method. Advanced Materials Interfaces, 2020, 7, 1902158.	1.9	25
762	High Color Purity Leadâ€Free Perovskite Lightâ€Emitting Diodes via Sn Stabilization. Advanced Science, 2020, 7, 1903213.	5.6	146
763	Computational functionalityâ€driven design of semiconductors for optoelectronic applications. InformaÄnÃ-Materiály, 2020, 2, 879-904.	8.5	32
764	Modification of interface between PEDOT:PSS and perovskite film inserting an ultrathin LiF layer for enhancing efficiency of perovskite light-emitting diodes. Organic Electronics, 2020, 81, 105675.	1.4	23
765	Chlorine Vacancy Passivation in Mixed Halide Perovskite Quantum Dots by Organic Pseudohalides Enables Efficient Rec. 2020 Blue Light-Emitting Diodes. ACS Energy Letters, 2020, 5, 793-798.	8.8	208
766	Solutionâ€Processed Faraday Rotators Using Single Crystal Lead Halide Perovskites. Advanced Science, 2020, 7, 1902950.	5.6	17

#	Article	IF	CITATIONS
767	Stable and Monochromatic All-Inorganic Halide Perovskite Assisted by Hollow Carbon Nitride Nanosphere for Ratiometric Electrochemiluminescence Bioanalysis. Analytical Chemistry, 2020, 92, 4123-4130.	3.2	57
768	Perovskite-molecule composite thin films for efficient and stable light-emitting diodes. Nature Communications, 2020, 11, 891.	5.8	83
769	Ag/In leadâ€free double perovskites. EcoMat, 2020, 2, e12017.	6.8	16
770	Imaging of the Atomic Structure of All-Inorganic Halide Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 818-823.	2.1	26
771	Three-Dimensional Perovskite Nanophotonic Wire Array-Based Light-Emitting Diodes with Significantly Improved Efficiency and Stability. ACS Nano, 2020, 14, 1577-1585.	7.3	57
772	Cooperative excitonic quantum ensemble in perovskite-assembly superlattice microcavities. Nature Communications, 2020, 11, 329.	5.8	51
773	Progress on the controllable synthesis of all-inorganic halide perovskite nanocrystals and their optoelectronic applications. Journal of Semiconductors, 2020, 41, 011201.	2.0	16
774	Permanent Lattice Compression of Lead-Halide Perovskite for Persistently Enhanced Optoelectronic Properties. ACS Energy Letters, 2020, 5, 642-649.	8.8	52
775	Materials chemistry and engineering in metal halide perovskite lasers. Chemical Society Reviews, 2020, 49, 951-982.	18.7	263
776	Structural and spectral dynamics of single-crystalline Ruddlesden-Popper phase halide perovskite blue light-emitting diodes. Science Advances, 2020, 6, eaay4045.	4.7	88
777	Acetic Acid Assisted Crystallization Strategy for High Efficiency and Longâ€Term Stable Perovskite Solar Cell. Advanced Science, 2020, 7, 1903368.	5.6	85
778	Efficient Two-Dimensional Tin Halide Perovskite Light-Emitting Diodes via a Spacer Cation Substitution Strategy. Journal of Physical Chemistry Letters, 2020, 11, 1120-1127.	2.1	97
779	High-Intensity CsPbBr3 Perovskite LED using Poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine) as Hole Transport and Electron-Blocking Layer. MRS Advances, 2020, 5, 411-419.	0.5	3
780	Multinary copper-based chalcogenide semiconductor nanocrystals: synthesis and applications in light-emitting diodes and bioimaging. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	19
781	Bifunctional Passivation Strategy to Achieve Stable CsPbBr ₃ Nanocrystals with Drastically Reduced Thermal-Quenching. Journal of Physical Chemistry Letters, 2020, 11, 993-999.	2.1	32
782	Effects of Hydrogen Bonds between Polymeric Hole-Transporting Material and Organic Cation Spacer on Morphology of Quasi-Two-Dimensional Perovskite Grains and Their Performance in Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 9440-9447.	4.0	16
783	What Defines a Halide Perovskite?. ACS Energy Letters, 2020, 5, 604-610.	8.8	228
784	Three-Dimensional Laser-Assisted Patterning of Blue-Emissive Metal Halide Perovskite Nanocrystals inside a Glass with Switchable Photoluminescence. ACS Nano, 2020, 14, 3150-3158.	7.3	102

#	Article	IF	CITATIONS
785	Improving the performance of light-emitting diodes via plasmonic-based strategies. Journal of Applied Physics, 2020, 127, .	1.1	30
786	Evidence for Ferroelectricity of All-Inorganic Perovskite CsPbBr ₃ Quantum Dots. Journal of the American Chemical Society, 2020, 142, 3316-3320.	6.6	53
787	Ultrastable monodispersed lead halide perovskite nanocrystals derived from interfacial compatibility. Nano Energy, 2020, 71, 104554.	8.2	14
788	The role of photon recycling in perovskite light-emitting diodes. Nature Communications, 2020, 11, 611.	5.8	121
789	Thiocyanate-Treated Perovskite-Nanocrystal-Based Light-Emitting Diodes with Insight in Efficiency Roll-Off. Materials, 2020, 13, 367.	1.3	14
790	Sensitized Yb ³⁺ Luminescence in CsPbCl ₃ Film for Highly Efficient Nearâ€Infrared Lightâ€Emitting Diodes. Advanced Science, 2020, 7, 1903142.	5.6	54
791	Efficient and Spectrally Stable Blue Perovskite Lightâ€Emitting Diodes Based on Potassium Passivated Nanocrystals. Advanced Functional Materials, 2020, 30, 1908760.	7.8	134
792	Layeredâ€Perovskite Nanowires with Longâ€Range Orientational Order for Ultrasensitive Photodetectors. Advanced Materials, 2020, 32, e1905298.	11.1	49
793	Fine Structure of the Optical Absorption Resonance in Cs ₂ AgBiBr ₆ Double Perovskite Thin Films. ACS Energy Letters, 2020, 5, 559-565.	8.8	45
794	Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1â^'xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nature Energy, 2020, 5, 79-88.	19.8	412
795	Smart Sensing Systems Using Wearable Optoelectronics. Advanced Intelligent Systems, 2020, 2, 1900144.	3.3	19
796	Highâ€Efficiency Formamidinium Lead Bromide Perovskite Nanocrystalâ€Based Lightâ€Emitting Diodes Fabricated via a Surface Defect Selfâ€Passivation Strategy. Advanced Optical Materials, 2020, 8, 1901390.	3.6	44
797	High-Brightness Perovskite Light-Emitting Diodes Using a Printable Silver Microflake Contact. ACS Applied Materials & Interfaces, 2020, 12, 11428-11437.	4.0	11
798	Component regulation and crystallization mechanism of CsPbBr3/Cs4PbBr6 perovskite composite quantum dots-embedded borosilicate glass for light emitting application. Applied Surface Science, 2020, 512, 145655.	3.1	65
799	Structurally Stable and Highly Enhanced Luminescent Perovskite Based on Quasi-Two-Dimensional Structures upon Addition of Guanidinium Cations. Journal of Physical Chemistry C, 2020, 124, 4414-4420.	1.5	12
800	Dual Passivation of Perovskite Defects for Lightâ€Emitting Diodes with External Quantum Efficiency Exceeding 20%. Advanced Functional Materials, 2020, 30, 1909754.	7.8	212
801	Photoinduced Trap Passivation for Enhanced Photoluminescence in 2D Organic–Inorganic Hybrid Perovskites. Advanced Optical Materials, 2020, 8, 1901695.	3.6	14
802	Grain Boundary Enhanced Photoluminescence Anisotropy in Twoâ€Dimensional Hybrid Perovskite Films. Advanced Optical Materials, 2020, 8, 1901780.	3.6	14

ARTICLE IF CITATIONS Strong Linearly Polarized Photoluminescence and Electroluminescence from Halide Perovskite/Azóbenzene Dye Composite Film for Display Applications. Advanced Optical Materials, 2020, 803 25 3.6 8, 1901824. Cesium Lead Halide Perovskite Nanocrystals Prepared by Anion Exchange for Light-Emitting Diodes. ACS 804 2.4 Applied Nano Materials, 2020, 3, 1766-1774. Auger Effect Assisted Perovskite Electroluminescence Modulated by Interfacial Minority Carriers. 805 7.8 27 Advanced Functional Materials, 2020, 30, 1909222. Highly Stabilized Gradient Alloy Quantum Dots and Silica Hybrid Nanospheres by Core Double Shells 806 for Photoluminescence Devices. Journal of Physical Chemistry Letters, 2020, 11, 1428-1434. Bright and Color-Stable Blue-Light-Emitting Diodes based on Three-Dimensional Perovskite 807 Polycrystalline Films via Morphology and Interface Engineering. Journal of Physical Chemistry 2.1 36 Letters, 2020, 11, 1411-1418. Frequency- and Power-Dependent Photoresponse of a Perovskite Photodetector Down to the 808 4.5 Single-Photon Level. Nano Letters, 2020, 20, 2144-2151. 809 Epitaxial growth of CH3NH3PbI3 on rubrene single crystal. APL Materials, 2020, 8, . 2.2 11 Stoichiometry Control for the Tuning of Grain Passivation and Domain Distribution in Green Quasiâ€2D Metal Halide Perovskite Films and Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 7.8 2001816. Tuning spin-orbit coupling towards enhancing photocurrent in hybrid organic-inorganic perovskites 811 1.4 10 by using mixed organic cations. Organic Electronics, 2020, 81, 105671. Silver–Bismuth Bilayer Anode for Perovskite Nanocrystal Light-Emitting Devices. Journal of Physical 2.1 Chemistry Letters, 2020, 11, 3853-3859. Determining the Chemical Origin of the Photoluminescence of Cesium–Bismuth–Bromide Perovskite Nanocrystals and Improving the Luminescence via Metal Chloride Additives. ACS Applied Energy 813 2.5 14 Materials, 2020, 3, 4650-4657. (1-C5H14N2Br)2MnBr4: A Lead-Free Zero-Dimensional Organic-Metal Halide With Intense Green 814 1.8 Photoluminescence. Frontiers in Chemistry, 2020, 8, 352. Photoluminescence tuning from glass-stabilized CsPbX3 (XÂ=ÂCl, Br, I) perovskite nanocrystals triggered by upconverting Tm: KYb2F7 nanoparticles for high-level anti-counterfeiting. Chemical Engineering 815 6.6 75 Journal, 2020, 395, 125214. Revealing Excitonic and Electron-Hole Plasma States in Stimulated Emission of Single <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mi>Br</mml:mi>Cs</mml:mi>Cs</mml:mi>Pb</mml:mi>Cmml:mi>Br</mml:mi>C/mml:mi><mml:mi>Nanowires at Room Temperature. Physical Review Applied, 2020, 13, . Simultaneous Optimization of Phase and Morphology of CsPbBr 3 Films via Controllable Ostwald Ripening by Ethylene Glycol Monomethylether/Isopropanol Biâ€Solvent Engineering. Advanced 817 19 1.6 Engineering Materials, 2020, 22, 2000162. Insulator as Efficient Hole Injection Layer in Perovskite Lightâ€Emitting Device via MIS Contact. Advanced Optical Materials, 2020, 8, 1902177. Surface Regulation of CsPbBr₃ Quantum Dots for Standard Blueâ€Emission with Boosted 819 3.6 30 PLQY. Advanced Optical Materials, 2020, 8, 2000167. Halogen-containing semiconductors: From artificial photosynthesis to unconventional computing. Coordination Chemistry Reviews, 2020, 415, 213316.

#	Article	IF	CITATIONS
821	Mixed 2D/3D perovskite with fine phase control modulated by a novel cyclopentanamine hydrobromide for better stability in light-emitting diodes. Chemical Engineering Journal, 2020, 393, 124787.	6.6	7
822	Recent progress in surface modification and interfacial engineering for high-performance perovskite light-emitting diodes. Nano Energy, 2020, 73, 104752.	8.2	58
823	Calcium-tributylphosphine oxide passivation enables the efficiency of pure-blue perovskite light-emitting diode up to 3.3%. Science Bulletin, 2020, 65, 1150-1153.	4.3	39
824	Large-Area Cesium Lead Bromide Perovskite Light-Emitting Diodes Realized by Incorporating a Hybrid Additive. ACS Applied Electronic Materials, 2020, 2, 1113-1121.	2.0	13
825	Nonradiative Energy Transfer between Thickness-Controlled Halide Perovskite Nanoplatelets. ACS Energy Letters, 2020, 5, 1380-1385.	8.8	48
826	Interface energy level alignment and improved film quality with a hydrophilic polymer interlayer to improve the device efficiency and stability of all-inorganic halide perovskite light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 6743-6748.	2.7	12
827	High-performance blue perovskite light-emitting diodes based on the "far-field plasmonic effect―of gold nanoparticles. Journal of Materials Chemistry C, 2020, 8, 6615-6622.	2.7	11
828	Two-dimensional Ruddlesden–Popper layered perovskite for light-emitting diodes. APL Materials, 2020, 8, 040901.	2.2	16
829	A general approach for hysteresis-free, operationally stable metal halide perovskite field-effect transistors. Science Advances, 2020, 6, eaaz4948.	4.7	129
830	Investigation of the Role of the Environment on the Photoluminescence and the Exciton Relaxation of CsPbBr3 Nanocrystals Thin Films. Applied Sciences (Switzerland), 2020, 10, 2148.	1.3	7
831	Lead Sulfide Nanocubes for Solar Energy Storage. Energy Technology, 2020, 8, 2000301.	1.8	5
832	Size- and Composition-Dependent Exciton Spin Relaxation in Lead Halide Perovskite Quantum Dots. ACS Energy Letters, 2020, 5, 1701-1708.	8.8	47
833	Coexistence of light-induced photoluminescence enhancement and quenching in CH ₃ NH ₃ PbBr ₃ perovskite films. RSC Advances, 2020, 10, 11054-11059.	1.7	5
834	Elucidating tuneable ambipolar charge transport and field induced bleaching at the CH ₃ NH ₃ Pbl ₃ /electrolyte interface. Physical Chemistry Chemical Physics, 2020, 22, 11062-11074.	1.3	20
835	Synthesis, optoelectronic properties and applications of halide perovskites. Chemical Society Reviews, 2020, 49, 2869-2885.	18.7	282
836	Lowâ€Dimensional Contact Layers for Enhanced Perovskite Photodiodes. Advanced Functional Materials, 2020, 30, 2001692.	7.8	30
837	Light-induced phase transition and photochromism in all-inorganic two-dimensional Cs2PbI2Cl2 perovskite. Science China Materials, 2020, 63, 1510-1517.	3.5	14
838	Origin of Amplified Spontaneous Emission Degradation in MAPbBr ₃ Thin Films under Nanosecond-UV Laser Irradiation. Journal of Physical Chemistry C, 2020, 124, 10696-10704.	1.5	14

#	Article	IF	CITATIONS
839	Tightly Compacted Perovskite Laminates on Flexible Substrates via Hot-Pressing. Applied Sciences (Switzerland), 2020, 10, 1917.	1.3	2
840	Realizing ultra-pure red emission with Sn-based lead-free perovskites. Rare Metals, 2020, 39, 330-331.	3.6	5
841	Scaling Laws of Exciton Recombination Kinetics in Low Dimensional Halide Perovskite Nanostructures. Journal of the American Chemical Society, 2020, 142, 8871-8879.	6.6	26
842	In Situ Growth of Allâ€Inorganic Perovskite Single Crystal Arrays on Electron Transport Layer. Advanced Science, 2020, 7, 1902767.	5.6	21
843	Luminescent inorganic–organic hybrid with tunable red light emissions by neutral molecule modification. Inorganic Chemistry Communication, 2020, 116, 107909.	1.8	4
844	Suppressing Efficiency Roll-Off at High Current Densities for Ultra-Bright Green Perovskite Light-Emitting Diodes. ACS Nano, 2020, 14, 6076-6086.	7.3	142
845	Degradation mechanisms in mixed-cation and mixed-halide Cs _x FA _{1â^'x} Pb(Br _y 1sub>1â^'y) ₃ perovskite films under ambient conditions. Journal of Materials Chemistry A, 2020, 8, 9302-9312.	5.2	26
846	High performance CsPbBr3 quantum dots photodetectors by using zinc oxide nanorods arrays as an electron-transport layer. Applied Physics Letters, 2020, 116, .	1.5	102
847	Surface Engineering of Allâ€Inorganic Perovskite Quantum Dots with Quasi Coreâ^'Shell Technique for Highâ€Performance Photodetectors. Advanced Materials Interfaces, 2020, 7, 2000360.	1.9	34
848	Vaporâ€Đeposited Cs ₂ AgBiCl ₆ Double Perovskite Films toward Highly Selective and Stable Ultraviolet Photodetector. Advanced Science, 2020, 7, 1903662.	5.6	64
849	The Role of Grain Boundaries on Ionic Defect Migration in Metal Halide Perovskites. Advanced Energy Materials, 2020, 10, 1903735.	10.2	117
850	Superior Stability and Emission Quantum Yield (23% ± 3%) of Single‣ayer 2D Tin Perovskite TEA ₂ SnI ₄ via Thiocyanate Passivation. Small, 2020, 16, e2000903.	5.2	19
851	Moleculeâ€Induced pâ€Doping in Perovskite Nanocrystals Enables Efficient Colorâ€Saturated Red Lightâ€Emitting Diodes. Small, 2020, 16, e2001062.	5.2	53
852	Efficient Interconnection in Perovskite Tandem Solar Cells. Small Methods, 2020, 4, 2000093.	4.6	43
853	Recent progress in phosphorescent Ir(III) complexes for nondoped organic light-emitting diodes. Coordination Chemistry Reviews, 2020, 413, 213283.	9.5	71
854	Electronic and optical properties of layered Ruddlesden Popper hybrid X2(MA)n-1SnnI3n+1 perovskite insight by first principles. Journal of Physics and Chemistry of Solids, 2020, 144, 109510.	1.9	3
855	Multi-phased cesium lead iodide quantum dots with large stokes shift. Materials Letters, 2020, 271, 127765.	1.3	3
856	Prominent Heat Dissipation in Perovskite Light-Emitting Diodes with Reduced Efficiency Droop for Silicon-Based Display. Journal of Physical Chemistry Letters, 2020, 11, 3689-3698.	2.1	37

#	Article	IF	CITATIONS
857	Strong Spin-Selective Optical Stark Effect in Lead Halide Perovskite Quantum Dots. Journal of Physical Chemistry Letters, 2020, 11, 3594-3600.	2.1	21
858	Directional Light Emission from Layered Metal Halide Perovskite Crystals. Journal of Physical Chemistry Letters, 2020, 11, 3458-3465.	2.1	23
859	Photolithographic Patterning of Perovskite Thin Films for Multicolor Display Applications. Nano Letters, 2020, 20, 3710-3717.	4.5	120
860	Designing the Perovskite Structural Landscape for Efficient Blue Emission. ACS Energy Letters, 2020, 5, 1593-1600.	8.8	71
861	Metal halide perovskites for blue light emitting materials. APL Materials, 2020, 8, .	2.2	15
862	Synthesis of emission tunable AgInS ₂ /ZnS quantum dots and application for light emitting diodes. Journal of Physics Communications, 2020, 4, 045016.	0.5	13
863	Ligandâ€Modulated Excess PbI ₂ Nanosheets for Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2020, 32, e2000865.	11.1	136
864	Ultrathin PEDOT:PSS Enables Colorful and Efficient Perovskite Lightâ€Emitting Diodes. Advanced Science, 2020, 7, 2000689.	5.6	43
865	Micro―and Nanostructured Lead Halide Perovskites: From Materials to Integrations and Devices. Advanced Materials, 2021, 33, e2000306.	11.1	75
866	All-inorganic Cs2AgBiBr6/CuSCN-based photodetectors for weak light imaging. Science China Materials, 2021, 64, 198-208.	3.5	37
867	Direct Observation of Shallow Trap States in Thermal Equilibrium with Bandâ€Edge Excitons in Strongly Confined CsPbBr ₃ Perovskite Nanoplatelets. Advanced Optical Materials, 2021, 9, 2001308.	3.6	23
868	Two-dimensional materials for light emitting applications: Achievement, challenge and future perspectives. Nano Research, 2021, 14, 1912-1936.	5.8	34
869	Synthesis and simulation of surfactant free chemically derived highly polycrystalline lead iodide. Materials Today: Proceedings, 2021, 42, 1624-1628.	0.9	0
870	Manganese doped eco-friendly CuInSe2 colloidal quantum dots for boosting near-infrared photodetection performance. Chemical Engineering Journal, 2021, 403, 126452.	6.6	27
871	Construction of ultraâ€stable perovskite–polymer fibre membranes by electrospinning technology and its application to lightâ€emitting diodes. Polymer International, 2021, 70, 90-95.	1.6	6
872	Highâ€Mobility Organic Lightâ€Emitting Semiconductors and Its Optoelectronic Devices. Small Structures, 2021, 2, 2000083.	6.9	47
873	Challenges, recent advances and improvements for enhancing the efficiencies of ABX3-based PeLEDs (perovskites light emitting diodes): A review. Journal of Alloys and Compounds, 2021, 850, 156827.	2.8	20
874	Enabling AC electroluminescence in quasi-2D perovskites by uniformly arranging different-n-value nanoplates to allow bidirectional charge transport. Nano Energy, 2021, 79, 105413.	8.2	8

#	Article	IF	CITATIONS
875	Lead-free perovskite Cs2AgBiBr6@g-C3N4 Z-scheme system for improving CH4 production in photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2021, 282, 119570.	10.8	195
876	Laser writing of CsPbBr3 nanocrystals mediated by closely-packed Au nanoislands. Applied Surface Science, 2021, 538, 148143.	3.1	9
877	Overcoming the Anisotropic Growth Limitations of Free tanding Single rystal Halide Perovskite Films. Angewandte Chemie, 2021, 133, 2661-2668.	1.6	5
878	Boosting the efficiency of quasi-2D perovskites light-emitting diodes by using encapsulation growth method. Nano Energy, 2021, 80, 105511.	8.2	54
879	Overcoming the Anisotropic Growth Limitations of Freeâ€Standing Singleâ€Crystal Halide Perovskite Films. Angewandte Chemie - International Edition, 2021, 60, 2629-2636.	7.2	24
880	Space-confined growth of high-quality CsBi3I10 lead-free perovskite film for near-infrared photodetectors with high sensitivity and stability. Science China Materials, 2021, 64, 393-399.	3.5	8
881	Perovskite QLED with an external quantum efficiency of over 21% by modulating electronic transport. Science Bulletin, 2021, 66, 36-43.	4.3	162
882	Highly-efficient all-inorganic lead-free 1D CsCu2I3 single crystal for white-light emitting diodes and UV photodetection. Nano Energy, 2021, 81, 105570.	8.2	100
883	Recent progress of minimal voltage losses for high-performance perovskite photovoltaics. Nano Energy, 2021, 81, 105634.	8.2	48
884	Mn ²⁺ â€Doped Metal Halide Perovskites: Structure, Photoluminescence, and Application. Laser and Photonics Reviews, 2021, 15, .	4.4	167
885	Distinctive Bulk- and Surface-Specific Photoluminescence and Photocarrier Dynamics in CH ₃ NH ₃ PbI ₃ Perovskite. Crystal Growth and Design, 2021, 21, 45-51.	1.4	9
886	The dual-defect passivation role of lithium bromide doping in reducing the nonradiative loss in CsPbX ₃ (X = Br and I) quantum dots. Inorganic Chemistry Frontiers, 2021, 8, 658-668.	3.0	15
887	Accurate Efficiency Measurements of Organic Lightâ€Emitting Diodes via Angleâ€Resolved Spectroscopy. Advanced Optical Materials, 2021, 9, 2000838.	3.6	25
888	A Scalable H ₂ 0–DMF–DMSO Solvent Synthesis of Highly Luminescent Inorganic Perovskiteâ€Related Cesium Lead Bromides. Advanced Optical Materials, 2021, 9, 2001435.	3.6	16
889	Enhanced performance of perovskite light-emitting-diodes based on ionic liquid modified CsPbBr3 nanocrystals. Optical Materials, 2021, 111, 110620.	1.7	3
890	Elastic and Optoelectronic Properties of Cs2NaMCl6 (M = In, Tl, Sb, Bi). Journal of Electronic Materials, 2021, 50, 456-466.	1.0	33
891	Emerging Perovskite Materials with Different Nanostructures for Photodetectors. Advanced Optical Materials, 2021, 9, 2001637.	3.6	40
892	Deep Blue Layered Lead Perovskite Lightâ€Emitting Diode. Advanced Optical Materials, 2021, 9, 2001709.	3.6	20

#	Article	IF	CITATIONS
893	Reversible Crystal–Glass Transition in a Metal Halide Perovskite. Advanced Materials, 2021, 33, e2005868.	11.1	54
894	Halide Perovskite Nanocrystal Emitters. Advanced Photonics Research, 2021, 2, 2000118.	1.7	17
895	Solution-processed all-inorganic perovskite CsPbBr3 thin films for optoelectronic application. Journal of Alloys and Compounds, 2021, 864, 158125.	2.8	13
896	Selfâ€Driven Perovskite Narrowband Photodetectors with Tunable Spectral Responses. Advanced Materials, 2021, 33, e2005557.	11.1	109
897	Bright red YCl3-promoted CsPbI3 perovskite nanorods towards efficient light-emitting diode. Nano Energy, 2021, 81, 105615.	8.2	33
898	Sensing studies and applications based on metal halide perovskite materials: Current advances and future perspectives. TrAC - Trends in Analytical Chemistry, 2021, 134, 116127.	5.8	48
899	Recent research on the luminous mechanism, synthetic strategies, and applications of CuInS ₂ quantum dots. Inorganic Chemistry Frontiers, 2021, 8, 880-897.	3.0	33
900	Dynamic Redistribution of Mobile Ions in Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2021, 31, 2007596.	7.8	23
901	Effects of the indium tin oxide/perovskite interface on the photocurrent amplification of perovskite photodetectors. Synthetic Metals, 2021, 271, 116636.	2.1	1
902	High Quality CsPbI _{3â^'} <i>_x</i> Br <i>_x</i> Thin Films Enabled by Synergetic Regulation of Fluorine Polymers and Amino Acid Molecules for Efficient Pure Red Light Emitting Diodes. Advanced Optical Materials, 2021, 9, 2001684.	3.6	19
903	Recent progress in all-inorganic metal halide nanostructured perovskites: Materials design, optical properties, and application. Frontiers of Physics, 2021, 16, 1.	2.4	26
904	Highly luminescent CH3NH3PbBr3 quantum dots with 96.5% photoluminescence quantum yield achieved by synergistic combination of single-crystal precursor and capping ligand optimization. Journal of Alloys and Compounds, 2021, 859, 157842.	2.8	5
905	Highâ€Performance Blue Perovskite Lightâ€Emitting Diodes Enabled by Efficient Energy Transfer between Coupled Quasiâ€2D Perovskite Layers. Advanced Materials, 2021, 33, e2005570.	11.1	171
906	Epitaxial halide perovskite-based materials for photoelectric energy conversion. Energy and Environmental Science, 2021, 14, 127-157.	15.6	37
907	Interfacial Potassiumâ€Guided Grain Growth for Efficient Deepâ€Blue Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2021, 31, 2006736.	7.8	93
908	Highly Uniform Allâ€Vacuumâ€Deposited Inorganic Perovskite Artificial Synapses for Reservoir Computing. Advanced Intelligent Systems, 2021, 3, 2000196.	3.3	18
909	Development of structure and tuning ability of the luminescence of lead-free halide perovskite nanocrystals (NCs). Chemical Engineering Journal, 2021, 420, 127603.	6.6	18
910	Utilization of Trapped Optical Modes for White Perovskite Light-Emitting Diodes with Efficiency over 12%. Joule, 2021, 5, 456-466.	11.7	81

#	Article	IF	CITATIONS
911	Preparation of CsSnBr3 perovskite film and its all-inorganic solar cells with planar heterojunction. Journal of Solid State Chemistry, 2021, 294, 121902.	1.4	15
912	Capping-ligand free grinding synthesis of luminescent lead halide perovskite nanocrystals. Materials Today Communications, 2021, 26, 101926.	0.9	1
913	Mixed-dimensional CsPbBr3@ZnO heterostructures for high-performance p-n diodes and photodetectors. Nano Today, 2021, 36, 101055.	6.2	37
914	Fluorescence enhancement of perovskite nanocrystals using photonic crystals. Journal of Materials Chemistry C, 2021, 9, 908-915.	2.7	19
915	Water Triggered Synthesis of Highly Stable and Biocompatible 1D Nanowire, 2D Nanoplatelet, and 3D Nanocube CsPbBr ₃ Perovskites for Multicolor Two-Photon Cell Imaging. Jacs Au, 2021, 1, 53-65.	3.6	40
916	In Situ Inkjet Printing Patterned Lead Halide Perovskite Quantum Dot Color Conversion Films by Using Cheap and Ecoâ€Friendly Aqueous Inks. Small Methods, 2021, 5, e2000889.	4.6	47
917	Lowâ€Dimensional Metal Halide Perovskite Photodetectors. Advanced Materials, 2021, 33, e2003309.	11.1	319
918	CsPbBr ₃ @Cs ₄ PbBr ₆ Emitter-in-Host Composite: Fluorescence Origin and Interphase Energy Transfer. Journal of Physical Chemistry C, 2021, 125, 3-19.	1.5	24
919	Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites. Nature Photonics, 2021, 15, 238-244.	15.6	231
920	Surface-induced phase engineering and defect passivation of perovskite nanograins for efficient red light-emitting diodes. Nanoscale, 2021, 13, 340-348.	2.8	22
921	Boosting the performance of CsPbBr ₃ -based perovskite light-emitting diodes <i>via</i> constructing nanocomposite emissive layers. Journal of Materials Chemistry C, 2021, 9, 916-924.	2.7	9
922	Understanding the Synergistic Effect of Device Architecture Design toward Efficient Perovskite Lightâ€Emitting Diodes Using Interfacial Layer Engineering. Advanced Materials Interfaces, 2021, 8, 2001712.	1.9	29
923	Reconfigurable Perovskite LEC: Effects of Ionic Additives and Dual Function Devices. Advanced Optical Materials, 2021, 9, 2001715.	3.6	33
924	Atomic-scale visualization of metallic lead leak related fine structure in CsPbBr ₃ quantum dots. Nanoscale, 2021, 13, 124-130.	2.8	4
925	Ampholytic interface induced <i>in situ</i> growth of CsPbBr ₃ for highly efficient perovskite light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 1025-1033.	2.7	10
926	Tuning electroluminescence performance in Pr-doped piezoelectric bulk ceramics and composites. Journal of Materiomics, 2021, 7, 264-270.	2.8	2
927	Chlorine distribution management for spectrally stable and efficient perovskite blue light-emitting diodes. Nano Energy, 2021, 79, 105486.	8.2	29
928	Highâ€Performance Perovskiteâ€Based Blue Lightâ€Emitting Diodes with Operational Stability by Using Organic Ammonium Cations as Passivating Agents. Advanced Functional Materials, 2021, 31, 2005553.	7.8	43

#	Article	IF	CITATIONS
929	Leadâ€Free Halide Double Perovskites: Structure, Luminescence, and Applications. Small Structures, 2021, 2, 2000071.	6.9	71
930	Mechanosynthesis of polymer-stabilized lead bromide perovskites: insight into the formation and phase conversion of nanoparticles. Nano Research, 2021, 14, 1078-1086.	5.8	8
931	Stabilization of nonâ€native polymorphs for electrocatalysis and energy storage systems. Wiley Interdisciplinary Reviews: Energy and Environment, 2021, 10, e389.	1.9	5
932	An overview of rare earth coupled lead halide perovskite and its application in photovoltaics and light emitting devices. Progress in Materials Science, 2021, 120, 100737.	16.0	35
933	Metal halide perovskites for light-emitting diodes. Nature Materials, 2021, 20, 10-21.	13.3	800
934	Amplified spontaneous emission in thin films of quasi-2D BA ₃ MA ₃ Pb ₅ Br ₁₆ lead halide perovskites. Nanoscale, 2021, 13, 8893-8900.	2.8	8
935	A versatile approach for shape-controlled synthesis of ultrathin perovskite nanostructures. Dalton Transactions, 2021, 50, 3308-3314.	1.6	5
936	Current-induced thermal tunneling electroluminescence <i>via</i> multiple donor–acceptor-pair recombination. Journal of Materials Chemistry C, 2021, 9, 1174-1182.	2.7	5
937	Research progress of metal halide perovskite nanometer optoelectronic materials. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 087303.	0.2	2
938	High-performance perovskite light-emitting diodes based on double hole transport layers. Journal of Materials Chemistry C, 2021, 9, 2115-2122.	2.7	25
939	A donor–acceptor ligand boosting the performance of FA _{0.8} Cs _{0.2} PbBr ₃ nanocrystal light-emitting diodes. Nanoscale, 2021, 13, 1791-1799.	2.8	9
940	Improved performance of perovskite light-emitting diodes with a NaCl doped PEDOT:PSS hole transport layer. Journal of Materials Chemistry C, 2021, 9, 4344-4350.	2.7	28
941	Air stable and highly efficient Bi ³⁺ -doped Cs ₂ SnCl ₆ for blue light-emitting diodes. RSC Advances, 2021, 11, 26415-26420.	1.7	16
942	Advances in Perovskite Light-Emitting Diodes Possessing Improved Lifetime. Nanomaterials, 2021, 11, 103.	1.9	15
943	Improving persistent luminescence in pressure-tuned CsPbBr ₃ nanocrystals by Ce ³⁺ doping. Physical Chemistry Chemical Physics, 2021, 23, 20567-20573.	1.3	15
944	High-efficiency red perovskite light-emitting diodes based on collaborative optimization of emission layer and transport layers. Journal of Materials Chemistry C, 2021, 9, 12367-12373.	2.7	16
945	Group-III-nitride and halide-perovskite semiconductor gain media for amplified spontaneous emission and lasing applications. Journal Physics D: Applied Physics, 2021, 54, 143001.	1.3	20
946	Achieving Matrix Quantum Dot Light-Emitting Display Based on All-Inorganic CsPbBrâ,ƒ Perovskite Nanocrystal Composites. IEEE Access, 2021, 9, 128919-128924.	2.6	1

ARTICLE IF CITATIONS Visible-light-stimulated synaptic InGaZnO phototransistors enabled by wavelength-tunable perovskite 947 2.2 13 quantum dots. Nanoscale Advances, 2021, 3, 5046-5052. Effective defect passivation of CsPbBr₃ quantum dots using gallium cations toward the 948 2.7 fabrication of bright perovskite LEDs. Journal of Materials Chemistry C, 2021, 9, 11324-11330. Computational Study of Dipole Radiation in Reâ€Absorbing Perovskite Semiconductors for 949 5.6 18 Optoelectronics. Advanced Science, 2021, 8, 2003559. Dynamic photonic perovskite light-emitting diodes with post-treatment-enhanced crystallization as writable and wipeable inscribers. Nanoscale Advances, 2021, 3, 6659-6668. Efficient green indium phosphide quantum dots with tris(dimethylamino)-phosphine phosphorus precursor for electroluminescent devices. Journal of Materials Science: Materials in Electronics, 951 1.1 7 2021, 32, 4686-4694. The 2D Halide Perovskite Rulebook: How the Spacer Influences Everything from the Structure to Optoelectronic Device Efficiency. Chemical Reviews, 2021, 121, 2230-2291. 23.0 Luminance efficiency roll-off mechanism in CsPbBr_{3â[~]x}Cl_x mixed-halide 953 2.7 32 perovskite quantum dot blue light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 3608-3619. The Path to Enlightenment: Progress and Opportunities in High Efficiency Halide Perovskite 954 3.2 Light-Emitting Devices. ACS Photonics, 2021, 8, 386-404. Surface energy transfer in hybrid halide perovskite/plasmonic Au nanoparticle composites. Nanoscale, 955 2.8 1 2021, 13, 14221-14227. Microsteganography on all inorganic perovskite micro-platelets by direct laser writing. Nanoscale, 2.8 2021, 13, 14450-14459. Improvement of photoluminescence intensity and film morphology of perovskite by Ionic liquids 957 3 0.2 additive. E3S Web of Conferences, 2021, 257, 03066. All-inorganic tin-doped Cs₂BiAgCl₆ double perovskites with stable blue 958 2.7 photoluminescence for WLEDs. Journal of Materials Chemistry C, 2021, 9, 8862-8873. <i>In situ</i> synthesis of blue-emitting bromide-based perovskite nanoplatelets towards unity 959 2.7 19 quantum efficiency and ultrahigh stability. Journal of Materials Chemistry C, 2021, 9, 5535-5543. Ligand and adjuvant dual-assisted synthesis of highly luminescent and stable 1.7 Cs₄PbBr₆ nanoparticles used in LEDs. RSC Advances, 2021, 11, 21738-21744. Swelling-processed high luminescent organic perovskite with superior stability. Journal of Materials 961 3 2.7 Chemistry C, 2021, 9, 10222-10225. Efficient all-inorganic perovskite light-emitting diodes enabled by manipulating the crystal orientation. Journal of Materials Chemistry A, 2021, 9, 11064-11072. 24 Freestanding CH₃NH₃PbBr₃ single-crystal microwires for 963 optoelectronic applications synthesized with a predefined lattice framework. Journal of Materials 2.7 7 Chemistry C, 2021, 9, 4771-4781. Postpassivation of Cs_{0.05}(FA_{0.83}MA_{0.17})_{0.95}Pb(I_{0.83}Br_{0.17})₃Br_{0.17})₃Br_{0.17})₃Br_{0.17})₃Br_{0.17})₃Br_{0.17})₃Br_{0.17})_{0.17})_{0.17}Br_{0.17})<sub>0.17</sub)_{0.17})_{0.17})<sub>0.17</sub)_{0.17})_{0.17})_{0.17})_{0.17})_{0.17})_{0.17})_{0.17})_{0.17})_{0.17})_{0.17})_{0.17})_{0.17})_{0.17})_{0.17})_{0.17})_{0.17})_{0.17})_{0.17})_{0.17})<s 964 Perovskite Films with Tris(pentafluorophenyl)borane. ACS Applied Materials & amp; Interfaces, 2021, 13,

CITATION REPORT

2472-2482

#	Article	IF	CITATIONS
965	Sustainable fabrication of ultralong Pb(OH)Br nanowires and their conversion to luminescent CH ₃ NH ₃ PbBr ₃ nanowires. Green Chemistry, 2021, 23, 7956-7962.	4.6	3
966	Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nature Photonics, 2021, 15, 148-155.	15.6	590
967	Perovskite Quantum Dots Glasses Based Backlit Displays. ACS Energy Letters, 2021, 6, 519-528.	8.8	240
968	Organic–inorganic hybrid and inorganic halide perovskites: structural and chemical engineering, interfaces and optoelectronic properties. Journal Physics D: Applied Physics, 2021, 54, 133002.	1.3	27
969	Highâ€ S ensitivity Flexible Xâ€Ray Detectors based on Printed Perovskite Inks. Advanced Functional Materials, 2021, 31, 2009072.	7.8	55
970	Suppressed Mn ²⁺ doping in organometal halide perovskite nanocrystals by formation of two-dimensional (CH ₃ NH ₃) ₂ MnCl ₄ . Chemical Communications, 2021, 57, 5055-5058.	2.2	6
971	Temperature-driven phase transition and transition dipole moment of two-dimensional (BA) ₂ CsPb ₂ Br ₇ perovskite. Physical Chemistry Chemical Physics, 2021, 23, 16341-16348.	1.3	5
972	Engineering Sr-doping for enabling long-term stable FAPb _{1â^'x} Sr _x I ₃ quantum dots with 100% photoluminescence quantum yield. Journal of Materials Chemistry C, 2021, 9, 1555-1566.	2.7	23
973	Perovskite-type stabilizers for efficient and stable formamidinium-based lead iodide perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 20807-20815.	5.2	23
974	Reality or fantasy—Perovskite semiconductor laser diodes. EcoMat, 2021, 3, e12077.	6.8	28
975	Enhancement in the Mechanical Stretchability of PEDOT:PSS Films by Compounds of Multiple Hydroxyl Groups for Their Application as Transparent Stretchable Conductors. Macromolecules, 2021, 54, 1234-1242.	2.2	29
976	Halide perovskites for light emission and artificial photosynthesis: Opportunities, challenges, and perspectives. EcoMat, 2021, 3, e12074.	6.8	29
978	Recent advances in radiation detection technologies enabled by metal-halide perovskites. Materials Advances, 2021, 2, 6744-6767.	2.6	20
979	Lead-free bright blue light-emitting cesium halide nanocrystals by zinc doping. RSC Advances, 2021, 11, 2437-2445.	1.7	7
980	Highly efficient and blue-emitting CsPbBr ₃ quantum dots synthesized by two-step supersaturated recrystallization. Nanotechnology, 2021, 32, 145712.	1.3	9
981	Zero-dimensional plate-shaped copper halide crystals with green-yellow emissions. Materials Advances, 2021, 2, 3744-3751.	2.6	12
982	All-in-one: a new approach toward robust and solution-processable copper halide hybrid semiconductors by integrating covalent, coordinate and ionic bonds in their structures. Chemical Science, 2021, 12, 3805-3817.	3.7	40
983	Closed Bipolar Electrode Based Fluorescence Visualization Biosensor for Anti-interference Detection of T-2 toxin. Chemical Communications, 2021, 57, 6511-6513.	2.2	2

		CITATION REPORT		
#	Article		IF	CITATIONS
984	Magnetic perovskite nanoparticles for latent fingerprint detection. Nanoscale, 2021, 13, 120)38-12044.	2.8	13
985	Self-Powered All-Inorganic Perovskite Photodetectors with Fast Response Speed. Nanoscale I Letters, 2021, 16, 6.	Research	3.1	17
986	Bulk assembly of a 0D organic tin(<scp>ii</scp>)chloride hybrid with high anti-water stability Chemical Communications, 2021, 57, 8162-8165.	ν.	2.2	21
987	Perovskite-inspired materials for photovoltaics and beyond—from design to devices. Nanot 2021, 32, 132004.	echnology,	1.3	106
988	Time-dependent transformation routes of perovskites CsPbBr ₃ and CsPbCl <sub under high pressure. Journal of Materials Chemistry A, 2021, 9, 10769-10779.</sub 	>3	5.2	17
989	Efficient pure-red perovskite light-emitting diodes using dual-Lewis-base molecules for interfa modification. Journal of Materials Chemistry C, 0, , .	icial	2.7	15
990	Metal Halide Perovskites for X-ray Imaging Scintillators and Detectors. ACS Energy Letters, 2 739-768.	021, 6,	8.8	403
991	Boosting the performance of MA-free inverted perovskite solar cells <i>via</i> multifunctional liquid. Journal of Materials Chemistry A, 2021, 9, 12746-12754.	ion	5.2	44
992	Microscopic (Dis)order and Dynamics of Cations in Mixed FA/MA Lead Halide Perovskites. Jou Physical Chemistry C, 2021, 125, 1742-1753.	ırnal of	1.5	28
993	Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes. N Communications, 2021, 12, 361.	lature	5.8	268
994	Enhanced blue photoluminescence and photostability of Cs ₃ Bi ₂ Br ₉ perovskite quantum dots <i>via</i> surfac passivation with silver ions. CrystEngComm, 2021, 23, 7219-7227.	xe	1.3	3
995	Metallic surface doping of metal halide perovskites. Nature Communications, 2021, 12, 7.		5.8	66
996	Ultrathin polymethylmethacrylate interlayers boost performance of hybrid tin halide perovsk solar cells. Chemical Communications, 2021, 57, 5047-5050.	te	2.2	26
997	Leadâ€free metal halide perovskites for lightâ€emitting diodes. EcoMat, 2021, 3, e12082.		6.8	18
998	Photon-induced deactivations of multiple traps in CH ₃ NH ₃ PbI <sub perovskite films by different photon energies. Physical Chemistry Chemical Physics, 2021, 23 10919-10925.</sub 		1.3	3
999	Morphology optimization of perovskite films for efficient sky-blue light emitting diodes <i>vi novel green anti-solvent dimethyl carbonate. Journal of Materials Chemistry C, O, , .</i>	a a	2.7	2
1000	Research on the photoluminescence properties of Cu ²⁺ -doped perovskite CsPbCl ₃ quantum dots. RSC Advances, 2021, 11, 8430-8436.		1.7	17
1001	Lead-free perovskite compounds CsSn _{1â^x} Ge _x I _{3â^y} texplored for superior visible-light absorption. Physical Chemistry Chemical Physics, 2021, 23, 14449-14456.	Br _y	1.3	10

#	Article	IF	CITATIONS
1002	A High Seebeck Voltage Thermoelectric Module with Pâ€ŧype and Nâ€ŧype MAPbl ₃ Perovskite Single Crystals. Advanced Electronic Materials, 2021, 7, 2001003.	2.6	13
1003	An antimony based organic–inorganic hybrid coating material with high quantum efficiency and thermal quenching effect. Chemical Communications, 2021, 57, 1754-1757.	2.2	18
1004	Dielectric polarization effect and transient relaxation in FAPbBr ₃ films before and after PMMA passivation. Physical Chemistry Chemical Physics, 2021, 23, 10153-10163.	1.3	14
1005	Nature of the different emissive states and strong exciton–phonon couplings in quasi-two-dimensional perovskites derived from phase-modulated two-photon micro-photoluminescence spectroscopy. Physical Chemistry Chemical Physics, 2021, 23, 3983-3992.	1.3	7
1006	Phenylalkylammonium passivation enables perovskite light emitting diodes with record high-radiance operational lifetime: the chain length matters. Nature Communications, 2021, 12, 644.	5.8	109
1007	Tuning the Interfacial Dipole Moment of Spacer Cations for Charge Extraction in Efficient and Ultrastable Perovskite Solar Cells. Journal of Physical Chemistry C, 2021, 125, 1256-1268.	1.5	56
1008	Efficient and Stable Perovskite Solar Cells Enabled by Dicarboxylic Acid-Supported Perovskite Crystallization. Journal of Physical Chemistry Letters, 2021, 12, 997-1004.	2.1	69
1009	How to apply metal halide perovskites to photocatalysis: challenges and development. Nanoscale, 2021, 13, 10281-10304.	2.8	47
1010	Research Progress of Composition and Structure Design in Perovskites for High Performance Light-emitting Diodes. Acta Chimica Sinica, 2021, 79, 223.	0.5	4
1011	Binary ligand-mediated morphological evolution of methylammonium lead bromide nanocrystals. CrystEngComm, 2021, 23, 4434-4438.	1.3	5
1012	Spontaneous Radiation Amplification in a Microsphere oupled CsPbBr ₃ Perovskite Vertical Structure. Advanced Optical Materials, 2021, 9, 2001932.	3.6	6
1013	Quasi-2D bromide perovskite nanocrystals with narrow phase distribution prepared using ternary organic cations for sky-blue light-emitting diodes. Applied Physics Letters, 2021, 118, 083302.	1.5	7
1014	Recent Advances and Opportunities of Lead-Free Perovskite Nanocrystal for Optoelectronic Application. Energy Material Advances, 2021, 2021, .	4.7	43
1015	Organic Molecule Assisted Growth of Perovskite Films Consisting of Square Grains by Surface-Confined Process. Nanomaterials, 2021, 11, 473.	1.9	2
1016	Recent Progress on Patterning Strategies for Perovskite Lightâ€Emitting Diodes toward a Full olor Display Prototype. Small Science, 2021, 1, 2000050.	5.8	39
1017	The Opto-Electronic Functional Devices Based on Three-Dimensional Lead Halide Perovskites. Applied Sciences (Switzerland), 2021, 11, 1453.	1.3	11
1018	High-Quality All-Inorganic Perovskite CsPbBr ₃ Microsheet Crystals as Low-Loss Subwavelength Exciton–Polariton Waveguides. Nano Letters, 2021, 21, 1822-1830.	4.5	17
1019	Carbon Nanoparticles as Versatile Auxiliary Components of Perovskiteâ€Based Optoelectronic Devices. Advanced Functional Materials, 2021, 31, 2010768.	7.8	31

#	Article	IF	CITATIONS
1020	Fluorescent Carbon Dots: Fantastic Electroluminescent Materials for Lightâ€Emitting Diodes. Advanced Science, 2021, 8, 2001977.	5.6	141
1021	Smoothing the energy transfer pathway in quasi-2D perovskite films using methanesulfonate leads to highly efficient light-emitting devices. Nature Communications, 2021, 12, 1246.	5.8	274
1022	Insight on the Stability of Thick Layers in 2D Ruddlesden–Popper and Dion–Jacobson Lead Iodide Perovskites. Journal of the American Chemical Society, 2021, 143, 2523-2536.	6.6	79
1023	Formation and Stabilization of Inorganic Halide Perovskites for Photovoltaics. Matter, 2021, 4, 528-551.	5.0	28
1024	Analysis of misidentifications in TEM characterisation of organicâ€inorganic hybrid perovskite material. Journal of Microscopy, 2021, 282, 195-204.	0.8	11
1025	Electroluminescence Principle and Performance Improvement of Metal Halide Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2002167.	3.6	49
1026	Solution-processed flexible MAPbI ₃ photodetectors with ZnO Schottky contacts. Optics Express, 2021, 29, 7833.	1.7	12
1027	Efficient and Bright Pure-Blue All-Inorganic Perovskite Light-Emitting Diodes from an Ecofriendly Alloy. Journal of Physical Chemistry Letters, 2021, 12, 1747-1753.	2.1	25
1028	Two-Dimensional Dion–Jacobson Structure Perovskites for Efficient Sky-Blue Light-Emitting Diodes. ACS Energy Letters, 2021, 6, 908-914.	8.8	49
1029	Coefficient effect of rare earth and metal ions in phosphor combined glass materials for a wide color gamut display. Optics Letters, 2021, 46, 737.	1.7	1
1030	Photostable and Uniform CH3NH3PbI3 Perovskite Film Prepared via Stoichiometric Modification and Solvent Engineering. Nanomaterials, 2021, 11, 405.	1.9	5
1031	Synthesis of Gramâ€Scale Ultrastable Mnâ€Doped 2D Perovskites for Lightâ€Emitting Diodes. Advanced Materials Interfaces, 2021, 8, 2002175.	1.9	10
1032	Precise Ligand Tuning Emission of Mn-Doped CsPbCl ₃ Nanocrystals by the Amount of Sulfonates. Journal of Physical Chemistry Letters, 2021, 12, 1838-1846.	2.1	17
1033	Advances in Metal Halide Perovskite Film Preparation: The Role of Antiâ€ S olvent Treatment. Small Methods, 2021, 5, e2100046.	4.6	39
1034	Perovskite Quantum Dots with Ultralow Trap Density by Acid Etchingâ€Driven Ligand Exchange for High Luminance and Stable Pureâ€Blue Lightâ€Emitting Diodes. Advanced Materials, 2021, 33, e2006722.	11.1	196
1035	Efficient perovskite solar cells via improved carrier management. Nature, 2021, 590, 587-593.	13.7	1,972
1036	Metal Halide Perovskites for Laser Applications. Advanced Functional Materials, 2021, 31, 2010144.	7.8	180
1037	Intramolecularâ€Locked High Efficiency Ultrapure Violetâ€Blue (CIEâ€y <0.046) Thermally Activated Delayed Fluorescence Emitters Exhibiting Amplified Spontaneous Emission. Advanced Functional Materials, 2021, 31, 2009488.	7.8	88

#	Article	IF	CITATIONS
1038	Synthesis of Lead-Free Cs ₂ AgBiX ₆ (X = Cl, Br, I) Double Perovskite Nanoplatelets and Their Application in CO ₂ Photocatalytic Reduction. Nano Letters, 2021, 21, 1620-1627.	4.5	140
1039	Single-Layer ZnO Hollow Hemispheres Enable High-Performance Self-Powered Perovskite Photodetector for Optical Communication. Nano-Micro Letters, 2021, 13, 70.	14.4	56
1040	Chiralityâ€Ðependent Circular Photogalvanic Effect in Enantiomorphic 2D Organic–Inorganic Hybrid Perovskites. Advanced Materials, 2021, 33, e2008611.	11.1	48
1041	Chiral Helical Polymer/Perovskite Hybrid Nanofibers with Intense Circularly Polarized Luminescence. ACS Nano, 2021, 15, 7463-7471.	7.3	82
1042	Towards next generation white LEDs: optics-electronics synergistic effect in a single-layer heterophase halide perovskite. Light: Science and Applications, 2021, 10, 46.	7.7	25
1043	High-performance quasi-2D perovskite light-emitting diodes: from materials to devices. Light: Science and Applications, 2021, 10, 61.	7.7	235
1044	Critical role of additive-induced molecular interaction on the operational stability of perovskite light-emitting diodes. Joule, 2021, 5, 618-630.	11.7	99
1045	Effect of nematic liquid crystal on light extraction in perovskite light-emitting diodes. Liquid Crystals, 2021, 48, 1633-1641.	0.9	0
1046	Perovskite Lightâ€Emitting Diodes with Near Unit Internal Quantum Efficiency at Low Temperatures. Advanced Materials, 2021, 33, e2006302.	11.1	16
1047	Cu ²⁺ -Doped CsPbI ₃ Nanocrystals with Enhanced Stability for Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2021, 12, 3038-3045.	2.1	37
1048	Recent Advances in Multi‣ayer Lightâ€Emitting Heterostructure Transistors. Small, 2021, 17, e2007661.	5.2	14
1049	In-situ observation of trapped carriers in organic metal halide perovskite films with ultra-fast temporal and ultra-high energetic resolutions. Nature Communications, 2021, 12, 1636.	5.8	11
1050	Highly Emissive Deepâ€Red Perovskite Quantum Dots in Glass: Photoinduced Thermal Engineering and Applications. Advanced Optical Materials, 2021, 9, 2100094.	3.6	31
1051	Halide Perovskite Lightâ€Emitting Diode Technologies. Advanced Optical Materials, 2021, 9, 2002128.	3.6	100
1052	The Complex Interplay of Lead Halide Perovskites with Their Surroundings. Advanced Optical Materials, 2021, 9, 2100133.	3.6	7
1053	High performance perovskite LEDs via SPR and enhanced hole injection by incorporated MoS ₂ . Journal Physics D: Applied Physics, 2021, 54, 214002.	1.3	8
1054	Engineering the Bandgap and Surface Structure of CsPbCl ₃ Nanocrystals to Achieve Efficient Ultraviolet Luminescence. Angewandte Chemie - International Edition, 2021, 60, 9693-9698.	7.2	32
1055	Acceleration of radiative recombination in quasi-2D perovskite films on hyperbolic metamaterials. Applied Physics Letters, 2021, 118, .	1.5	12

#	Article	IF	CITATIONS
1056	Highly Efficient Halide Perovskite Lightâ€Emitting Diodes via Molecular Passivation. Angewandte Chemie, 2021, 133, 8418-8424.	1.6	9
1057	Color revolution: toward ultra-wide color gamut displays. Journal Physics D: Applied Physics, 2021, 54, 213002.	1.3	9
1058	Momentarily trapped exciton polaron in two-dimensional lead halide perovskites. Nature Communications, 2021, 12, 1400.	5.8	63
1059	Self-assembled ultrafine CsPbBr3 perovskite nanowires for polarized light detection. Science China Materials, 2021, 64, 2261-2271.	3.5	13
1060	Wide and Tunable Bandgap MAPbBr _{3â^'<i>x</i>} Cl _{<i>x</i>} Hybrid Perovskites with Enhanced Phase Stability: In Situ Investigation and Photovoltaic Devices. Solar Rrl, 2021, 5, 2000718.	3.1	32
1061	Lewis Base Passivation of Quasi-2D Ruddlesden–Popper Perovskite for Order of Magnitude Photoluminescence Enhancement and Improved Stability. ACS Applied Electronic Materials, 2021, 3, 1572-1582.	2.0	38
1062	Highly Efficient Halide Perovskite Lightâ€Emitting Diodes via Molecular Passivation. Angewandte Chemie - International Edition, 2021, 60, 8337-8343.	7.2	47
1063	Lead-Free Organic–Perovskite Hybrid Quantum Wells for Highly Stable Light-Emitting Diodes. ACS Nano, 2021, 15, 6316-6325.	7.3	73
1064	Successes and Challenges of Core/Shell Lead Halide Perovskite Nanocrystals. ACS Energy Letters, 2021, 6, 1340-1357.	8.8	100
1065	Review on Blue Perovskite Light-Emitting Diodes: Recent Advances and Future Prospects. Frontiers in Materials, 2021, 8, .	1.2	15
1066	Mixed Conductivity of Hybrid Halide Perovskites: Emerging Opportunities and Challenges. Frontiers in Energy Research, 2021, 9, .	1.2	26
1067	Lowâ€Dimensional Single ation Formamidinium Lead Halide Perovskites (FA <i>_m</i> ₊₂ Pb <i>_m</i> Br ₃ <i>_m</i> _{+2< From Synthesis to Rewritable Phaseâ€Change Memory Film. Advanced Functional Materials, 2021, 31, 2011093.}	(<i>l</i> sub>): 7.8	12
1068	Engineering the Bandgap and Surface Structure of CsPbCl 3 Nanocrystals to Achieve Efficient Ultraviolet Luminescence. Angewandte Chemie, 2021, 133, 9779-9784.	1.6	2
1069	Revealing Nanomechanical Domains and Their Transient Behavior in Mixedâ€Halide Perovskite Films. Advanced Functional Materials, 2021, 31, 2100293.	7.8	23
1070	Recent progress on defect modulation for highly efficient metal halide perovskite light-emitting diodes. Applied Materials Today, 2021, 22, 100946.	2.3	11
1071	Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature, 2021, 591, 72-77.	13.7	471
1072	Effects of organic ligands on efficiency and stability of perovskite light-emitting diodes. Journal of Materials Science, 2021, 56, 11436-11447.	1.7	5
1073	Hot-Probe Method for Majority Charge Carrier Determination in Methylammonium Lead Halide Perovskites. IEEE Journal of Photovoltaics, 2021, 11, 368-373.	1.5	2

#	Article	IF	CITATIONS
1074	Formation of Highâ€Performance Multiâ€Cation Halide Perovskites Photovoltaics by Î′â€CsPbl ₃ /Î′â€RbPbl ₃ Seedâ€Assisted Heterogeneous Nucleation. Advanced Energy Materials, 2021, 11, 2003785.	10.2	32
1075	Stable and Bright Pyridine Manganese Halides for Efficient White Lightâ€Emitting Diodes. Advanced Functional Materials, 2021, 31, 2011191.	7.8	70
1076	Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes. Nature Photonics, 2021, 15, 379-385.	15.6	260
1077	Recent Advances on Cyanâ€Emitting (480 â‰≇€‰ λ  â‰≇€‰520 nm) Metal Halide Perovskite N 2021, 1, 2000077.	Naterials. S	Small Scienc 20
1078	2D Perovskite Nanosheets with Intrinsic Chirality. Journal of Physical Chemistry Letters, 2021, 12, 2676-2681.	2.1	27
1079	Achieving Green and Deep-Blue Perovskite LEDs by Dimensional Control Using Various Ammonium Bromides with CsPbBr-3. Materials Today Energy, 2021, , 100749.	2.5	9
1080	A Design of Horizontal Perovskite Nanowire LED for Better Light Extraction. , 2021, , .		1
1081	Quasi-two-dimensional perovskite light emitting diodes for bright future. Light: Science and Applications, 2021, 10, 86.	7.7	17
1082	High-performance large-area quasi-2D perovskite light-emitting diodes. Nature Communications, 2021, 12, 2207.	5.8	173
1083	Theory-Guided Synthesis of Highly Luminescent Colloidal Cesium Tin Halide Perovskite Nanocrystals. Journal of the American Chemical Society, 2021, 143, 5470-5480.	6.6	49
1084	Thymine as a Biocompatible Surface Passivator for a Highly Efficient and Stable Planar Perovskite Solar Cell. ACS Applied Energy Materials, 2021, 4, 3310-3316.	2.5	6
1085	Burstein-Moss shift of lead halide perovskite quantum dots induced by electron injection from graphene oxide. Applied Surface Science, 2021, 545, 149003.	3.1	7
1086	Photoinduced trap passivation for enhanced photoluminescence in 2D organic-inorganic hybrid perovskites. , 2021, , .		0
1087	Localized surface plasmon resonance of copper nanoparticles improves the performance of quasi-two-dimensional perovskite light-emitting diodes. Dyes and Pigments, 2021, 188, 109204.	2.0	18
1088	The mechanism of alkali doping in CsPbBr3: A first-principles perspective. Journal of Applied Physics, 2021, 129, .	1.1	7
1089	Passive frequency conversion of ultraviolet images into the visible using perovskite nanocrystals. Journal of Optics (United Kingdom), 2021, 23, 054001.	1.0	4
1090	Vacuumâ€Processed Metal Halide Perovskite Lightâ€Emitting Diodes: Prospects and Challenges. ChemPlusChem, 2021, 86, 558-573.	1.3	12
1091	Nanocrystalline Polymorphic Energy Funnels for Efficient and Stable Perovskite Light-Emitting Diodes. ACS Energy Letters, 2021, 6, 1821-1830.	8.8	23

#	Article	IF	CITATIONS
1092	Tunable Dual-Color Emission Perovskites via Post-Synthetic Modification Strategy for Near-Unity Photoluminescence Quantum Yield. ACS Applied Materials & Interfaces, 2021, 13, 21645-21652.	4.0	4
1093	Synthesis of 0D Manganeseâ€Based Organic–Inorganic Hybrid Perovskite and Its Application in Leadâ€Free Red Lightâ€Emitting Diode. Advanced Functional Materials, 2021, 31, 2100855.	7.8	98
1094	Highly Stable Bulk Perovskite for Blue LEDs with Anion-Exchange Method. Nano Letters, 2021, 21, 3473-3479.	4.5	36
1095	Light-Emitting Diodes with Manganese Halide Tetrahedron Embedded in Anti-Perovskites. ACS Energy Letters, 2021, 6, 1901-1911.	8.8	17
1096	Green Perovskite Lightâ€Emitting Diodes with 200ÂHours Stability and 16% Efficiency: Crossâ€Linking Strategy and Mechanism. Advanced Functional Materials, 2021, 31, 2011003.	7.8	67
1097	Highly Luminescent and Patternable Block Copolymer Templated 3D Perovskite Films. Advanced Materials Technologies, 2021, 6, 2001209.	3.0	10
1098	Scalable synthesis of highly luminescent and stable thiocyanate based CsPbX3 perovskite nanocrystals for efficient white light-emitting diodes. Journal of Alloys and Compounds, 2021, 860, 158501.	2.8	14
1099	Structure and Photoluminescence Transformation in Hybrid Manganese(II) Chlorides. Inorganic Chemistry, 2021, 60, 6600-6606.	1.9	27
1100	Low Roll-Off and High Stable Electroluminescence in Three-Dimensional FAPbI ₃ Perovskites with Bifunctional-Molecule Additives. Nano Letters, 2021, 21, 3738-3744.	4.5	33
1101	Perovskite random lasers: a tunable coherent light source for emerging applications. Nanotechnology, 2021, 32, 282001.	1.3	26
1102	Position Effects of Metal Nanoparticles on the Performance of Perovskite Light-Emitting Diodes. Nanomaterials, 2021, 11, 993.	1.9	3
1103	Performance and stability-enhanced inorganic perovskite light-emitting devices by employing triton X-100*. Chinese Physics B, 2021, 30, 048506.	0.7	1
1104	Materials, photophysics and device engineering of perovskite light-emitting diodes. Reports on Progress in Physics, 2021, 84, 046401.	8.1	52
1105	Biocompatible and Biodegradable Lightâ€Emitting Materials and Devices. Advanced Materials Technologies, 2022, 7, 2100006.	3.0	18
1106	Optically Induced Static Magnetization in Metal Halide Perovskite for Spinâ€Related Optoelectronics. Advanced Science, 2021, 8, 2004488.	5.6	14
1107	Thermal and Humidity Stability of Mixed Spacer Cations 2D Perovskite Solar Cells. Advanced Science, 2021, 8, 2004510.	5.6	40
1108	Unified theory for light-induced halide segregation in mixed halide perovskites. Nature Communications, 2021, 12, 2687.	5.8	70
1109	Design of Chemically Stable Organic Perovskite Quantum Dots for Micropatterned Lightâ€Emitting Diodes through Kinetic Control of a Crossâ€Linkable Ligand System. Advanced Materials, 2021, 33, e2007855	11.1	40

#	Article	IF	CITATIONS
1110	An X-ray detector based on a Pt-MgZnO-Pt structure. Journal of Physics: Conference Series, 2021, 1907, 012059.	0.3	1
1111	Recycling Spent Lead-Acid Batteries into Lead Halide for Resource Purification and Multifunctional Perovskite Diodes. Environmental Science & amp; Technology, 2021, 55, 8309-8317.	4.6	23
1112	Insights into Microscopic Crystal Growth Dynamics of CH ₃ NH ₃ PbI ₃ under a Laser Deposition Process Revealed by <i>In Situ</i> X-ray Diffraction. ACS Applied Materials & Interfaces, 2021, 13, 22559-22566.	4.0	3
1113	Critical review on lanthanide activated LED phosphors. Journal of Physics: Conference Series, 2021, 1913, 012030.	0.3	3
1114	Tailoring quasi-2D perovskite thin films via nanocrystals mediation for enhanced electroluminescence. Chemical Engineering Journal, 2021, 411, 128511.	6.6	12
1115	Morphology controlled nanocrystalline CsPbBr3 thin-film for metal halide perovskite light emitting diodes. Journal of Industrial and Engineering Chemistry, 2021, 97, 417-425.	2.9	17
1116	Imaging and Controlling Photonic Modes in Perovskite Microcavities. Advanced Materials, 2021, 33, 2100775.	11.1	5
1117	Operationally Stable Perovskite Light Emitting Diodes with High Radiance. Advanced Optical Materials, 2021, 9, 2100586.	3.6	13
1118	Rational Molecular Design of Azaacene-Based Narrowband Green-Emitting Fluorophores: Modulation of Spectral Bandwidth and Vibronic Transitions. ACS Applied Materials & Interfaces, 2021, 13, 26227-26236.	4.0	27
1119	Improved Photovoltaic Performance of CsPbI2Br Perovskite Films via Bivalent Metal Chloride Doping. Frontiers in Energy Research, 2021, 9, .	1.2	4
1120	Millimeter-scale growth of highly ordered CsPbBr ₃ single-crystalline microplatelets on SiO ₂ /Si substrate by chemical vapor deposition. Journal Physics D: Applied Physics, 2021, 54, 334004.	1.3	4
1121	Highly Efficient Sky-Blue Perovskite Light-Emitting Diode Via Suppressing Nonradiative Energy Loss. Chemistry of Materials, 2021, 33, 4154-4162.	3.2	46
1122	Defect Passivation in Leadâ€Halide Perovskite Nanocrystals and Thin Films: Toward Efficient LEDs and Solar Cells. Angewandte Chemie, 2021, 133, 21804-21828.	1.6	76
1123	Shining Light on the Structure of Lead Halide Perovskite Nanocrystals. , 2021, 3, 845-861.		23
1124	Nearâ€Unity External Quantum Efficiency in GaAs AlGaAs Heterostructures Grown by Molecular Beam Epitaxy. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100106.	1.2	0
1125	Impacts of MAPbBr3 Additive on Crystallization Kinetics of FAPbI3 Perovskite for High Performance Solar Cells. Coatings, 2021, 11, 545.	1.2	5
1126	Nanocrystals form a superfluorescent lattice mimicking the atomic structure of perovskite materials. Nature, 2021, 593, 513-514.	13.7	0
1127	Fusible Low Work Function Top Electrode for Vacuum-Free Perovskite Light-Emitting Diode Application: Role of OH-Terminated Sn Atoms at the Alloy Surface. ACS Applied Electronic Materials, 2021, 3, 2757-2765.	2.0	9

#	Article	IF	CITATIONS
1128	Recent advancements in halide perovskite nanomaterials and their optoelectronic applications. InformaÄnÄ-MateriÄ¡ly, 2021, 3, 962-986.	8.5	25
1129	Aggregationâ€Induced Emission Luminogens Sensitized Quasiâ€2D Hybrid Perovskites with Unique Photoluminescence and High Stability for Fabricating White Lightâ€Emitting Diodes. Advanced Science, 2021, 8, e2100811.	5.6	16
1130	Understanding the Transformation of 2D Layered Perovskites to 3D Perovskites in the Sonochemical Synthesis. Journal of Physical Chemistry C, 2021, 125, 12131-12139.	1.5	6
1131	Regulating Exciton–Phonon Coupling to Achieve a Nearâ€Unity Photoluminescence Quantum Yield in Oneâ€Dimensional Hybrid Metal Halides. Advanced Science, 2021, 8, e2100786.	5.6	61
1132	Strategies Toward Efficient Blue Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2021, 31, 2100516.	7.8	92
1133	Surfactantâ€Free, Oneâ€Step Synthesis of Leadâ€Free Perovskite Hollow Nanospheres for Trace CO Detection. Advanced Materials, 2021, 33, e2100674.	11.1	18
1134	Luminescence and Stability Enhancement of CsPbBr ₃ Perovskite Quantum Dots through Surface Sacrificial Coating. Advanced Optical Materials, 2021, 9, 2100474.	3.6	22
1135	Improved CsPbBr 3 visible light photodetectors via decoration of sputtered au nanoparticles with synergistic benefits. Nano Select, 0, , .	1.9	8
1136	Mechanism and Timescales of Reversible pâ€Đoping of Methylammonium Lead Triiodide by Oxygen. Advanced Materials, 2021, 33, e2100211.	11.1	17
1137	Enhanced Electrochemical Stability by Alkyldiammonium in Dion–Jacobson Perovskite toward Ultrastable Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2100243.	3.6	21
1138	Femtosecond Quantum Dynamics of Excited-State Evolution of Halide Perovskites: Quantum Chaos of Molecular Cations. Journal of Physical Chemistry C, 2021, 125, 10676-10684.	1.5	1
1139	Exploiting a Multiphase Pure Formamidinium Lead Perovskite for Efficient Green-Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 23067-23073.	4.0	11
1140	The effects of crystal structure on the photovoltaic performance of perovskite solar cells under ambient indoor illumination. Solar Energy, 2021, 220, 43-50.	2.9	33
1141	Water Stable Haloplumbate Modulation for Efficient and Stable Hybrid Perovskite Photovoltaics. Advanced Energy Materials, 2021, 11, 2101082.	10.2	21
1142	<scp>Twoâ€dimensional</scp> halide perovskite <scp>quantumâ€well</scp> emitters: A critical review. EcoMat, 2021, 3, e12104.	6.8	45
1143	Vibrational study of lead bromide perovskite materials with variable cations based on Raman spectroscopy and density functional theory. Journal of Raman Spectroscopy, 2021, 52, 2338-2347.	1.2	14
1144	Recent Advances in Ligand Design and Engineering in Lead Halide Perovskite Nanocrystals. Advanced Science, 2021, 8, 2100214.	5.6	109
1145	Showerhead-assisted chemical vapor deposition of CsPbBr3 films for LED applications. Journal of Materials Research, 2021, 36, 1813-1823.	1.2	8

#	Article	IF	Citations
	Dual-encapsulation for highly stable all-inorganic perovskite quantum dots for long-term storage		
1146	and reuse in white light-emitting diodes. Chemical Engineering Journal, 2021, 412, 128688.	6.6	22
1147	Suppressing ion migration of CsPbBr _x I _{3-x} nanocrystals by Nickel doping and the application in high-efficiency WLEDs. Nanotechnology, 2021, 32, 335601.	1.3	7
1148	The Past, Present, and Future of Metal Halide Perovskite Lightâ€Emitting Diodes. Small Science, 2021, 1, 2000072.	5.8	37
1149	Defect Passivation in Leadâ€Halide Perovskite Nanocrystals and Thin Films: Toward Efficient LEDs and Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 21636-21660.	7.2	183
1150	Probing and pushing the limit of emerging electronic materials via van der Waals integration. MRS Bulletin, 2021, 46, 534-546.	1.7	5
1151	Unraveling the Role of Crystallization Dynamics on Luminescence Characteristics of Perovskite Lightâ€Emitting Diodes. Laser and Photonics Reviews, 2021, 15, 2100023.	4.4	36
1152	Defect activity in metal halide perovskites with wide and narrow bandgap. Nature Reviews Materials, 2021, 6, 986-1002.	23.3	121
1153	Color-Stable Blue Light-Emitting Diodes Enabled by Effective Passivation of Mixed Halide Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 6041-6047.	2.1	21
1154	Lead-Free Halide Light-Emitting Diodes with External Quantum Efficiency Exceeding 7% Using Host–Dopant Strategy. ACS Energy Letters, 2021, 6, 2584-2593.	8.8	48
1155	Efficient Thermally Evaporated Perovskite Light-Emitting Devices via a Bilateral Interface Engineering Strategy. Journal of Physical Chemistry Letters, 2021, 12, 6165-6173.	2.1	12
1156	Encapsulation Strategy on All Inorganic Perovskites for Stable and Efficient Photoelectrocatalytic Water Splitting. Advanced Materials Interfaces, 2021, 8, 2100202.	1.9	5
1157	Excess Ion-Induced Efficiency Roll-Off in High-Efficiency Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 28546-28554.	4.0	27
1158	Dependence of the Radiative Efficiency of Quasi-2D Perovskite Light-Emitting Diodes on the Multiquantum-Well Composition. Journal of Physical Chemistry C, 2021, 125, 12241-12250.	1.5	2
1159	Ultra-bright pure green perovskite light-emitting diodes. Applied Physics Letters, 2021, 118, .	1.5	4
1160	Photon-recycling effect in perovskites for photovoltaic applications: a Monte Carlo study. Optics Letters, 2021, 46, 2988.	1.7	4
1161	Emerging newâ€generation white lightâ€emitting diodes based on luminescent leadâ€free halide perovskites and perovskite derivatives. Nano Select, 2022, 3, 280-297.	1.9	10
1162	Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films*. Chinese Physics B, 2021, 30, 067802.	0.7	5
1163	Cesium Lead Bromide (CsPbBr ₃) Perovskite Quantum Dot-Based Photosensor for Chemiluminescence Immunoassays. ACS Applied Materials & Interfaces, 2021, 13, 29392-29405.	4.0	34

#	Article	IF	CITATIONS
1164	Variational hysteresis and photoresponse behavior of MAPbX ₃ (X = I, Br, Cl) perovskite single crystals. Journal of Physics Condensed Matter, 2021, 33, 285703.	0.7	7
1165	Defect tolerance in chalcogenide perovskite photovoltaic material BaZrS3. Science China Materials, 2021, 64, 2976-2986.	3.5	25
1166	Cryogenicâ€Temperature Thermodynamically Suppressed and Strongly Confined CsPbBr ₃ Quantum Dots for Deeply Blue Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2100300.	3.6	41
1167	Potential substitutes for critical materials in white LEDs: Technological challenges and market opportunities. Renewable and Sustainable Energy Reviews, 2021, 143, 110869.	8.2	38
1168	Toward Thing-to-Thing Optical Wireless Power Transfer: Metal Halide Perovskite Transceiver as an Enabler. Frontiers in Energy Research, 2021, 9, .	1.2	15
1169	Enhanced performance of inverted CsPbBr3 nanocrystal LEDs via Zn(II) doping. Organic Electronics, 2021, 96, 106253.	1.4	9
1170	Shedding Light on the Stability and Structure–Property Relationships of Two-Dimensional Hybrid Lead Bromide Perovskites. Chemistry of Materials, 2021, 33, 5085-5107.	3.2	29
1171	Effects of component on the photoelectric properties of two-dimensional van der Waals heterostructure Cs ₂ Pbl _{2(1+x)} Cl _{2(1â^²x)} /Pd ₂ Se ₃ with Ruddlesen–Popper structure. Journal Physics D: Applied Physics. 2021, 54, 355110.	1.3	4
1172	Recent progress of triboelectrification-induced electroluminescence: from fundaments to applications. JPhys Materials, 2021, 4, 042001.	1.8	4
1173	Discovering the Link between Electrochemiluminescence and Energy Transfer Pathways for Mn-Doped CsPbCl ₃ Quantum Dot Films. Journal of Physical Chemistry C, 2021, 125, 13696-13705.	1.5	10
1174	In Situ Embedding Synthesis of Highly Stable CsPbBr ₃ /CsPb ₂ Br ₅ @PbBr(OH) Nano/Microspheres through Water Assisted Strategy. Advanced Functional Materials, 2021, 31, 2103275.	7.8	42
1175	Halide Perovskite Precursors Dope PEDOT:PSS. Advanced Electronic Materials, 2021, 7, 2100394.	2.6	4
1176	Progress in halide-perovskite nanocrystals with near-unity photoluminescence quantum yield. Trends in Chemistry, 2021, 3, 499-511.	4.4	63
1177	Interfacial Nucleation Seeding for Electroluminescent Manipulation in Blue Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2021, 31, 2103870.	7.8	72
1178	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	7.3	705
1179	Linear Relationship between the Dielectric Constant and Band Gap in Low-Dimensional Mixed-Halide Perovskites. Journal of Physical Chemistry C, 2021, 125, 14883-14890.	1.5	21
1180	Octylammonium Sulfate Decoration Enhancing the Moisture Durability of Quasiâ€2D Perovskite Film for Lightâ€Emitting Diodes. Advanced Materials Interfaces, 2021, 8, 2100442.	1.9	9
1181	Resonant Band-Edge Emissive States in Strongly Confined CsPbBr ₃ Perovskite Nanoplatelets. Journal of Physical Chemistry C, 2021, 125, 14317-14325.	1.5	4

#	Article	IF	CITATIONS
1182	An excellent impedance-type humidity sensor based on halide perovskite CsPbBr3 nanoparticles for human respiration monitoring. Sensors and Actuators B: Chemical, 2021, 337, 129772.	4.0	76
1183	<i>In Situ</i> Phase-Transition Crystallization of All-Inorganic Water-Resistant Exciton-Radiative Heteroepitaxial CsPbBr ₃ –CsPb ₂ Br ₅ Core–Shell Perovskite Nanocrystals. Chemistry of Materials, 2021, 33, 4948-4959.	3.2	47
1184	Upside-Down Molding Approach for Geometrical Parameter-Tunable Photonic Perovskite Nanostructures. ACS Applied Materials & Interfaces, 2021, 13, 27313-27322.	4.0	2
1185	Restricted growth and grain boundary reinforcement of MAPbBr ₃ film by graphene quantum dots with enhanced luminescence and stability. Functional Materials Letters, 2021, 14, 2151028.	0.7	0
1186	Pure Blue Electroluminescence by Differentiated Ion Motion in a Single Layer Perovskite Device. Advanced Functional Materials, 2021, 31, 2102006.	7.8	17
1187	Coffeeâ€Stainâ€Free Perovskite Film for Efficient Printed Lightâ€Emitting Diode. Advanced Optical Materials, 2021, 9, 2100553.	3.6	36
1188	A Mini-Review on Blue Light-Emitting Diodes Based on Metal-Halide Perovskite Nanocrystals. Ceramist, 2021, 24, 157-173.	0.0	1
1189	In Situ Fabrication of Mnâ€Doped 2D Perovskiteâ€Polymer Phosphor Films with Greenâ€Red Dual Emissions for Yellow Lighting. Advanced Materials Interfaces, 2021, 8, 2100560.	1.9	4
1190	Non-toxic near-infrared light-emitting diodes. IScience, 2021, 24, 102545.	1.9	14
1191	High-brightness perovskite quantum dot light-emitting devices using inkjet printing. Organic Electronics, 2021, 93, 106168.	1.4	20
1192	Synthesis and properties of lead-free formamidinium bismuth bromide perovskites. Materials Today Chemistry, 2021, 20, 100449.	1.7	4
1193	Cs ₂ Zr _{1â^`} <i>_x</i> Te <i>_x</i> Cl ₆ Perovskite Microcrystals with Ultrahigh Photoluminescence Quantum Efficiency of 79.46% for High Light Efficiency White Light Emitting Diodes. Advanced Optical Materials, 2021, 9, 2100804.	3.6	36
1194	Local Morphology Effects on the Photoluminescence Properties of Thin CsPbBr3 Nanocrystal Films. Nanomaterials, 2021, 11, 1470.	1.9	11
1195	A New Type of Hybrid Copper Iodide as Nontoxic and Ultrastable LED Emissive Layer Material. ACS Energy Letters, 2021, 6, 2565-2574.	8.8	46
1196	Pure Red Light-Emitting Diodes Based on Quantum Confined Quasi-Two-Dimensional Perovskites with Cospacer Cations. ACS Energy Letters, 2021, 6, 2386-2394.	8.8	48
1197	Recent Progress on Perovskite Surfaces and Interfaces in Optoelectronic Devices. Advanced Materials, 2021, 33, e2006004.	11.1	86
1198	Two-Step Chemical Vapor Deposition-Synthesized Lead-Free All-Inorganic Cs ₃ Sb ₂ Br ₉ Perovskite Microplates for Optoelectronic Applications. ACS Applied Materials & Interfaces, 2021, 13, 35930-35940.	4.0	20
1199	Synthesis and photoluminescence kinetics of Ce3+-doped CsPbI3 QDs with near-unity PLQY. Nano Research, 2021, 14, 3352-3357.	5.8	22

#	Article	IF	CITATIONS
1200	Laserâ€induced recoverable fluorescence quenching of perovskite films at a microscopic grainâ€scale. Energy and Environmental Materials, 0, , .	7.3	2
1201	Green–white color switchable light-emitting devices based on laterally fused cesium lead bromide perovskite nanowires. Applied Physics Letters, 2021, 119, .	1.5	2
1202	Phase Engineering of Cesium Manganese Bromides Nanocrystals with Colorâ€Tunable Emission. Angewandte Chemie, 2021, 133, 19805-19811.	1.6	12
1203	Modulating low-dimensional domains of self-assembling quasi-2D perovskites for efficient and spectra-stable blue light-emitting diodes. Chemical Engineering Journal, 2021, 415, 129088.	6.6	26
1204	Highly Efficient Pureâ€Blue Lightâ€Emitting Diodes Based on Rubidium and Chlorine Alloyed Metal Halide Perovskite. Advanced Materials, 2021, 33, e2100783.	11.1	77
1205	Spatiotemporal sectioning of two-photon fluorescence ellipsoid with a CsPbBr3 nanosheet. Nano Research, 2021, 14, 4288-4293.	5.8	10
1206	Achieving Band Gap Reduction and Carrier Lifetime Enhancement in Metal Halide Perovskites via Mechanical Stretching. Journal of Physical Chemistry Letters, 2021, 12, 7207-7212.	2.1	6
1207	Mg-Doped Nickel Oxide as Efficient Hole-Transport Layer for Perovskite Photodetectors. Journal of Physical Chemistry C, 2021, 125, 16066-16074.	1.5	28
1208	Electrical Pumping of Perovskite Diodes: Toward Stimulated Emission. Advanced Science, 2021, 8, e2101663.	5.6	25
1209	Photoluminescence Behavior of Zero-Dimensional Manganese Halide Tetrahedra Embedded in Conjugated Organic Matrices. Journal of Physical Chemistry Letters, 2021, 12, 7394-7399.	2.1	38
1210	Solvent-Vapor Atmosphere Controls the in Situ Crystallization of Perovskites. , 2021, 3, 1172-1180.		7
1211	A high performance CsPbBr3 microwire based photodetector boosted by coupling plasmonic and piezo-phototronic effects. Nano Energy, 2021, 85, 105951.	8.2	38
1212	Ligand-Assisted Sulfide Surface Treatment of CsPbl ₃ Perovskite Quantum Dots to Increase Photoluminescence and Recovery. ACS Photonics, 2021, 8, 1979-1987.	3.2	33
1213	Aligning Transition Dipole Moment toward Light Amplification and Polarized Emission in Hybrid Perovskites. Advanced Optical Materials, 2021, 9, 2100984.	3.6	4
1214	Vapor deposition of CsPbBr3 thin films by evaporation of CsBr and PbBr2. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	8
1215	Solution Epitaxy of Halide Perovskite Thin Single Crystals for Stable Transistors. ACS Applied Materials & Interfaces, 2021, 13, 37840-37848.	4.0	6
1216	Unraveling the surface state of photovoltaic perovskite thin film. Matter, 2021, 4, 2417-2428.	5.0	22
1217	Domain Controlling by Compound Additive toward Highly Efficient Quasiâ€2D Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2021, 31, 2103890.	7.8	40

#	Article	IF	CITATIONS
1218	S-Methylthiouronium Improves the Photostability of Methylammonium Lead Iodide Perovskites. ACS Applied Energy Materials, 2021, 4, 6466-6473.	2.5	2
1219	Perovskite semiconductors for room-temperature exciton-polaritonics. Nature Materials, 2021, 20, 1315-1324.	13.3	109
1220	Efficient and Stable Blue Perovskite Light-Emitting Devices Based on Inorganic Cs ₄ PbBr ₆ Spaced Low-Dimensional CsPbBr ₃ through Synergistic Control of Amino Alcohols and Polymer Additives. ACS Applied Materials & Interfaces, 2021, 13, 33199-33208.	4.0	12
1221	Highly-efficient and salt-resistant CsxWO3@g-C3N4/PVDF fiber membranes for interfacial water evaporation, desalination, and sewage treatment. Composites Science and Technology, 2021, 211, 108865.	3.8	40
1222	Ligandâ€Free MAPbI ₃ Quantum Dot Solar Cells Based on Nanostructured Insulating Matrices. Solar Rrl, 2021, 5, 2100204.	3.1	16
1223	Effective Donor Dopants for Lead Halide Perovskites. Chemistry of Materials, 2021, 33, 6200-6205.	3.2	10
1224	Fermi Level Equilibration at the Metal–Molecule Interface in Plasmonic Systems. Nano Letters, 2021, 21, 6592-6599.	4.5	25
1225	Germanium-lead perovskite light-emitting diodes. Nature Communications, 2021, 12, 4295.	5.8	50
1226	Probing the Origin of Light-Enhanced Ion Diffusion in Halide Perovskites. ACS Applied Materials & Interfaces, 2021, 13, 33609-33617.	4.0	8
1227	Phase Engineering of Cesium Manganese Bromides Nanocrystals with Colorâ€Tunable Emission. Angewandte Chemie - International Edition, 2021, 60, 19653-19659.	7.2	64
1228	The Multiple Roles of Metal Ion Dopants in Spectrally Stable, Efficient Quasiâ€2D Perovskite Skyâ€Blue Lightâ€Emitting Devices. Advanced Optical Materials, 2021, 9, 2100860.	3.6	7
1229	Rapid synthesis of highly stable all-inorganic perovskite nanocrystals exhibiting strong blue luminescence. Journal of Alloys and Compounds, 2021, 872, 159612.	2.8	8
1230	Engineering CsPbBr3 quantum dots with efficient luminescence and stability by damage-free encapsulation with a-SiCx:H. Journal of Luminescence, 2021, 236, 118086.	1.5	3
1231	Efficient and Stable Mg ²⁺ -Doped CsPbCl ₃ Nanocrystals for Violet LEDs. Journal of Physical Chemistry Letters, 2021, 12, 8203-8211.	2.1	20
1232	Robust Ultralong Lead Halide Perovskite Microwire Lasers. ACS Applied Materials & Interfaces, 2021, 13, 38458-38466.	4.0	14
1233	Photon Recycling in Semiconductor Thin Films and Devices. Advanced Science, 2021, 8, e2004076.	5.6	16
1234	Decoupling the Positive and Negative Aging Processes of Perovskite Light-Emitting Diodes Using a Thin Interlayer of Ionic Liquid. Journal of Physical Chemistry Letters, 2021, 12, 7783-7791.	2.1	8
1235	Molecular engineering towards efficientwhite-light-emitting perovskite. Nature Communications, 2021, 12, 4890.	5.8	32

#	Article	IF	CITATIONS
1236	Color‧table Deepâ€Blue Perovskite Lightâ€Emitting Diodes Based on Organotrichlorosilane Postâ€Treatment. Advanced Functional Materials, 2021, 31, 2103219.	7.8	34
1237	Water-Dispersible CsPbBr3 Perovskite Nanocrystals with Ultra-Stability and its Application in Electrochemical CO2 Reduction. Nano-Micro Letters, 2021, 13, 172.	14.4	20
1238	Unusual Temperature Dependence of Bandgap in 2D Inorganic Leadâ€Halide Perovskite Nanoplatelets. Advanced Science, 2021, 8, e2100084.	5.6	23
1239	Brightening of Dark States in CsPbBr ₃ Quantum Dots Caused by Lightâ€Induced Magnetism. Small, 2021, 17, e2101527.	5.2	5
1240	Achieving high-performance in situ fabricated FAPbBr ₃ and electroluminescence. Optics Letters, 2021, 46, 4378.	1.7	5
1241	Progress and perspective in Dion-Jacobson phase 2D layered perovskite optoelectronic applications. Nano Energy, 2021, 86, 106129.	8.2	50
1242	lon migration in halide perovskite solar cells: Mechanism, characterization, impact and suppression. Journal of Energy Chemistry, 2021, 63, 528-549.	7.1	76
1243	Advances and Challenges in Two-Dimensional Organic–Inorganic Hybrid Perovskites Toward High-Performance Light-Emitting Diodes. Nano-Micro Letters, 2021, 13, 163.	14.4	54
1244	Highly Luminescent and Stable 2D/3D Octadecylammonium/Formamidinium Lead Bromide Perovskite Films. Journal of Physical Chemistry C, 2021, 125, 17501-17508.	1.5	1
1245	Structural and Optoelectronic Properties of Two-Dimensional Ruddlesden–Popper Hybrid Perovskite CsSnBr3. Nanomaterials, 2021, 11, 2119.	1.9	7
1246	Single source chemical vapor deposition (ssCVD) for highly luminescent inorganic halide perovskite films. Applied Physics Letters, 2021, 119, .	1.5	6
1247	Characterization of stability and challenges to improve lifetime in perovskite LEDs. Nature Photonics, 2021, 15, 630-634.	15.6	101
1248	Projection optical engine design based on tri-color LEDs and digital light processing technology. Applied Optics, 2021, 60, 6971.	0.9	9
1249	Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement. Nature Communications, 2021, 12, 4751.	5.8	90
1250	MAPbBrxCl3-x quantum dots in Pb(OH)Br for stable blue light-emitting devices. Journal of Luminescence, 2021, 236, 118158.	1.5	10
1251	B-Site Columnar-Ordered Halide Double Perovskites A ₂ B(II)â€2 _{0.5} B(II)X ₅ with B(II)â€2/Vacancy Disordering. Chemistry of Materials, 2021, 33, 7106-7112.	3.2	8
1252	23.4: Invited Paper: Fabrication of Highâ€Performance Perovskite Optoelectronic Devices. Digest of Technical Papers SID International Symposium, 2021, 52, 304-304.	0.1	0
1253	44.3: Enhancing the Performance and Stability of Skyâ€bule Perovskite Lightâ€emitting Diodes with Guanidinium Thiocyanate Additive. Digest of Technical Papers SID International Symposium, 2021, 52, 542-546.	0.1	1

#	Article	IF	CITATIONS
1254	Tuning Laser Threshold within the Large Optical Gain Bandwidth of Halide Perovskite Thin Films. ACS Photonics, 2021, 8, 2548-2554.	3.2	12
1255	Unveiling the additive-assisted oriented growth of perovskite crystallite for high performance light-emitting diodes. Nature Communications, 2021, 12, 5081.	5.8	178
1256	Mobile ions determine the luminescence yield of perovskite light-emitting diodes under pulsed operation. Nature Communications, 2021, 12, 4899.	5.8	30
1257	Manipulating crystallization dynamics through chelating molecules for bright perovskite emitters. Nature Communications, 2021, 12, 4831.	5.8	56
1258	23.3: Invited Paper: Highâ€Efficiency Blue Perovskite Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2021, 52, 303-303.	0.1	0
1259	Promoting Energy Transfer via Manipulation of Crystallization Kinetics of Quasiâ€2D Perovskites for Efficient Green Lightâ€Emitting Diodes. Advanced Materials, 2021, 33, e2102246.	11.1	88
1260	Indium-antimony-halide single crystals for high-efficiency white-light emission and anti-counterfeiting. Science Advances, 2021, 7, .	4.7	134
1261	Operational and Spectral Stability of Perovskite Light-Emitting Diodes. ACS Energy Letters, 2021, 6, 3114-3131.	8.8	46
1262	Waterâ€Soluble Conjugated Polyelectrolyte Hole Transporting Layer for Efficient Skyâ€Blue Perovskite Lightâ€Emitting Diodes. Small, 2021, 17, e2101477.	5.2	29
1263	NMR spectroscopy probes microstructure, dynamics and doping of metal halide perovskites. Nature Reviews Chemistry, 2021, 5, 624-645.	13.8	73
1264	Efficient Blue Light Emitting Diodes Based On Europium Halide Perovskites. Advanced Materials, 2021, 33, e2101903.	11.1	71
1265	Dimension-controlled halide perovkites using templates. Nano Today, 2021, 39, 101181.	6.2	11
1266	Direct photoinduced synthesis of lead halide perovskite nanocrystals and nanocomposites. Nano Today, 2021, 39, 101179.	6.2	22
1267	Spinâ€Polarized Electrons Impact on Terahertz Emission by Highâ€Order Shift Current in CsPbBr ₃ . Advanced Optical Materials, 2021, 9, 2100822.	3.6	5
1268	Cost-Effective High-Throughput Calculation Based on Hybrid Density Functional Theory: Application to Cubic, Double, and Vacancy-Ordered Halide Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 7885-7891.	2.1	8
1269	Synthesis of perovskite nanocrystal films with a high luminous efficiency and an enhanced stability. Ceramics International, 2021, , .	2.3	5
1270	Band Edge Control of Quasiâ€2D Metal Halide Perovskites for Blue Lightâ€Emitting Diodes with Enhanced Performance. Advanced Functional Materials, 2021, 31, 2103299.	7.8	28
1271	Emerging light-emitting diodes for next-generation data communications. Nature Electronics, 2021, 4, 559-572.	13.1	102

#	Article	IF	CITATIONS
1272	Perspective on single-emissive-layer white-LED based on perovskites. Applied Physics Letters, 2021, 119, 080502.	1.5	7
1273	Large-area fabrication: The next target of perovskite light-emitting diodes*. Chinese Physics B, 2021, 30, 088502.	0.7	1
1274	Interfacial "Anchoring Effect―Enables Efficient Largeâ€Area Skyâ€Blue Perovskite Lightâ€Emitting Diodes. Advanced Science, 2021, 8, e2102213.	5.6	35
1275	Micro–Nanostructureâ€Assisted Luminescence in Perovskite Devices. Small Structures, 2021, 2, 2100084.	6.9	7
1276	UV soaking for enhancing the photocurrent and response speed of Cs2AgBiBr6-based all-inorganic perovskite photodetectors. Science China Materials, 2022, 65, 442-450.	3.5	7
1277	Inkjet-Printed Full-Color Matrix Quasi-Two-Dimensional Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 41773-41781.	4.0	35
1278	Minimizing Optical Energy Losses for Longâ€Lifetime Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2021, 31, 2105813.	7.8	28
1279	Bulky organic cations engineered lead-halide perovskites: a review on dimensionality and optoelectronic applications. Materials Today Energy, 2021, 21, 100759.	2.5	24
1280	Stable and highly efficient blue-emitting CsPbBr3 perovskite nanomaterials via kinetic-controlled growth. Chemical Engineering Journal, 2021, 419, 129612.	6.6	25
1281	Ceriumâ€Doped Perovskite Nanocrystals for Extremely Highâ€Performance Deepâ€Ultraviolet Photoelectric Detection. Advanced Optical Materials, 2021, 9, 2100423.	3.6	12
1282	Efficient Perovskite Nanocrystalâ€based Optoelectronic Devices. Physica Status Solidi (A) Applications and Materials Science, 0, , 2100366.	0.8	4
1283	Electrical Switching of Optical Gain in Perovskite Semiconductor Nanocrystals. Nano Letters, 2021, 21, 7831-7838.	4.5	10
1284	Highly Efficient Quasi-2D Perovskite Light-Emitting Diodes Incorporating a TADF Dendrimer as an Exciton-Retrieving Additive. ACS Applied Materials & Interfaces, 2021, 13, 44585-44595.	4.0	6
1285	Efficient and Spectrally Stable Blue Perovskite Lightâ€Emitting Diodes Employing a Cationic Ï€â€Conjugated Polymer. Advanced Materials, 2021, 33, e2103640.	11.1	77
1286	Atomic-scale imaging of CH3NH3Pbl3 structure and its decomposition pathway. Nature Communications, 2021, 12, 5516.	5.8	36
1288	Enhancing stability and luminescence quantum yield of CsPbBr3 quantum dots by embedded in borosilicate glass. Journal of Alloys and Compounds, 2021, 874, 159962.	2.8	20
1289	Efficient green-emitting perovskite light-emitting diodes using a conjugated polyelectrolyte additive. Materials Today Energy, 2021, 21, 100755.	2.5	4
1290	Broadening the Spectral Response of Perovskite Photodetector to the Solar-Blind Ultraviolet Region through Phosphor Encapsulation. ACS Applied Materials & amp; Interfaces, 2021, 13, 44509-44519.	4.0	22

# 1291	ARTICLE Elucidating the Role of Substrates on Domain Distribution of Quasi-2D Perovskites for Blue Light-Emitting Diodes. ACS Applied Electronic Materials, 2021, 3, 4056-4065.	IF 2.0	Citations 3
1292	Atomic-scale understanding on the physics and control of intrinsic point defects in lead halide perovskites. Applied Physics Reviews, 2021, 8, .	5.5	36
1293	Doublet luminescence due to coexistence of excitons and electron-hole plasmas in optically excited CH ₃ NH ₃ PbBr ₃ single crystal. Chinese Physics B, 2022, 31, 047104.	0.7	2
1294	Doped or not doped? Importance of the local structure of Mn (II) in Mn doped perovskite nanocrystals. Materials Research Bulletin, 2021, 141, 111374.	2.7	13
1295	Influence of boron on the essential properties for new generation scintillators. Journal of Alloys and Compounds, 2021, 875, 160002.	2.8	9
1296	Single-Source Thermal Ablation of halide perovskites, limitations and opportunities: The lesson of MAPbBr3. Journal of Alloys and Compounds, 2021, 875, 159954.	2.8	2
1297	Ligands Anchoring Stabilizes Metal Halide Perovskite Nanocrystals. Advanced Optical Materials, 0, , 2101012.	3.6	5
1298	Pressure-Driven Reverse Intersystem Crossing: New Path toward Bright Deep-Blue Emission of Lead-Free Halide Double Perovskites. Journal of the American Chemical Society, 2021, 143, 15176-15184.	6.6	59
1299	Efficient Perovskite White Light-Emitting Diode Based on an Interfacial Charge-Confinement Structure. ACS Applied Materials & Interfaces, 2021, 13, 44991-45000.	4.0	13
1300	Selfâ€Patterned CsPbBr ₃ Nanocrystal Based Plasmonic Hotâ€Carrier Photodetector at Telecommunications Wavelengths. Advanced Optical Materials, 2021, 9, 2101474.	3.6	5
1301	On the Origin of Room-Temperature Amplified Spontaneous Emission in CsPbBr ₃ Single Crystals. Chemistry of Materials, 2021, 33, 7185-7193.	3.2	9
1302	2D Hybrid Halide Perovskites: Structure, Properties, and Applications in Solar Cells. Small, 2021, 17, e2103514.	5.2	59
1303	Overcoming Outcoupling Limit in Perovskite Light-Emitting Diodes with Enhanced Photon Recycling. Nano Letters, 2021, 21, 8426-8432.	4.5	9
1304	Direct band gap halide-double-perovskite absorbers for solar cells and light emitting diodes: <i>Ab initio</i> study of bulk and layers. Physical Review Materials, 2021, 5, .	0.9	6
1305	Bright and stable light-emitting diodes made with perovskite nanocrystals stabilized in metal–organic frameworks. Nature Photonics, 2021, 15, 843-849.	15.6	117
1306	Perovskite Anion Exchange: A Microdynamics Model and a Polar Adsorption Strategy for Precise Control of Luminescence Color. Advanced Functional Materials, 2021, 31, 2106871.	7.8	45
1307	A Perovskiteâ€Based Photodetector with Enhanced Light Absorption, Heat Dissipation, and Humidity Stability. Advanced Photonics Research, 2021, 2, 2100123.	1.7	5
1308	Stability Improvement of 2D Perovskite by Fluorinatedâ€Insulator. Advanced Materials Interfaces, 2021, 8, 2101343.	1.9	4

		CITATION REPORT		
#	Article		IF	CITATIONS
1309	Stability Issues of Perovskite Solar Cells: A Critical Review. Energy Technology, 2021, 9, 21	00560.	1.8	31
1310	Interfacial-engineering enhanced performance and stability of ZnO nanowire-based perovs cells. Nanotechnology, 2021, 32, 475204.	kite solar	1.3	18
1311	Degradation and self-repairing in perovskite light-emitting diodes. Matter, 2021, 4, 3710-3	724.	5.0	51
1312	High efficiency green InP quantum dot light-emitting diodes by balancing electron and hol Communications Materials, 2021, 2, .	e mobility.	2.9	58
1313	All-vacuum fabrication of yellow perovskite light-emitting diodes. Science Bulletin, 2022, 6	7, 178-185.	4.3	21
1314	Dendritic CsSnI ₃ for Efficient and Flexible Nearâ€Infrared Perovskite Lightâ€E Advanced Materials, 2021, 33, e2104414.	mitting Diodes.	11.1	68
1315	Enhancing Performance and Stability of Tin Halide Perovskite Light Emitting Diodes via Co Engineering of Lewis Acid–Base Adducts. Advanced Functional Materials, 2021, 31, 210		7.8	37
1316	Efficient mini/micro-perovskite light-emitting diodes. Cell Reports Physical Science, 2021, 2	2, 100582.	2.8	8
1317	Highly stable cesium lead bromide perovskite nanocrystals for ultra-sensitive and selective fingerprint detection. Analytica Chimica Acta, 2021, 1181, 338850.	latent	2.6	18
1318	Highly efficient and stable inorganic CsPbBr3 perovskite solar cells via vacuum co-evapora Applied Surface Science, 2021, 562, 150153.	tion.	3.1	26
1319	High efficiency reduction of CO2 to CO and CH4 via photothermal synergistic catalysis of perovskite Cs3Sb2I9. Applied Catalysis B: Environmental, 2021, 294, 120236.	lead-free	10.8	48
1320	Tin-based all-inorganic perovskite photodetectors fabricated by chemical vapor deposition Low-Dimensional Systems and Nanostructures, 2021, 134, 114843.	Physica E:	1.3	7
1321	Revealing the effect of electrochemical switching and energy transfer on the electrochemiluminescence of Mn-doped CsPbCl3 nanocrystals. Electrochemistry Commun 2021, 131, 107123.	ications,	2.3	2
1322	Advances and Challenges in Tin Halide Perovskite Nanocrystals. , 2021, 3, 1541-1557.			12
1323	Wavelength-Tunable Green Light Sources Based on ZnO:Ga Nanowire/p-InGaN Heterojunc Applied Nano Materials, 2021, 4, 11168-11179.	tions. ACS	2.4	9
1324	Highly efficient quasi-two dimensional perovskite light-emitting diodes by phase tuning. O Electronics, 2021, 98, 106295.	rganic	1.4	12
1325	Fabrication of kinetically stable micropolymofoam particles and the spontaneous induction morphological transformation. Chemical Engineering Journal, 2021, 424, 130505.	ו of	6.6	1
1326	Preferential vertically oriented nanopillar perovskite induced by poly(9-vinylcarbazole) field transistor. Synthetic Metals, 2021, 281, 116901.	-effect	2.1	1

#	Article	IF	CITATIONS
1327	Stabilizing electroluminescence color of blue perovskite LEDs via amine group doping. Science Bulletin, 2021, 66, 2189-2198.	4.3	48
1328	Bright all-solution-processed CsPbBr3 perovskite light emitting diodes optimized by quaternary ammonium salt. Current Applied Physics, 2021, 31, 60-67.	1.1	3
1329	H2O treatment-induced uniform NiOX interfacial layer boosting brightness and light-emitting efficiency of blue perovskite electroluminescence. Organic Electronics, 2021, 98, 106299.	1.4	3
1330	Microwave-assisted synthesis of blue-emitting cesium bismuth bromine perovskite nanocrystals without polar solvent. Journal of Alloys and Compounds, 2021, 886, 161248.	2.8	6
1331	Light-induced nonvolatile resistive switching in Cs0.15FA0.85PbI3-XBrX perovskite-based memristors. Solid-State Electronics, 2021, 186, 108166.	0.8	5
1332	Controllable crystallization based on the aromatic ammonium additive for efficiently near-infrared perovskite light-emitting diodes. Organic Electronics, 2021, 99, 106327.	1.4	7
1333	Effects of cesium content on the triple-cation lead halide perovskite photodetectors with enhanced detectivity and response time. Journal of Alloys and Compounds, 2021, 889, 161621.	2.8	5
1334	The chloride anion doped hybrid perovskite quantum dots exchanged by short surfactant ligand enable color-tunable blue fluorescent emitting for QLEDs application. Materials Chemistry and Physics, 2022, 275, 125281.	2.0	11
1335	Laser induced anti-solvent carbon quantum dots in defect passivation for effective perovskite solar cells. Journal of Alloys and Compounds, 2021, 889, 161561.	2.8	10
1336	Post-treatment by an ionic tetrabutylammonium hexafluorophosphate for improved efficiency and stability of perovskite solar cells. Journal of Energy Chemistry, 2022, 64, 8-15.	7.1	19
1337	Highâ€performance pure-red lightâ€emitting diodes based on CsPbBrxI3-x–multi-ligands–KBr composite films. Chemical Engineering Journal, 2022, 429, 132375.	6.6	11
1338	Doped all-inorganic cesium zirconium halide perovskites with high-efficiency and tunable emission. Journal of Energy Chemistry, 2022, 65, 600-604.	7.1	37
1339	Pb2+ doped CsCdBr3 perovskite nanorods for pure-blue light-emitting diodes. Chemical Engineering Journal, 2022, 427, 131010.	6.6	25
1340	Copper-doping defect-lowered perovskite nanosheets for deep-blue light-emitting diodes. Journal of Colloid and Interface Science, 2022, 607, 1796-1804.	5.0	15
1341	Performance enhancement of CsPbBr3 thin film-based light-emitting diodes by CsF-induced surface modification. Journal of Alloys and Compounds, 2022, 891, 161996.	2.8	5
1342	Perovskite light-emitting diodes with low roll-off efficiency via interfacial ionic immobilization. Chemical Engineering Journal, 2022, 429, 132347.	6.6	10
1343	Brightly luminescent (NH4)xCs1-xPbBr3 quantum dots for in vitro imaging and efficient photothermal ablation therapy. Journal of Colloid and Interface Science, 2022, 605, 500-512.	5.0	16
1344	Cesium-lead-bromide perovskites with balanced stoichiometry enabled by sodium-bromide doping for all-vacuum deposited silicon-based light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 2016-2023.	2.7	14

	CITATION REP	CITATION REPORT		
#	Article	IF	CITATIONS	
1345	Highâ€Performance Ultrapure Green CdSe/CdS Core/Crown Nanoplatelet Lightâ€Emitting Diodes by Suppressing Nonradiative Energy Transfer. Advanced Electronic Materials, 2021, 7, 2000965.	2.6	17	
1346	Metal Halide Perovskite/2D Material Heterostructures: Syntheses and Applications. Small Methods, 2021, 5, e2000937.	4.6	24	
1348	Towards fluorinated Ruddlesden–Popper perovskites with enhanced physical properties: a study on (3-FC ₆ H ₄ CH ₂ CH ₂ NH ₃) ₂ PbI _{4 single crystals. Materials Chemistry Frontiers, 2021, 5, 4645-4657.}	4 8/2 ub>	6	
1349	Modulation of Metal Halide Structural Units for Light Emission. Accounts of Chemical Research, 2021, 54, 441-451.	7.6	61	
1350	Unravelling halide-dependent charge carrier dynamics in CsPb(Br/Cl) ₃ perovskite nanocrystals. Nanoscale, 2021, 13, 3654-3661.	2.8	13	
1351	Interfaces in metal halide perovskites probed by solid-state NMR spectroscopy. Journal of Materials Chemistry A, 2021, 9, 19206-19244.	5.2	28	
1352	Comment on "Phase transitions, screening and dielectric response of CsPbBr ₃ ―by Å. Svirskas, S. BalÄiÅ«nas, M. ÅimÄ—nas, G. UseviÄius, M. Kinka, M. VeliÄka, D. Kubicki, M. E. Castillo, A. Karabanov, V. Shvartsman, M. R. Soares, V. Åablinskas, A. N. Salak, D. C. Lupascu and J. Banys, <i>J. Mater. Chem. A</i> , 2020, 8 , 14015. Journal of Materials Chemistry A, 2021, 9, 11450-11452.	/. 5.2	2	
1353	22.8%-Efficient single-crystal mixed-cation inverted perovskite solar cells with a near-optimal bandgap. Energy and Environmental Science, 2021, 14, 2263-2268.	15.6	149	
1354	Eu ²⁺ ions as an antioxidant additive for Sn-based perovskite light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 12079-12085.	2.7	18	
1355	Enhanced resistive switching performance in yttrium-doped CH ₃ NH ₃ Pbl ₃ perovskite devices. Physical Chemistry Chemical Physics, 2021, 23, 21757-21768.	1.3	12	
1356	Investigation of CsPbBr ₃ CVD dynamics at various temperatures. Physical Chemistry Chemical Physics, 2021, 23, 23214-23218.	1.3	2	
1357	Large-area and efficient perovskite light-emitting diodes via low-temperature blade-coating. Nature Communications, 2021, 12, 147.	5.8	100	
1358	Photophysics in Cs ₃ Cu ₂ I ₅ and CsCu ₂ I ₃ . Materials Chemistry Frontiers, 2021, 5, 7088-7107.	3.2	39	
1359	Luminescence enhancement of lead halide perovskite light-emitting diodes with plasmonic metal nanostructures. Nanoscale, 2021, 13, 16427-16447.	2.8	6	
1360	Progress in copper metal halides for optoelectronic applications. Materials Chemistry Frontiers, 2021, 5, 4796-4820.	3.2	55	
1361	Stable bright perovskite nanoparticle thin porous films for color enhancement in modern liquid crystal displays. Nanoscale, 2021, 13, 6400-6409.	2.8	16	
1362	Theoretical insight into the CdS/FAPbI ₃ heterostructure: a promising visible-light absorber. New Journal of Chemistry, 2021, 45, 4393-4400.	1.4	10	
1363	Excited-State Properties of Defected Halide Perovskite Quantum Dots: Insights from Computation. Journal of Physical Chemistry Letters, 2021, 12, 1005-1011.	2.1	15	

#	Article	IF	CITATIONS
1364	A seed-mediated and double shell strategy to realize large-size ZnSe/ZnS/ZnS quantum dots for high color purity blue light-emitting diodes. Nanoscale, 2021, 13, 4562-4568.	2.8	23
1365	Tuning the optical properties in CsPbBr ₃ quantum dot-doped glass by modulation of its network topology. Journal of Materials Chemistry C, 2021, 9, 6863-6872.	2.7	28
1366	The metal doping strategy in all inorganic lead halide perovskites: synthesis, physicochemical properties, and optoelectronic applications. Nanoscale, 2021, 13, 18010-18031.	2.8	21
1367	Directional Polarized Light Emission from Thinâ€Film Lightâ€Emitting Diodes. Advanced Materials, 2021, 33, e2006801.	11.1	35
1368	Unveiling the critical role of ammonium bromide in blue emissive perovskite films. Nanoscale, 2021, 13, 13497-13505.	2.8	7
1369	One-dimensional lead iodide hybrid stabilized by inorganic hexarhenium cluster cations as a new broad-band emitter. RSC Advances, 2021, 11, 24580-24587.	1.7	2
1370	Organic–inorganic hybrid thin film light-emitting devices: interfacial engineering and device physics. Journal of Materials Chemistry C, 2021, 9, 1484-1519.	2.7	25
1371	Rapid separation and purification of lead halide perovskite quantum dots through differential centrifugation in nonpolar solvent. RSC Advances, 2021, 11, 28410-28419.	1.7	9
1372	Inverted perovskite solar cells based on potassium salt-modified NiO _X hole transport layers. Materials Chemistry Frontiers, 2021, 5, 3614-3620.	3.2	8
1373	Filtering Strategy of Colloidal Quantum Dots for Improving Performance of Light-Emitting Diodes. Journal of Physical Chemistry C, 2021, 125, 2299-2305.	1.5	4
1374	Surface Energy-Driven Preferential Grain Growth of Metal Halide Perovskites: Effects of Nanoimprint Lithography Beyond Direct Patterning. ACS Applied Materials & Interfaces, 2021, 13, 5368-5378.	4.0	26
1375	Opportunities and challenges in perovskite LED commercialization. Journal of Materials Chemistry C, 2021, 9, 3795-3799.	2.7	70
1376	Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics. Energy and Environmental Science, 2021, 14, 5552-5562.	15.6	69
1377	Recent Advances and Perspectives on Powderâ€Based Halide Perovskite Film Processing. Advanced Functional Materials, 2021, 31, 2007350.	7.8	33
1378	Bright Single-Layer Perovskite Host–Ionic Guest Light-Emitting Electrochemical Cells. Chemistry of Materials, 2021, 33, 1201-1212.	3.2	15
1379	Mechanism of ultrafast energy transfer between the organic–inorganic layers in multiple-ring aromatic spacers for 2D perovskites. Nanoscale, 2021, 13, 15668-15676.	2.8	9
1380	Active area dependence of optoelectronic characteristics of perovskite LEDs. Journal of Materials Chemistry C, 2021, 9, 12661-12670.	2.7	8
1381	Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes. Nature Communications, 2021, 12, 336.	5.8	237

#	Article	IF	CITATIONS
1382	Stable α sPbl ₃ Perovskite Nanowire Arrays with Preferential Crystallographic Orientation for Highly Sensitive Photodetectors. Advanced Functional Materials, 2019, 29, 1808741.	7.8	78
1383	Metal Halide Perovskite Arrays: From Construction to Optoelectronic Applications. Advanced Functional Materials, 2021, 31, 2005230.	7.8	40
1384	Perovskite Single Crystals: Synthesis, Optoelectronic Properties, and Application. Advanced Functional Materials, 2021, 31, 2008684.	7.8	70
1385	Localized Surface Plasmon Resonance Enhanced Light Absorption in AuCu/CsPbCl ₃ Core/Shell Nanocrystals. Advanced Materials, 2020, 32, e2002163.	11.1	59
1386	Tenâ€Gramâ€Scale Synthesis of FAPbX ₃ Perovskite Nanocrystals by a Highâ€Power Roomâ€Temperature Ultrasonicâ€Assisted Strategy and Their Electroluminescence. Advanced Materials Technologies, 2020, 5, 1901089.	3.0	16
1387	Photophysics of Methylammonium Lead Tribromide Perovskite: Free Carriers, Excitons, and Subâ€Bandgap States. Advanced Energy Materials, 2020, 10, 1903258.	10.2	20
1388	Imaging Carrier Transport Properties in Halide Perovskites using Timeâ€Resolved Optical Microscopy. Advanced Energy Materials, 2020, 10, 1903814.	10.2	21
1389	CsPbBrxI3-x thin films with multiple ammonium ligands for low turn-on pure-red perovskite light-emitting diodes. Nano Research, 2021, 14, 191-197.	5.8	34
1390	The chemistry of colloidal semiconductor nanocrystals: From metal-chalcogenides to emerging perovskite. Coordination Chemistry Reviews, 2020, 418, 213333.	9.5	23
1391	Excitonic optical properties of cesium trifluoroacetate induced CsPbBr3 thin film with anti-solvent treatment. Optical Materials, 2020, 106, 110005.	1.7	8
1392	Electroluminescence of Perovskite Nanocrystals with Ligand Engineering. Trends in Chemistry, 2020, 2, 837-849.	4.4	22
1393	Carrier Mobility Enhancement in (121)-Oriented CsPbBr ₃ Perovskite Films Induced by the Microstructure Tailoring of PbBr ₂ Precursor Films. ACS Applied Electronic Materials, 2021, 3, 373-384.	2.0	30
1394	Perovskite Multiple Quantum Wells on Layered Materials toward Narrow-Band Green Emission for Backlight Display Applications. ACS Applied Materials & Interfaces, 2020, 12, 27386-27393.	4.0	14
1395	Dimension control of in situ fabricated CsPbClBr2 nanocrystal films toward efficient blue light-emitting diodes. Nature Communications, 2020, 11, 6428.	5.8	147
1396	Microstructural and photoconversion efficiency enhancement of compact films of lead-free perovskite derivative Rb ₃ Sb ₂ I ₉ . Journal of Materials Chemistry A, 2020, 8, 4396-4406.	5.2	32
1397	Optically pumped white light-emitting diodes based on metal halide perovskites and perovskite-related materials. APL Materials, 2020, 8, .	2.2	34
1398	Polymer–perovskite blend light-emitting diodes using a self-compensated heavily doped polymeric anode. APL Materials, 2020, 8, 021101.	2.2	9
1399	Roadmap on organic–inorganic hybrid perovskite semiconductors and devices. APL Materials, 2021, 9, .	2.2	102

ARTICLE IF CITATIONS Organic-inorganic hybrid corrosion protection coating materials for offshore wind power devices: a 1400 0.4 2 mini-review and perspective. Molecular Crystals and Liquid Crystals, 2020, 710, 74-89. Real-time observation of ion migration in halide perovskite by photoluminescence imaging microscopy. 1401 1.3 Journal Physics D: Applied Physics, 2021, 54, 044002. Defect passivation with novel silicone copolymers for efficient perovskite light-emitting diodes. 1402 2 1.3 Journal Physics D: Applied Physics, 2021, 54, 074005. Prediction and observation of defect-induced room-temperature ferromagnetism in halide 1403 2.0 perovskites. Journal of Semiconductors, 2020, 41, 122501. The strategies for preparing blue perovskite light-emitting diodes. Journal of Semiconductors, 2020, 1404 2.0 18 41,051203. Light-emitting diodes based on all-inorganic copper halide perovskite with self-trapped excitons. Journal of Semiconductors, 2020, 41, 052204. Physical properties of bulk, defective, 2D and 0D metal halide perovskite semiconductors from a 1406 1.8 29 symmetry perspective. JPhys Materials, 2020, 3, 042001. Excitonic enhancement of optical nonlinearities in perovskite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>CH</mml:mi><mml:mno3</mml:mr></m 1407 single crystals. Physical Review Materials, 2019, 3. Large thermal expansion leads to negative thermo-optic coefficient of halide perovskite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">C</mml:mi><mml:msub><mml:mi 1408 0.9 12 mathvariant="normal">H</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:mi mathvariant="normal">N</mml:mi><mml:msub><mml:mi mathvariant="normal">H</mml:mi><mml:mn>3</mml:msub><mml:mi>PbC</mml:mi><mml:msub><mml:mi Vapor-assisted deposition of highly efficient, stable black-phase FAPbI ₃ perovskite solar 1409 6.0 cells. Science, 2020, 370, . Silicon nitride nanobeam enhanced emission from all-inorganic perovskite nanocrystals. Optics 1410 1.7 11 Express, 2019, 27, 18673. Solution-processed double-layered hole transport layers for highly-efficient cadmium-free 1411 1.7 quantum-dot light-emitting diodes. Optics Express, 2020, 28, 6134. Improved performance of pure red perovskite light-emitting devices based on 1412 CsPb(Br_{1-x}1_x)₃ with variable content of iodine and bromine. 1.7 2 Optics Letters, 2020, 45, 2724. Effect of emitter orientation on the outcoupling efficiency of perovskite light-emitting diodes. Optics 1413 1.7 Letters, 2020, 45, 4786. Broadband emission of double perovskite Cs₂Na₀₄Ag₀₆In₀₉₉₅Bi₀₀₀₅Cl₆:Mnksup>2+deup> 1414 for single-phosphor white-light-emitting diodes. Optics Letters, 2019, 44, 4757. Enhanced luminescence of CsPbBr₃ perovskite quantum-dot-doped borosilicate glasses 1415 with Ag nanoparticles. Optics Letters, 2019, 44, 5626. Flexible and stretchable inorganic optoelectronics. Optical Materials Express, 2019, 9, 4023. 1416 1.6 35 Highly luminescent and stable lead-free cesium copper halide perovskite powders for UV-pumped 1417 3.4 94 phosphor-converted light-emitting diodes. Photonics Research, 2020, 8, 768.

#	Article	IF	CITATIONS
1418	Exciton binding energy and effective mass of CsPbCl ₃ : a magneto-optical study. Photonics Research, 2020, 8, A50.	3.4	43
1419	High detectivity photodetectors based on perovskite nanowires with suppressed surface defects. Photonics Research, 2020, 8, 1862.	3.4	23
1420	Golden hour for perovskite photonics. Photonics Research, 2020, 8, PP1.	3.4	15
1421	Hybrid organic-inorganic perovskite metamaterial for light trapping and photon-to-electron conversion. Nanophotonics, 2020, 9, 3323-3333.	2.9	19
1422	Recent advancements and perspectives on light management and high performance in perovskite light-emitting diodes. Nanophotonics, 2021, 10, 2103-2143.	2.9	35
1423	Remarkable photoluminescence enhancement of CsPbBr ₃ perovskite quantum dots assisted by metallic thin films. Nanophotonics, 2021, 10, 2257-2264.	2.9	10
1424	Gel Permeation Chromatography Purification Process for Highly Efficient Perovskite Nanocrystal Light-Emitting Devices. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2020, 33, 393-397.	0.1	7
1425	Highly efficient emission and high-CRI warm white light-emitting diodes from ligand-modified CsPbBr ₃ quantum dots. Opto-Electronic Advances, 2021, .	6.4	10
1426	Perovskite LEDs. , 2019, 1, 1-5.		3
1427	Common Phase and Structure Misidentifications in High-Resolution TEM Characterization of Perovskite Materials. Condensed Matter, 2021, 6, 1.	0.8	16
1428	Recent Advances and Challenges in Halide Perovskite Crystals in Optoelectronic Devices from Solar Cells to Other Applications. Crystals, 2021, 11, 39.	1.0	17
1429	Giant Enhancement of Radiative Recombination in Perovskite Light-Emitting Diodes with Plasmonic Core-Shell Nanoparticles. Nanomaterials, 2021, 11, 45.	1.9	12
1430	Halide Homogenization for High-Performance Blue Perovskite Electroluminescence. Research, 2020, 2020, 9017871.	2.8	32
1431	Blue perovskite light-emitting diodes: opportunities and challenges. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 158503.	0.2	6
1432	High efficiency green perovskite light-emitting diodes based on exciton blocking layer. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 038501.	0.2	2
1433	A selenophene-containing conjugated organic ligand for two-dimensional halide perovskites. Chemical Communications, 2021, 57, 11469-11472.	2.2	7
1434	Conjugated amidine ligands enhance the performance of perovskite nanocrystal blue light-emitting diodes prepared in air with green solvents. Journal of Materials Chemistry C, 2021, 9, 15488-15495.	2.7	5
1435	Investigation of the exciton relaxation processes in poly(9,9-dioctylfluorene- <i>co</i> -benzothiadiazole):CsPbl _{1.5} Br _{1.5} nanocrystal hybrid polymer–perovskite nanocrystal blend. RSC Advances, 2021, 11, 33531-33539.	1.7	2

#	Article	IF	CITATIONS
1436	Piezoelectric nanogenerator based on flexible PDMS–BiMgFeCeO ₆ composites for sound detection and biomechanical energy harvesting. Sustainable Energy and Fuels, 2021, 5, 6049-6058.	2.5	25
1437	Effect of bromine doping on the charge transfer, ion migration and stability of the single crystalline MAPb(Br _{<i>x</i>} I _{1â^'<i>x</i>}) ₃ photodetector. Journal of Materials Chemistry C, 2021, 9, 15189-15200.	2.7	23
1438	2D/3D heterostructure derived from phase transformation of 0D perovskite for random lasing applications with remarkably improved water resistance. Nanoscale, 2021, 13, 18647-18656.	2.8	9
1439	Functionalized hybrid perovskite nanocrystals with organic ligands showing a stable 3D/2D core/shell structure for display and laser applications. Journal of Materials Chemistry C, 2021, 9, 17341-17348.	2.7	12
1440	Crystallization control <i>via</i> a molecular needle knitting strategy for the enhanced emission efficiency and stability of CsPbBr ₃ films. Journal of Materials Chemistry C, 2021, 9, 15967-15976.	2.7	6
1441	Design of a Horizontally Aligned Perovskite Nanowire LED With Improved Light Extraction. IEEE Journal of the Electron Devices Society, 2021, 9, 1215-1221.	1.2	2
1442	Quantum Confinement of Exfoliated Organic-Inorganic Hybrid Perovskite Nanocrystals. Korean Journal of Materials Research, 2021, 31, 496-501.	0.1	0
1443	Improvement of Photoluminescence of Perovskite CH ₃ NH ₃ PbI ₃ by Adding Additional CH ₃ NH ₃ I during Grinding. Chinese Physics Letters, 2021, 38, 087801.	1.3	3
1444	Multiscale Simulation for Visible Light Communication using Perovskite Metasurface. , 2021, , .		2
1445	Control of Emission Characteristics of Perovskite Lasers through Optical Feedback. Advanced Photonics Research, 2021, 2, 2100177.	1.7	3
1446	Improved Efficiency for Siliconâ€Based Perovskite Lightâ€Emitting Diodes via Interfacial Hydrophilic Modification. Advanced Materials Interfaces, 2021, 8, 2101448.	1.9	4
1447	Elimination of Interfacialâ€Electrochemicalâ€Reactionâ€Induced Polarization in Perovskite Single Crystals for Ultrasensitive and Stable Xâ€Ray Detector Arrays. Advanced Materials, 2021, 33, e2103078.	11.1	69
1448	A recent advances of blue perovskite light emitting diodes for next generation displays. Journal of Semiconductors, 2021, 42, 101608.	2.0	7
1449	Band Alignment with Selfâ€Assembled 2D Layer of Carbon Derived from Waste to Balance Charge Injection in Perovskite Crystals Based Rigid and Flexible Light Emitting Diodes. Advanced Materials Technologies, 2022, 7, 2100583.	3.0	4
1450	In Situ Growth of CsPbBr ₃ Perovskite Nanocrystals in Leadâ€Based Matrix toward Significantly Enhanced Water/Photo Stabilities. Advanced Optical Materials, 2022, 10, 2101448.	3.6	7
1451	Efficient and Spectrally Stable Blue Light-Emitting Diodes Based on Diphenylguanidine Bromide Passivated Mixed-Halide Perovskites. ACS Applied Electronic Materials, 2021, 3, 4912-4918.	2.0	7
1452	0D Perovskites: Unique Properties, Synthesis, and Their Applications. Advanced Science, 2021, 8, e2102689.	5.6	142
1453	Room Temperature Fabrication of Stable, Strongly Luminescent Dion–Jacobson Tin Bromide Perovskite Microcrystals Achieved through Use of Primary Alcohols. Nanomaterials, 2021, 11, 2738.	1.9	9

#	Article	IF	CITATIONS
1454	Universal Existence of Localized Singleâ€Photon Emitters in the Perovskite Film of Allâ€Inorganic CsPbBr ₃ Microcrystals. Advanced Materials, 2022, 34, e2106278.	11.1	10
1455	A Generic Protocol for Highly Reproducible Manufacturing of Efficient Perovskite Lightâ€Emitting Diodes Using Inâ€Situ Photoluminescence Monitoring. Advanced Materials Technologies, 2022, 7, 2100987.	3.0	3
1456	Manipulating Color Emission in 2D Hybrid Perovskites by Fine Tuning Halide Segregation: A Transparent Green Emitter. Advanced Materials, 2022, 34, e2105942.	11.1	24
1457	Isolated [SbCl ₆] ^{3–} Octahedra Are the Only Active Emitters in Rb ₇ Sb ₃ Cl ₁₆ Nanocrystals. ACS Energy Letters, 2021, 6, 3952-3959.	8.8	15
1458	Research progress of full electroluminescent white light-emitting diodes based on a single emissive layer. Light: Science and Applications, 2021, 10, 206.	7.7	84
1459	Spacer Cation Alloying in Ruddlesden–Popper Perovskites for Efficient Red Lightâ€Emitting Diodes with Precisely Tunable Wavelengths. Advanced Materials, 2021, 33, e2104381.	11.1	41
1460	Upscaling Solutionâ€Processed Perovskite Photovoltaics. Advanced Energy Materials, 2021, 11, 2101973.	10.2	46
1461	Yb ²⁺ -Alloyed Cs ₄ Pbl ₆ –CsPbl ₃ Perovskite Nanocomposites for Efficient and Stable Pure-Red Emission. Journal of Physical Chemistry Letters, 2021, 12, 10093-10098.	2.1	17
1462	Vacuumâ€Assisted Preparation of Highâ€Quality Quasiâ€2D Perovskite Thin Films for Largeâ€Area Lightâ€Emittir Diodes. Advanced Functional Materials, 2022, 32, 2107644.	^{ng} 7.8	19
1463	Narrow Bandwidth Luminescence in Sr ₂ Li(Al,Ga)O ₄ :Eu ²⁺ by Selective Site Occupancy Engineering for High Definition Displays. Laser and Photonics Reviews, 2021, 15, 2100392.	4.4	31
1464	Impact of surface polarization and ion accumulation on electroluminescence for methylammonium lead bromide light emitting diodes. Applied Physics Letters, 2021, 119, .	1.5	1
1465	Enabling Quasiâ€2D Perovskiteâ€Compatible Growth Environment for Efficient Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	3.6	7
1466	Realizing White Emission of Single-Layer Dual-Color Perovskite Light-Emitting Devices by Modulating the Electroluminescence Emission Spectra. Journal of Physical Chemistry Letters, 2021, 12, 10197-10203.	2.1	16
1467	Efficient Skyâ€Blue Lightâ€Emitting Diodes Based on Oriented Perovskite Nanoplates. Advanced Optical Materials, 2022, 10, 2101525.	3.6	12
1468	Structureâ€Property Relationships and Idiosyncrasies of Bulk, 2D Hybrid Lead Bromide Perovskites. Israel Journal of Chemistry, 0, , .	1.0	9
1469	Investigation of Interplay between Polyvinylpyrrolidone Interlayer and Perovskite Composition Affecting the Performance of Perovskite Light Emitting Diode. Advanced Electronic Materials, 2022, 8, 2100568.	2.6	1
1470	A-site phase segregation in mixed cation perovskite. Materials Reports Energy, 2021, 1, 100064.	1.7	19
1471	Dimension-Dependent Bandgap Narrowing and Metallization in Lead-Free Halide Perovskite Cs3Bi2X9 (X) Tj ETQc	110.784 _{1.9} 1	-314 rgBT /

#	Article	IF	CITATIONS
1472	Physicochemical Property Investigations of Perovskite-Type Layer Crystals [NH ₃ (CH ₂) _{<i>n</i>} NH ₃]CdCl ₄ (<i>n</i> =) Tj	ET Qq 0 0 0	r gB T /Overlo
1473	Quasiâ€2D CsPbBr <i>_x</i> l _{3â^'} <i>_x</i> Composite Thin Films for Efficient and Stable Red Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2101419.	3.6	15
1474	Efficient light-emitting diodes based on oriented perovskite nanoplatelets. Science Advances, 2021, 7, eabg8458.	4.7	68
1475	CsPbBr3/Cs4PbBr6 NCs glass prepared by a composition regulation strategy for amplification spontaneous emission and white light emitting diode. Applied Physics Letters, 2021, 119, .	1.5	4
1476	Molecular design of two-dimensional perovskite cations for efficient energy cascade in perovskite light-emitting diodes. Applied Physics Letters, 2021, 119, 154101.	1.5	3
1477	Effects of many-body interactions on the transient optical properties of lead halide perovskites. Journal of Applied Physics, 2021, 130, .	1.1	3
1478	Drop-casting CsPbBr3 perovskite quantum dots as down-shifting layer enhancing the ultraviolet response of silicon avalanche photodiode. Applied Physics Letters, 2021, 119, .	1.5	8
1479	DFT calculation on electronic properties of vacancy-ordered double perovskites Cs2(Ti, Zr, Hf)X6 and their alloys: Potential as light absorbers in solar cells. Results in Physics, 2021, 30, 104875.	2.0	7
1480	Strategies for improving performance, lifetime, and stability in light-emitting diodes using liquid medium. Chemical Physics Reviews, 2021, 2, .	2.6	6
1481	Synthesis of porous electrode from CH3NH3PbBr3 single crystal for efficient supercapacitor application: Role of morphology on the charge storage and stability. Electrochimica Acta, 2021, 398, 139344.	2.6	29
1482	Enhanced Performance in Perovskite Optoelectronic Devices. , 2019, , .		0
1483	Perovskite light-emitting diodes based on n-type nanocrystalline silicon oxide electron injection layer. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 128103.	0.2	0
1484	Research progress of efficient green perovskite light emitting diodes. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 158504.	0.2	8
1485	Fabrication of High-Performance Perovskite Optoelectronic Devices. , 2019, , .		0
1486	Recent advances in photo-stability of lead halide perovskites. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 157102.	0.2	4
1487	Efficient, Color Tunable, and Flexible Thin Film Perovskite Light Emitting Devices. , 2019, , .		0
1488	Recent advances in perovskite solar cells: Space potential and optoelectronic conversion mechanism. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 158401.	0.2	3
1490	Room Temperature In-Situ Synthesis of Inorganic Lead Halide Perovskite Nanocrystals Sol Using Ultraviolet Polymerized Acrylic Monomers as Solvent and Their Composites with High Stability. Applied Sciences (Switzerland), 2020, 10, 3325.	1.3	2

#	Article	IF	CITATIONS
1491	Hard and soft Lewis-base behavior for efficient and stable CsPbBr ₃ perovskite light-emitting diodes. Nanophotonics, 2021, 10, 2157-2166.	2.9	16
1492	Tailoring the electron and hole dimensionality to achieve efficient and stable metal halide perovskite scintillators. Nanophotonics, 2021, 10, 2249-2256.	2.9	16
1493	Temperature-dependent surface plasmon enhanced photoluminescence in CsPbBr3 thin film. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 422, 127795.	0.9	6
1494	Combined Precursor Engineering and Grain Anchoring Leading to MAâ€Free, Phaseâ€Pure, and Stable αâ€Formamidinium Lead Iodide Perovskites for Efficient Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 27299-27306.	7.2	46
1495	Theoretical prediction of the structural, electronic and optical properties of vacancy-ordered double perovskites Tl2TiX6 (X = Cl, Br, I). Journal of Solid State Chemistry, 2022, 305, 122684.	1.4	10
1496	Lead-Free Perovskite Single Crystals: A Brief Review. Crystals, 2021, 11, 1329.	1.0	3
1497	Combined precursor engineering and grain anchoring leading to MAâ€free, phaseâ€pure and stable αâ€formamidinium lead iodide perovskites for efficient solar cells. Angewandte Chemie, 0, , .	1.6	11
1498	Multi-Dopant Engineering in Perovskite Cs ₂ SnCl ₆ : White Light Emitter and Spatially Luminescent Heterostructure. Inorganic Chemistry, 2021, 60, 17357-17363.	1.9	32
1499	Surface-modified ultra-thin indium tin oxide electrodes for efficient perovskite light-emitting diodes. Applied Surface Science, 2022, 575, 151783.	3.1	1
1500	Oxygen-deficient tungsten oxide perovskite nanosheets-based photonic nanomedicine for cancer theranostics. Chemical Engineering Journal, 2022, 431, 133273.	6.6	6
1501	Full color emission of all-bromide inorganic perovskite nanocrystals. Applied Physics Letters, 2020, 117, .	1.5	3
1503	Suppressing the defects in cesium-based perovskites <i>via</i> polymeric interlayer assisted crystallization control. Journal of Materials Chemistry A, 2021, 9, 26149-26158.	5.2	6
1504	Insight into perovskite light-emitting diodes based on PVP buffer layer. Journal of Luminescence, 2022, 241, 118515.	1.5	3
1505	In-Situ polymerization of PEDOT in perovskite Thin films for efficient and stable photovoltaics. Chemical Engineering Journal, 2022, 430, 133109.	6.6	7
1506	Research progress of enhancing perovskite light emitting diodes with light extraction. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 218501.	0.2	1
1507	Efficient and stable blue perovskite light emitting diodes based on defect passivation. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 138502.	0.2	1
1508	Ion Migration in Metal Halide Perovskites Solar Cells. , 2020, , 1-32.		2
1509	High quality all inorganic halide lead perovskites microlasers pumped by continuous wave lasers. , 2020, , .		0

#	Article	IF	CITATIONS
1510	Fast-response, high-stability, and high-efficiency full-color quantum dot light-emitting diodes with charge storage layer. Science China Materials, 2022, 65, 1012-1019.	3.5	8
1512	Stable and Efficient Graded MA 0.83 Cs 0.17 Pb(I 0.83 Br 0.17) 3 Alloy Thin Filmâ€Based Invertedâ€Type Perovskite Solar Cells. Energy Technology, 0, , 2100607.	1.8	1
1513	Vacancyâ€Ordered Double Perovskite Rb ₂ ZrCl _{6â^'} <i>_x</i> Br <i>_x</i> Facile Synthesis and Insight into Efficient Intrinsic Selfâ€Trapped Emission. Advanced Optical Materials, 2022, 10, 2101661.	3.6	30
1515	Highâ€Efficiency Topâ€Emitting Green Perovskite Light Emitting Diode with Quasi Lambertian Emission. Advanced Optical Materials, 2022, 10, 2101137.	3.6	8
1516	2D Position-Sensitive Hybrid-Perovskite Detectors. ACS Applied Materials & Interfaces, 2021, 13, 54527-54535.	4.0	11
1517	Exploration of Nontoxic Cs ₃ CeBr ₆ for Violet Light-Emitting Diodes. ACS Energy Letters, 2021, 6, 4245-4254.	8.8	37
1518	Enhanced Stability and Luminous Performance for Structured Mnâ€Doped CsPbCl 3 Quantum Dots. ChemistrySelect, 2021, 6, 11237-11243.	0.7	1
1519	Recent Progress in Perovskiteâ€Based Reversible Photon–Electricity Conversion Devices. Advanced Functional Materials, 2022, 32, 2108926.	7.8	18
1520	Targeted Distribution of Passivator for Polycrystalline Perovskite Light-Emitting Diodes with High Efficiency. ACS Energy Letters, 2021, 6, 4187-4194.	8.8	41
1521	Efficient red perovskite quantum dot light-emitting diode fabricated by inkjet printing. Materials Futures, 2022, 1, 015301.	3.1	5
1522	Temporally modulated energy shuffling in highly interconnected nanosystems. Nanophotonics, 2020, 10, 851-876.	2.9	5
1523	Detection of Volatile Organic Compounds (VOCs) using Organic-Inorganic Hybrid Perovskite Nanoparticles. Korean Journal of Materials Research, 2020, 30, 515-521.	0.1	Ο
1524	Effect of Solvent Annealing on Optical Properties of Perovskite Dualfunctional Devices. Solid State Phenomena, 0, 312, 185-191.	0.3	0
1525	Three-dimensional pyramidal CsPbBr3/C8BTBT film heterojunction photodetectors with high responsivity and long-term stability. Organic Electronics, 2022, 101, 106409.	1.4	9
1526	Metal halide perovskite quantum dots for amphiprotic bio-imaging. Coordination Chemistry Reviews, 2022, 452, 214313.	9.5	37
1527	Chiral 1D perovskite microwire arrays for circularly polarized light detection. Giant, 2022, 9, 100086.	2.5	15
1528	Accelerated interfacial charge transfer in Br-gradient MAPbI3- <i>x</i> Br <i>x</i> perovskite thin films. Chinese Journal of Chemical Physics, 2021, 34, 613-620.	0.6	1
1529	All-optical switching based on interacting exciton polaritons in self-assembled perovskite microwires. Science Advances, 2021, 7, eabj6627.	4.7	47

#	Article	IF	CITATIONS
1530	Defect Behaviors in Perovskite Light-Emitting Diodes. , 2021, 3, 1702-1728.		27
1531	Colorimetric Sensing of Benzoyl Peroxide Based on the Emission Wavelength-Shift of CsPbBr3 Perovskite Nanocrystals. Chemosensors, 2021, 9, 319.	1.8	6
1532	Mg ²⁺ -Assisted Passivation of Defects in CsPbl ₃ Perovskite Nanocrystals for High-Efficiency Photoluminescence. Journal of Physical Chemistry Letters, 2021, 12, 11090-11097.	2.1	12
1533	Quasi-Type II Core–Shell Perovskite Nanocrystals for Improved Structural Stability and Optical Gain. ACS Applied Materials & Interfaces, 2021, 13, 58170-58178.	4.0	15
1534	Transformation of Quasiâ€2D Perovskite into 3D Perovskite Using Formamidine Acetate Additive for Efficient Blue Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, 2105164.	7.8	26
1535	Efficient Zn-Alloyed Low-Toxicity Quasi-Two-Dimensional Pure-Red Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 55412-55419.	4.0	3
1536	Structural modulation and assembling of metal halide perovskites for solar cells and lightâ€emitting diodes. InformaÄnÃ-Materiály, 2021, 3, 1218-1250.	8.5	7
1537	High performance sky-blue perovskite light-emitting diodes enabled by a bifunctional phosphate molecule. Journal of Alloys and Compounds, 2022, 897, 162727.	2.8	5
1538	Phosphine Oxide Additives for Highâ€Brightness Inorganic Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, 2101602.	3.6	12
1539	A-Site Mixing to Adjust the Photovoltaic Performance of a Double-Cation Perovskite: It Is Not Always the Simple Way. Journal of Physical Chemistry Letters, 2021, 12, 11206-11213.	2.1	2
1540	Toward Stable and Efficient Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, 2109495.	7.8	77
1541	Highly Efficient Lightâ€Emitting Diodes Based on an Organic Antimony(III) Halide Hybrid. Angewandte Chemie - International Edition, 2022, 61, .	7.2	51
1542	Highly Efficient Lightâ€Emitting Diodes Based on an Organic Antimony(III) Halide Hybrid. Angewandte Chemie, 2022, 134, .	1.6	7
1543	Blue light-emitting diodes based on halide perovskites: Recent advances and strategies. Materials Today, 2021, 51, 222-246.	8.3	64
1544	Vacuum-evaporated lead halide perovskite LEDs [Invited]. Optical Materials Express, 2022, 12, 256.	1.6	6
1545	Gammaâ€Ray Radiation Stability of Mixedâ€Cation Lead Mixedâ€Halide Perovskite Single Crystals. Advanced Optical Materials, 2022, 10, 2102069.	3.6	15
1546	Narrow Band Red Emission Fluorophore with Reasonable Multiple Resonance Effect. Advanced Electronic Materials, 2022, 8, 2101114.	2.6	42
1547	Display illumination with modulated directional backlight. Journal of the Society for Information Display, 0, , .	0.8	0

		CITATION REPORT		
#	ARTICLE		F	CITATIONS
1548	Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature, 2021, 599, 594	-598. I	13.7	358
1549	Investigation on lead-free Mn-doped Cs2NaInCl6 double perovskite phosphors and their optical properties. Optical Materials, 2021, 122, 111802.		1.7	16
1550	Efficient and Stable Blue- and Red-Emitting Perovskite Nanocrystals through Defect Engineering: PbX ₂ Purification. Chemistry of Materials, 2021, 33, 8745-8757.	;	3.2	24
1551	Microscale gratings patterned in perovskite films to promote the electron-optical conversion efficiency of perovskite light-emitting diodes. Applied Optics, 2022, 61, 35.		0.9	2
1552	Ion Migration in Perovskite Lightâ€Emitting Diodes: Mechanism, Characterizations, and Material ar Device Engineering. Advanced Materials, 2022, 34, e2108102.	ıd <u>-</u>	11.1	85
1553	Ionic Liquid Passivation Eliminates Low-n Quantum Well Domains in Blue Quasi-2D Perovskite Films ACS Applied Materials & Interfaces, 2021, 13, 57540-57547.). 	4.0	2
1554	Control of spontaneous emission rate in lead halide perovskite film on hyperbolic metamaterial. Journal of Physics: Conference Series, 2021, 2015, 012153.	(0.3	0
1555	Spectral Stable Blue Perovskite Lightâ€Emitting Diodes by Introducing Organometallic Ligand. Adv Optical Materials, 2022, 10, 2101655.	anced	3.6	11
1556	High Color Purity and Efficient Green Light-Emitting Diode Using Perovskite Nanocrystals with the Size Overly Exceeding Bohr Exciton Diameter. Journal of the American Chemical Society, 2021, 143 19928-19937.	, (6.6	41
1557	Pulsed Laser Deposition of CsPbBr3 Films: Impact of the Composition of the Target and Mass Distribution in the Plasma Plume. Nanomaterials, 2021, 11, 3210.		1.9	8
1558	Phase-Pure Quasi-2D Perovskite by Protonation of Neutral Amine. Journal of Physical Chemistry Letters, 2021, 12, 11323-11329.	:	2.1	8
1559	Efficient Planar Perovskite Solar Cells with Carbon Quantum Dot-Modified spiro-MeOTAD as a Composite Hole Transport Layer. ACS Applied Materials & Interfaces, 2021, 13, 56265-56272.	4	4.0	13
1560	Perovskite White Light Emitting Diodes: Progress, Challenges, and Opportunities. ACS Nano, 2021, 17150-17174.	15,	7.3	101
1561	Additives in Halide Perovskite for Blue-Light-Emitting Diodes: Passivating Agents or Crystallization Modulators?. ACS Energy Letters, 2021, 6, 4265-4272.		8.8	24
1562	Engineering of Annealing and Surface Passivation toward Efficient and Stable Quasi-2D Perovskite Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2021, 12, 11645-11651.	:	2.1	9
1564	Inkjet printed organic light-emitting diodes employing organometal-halide perovskite as hole transport layer. Journal Physics D: Applied Physics, 2022, 55, 105101.		1.3	1
1565	The evolution and future of metal halide perovskite-based optoelectronic devices. Matter, 2021, 4, 3814-3834.	ł	5.0	35
1566	High Triplet Energy Level Molecule Enables Highly Efficient Sky-Blue Perovskite Light-Emitting Diode Journal of Physical Chemistry Letters, 2021, 12, 11723-11729.	25. 2	2.1	11

#	Article	IF	CITATIONS
1567	lonâ€Accumulationâ€Induced Charge Tunneling for High Gain Factor in P–l–Nâ€Structured Perovskite CH ₃ NH ₃ PbI ₃ Xâ€Ray Detector. Advanced Materials Technologies, 2022, 7, 2100908.	3.0	15
1568	Development of narrow band emitting phosphors for backlighting displays and solid state lighting using a clean and green energy technology. Journal of Luminescence, 2022, 243, 118650.	1.5	11
1569	Strain Engineering for Tailored Carrier Transport and Thermoelectric Performance in Mixed Halide Perovskites CsPb(I _{1–<i>x</i>} Br _{<i>x</i>}) ₃ . ACS Applied Energy Materials, 2021, 4, 14508-14519.	2.5	16
1570	Amplified Spontaneous Emission in low dimensional lead halide perovskites: An overview. Optical Materials: X, 2021, 12, 100115.	0.3	1
1571	Using Combinatorial Inkjet Printing for Synthesis and Deposition of Metal Halide Perovskites in Wavelengthâ€Selective Photodetectors. Advanced Engineering Materials, 2022, 24, 2101111.	1.6	13
1572	The phase-controllable crystallization induced by low pressure flashing in chloride anion doped quasi-2D hybrid perovskite thin films for blue light-emitting diodes. Surfaces and Interfaces, 2021, 28, 101653.	1.5	0
1573	Charge Transport Layers in Halide Perovskite Photonic Devices. , 2021, , 1-32.		0
1574	Structure and electronic properties of CsPbBr3 perovskite: first principle calculations. Journal of Physical Studies, 2021, 25, .	0.2	1
1575	Layer number-dependent optoelectronic characteristics of quasi-2D PBA ₂ (MAPbBr ₃) _{<i>n</i>â^'1} PbBr ₄ perovskite films. Journal of Materials Chemistry C, 2021, 9, 17033-17041.	2.7	5
1576	Ionic liquid-induced <i>in situ</i> deposition of perovskite quantum dot films with a photoluminescence quantum yield of over 85%. Nanoscale, 2021, 13, 20067-20077.	2.8	3
1577	Photoinduced quasi-2D to 3D phase transformation in hybrid halide perovskite nanoplatelets. Physical Chemistry Chemical Physics, 2021, 23, 27355-27364.	1.3	7
1578	Improving the efficiency and stability of inorganic red perovskite light-emitting diodes using traces of zinc ions. Journal of Materials Chemistry C, 2021, 9, 16682-16692.	2.7	6
1579	Electrode Engineering in Halide Perovskite Electronics: Plenty of Room at the Interfaces. Advanced Materials, 2022, 34, e2108616.	11.1	55
1580	Enhancing the Efficiency and Stability of CsPbI ₃ Nanocrystal-Based Light-Emitting Diodes through Ligand Engineering with Octylamine. Journal of Physical Chemistry C, 2022, 126, 1085-1093.	1.5	12
1581	Suppression of halide migration and immobile ionic surface passivation for blue perovskite light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 2060-2066.	2.7	12
1582	Dualâ€Bandâ€Tunable Whiteâ€Light Emission from Bi ³⁺ /Te ⁴⁺ Emitters in Perovskiteâ€Derivative Cs ₂ SnCl ₆ Microcrystals. Angewandte Chemie, 2022, 134, .	1.6	7
1583	Improved luminescent performances of CsPbI3 perovskite quantum dots via optimizing the proportion of boron-silicate glass and precipitation processing. Optical Materials, 2022, 124, 111981.	1.7	9
1584	Self-aligned CH3NH3PbBr3 perovskite nanowires via dielectrophoresis for gas sensing applications. Applied Materials Today, 2022, 26, 101307.	2.3	9

#	Article	IF	CITATIONS
1585	Dynamic motions of organic cation in organic–inorganic hybrid 1,4-butanediammonium tetrabromocuprate (II) crystal by solid-state nuclear magnetic resonance spectroscopy. Journal of Molecular Structure, 2022, 1252, 132204.	1.8	2
1586	3D cubic framework of fluoride perovskite SEI inducing uniform lithium deposition for air-stable and dendrite-free lithium metal anodes. Chemical Engineering Journal, 2022, 431, 134266.	6.6	17
1587	Enhanced photoluminescence efficiencies of CsPbCl3-xBrx nanocrystals by incorporating neodymium ions. Journal of Luminescence, 2022, 243, 118658.	1.5	7
1588	Effect of ZnO on the crystallization and photoluminescence of CsPbI ₃ perovskite quantum dots in borosilicate glasses. Journal of the American Ceramic Society, 2022, 105, 3303-3311.	1.9	6
1589	Recent Research Trends for Improving the Stability of Organo/Inorgano Halide Perovskites. Journal of Korean Institute of Metals and Materials, 2022, 60, 1-13.	0.4	8
1590	Perovskite Nanowires for Next-Generation Optoelectronic Devices: Lab to Fab. ACS Applied Energy Materials, 2022, 5, 1342-1377.	2.5	9
1591	Tuning Precursor–Amine Interactions for Light-Emitting Lead Bromide Perovskites. Journal of Physical Chemistry Letters, 2022, 13, 704-710.	2.1	5
1592	Hole Transport Layer Free Perovskite Light-Emitting Diodes With High-Brightness and Air-Stability Based on Solution-Processed CsPbBr3-Cs4PbBr6 Composites Films. Frontiers in Chemistry, 2022, 10, 828322.	1.8	2
1593	Integration of Highly Luminescent Lead Halide Perovskite Nanocrystals on Transparent Lead Halide Nanowire Waveguides through Morphological Transformation and Spontaneous Growth in Water. Small, 2022, 18, e2105009.	5.2	11
1594	Nonlinear microscopy of lead iodide nanosheets. Optics Express, 2022, 30, 4793.	1.7	0
1595	Highly efficient emission and high-CRI warm white light-emitting diodes from ligand-modified CsPbBr ₃ quantum dots. Opto-Electronic Advances, 2022, 5, 200075-200075.	6.4	92
1596	ZnO-Based Electron-Transporting Layers for Perovskite Light-Emitting Diodes: Controlling the Interfacial Reactions. Journal of Physical Chemistry Letters, 2022, 13, 694-703.	2.1	19
1597	Precise Tuning of Multiple Perovskite Photoluminescence by Volume-Controlled Printing of Perovskite Precursor Solution on Cellulose Paper. ACS Nano, 2022, 16, 2521-2534.	7.3	14
1598	Characterization of a CH ₃ NH ₃ PbI ₃ perovskite microwire by Raman spectroscopy, 2022, 53, 288-296.	1.2	8
1599	Plasmonic–perovskite solar cells, light emitters, and sensors. Microsystems and Nanoengineering, 2022, 8, 5.	3.4	41
1600	Interface engineering improves the performance of green perovskite light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 2998-3005.	2.7	16
1601	Efficient Pure Blue Light-Emitting Diodes Based on CsPbBr ₃ Quantum-Confined Nanoplates. ACS Applied Materials & Interfaces, 2022, 14, 5682-5691.	4.0	33
1602	Ultrasensitive Photodetectors Based on Strongly Interacted Layered-Perovskite Nanowires. ACS Applied Materials & Interfaces, 2022, 14, 1601-1608.	4.0	8

#	Article	IF	CITATIONS
1603	Gold Nanoparticle-Attached Perovskite Cs ₃ Bi ₂ Br ₉ QDs/BiOBr Heterostructures for Photoelectrochemical Biosensing. ACS Applied Nano Materials, 2022, 5, 2812-2819.	2.4	13
1604	Perspective on Metal Halides with Selfâ€Trapped Exciton toward White Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	3.6	14
1605	Phototransistors Based on Organic Small Molecules–Ruddlesdenâ€₽opper Layered Perovskite Single Crystal Heterojunctions. Advanced Materials Interfaces, 0, , 2101850.	1.9	3
1606	An enantiomeric pair of 2D organic–inorganic hybrid perovskites with circularly polarized luminescence and photoelectric effects. Journal of Materials Chemistry C, 2022, 10, 3440-3446.	2.7	16
1607	Tunable engineering of photo- and electro-induced carrier dynamics in perovskite photoelectronic devices. Science China Materials, 2022, 65, 855-875.	3.5	9
1608	Mechanosynthesis strategy towards a high-efficiency CsPbBr3/Cs4PbBr6 perovskite phosphor. Optical Materials Express, 2022, 12, 665.	1.6	1
1609	The halogen chemistry of halide perovskites. Trends in Chemistry, 2022, 4, 206-219.	4.4	14
1610	Surface Passivation Using 2D Perovskites toward Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2022, 34, e2105635.	11.1	221
1611	Strain-induced bandgap engineering in CsGeX ₃ (X = I, Br or Cl) perovskites: insights from first-principles calculations. Physical Chemistry Chemical Physics, 2022, 24, 5448-5454.	1.3	12
1612	Dualâ€Bandâ€Tunable Whiteâ€Light Emission from Bi ³⁺ /Te ⁴⁺ Emitters in Perovskiteâ€Derivative Cs ₂ SnCl ₆ Microcrystals. Angewandte Chemie - International Edition, 2022, 61, .	7.2	74
1613	All-inorganic perovskite nanocrystals: next-generation scintillation materials for high-resolution X-ray imaging. Nanoscale Advances, 2022, 4, 680-696.	2.2	43
1614	Effect of ligand groups on photoexcited charge carrier dynamics at the perovskite/TiO ₂ interface. RSC Advances, 2021, 12, 78-87.	1.7	1
1615	Surface modification strategy based on molecular engineering of an organic cation toward spectrally stable deep-blue emission perovskites. Journal of Materials Chemistry C, 2022, 10, 2067-2072.	2.7	2
1616	Defect calculations using a combined SCAN and hybrid functional in γ-CsPbI ₃ . Physical Chemistry Chemical Physics, 2022, 24, 3420-3428.	1.3	4
1617	Ethylamine Iodide Additive Enables Solidâ€ŧoâ€Solid Transformed Highly Oriented Perovskite for Excellent Photodetectors. Advanced Materials, 2022, 34, e2108569.	11.1	23
1618	Lead-Free Ultra-Wide Direct Bandgap Perovskite EACal ₃ . IEEE Nanotechnology Magazine, 2022, 21, 66-70.	1.1	8
1619	Cation-Doping in Organic–Inorganic Perovskites to Improve the Structural Stability from Theoretical Prediction. Journal of Physical Chemistry Letters, 2022, 13, 1180-1186.	2.1	2
1620	Highly Efficient Pureâ€Blue Perovskite Lightâ€Emitting Diode Leveraging CsPbBr <i>_x</i> Cl _{3â°} <i>_x</i> Clssub>x4PbBr <i>_x</i> Nanocomposite Emissive Laver with Shallow Valence Band, Advanced Optical Materials, 2022, 10	⊳Cl <i>s</i> soeb>6a	à ^'√ sub> <i></i>

#	Article	IF	CITATIONS
1621	Optical Properties of Inorganic Halide Perovskite Nanorods: Role of Anisotropy, Temperature, Pressure, and Nonlinearity. Journal of Physical Chemistry C, 2022, 126, 2003-2012.	1.5	9
1622	Ultrastable and highly efficient green-emitting perovskite quantum dot composites for Mini-LED displays or backlights. Nano Energy, 2022, 95, 107003.	8.2	49
1623	Photon Echo Polarimetry of Excitons and Biexcitons in a CH ₃ NH ₃ PbI ₃ Perovskite Single Crystal. ACS Photonics, 2022, 9, 621-629.	3.2	7
1624	Boosting the efficiency of quasi-2D perovskite light-emitting diodes via tailoring the PEDOT:PSS hole transport layer. Applied Surface Science, 2022, 585, 152692.	3.1	9
1625	Two-dimensional Metal Organic Frameworks for photonic applications. Optical Materials Express, 0, , .	1.6	9
1626	Molecular physics of persistent room temperature phosphorescence and long-lived triplet excitons. Applied Physics Reviews, 2022, 9, .	5.5	66
1627	Bright and efficient sky-blue perovskite light-emitting diodes via doping of π-conjugated molecule tetraphenylethylene. Organic Electronics, 2022, 102, 106441.	1.4	2
1628	Sensitive NO detection by lead-free halide Cs2TeI6 perovskite with Te-N bonding. Sensors and Actuators B: Chemical, 2022, 357, 131397.	4.0	5
1629	Hybrid density functional theory calculation of orthorhombic CsPbI3â^3Br3 and CsPbBr3â^3Cl3. Current Applied Physics, 2022, 36, 93-96.	1.1	2
1630	Emission properties of sequentially deposited ultrathin CH3NH3PbI3/MoS2 heterostructures. Current Applied Physics, 2022, 36, 27-33.	1.1	8
1631	Versatile perovskite and its various applications. Materials Letters, 2022, 313, 131699.	1.3	3
1632	High brightness and stability pure-blue perovskite light-emitting diodes based on a novel structural quantum-dot film. Nano Energy, 2022, 95, 106974.	8.2	39
1633	Are the emission quantum yields of cesium plumbobromide perovskite nanocrystals reliable metrics for their quality?. Journal of Photochemistry and Photobiology, 2022, 10, 100109.	1.1	3
1634	Tunable deep-blue luminescence from ball-milled chlorine-rich Cs _{<i>x</i>} (NH ₄ 1â°' <i>x</i> PbCl ₂ Br nanocrystals by ammonium modulation. Chemical Communications, 2022, 58, 3827-3830.	2.2	2
1635	Synergistic Effect of Multidentate Ligands on CsPbl ₃ Perovskite Nanocrystals Surface for High Efficiency Red Light-Emitting Diode. SSRN Electronic Journal, 0, , .	0.4	0
1637	Composition-Dependent Optoelectronic Properties of Mixed 2D/3D Metal Halide Perovskite Films for Light-Emitting Diodes. ACS Applied Energy Materials, 0, , .	2.5	3
1638	Enhancing the Performance of Quasi-2D Perovskite Light-Emitting Diodes Using Natural Cyclic Molecules with Distinct Phase Regulation Behaviors. ACS Applied Materials & Interfaces, 2022, 14, 9587-9596.	4.0	6
1639	Improved device efficiency and lifetime of perovskite light-emitting diodes by size-controlled polyvinylpyrrolidone-capped gold nanoparticles with dipole formation. Scientific Reports, 2022, 12, 2300.	1.6	3

#	Article	IF	CITATIONS
1640	Study on Electronic, Mechanical and Optical Properties of Perovskite Cs ₂ AgGaX ₆ (X = Cl, Br). Journal of Nanoelectronics and Optoelectronics, 2021, 16, 1521-1527.	0.1	3
1641	Dark and Bright Excitons in Halide Perovskite Nanoplatelets. Advanced Science, 2022, 9, e2103013.	5.6	36
1642	Fabry–Perot Mode-Limited High-Purcell-Enhanced Spontaneous Emission from <i>In Situ</i> Laser-Induced CsPbBr ₃ Quantum Dots in CsPb ₂ Br ₅ Microcavities. Nano Letters, 2022, 22, 355-365.	4.5	17
1643	Strain coupling and Jahn–Teller effect in efficient and stable sky-blue germanium–lead perovskites. Journal of Materials Chemistry C, 2022, 10, 6827-6836.	2.7	5
1644	Cspbbr3 Nanocrystals Embedded Glass Enables Highly Stable and Efficient Light-Emitting Diodes. SSRN Electronic Journal, 0, , .	0.4	0
1645	First-principles study on the elastic, electronic and optical properties of all-inorganic halide perovskite solid solutions of CsPb(Br _{1â^'<i>x</i>} Cl _{<i>x</i>}) ₃ within the virtual crystal approximation. RSC Advances, 2022, 12, 9755-9762.	1.7	2
1646	Improved highly efficient Dion–Jacobson type perovskite light-emitting diodes by effective surface polarization architecture. Physical Chemistry Chemical Physics, 2022, 24, 7969-7977.	1.3	3
1647	Device performance improvements in all-inorganic perovskite light-emitting diodes: the role of binary ammonium cation terminals. Physical Chemistry Chemical Physics, 2022, 24, 6208-6214.	1.3	2
1648	Modeling analysis of the growth of a cubic crystal in a finite space. Physical Chemistry Chemical Physics, 2022, , .	1.3	0
1649	Recent developments of lead-free halide double perovskites: a new superstar in the optoelectronic field. Materials Advances, 2022, 3, 3742-3765.	2.6	43
1650	Surface ligand engineering involving fluorophenethyl ammonium for stable and strong emission CsPbBr ₃ quantum dots and high-performance QLEDs. Journal of Materials Chemistry C, 2022, 10, 5849-5855.	2.7	7
1651	Nanostructure Semiconductor Materials for Device Applications. Materials Horizons, 2022, , 57-86.	0.3	1
1652	Operational Stability Issues and Challenges in Metal Halide Perovskite Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2022, 13, 1962-1971.	2.1	31
1653	Modulation of recombination zone position for white perovskite/organic emitter hybrid light-emitting devices. Applied Physics Letters, 2022, 120, .	1.5	1
1654	Rapid anti-solvent vapor-assisted synthesis of CsPbBr3/Cs4PbBr6 microcrystals with high brightness and stability of green light emission. Journal of Materials Science, 2022, 57, 5374-5383.	1.7	1
1655	Excited-state regulation in eco-friendly ZnSeTe-based quantum dots by cooling engineering. Science China Materials, 2022, 65, 1569-1576.	3.5	8
1656	金纳米粒å⁻¹å'å‰äºŒæžç®jå‰ç"µæ€§èƒ½å'Œç£æ•ˆåº"的影哕 Scientia Sinica: Physica, Mechanica I	Et A stz onor	nica, 2022, ,

1657	High-Performance Blue Quasi-2D Perovskite Light-Emitting Diodes via Balanced Carrier Confinement and Transfer. Nano-Micro Letters, 2022, 14, 66.	14.4	34
------	--	------	----

#	Article	IF	CITATIONS
1658	Complementary Triple-Ligand Engineering Approach to Methylamine Lead Bromide Nanocrystals for High-Performance Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2022, 14, 10508-10516.	4.0	10
1659	Recent Progress in Halide Perovskite Radiation Detectors for Gamma-Ray Spectroscopy. ACS Energy Letters, 2022, 7, 1066-1085.	8.8	47
1660	Efficient CsPbBr ₃ Nanoplatelet-Based Blue Light-Emitting Diodes Enabled by Engineered Surface Ligands. ACS Energy Letters, 2022, 7, 1137-1145.	8.8	52
1661	Improved efficiency of red perovskite quantum dots-based light-emitting diodes by thickness tuning of PEDOT:PSS. Journal of Materials Science: Materials in Electronics, 2022, 33, 7349-7356.	1.1	1
1662	Substantial Improvement of Operating Stability by Strengthening Metalâ€Halogen Bonds in Halide Perovskites. Advanced Functional Materials, 2022, 32, .	7.8	16
1663	Passivation Layer of Potassium Iodide Yielding High Efficiency and Stable Deep Red Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2022, 14, 16404-16412.	4.0	17
1664	Cesium Lead Halide Perovskite Nanocrystals Assembled in Metalâ€Organic Frameworks for Stable Blue Light Emitting Diodes. Advanced Science, 2022, 9, e2105850.	5.6	23
1665	Mechanism of Photoinduced Phase Segregation in Mixed-Halide Perovskite Microplatelets and Its Application in Micropatterning. ACS Applied Materials & Interfaces, 2022, 14, 12412-12422.	4.0	13
1666	Efficient Radiative Enhancement in Perovskite Lightâ€Emitting Devices through Involving a Novel Sandwich Localized Surface Plasmon Structure. Small Methods, 2022, 6, e2200163.	4.6	9
1667	Biuret Induced Tinâ€Anchoring and Crystallizationâ€Regulating for Efficient Leadâ€Free Tin Halide Perovskite Lightâ€Emitting Diodes. Small, 2022, 18, e2200036.	5.2	24
1668	Efficient all-inorganic perovskite light-emitting diodes with a multifunctional potassium bromide doped hole transport layer. Optical Materials Express, 2022, 12, 1708.	1.6	2
1669	A Low Powerâ€consumption and Transient Nonvolatile Memory Based on Highly Dense Allâ€Inorganic Perovskite Films. Advanced Electronic Materials, 0, , 2101412.	2.6	5
1670	Dopant and Compositional Modulation Triggered Broadband and Tunable Near-Infrared Emission in Cs ₂ Ag _{1–<i>x</i>} Na _{<i>x</i>} InCl ₆ :Cr ³⁺ Nanocrystals. Chemistry of Materials, 2022, 34, 3006-3012.	3.2	64
1671	Pattern-Selective Molecular Epitaxial Growth of Single-Crystalline Perovskite Arrays toward Ultrasensitive and Ultrafast Photodetector. Nano Letters, 2022, 22, 2948-2955.	4.5	8
1672	Application of Halide Perovskite Nanocrystals in Solarâ€Driven Photo(electro)Catalysis. Solar Rrl, 2022, 6, .	3.1	5
1673	High-Performance Blue Perovskite Light-Emitting Diodes Enabled by a Sacrificial Agent Maleic Anhydride. Journal of Physical Chemistry C, O, , .	1.5	6
1674	Temperature effect on charge-state transition levels of defects in semiconductors. Physical Review B, 2022, 105, .	1.1	7
1675	Allâ€inâ€One Process for Color Tuning and Patterning of Perovskite Quantum Dot Lightâ€Emitting Diodes. Advanced Science, 2022, 9, e2200073.	5.6	14

#	Article	IF	CITATIONS
1676	Multifunctional <i>Ï€</i> â€Conjugated Additives for Halide Perovskite. Advanced Science, 2022, 9, e2105307.	5.6	33
1677	In Situ Growth Mechanism for Highâ€Quality Hybrid Perovskite Singleâ€Crystal Thin Films with High Area to Thickness Ratio: Looking for the Sweet Spot. Advanced Science, 2022, 9, e2104788.	5.6	16
1678	Nanoscale Photoexcited Carrier Dynamics in Perovskites. Journal of Physical Chemistry Letters, 2022, 13, 2388-2395.	2.1	3
1679	Magnetic Transitions and Energy Transfer Processes in Sb-Based Zero-Dimensional Metal Halide Nanocrystals Doped with Manganese. ACS Energy Letters, 2022, 7, 1566-1573.	8.8	21
1680	Dualâ€Phase Regulation for Highâ€Efficiency Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, .	7.8	33
1681	Conductive Phosphine Oxide Passivator Enables Efficient Perovskite Light-Emitting Diodes. Nano Letters, 2022, 22, 2490-2496.	4.5	61
1682	Methylammonium thiocyanate seeds assisted heterogeneous nucleation for achieving high-performance perovskite solar cells. Applied Surface Science, 2022, 592, 153206.	3.1	8
1683	Synthesis and characterization of amantadinium iodoacetatobismuthate, a hybrid compound with mixed iodide–carboxylate anions. Mendeleev Communications, 2022, 32, 194-197.	0.6	1
1684	Strategies to Enhance Light Emission from Two-Dimensional Perovskite Light-Emitting Diodes: Challenges and Future Opportunities. ACS Applied Electronic Materials, 2022, 4, 1469-1484.	2.0	8
1685	High-Brightness Perovskite Microcrystalline Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2022, 13, 2963-2968.	2.1	5
1686	In Situ Growth of Ultrapure Greenâ€Emitting FAPbBr ₃ â€PVDF Films via a Synergetic Dualâ€Additive Strategy for Wide Color Gamut Backlit Display. Advanced Materials Technologies, 2022, 7, .	3.0	3
1687	Large-scale planar and spherical light-emitting diodes based on arrays of perovskite quantum wires. Nature Photonics, 2022, 16, 284-290.	15.6	56
1688	Luminescent Thin Films Enabled by CsPbX ₃ (X=Cl, Br, I) Precursor Solution. Chemistry - A European Journal, 2022, 28, .	1.7	2
1689	Improved Charge Balance in Green Perovskite Light-Emitting Diodes with Atomic-Layer-Deposited Al ₂ O ₃ . ACS Applied Materials & Interfaces, 2022, 14, 34247-34252.	4.0	10
1690	Screen printing strategy for fabricating flexible crystallized perovskite nanocomposite patterns with high photoluminescence. Flexible and Printed Electronics, 2022, 7, 015010.	1.5	1
1691	Temperature-Dependent Optical Properties of Perovskite Quantum Dots with Mixed-A-Cations. Micromachines, 2022, 13, 457.	1.4	5
1692	Largeâ€Area and Efficient Skyâ€Blue Perovskite Lightâ€Emitting Diodes via Blade oating. Advanced Materials, 2022, 34, e2108939.	11.1	20
1693	Growth of Hybrid Perovskite Films via Singleâ€Source Perovskite Nanoparticle Evaporation. Chemistry - an Asian Journal, 2022, 17, .	1.7	3

#	Article	IF	Citations
1694	Hierarchically Ordered Perovskites with High Photoâ€Electronic and Environmental Stability via Nanoimprinting Guided Block Copolymer Selfâ€Assembly. Advanced Materials Interfaces, 2022, 9, .	1.9	11
1695	Utilizing Nonpolar Organic Solvents for the Deposition of Metal-Halide Perovskite Films and the Realization of Organic Semiconductor/Perovskite Composite Photovoltaics. ACS Energy Letters, 2022, 7, 1246-1254.	8.8	12
1696	Highâ€Performance Humidity Sensor Based on CsPdBr ₃ Nanocrystals for Noncontact Sensing of Hydromechanical Characteristics of Unsaturated Soil. Physica Status Solidi - Rapid Research Letters, 2022, 16, .	1.2	20
1697	Vaporâ€Phase Deposition of Highly Luminescent Embedded Perovskite Nanocrystals. Advanced Optical Materials, 0, , 2102809.	3.6	1
1698	Recent Progress in Understanding the Structural, Optoelectronic, and Photophysical Properties of Lead Based Dion–Jacobson Perovskites as Well as Their Application in Solar Cells. , 2022, 4, 891-917.		9
1699	Timeâ€Resolved Orientation and Phase Analysis of Lead Halide Perovskite Film Annealing Probed by In Situ GIWAXS. Advanced Optical Materials, 2022, 10, .	3.6	22
1700	Approaching high-performance light-emitting devices upon perovskite quantum dots: Advances and prospects. Nano Today, 2022, 43, 101449.	6.2	53
1701	High-performance hysteresis-free perovskite transistors through anion engineering. Nature Communications, 2022, 13, 1741.	5.8	51
1702	Thick-Layer Lead Iodide Perovskites with Bifunctional Organic Spacers Allylammonium and Iodopropylammonium Exhibiting Trap-State Emission. Journal of the American Chemical Society, 2022, 144, 6390-6409.	6.6	13
1703	Green anti-solvent processed white light emitting perovskite phosphors in one step. Physica B: Condensed Matter, 2022, 633, 413788.	1.3	3
1704	Highly luminescent lead bromine perovskite via fast and eco-friendly water-assisted mechanochemical method. Optical Materials, 2022, 127, 112289.	1.7	2
1705	Enhanced electroluminescence of cesium lead bromide light-emitting diode driven by ion migration via surface passivation with organic halide surfactants. Surfaces and Interfaces, 2022, 30, 101853.	1.5	4
1706	Recent progress of perovskite devices fabricated using thermal evaporation method: Perspective and outlook. Materials Today Advances, 2022, 14, 100232.	2.5	28
1707	Perovskite CsPbBr3 decorating PbS nanocrystals for efficient near-infrared light-emitting diodes: A first-principles study. Computational Materials Science, 2022, 209, 111361.	1.4	6
1708	Interface engineering of organic-inorganic heterojunctions with enhanced charge transfer. Applied Catalysis B: Environmental, 2022, 309, 121261.	10.8	21
1709	New Copper Bromide Organic-Inorganic Hybrid Molecular Compounds with Anionic Inorganic Core and Cationic Organic Ligands. Crystals, 2022, 12, 19.	1.0	1
1710	Efficient Inorganic Perovskite Light-Emitting Diodes by Inducing Grain Arrangement via a Multifunctional Interface. ACS Applied Materials & Interfaces, 2021, 13, 60571-60580.	4.0	11
1711	Methylammonium Lead Tri-Iodide Perovskite Solar Cells with Varying Equimolar Concentrations of Perovskite Precursors. Applied Sciences (Switzerland), 2021, 11, 11689.	1.3	6

ARTICLE IF CITATIONS Fabrication of Largeâ€Area Uniform Nanometerâ€Thick Functional Layers and Their Stacks for Flexible 1712 4.6 3 Quantum Dot Lightâ€Emitting Diodes. Small Methods, 2022, 6, e2101030. Calcium-Assisted <i>In Situ</i> Formation of Perovskite Nanocrystals for Luminescent Green and Blue 1713 2.4 Emitters. ACS Applied Nano Materials, 2021, 4, 14303-14311. All in One: A Versatile n-Perovskite/p-Spiro-MeOTAD p–n Heterojunction Diode as a Photovoltaic Cell, Photodetector, and Memristive Photosynapse. Journal of Physical Chemistry Letters, 2021, 12, 1714 2.1 17 12098-12106. Characterize and Retard the Impact of the Biasâ€Induced Mobile Ions in CH₃NH₃PbBr₃ Perovskite Lightâ€Emitting Diodes. Advanced Optical 1715 Materials, 2022, 10, . Hybrid Halide Perovskiteâ€Based Electrochemical Supercapacitors: Recent Progress and Perspective. 1716 1.8 17 Energy Technology, 2022, 10, . Highly Emissive Blue Quantum Dots with Superior Thermal Stability via In Situ Surface Reconstruction of Mixed CsPbBr₃–Cs₄PbBr₆ Nanocrystals. Advanced Science, 1717 5.6 2022, 9, e2104660. Perspectives of 2D Materials for Optoelectronic Integration. Advanced Functional Materials, 2022, 32, 1718 7.8 62 Enhanced Light Emission through Symmetry Engineering of Halide Perovskites. Journal of the 1719 6.6 American Chemical Society, 2022, 144, 297-305. Tuning the Emission Wavelength of Lead Halide Perovskite NCs via Size and Shape Control. ACS Omega, 1720 1.6 13 2022, 7, 565-577. Inorganicâ€Cation Pseudohalide 2D Cs₂Pb(SCN)₂Br₂Perovskite 11.1 Single Crystal. Advanced Materials, 2022, 34, e2104782. Thermal Evaporation for Halide Perovskite Optoelectronics: Fundamentals, Progress, and Outlook. 1722 3.6 42 Advanced Optical Materials, 2022, 10, . Coordinated Anionic Inorganic Moduleâ€"An Efficient Approach Towards Highly Efficient Blueâ€Emitting Copper Halide Ionic Hybrid Structures. Angewandte Chemie - International Edition, 2022, 61, . Temperature-Dependent Photoluminescence of Manganese Halide with Tetrahedron Structure in 1724 1.9 0 Anti-Perovskites. Nanomaterials, 2021, 11, 3310. Coordinated Anionic Inorganic Module—An Efficient Approach Towards Highly Efficient Blueâ€Emitting Copper Halide Ionic Hybrid Structures. Angewandte Chemie, 2022, 134, . 1.6 Decreased surface defects and non-radiative recombination <i>via</i> the passivation of the halide 1726 perovskite film by 2-thiophenecarboxylic acid in triple-cation perovskite solar cells. Physical 1.3 13 Chemistry Chemical Physics, 2022, 24, 10384-10393. Perovskites: weaving a network of knowledge beyond photovoltaics. Journal of Materials Chemistry A, 2022, 10, 19046-19066. A Multifunctional Ionic Liquid Additive Enabling Stable and Efficient Perovskite Lightâ€Emitting Diodes. 1728 5.224 Small, 2022, 18, e2200498. A brief review on metal halide perovskite photocatalysts: History, applications and prospects. Journal 1729 2.8 of Alloys and Compounds, 2022, 911, 165062.

	CITATION RE	PORT	
#	Article	IF	CITATIONS
1730	Top-Emitting Microcavity Light-Emitting Diodes Based on All-Thermally Evaporated Lead-Free Copper Halide Self-Trapped-Exciton Emitters. Journal of Physical Chemistry Letters, 2022, 13, 3431-3437.	2.1	9
1731	Efficient NIR Perovskite Light-Emitting Diodes Enabled by Incorporating an Anthracene Derivative as a Bifunctional Electron Transport Layer. ACS Applied Electronic Materials, 2022, 4, 1669-1677.	2.0	3
1732	Fast Lead-Free Humidity Sensor Based on Hybrid Halide Perovskite. Crystals, 2022, 12, 547.	1.0	3
1733	Tuning Exciton Recombination Pathways in Inorganic Bismuth-Based Perovskite for Broadband Emission. Energy Material Advances, 2022, 2022, .	4.7	22
1734	Toward Ecoâ€Friendly Leadâ€Free Lowâ€Dimensional Perovskites. Small Structures, 2022, 3, .	6.9	9
1735	Crystal orientation and insulating ligand of quasi-two dimensional perovskite optimized through silver ion doping for realizing efficient light emitting diodes. Chemical Engineering Journal, 2022, 443, 136496.	6.6	12
1736	Tailoring Photoluminescence by Strain-Engineering in Layered Perovskite Flakes. Nano Letters, 2022, 22, 4153-4160.	4.5	8
1737	Developments and challenges ahead in blue perovskite light-emitting devices. Journal of Energy Chemistry, 2022, 71, 418-433.	7.1	16
1738	Perovskite synthesizability using graph neural networks. Npj Computational Materials, 2022, 8, .	3.5	16
1739	Enhancing the Performance of Perovskite Light-Emitting Diodes by Humidity Treatment. ACS Applied Materials & Interfaces, 2022, 14, 19774-19784.	4.0	6
1740	Advanced Strategies to Tailor the Nucleation and Crystal Growth in Hybrid Halide Perovskite Thin Films. Frontiers in Chemistry, 2022, 10, 842924.	1.8	8
1741	Anisotropic nanocrystal superlattices overcoming intrinsic light outcoupling efficiency limit in perovskite quantum dot light-emitting diodes. Nature Communications, 2022, 13, 2106.	5.8	34
1742	Improving the voltage tolerance of perovskite light-emitting diodes via a charge-generation layer. Optics Letters, 2022, 47, 2462.	1.7	2
1745	Allâ€Inorganic Manganeseâ€Based CsMnCl ₃ Nanocrystals for Xâ€Ray Imaging. Advanced Science, 2022, 9, e2201354.	5.6	37
1746	Surface versus Bulk Currents and Ionic Space-Charge Effects in CsPbBr ₃ Single Crystals. Journal of Physical Chemistry Letters, 2022, 13, 3824-3830.	2.1	11
1747	Room-Temperature, Highly Pure Single-Photon Sources from All-Inorganic Lead Halide Perovskite Quantum Dots. Nano Letters, 2022, 22, 3751-3760.	4.5	34
1748	Bright and stable quaternary ammonium antimony halides for solid-state lighting. Journal of Materials Chemistry C, 2022, 10, 8938-8946.	2.7	5
1749	Inhibition of buried cavities and defects in metal halide perovskite photodetectors <i>via</i> a two-step spin-coating method. Journal of Materials Chemistry C, 2022, 10, 7886-7895.	2.7	13

#	Article	IF	CITATIONS
1750	Highly Efficient Quasiâ€2D Green Perovskite Lightâ€Emitting Diodes with Bifunctional Amino Acid. Advanced Optical Materials, 2022, 10, .	3.6	14
1751	Perovskite light-emitting diodes. Nature Electronics, 2022, 5, 203-216.	13.1	268
1752	Discovery of Pb-free hybrid organic–inorganic 2D perovskites using a stepwise optimization strategy. Npj Computational Materials, 2022, 8, .	3.5	9
1753	Insight into Luminescence Enhancement of Alkaline-Earth Metal Ion-Doped CsPbBr ₃ Perovskite Nanocrystals. Journal of Physical Chemistry C, 2022, 126, 7588-7595.	1.5	7
1754	Versatile Biogenic Electrolytes for Highly Performing and Selfâ€Stable Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2022, 32, .	7.8	8
1755	Marked Efficiency Improvement of FAPb0.7Sn0.3Br3 Perovskite Light-Emitting Diodes by Optimization of the Light-Emitting Layer and Hole-Transport Layer. Nanomaterials, 2022, 12, 1454.	1.9	4
1756	Unraveling the irreversible transformation by nucleophilic substitution: A hint for fully transparent perovskite. EcoMat, 2022, 4, .	6.8	9
1757	Regulation of energy band and luminescence properties in blue quasi-2D lead bromide perovskite via lattice strain. Applied Physics Letters, 2022, 120, 172101.	1.5	1
1758	Doubly Stabilized Perovskite Nanocrystal Luminescence Downconverters. Advanced Optical Materials, 2022, 10, .	3.6	1
1759	Realizing single-mode lasing in all-inorganic CsPbBr3 perovskite microwires using intrinsic self-absorption. Applied Physics Letters, 2022, 120, .	1.5	2
1760	Advances in Photoelectric Detection Units for Imaging Based on Perovskite Materials. Laser and Photonics Reviews, 2022, 16, .	4.4	9
1761	lsoreticular Postsynthetic Modification of Robust Organocopper(I) Halide Hybrids for Enhanced Broad-Band Emission and Turn-On NH ₃ Sensing. Chemistry of Materials, 2022, 34, 4403-4413.	3.2	6
1762	A First-Principles Study on the Structural and Carrier Transport Properties of Inorganic Perovskite CsPbI3 under Pressure. Crystals, 2022, 12, 648.	1.0	7
1763	Electrohydrodynamic Jet-Printed MAPbBr3 Perovskite/Polyacrylonitrile Nanostructures for Water-Stable, Flexible, and Transparent Displays. ACS Applied Nano Materials, 2022, 5, 6726-6735.	2.4	6
1764	Time-resolved vibrational-pump visible-probe spectroscopy for thermal conductivity measurement of metal-halide perovskites. Review of Scientific Instruments, 2022, 93, .	0.6	5
1765	Recent progress in quasi-two-dimensional and quantum dot perovskite light-emitting diodes harnessing the diverse effects of ligands: A review. Nano Research, 2022, 15, 6449-6465.	5.8	12
1766	Enantiomorphic Single Crystals of Linear Lead(II) Bromide Perovskitoids with White Circularly Polarized Emission. Angewandte Chemie, 0, , .	1.6	3
1767	High-Throughput Evaluation of Emission and Structure in Reduced-Dimensional Perovskites. ACS Central Science, 2022, 8, 571-580.	5.3	6

#	Article	IF	CITATIONS
1768	Mixed Halide Ordering as a Tool for the Stabilization of Ruddlesden–Popper Structures. Chemistry of Materials, 2022, 34, 4286-4297.	3.2	7
1769	Waterâ€Resistant Leadâ€Free Perovskitoid Single Crystal for Efficient Xâ€Ray Detection. Advanced Functional Materials, 2022, 32, .	7.8	18
1770	Organic Cation Diffusion-Induced Heterogeneous Viscoelasticity in Organic–Inorganic Hybrid Perovskite Polycrystalline Films. ACS Applied Materials & Interfaces, 2022, 14, 22582-22592.	4.0	1
1771	Effect of temperature on the formation of highly crystalline lead-free perovskite Cs3Sb2Br9 hexagonal microdisks. Journal of Materials Science: Materials in Electronics, 2022, 33, 13625-13633.	1.1	5
1772	Highly processable and stable PMMA-grafted CsPbBr3–SiO2 nanoparticles for down-conversion photoluminescence. Composites Part B: Engineering, 2022, 239, 109956.	5.9	3
1773	Optimization of the carrier recombination and transmission properties in perovskite LEDs by doping poly (4-vinylpyridine) and graphene quantum dots made of chitin. Chemical Engineering Journal, 2022, 444, 136518.	6.6	8
1774	CsPbBr3 nanocrystals embedded glass enables highly stable and efficient light-emitting diodes. Chemical Engineering Journal, 2022, 445, 136867.	6.6	24
1775	Revealing the vertical structure of in-situ fabricated perovskite nanocrystals films toward efficient pure red light-emitting diodes. Fundamental Research, 2022, , .	1.6	4
1776	Synergistic effect of multidentate ligands on CsPbI3 perovskite nanocrystals surface for high efficiency deep red light-emitting diode. Organic Electronics, 2022, 107, 106550.	1.4	8
1777	Enantiomorphic Single Crystals of Linear Lead(II) Bromide Perovskitoids with White Circularly Polarized Emission. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22
1778	Microâ€Nano Structure Functionalized Perovskite Optoelectronics: From Structure Functionalities to Device Applications. Advanced Functional Materials, 2022, 32, .	7.8	25
1779	Constraint Mechanism of Power Device Design Based on Perovskite Quantum Dots Pumped by an Electron Beam. Sensors, 2022, 22, 3721.	2.1	0
1780	Efficient Perovskite Lightâ€Emitting Diodes with a Siloxaneâ€Blended Organic Hole Transport Layer. Advanced Photonics Research, 2022, 3, .	1.7	1
1781	Charge-carrier dynamics and regulation strategies in perovskite light-emitting diodes: From materials to devices. Applied Physics Reviews, 2022, 9, .	5.5	20
1782	Research Trend on Information Display Technology. Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers, 2019, 73, 318-329.	0.0	0
1783	Inkjet printed patterned bank structure with encapsulated perovskite colour filters for modern display. Nanoscale, 2022, 14, 8060-8068.	2.8	9
1784	Mixed-Dimensional MXene-Based Composite Electrodes Enable Mechanically Stable and Efficient Flexible Perovskite Light-Emitting Diodes. Nano Letters, 2022, 22, 4246-4252.	4.5	24
1785	Exploiting the full advantages of colloidal perovskite nanocrystals for large-area efficient light-emitting diodes. Nature Nanotechnology, 2022, 17, 590-597.	15.6	81

#	Article	IF	Citations
1786	Interfacial electronic properties of metal/CsSnBr3 heterojunctions. Nanotechnology, 2022, , .	1.3	1
1787	A Perspective on Perovskite Solar Cells: Emergence, Progress, and Commercialization. Frontiers in Chemistry, 2022, 10, 802890.	1.8	14
1788	Color-tunable persistent luminescence in 1D zinc–organic halide microcrystals for single-component white light and temperature-gating optical waveguides. Chemical Science, 2022, 13, 7429-7436.	3.7	51
1789	Achieving Up-Conversion Amplified Spontaneous Emission through Spin Alignment between Coherent Light-Emitting Excitons in Perovskite Microstructures. Photonics, 2022, 9, 353.	0.9	0
1790	High Radiance of Perovskite Lightâ€Emitting Diodes Enabled by Perovskite Heterojunctions. Advanced Functional Materials, 2022, 32, .	7.8	11
1791	Reconfiguring perovskite interface via R4NBr addition reaction toward efficient and stable FAPbI3-based solar cells. Science China Chemistry, 2022, 65, 1185-1195.	4.2	5
1792	Hybrid Nanocomposites of Allâ€Inorganic Halide Perovskites with Polymers for Highâ€Performance Fieldâ€Effectâ€Transistorâ€Based Photodetectors: An Experimental and Simulation Study. Advanced Materials Interfaces, 2022, 9, .	1.9	19
1793	Flexible Self-Powered Cspbi3/Rgo/P(Vdf-Trfe) Pressure Sensor and Photodetector Based on Piezo-Phototronic Effect with Long-Term Stability. SSRN Electronic Journal, 0, , .	0.4	0
1794	Modulating Phase Distribution and Passivating Surface Defects of Quasi-2d Perovskites Via Potassium Tetrafluoroborate for Light-Emitting Diodes. SSRN Electronic Journal, 0, , .	0.4	0
1795	(CH3)2C=NHCH3PbBr3/CH3NH3PbBr3 Core-Shell Heterostruture Fabricated by In-Situ A-Site Reaction for Fast Response 1D Perovskite Photodetectors. Physical Chemistry Chemical Physics, 0, , .	1.3	1
1796	Microwave assisted synthesis, photoluminescence and X-ray/gamma ray absoprtion properties of red CaZrO3:Eu3+ perovskite. Journal of Solid State Chemistry, 2022, , 123245.	1.4	5
1797	Tunable Green Light-Emitting CsPbBr ₃ Based Perovskite-Nanocrystals-in-Glass Flexible Film Enables Production of Stable Backlight Display. Journal of Physical Chemistry Letters, 2022, 13, 4701-4709.	2.1	13
1798	Additive and interfacial control for efficient perovskite light-emitting diodes with reduced trap densities. Journal of Semiconductors, 2022, 43, 050502.	2.0	5
1799	Refined GFN1-xTB Parameters for Engineering Phase-Stable CsPbX ₃ Perovskites. Journal of Physical Chemistry C, 2022, 126, 9587-9596.	1.5	2
1800	Alkylamine-Doping Poly(3,4-ethylene dioxythiophene):Poly(styrene sulfonic acid)-Enhanced Operational Stability of Perovskite Light-Emitting Diodes: Chain Length Effect. ACS Applied Electronic Materials, 2022, 4, 2993-2999.	2.0	2
1801	Phase-change perovskite metasurfaces for dynamic color tuning. Nanophotonics, 2022, 11, 3961-3968.	2.9	7
1802	Highâ€purity synthesis of allâ€inorganic <scp> CsPbBr ₃ </scp> perovskite powder assisted by solubilizing organic ligand and its application to perovskite solar cells. International Journal of Energy Research, 0, , .	2.2	3
1803	Selfâ€assembly Behavior of Metal Halide Perovskite Nanocrystals. Chinese Journal of Chemistry, 2022, 40, 2239-2248.	2.6	6

#	Article	IF	CITATIONS
1804	Recent Progress in AC-Driven Organic and Perovskite Electroluminescent Devices. ACS Photonics, 2022, 9, 1852-1874.	3.2	9
1805	Properties, performance and multidimensional applications of stable lead-free Cs2AgBiBr6 double perovskite. Materials Today Physics, 2022, 26, 100731.	2.9	19
1806	Spray-coated nanocrystalline CsPbBr3 perovskite thin-films for large area and efficient rigid and flexible light emitting diodes. Journal of Alloys and Compounds, 2022, 918, 165560.	2.8	9
1808	Bandgap and dimension regulation of CsPbI ₃ perovskite through a bromine-terminated ligand for efficient pure red electroluminescence. Journal of Materials Chemistry C, 2022, 10, 9707-9713.	2.7	3
1809	Halide perovskite single crystals: growth, characterization, and stability for optoelectronic applications. Nanoscale, 2022, 14, 9248-9277.	2.8	28
1810	Colloidal FAPbBr ₃ perovskite nanocrystals for light emission: what's going on?. Journal of Materials Chemistry C, 2022, 10, 13437-13461.	2.7	10
1811	Controlling the device functionality by solvent engineering, solar cell <i>versus</i> light emitting diode. Journal of Materials Chemistry C, 2022, 10, 10037-10046.	2.7	2
1812	A polymer/small-molecule binary-blend hole transport layer for enhancing charge balance in blue perovskite light emitting diodes. Journal of Materials Chemistry A, 2022, 10, 13928-13935.	5.2	15
1813	Wavelength-Tuneable Near-Infrared Luminescence in Mixed Tin–Lead Halide Perovskites. Frontiers in Chemistry, 0, 10, .	1.8	3
1814	Perovskite Phase Analysis by SEM Facilitating Efficient Quasiâ€2D Perovskite Lightâ€Emitting Device Designs. Advanced Optical Materials, 2022, 10, .	3.6	6
1815	Engineering van der Waals Materials for Advanced Metaphotonics. Chemical Reviews, 2022, 122, 15204-15355.	23.0	33
1816	Capacitance–voltage characteristics of perovskite light-emitting diodes: Modeling and implementing on the analysis of carrier behaviors. Applied Physics Letters, 2022, 120, .	1.5	16
1817	Ultraâ€5ensitive, Selective and Repeatable Fluorescence Sensor for Methanol Based on a Highly Emissive OD Hybrid Leadâ€Free Perovskite. Angewandte Chemie, 2022, 134, .	1.6	8
1818	Carbon Nitride with Rationally Designed π onjugated Structure for Bright Blueâ€Violet Lightâ€Emitting Diodes. Small, 2022, 18, .	5.2	3
1819	Polymerâ€Assisted Crystal Growth Regulation and Defect Passivation for Efficient Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, .	7.8	30
1820	Enhanced Flexibility and Stability of Emissive Layer Enable Highâ€Performance Flexible Lightâ€Emitting Diodes by Crossâ€Linking of Biomass Material. Advanced Functional Materials, 2022, 32, .	7.8	19
1821	Fabrication of Highly Efficient Perovskite Nanocrystal Light-Emitting Diodes via Inkjet Printing. Micromachines, 2022, 13, 983.	1.4	5
1823	A Heatâ€Liquefiable Solid Precursor for Ambient Growth of Perovskites with High Tunability, Performance and Stability. Small Methods, 2022, 6, .	4.6	4

-				
C 17		ON	REPORT	г
	IAL		REPOR	

#	Article	IF	CITATIONS
1824	Post-synthesis Treatment with Lead Bromide for Obtaining Near-Unity Photoluminescence Quantum Yield and Ultra-stable Amine-Free CsPbBr ₃ Perovskite Nanocrystals. Journal of Physical Chemistry C, 2022, 126, 10742-10751.	1.5	16
1825	Metal Halide Perovskites for Redâ€Emission Lightâ€Emitting Diodes. Small Structures, 2022, 3, .	6.9	15
1826	Electrically Pumped Polarized Exciton-Polaritons in a Halide Perovskite Microcavity. Nano Letters, 2022, 22, 5175-5181.	4.5	13
1827	High-Efficiency Sky-Blue Perovskite Light-Emitting Diodes via the Trade-Off between the Electron–Phonon Coupling Loss and Defect Passivation. ACS Photonics, 2022, 9, 2422-2430.	3.2	12
1828	Humidity-Controlled Tunable Emission in a Dye-Incorporated Metal–Hydrogel–Metal Cavity. ACS Photonics, 2022, 9, 2287-2294.	3.2	4
1829	Pb-free halide perovskites for solar cells, light-emitting diodes, and photocatalysts. APL Materials, 2022, 10, .	2.2	11
1830	Ultra‣ensitive, Selective and Repeatable Fluorescence Sensor for Methanol Based on a Highly Emissive 0D Hybrid Leadâ€Free Perovskite. Angewandte Chemie - International Edition, 2022, 61, .	7.2	48
1831	Emerging Intelligent Manufacturing of Metal Halide Perovskites. Advanced Materials Technologies, 2023, 8, .	3.0	3
1832	Slowing Down for Growth Mechanism and Speeding Up for Performance Optimization Based on Single Ligand Passivated CsPbBr ₃ Nanoplatelets. Advanced Optical Materials, 2022, 10, .	3.6	7
1833	Trade-off between the Performance and Stability of Perovskite Light-Emitting Diodes with Excess Halides. Journal of Physical Chemistry Letters, 2022, 13, 5179-5185.	2.1	2
1834	GIWAXS Analysis on Preferred Orientation in Metal Halide Perovskite Films Via Alkylamines. Electronic Materials Letters, 2022, 18, 456-464.	1.0	3
1835	Formamidinium lead triiodide perovskites with improved structural stabilities and photovoltaic properties obtained by ultratrace dimethylamine substitution. NPG Asia Materials, 2022, 14, .	3.8	13
1837	Raman spectroscopy in layered hybrid organic-inorganic metal halide perovskites. JPhys Materials, 2022, 5, 034004.	1.8	7
1838	Gain-switching in CsPbBr3 microwire lasers. Communications Physics, 2022, 5, .	2.0	5
1839	Basic Amino Acids Modulated Neutral-pH PEDOT:PSS for Stable Blue Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2022, 14, 28133-28144.	4.0	18
1840	Accurately Quantifying Stress during Metal Halide Perovskite Thin Film Formation. ACS Applied Materials & Interfaces, 2022, 14, 27791-27798.	4.0	3
1841	CsPb(Br/Cl)3 Perovskite Nanocrystals with Bright Blue Emission Synergistically Modified by Calcium Halide and Ammonium Ion. Nanomaterials, 2022, 12, 2026.	1.9	5
1842	Highly sensitive photodetector of Zn/Bi doped MAPbBr3 single crystals formed homojunction. Materials Science in Semiconductor Processing, 2022, 149, 106824.	1.9	4

#	Article	lF	Citations
1843	Amino-acid-directed formation of quasi-zero-dimensional perovskites for high-purity blue and red luminescence. Journal of Materials Chemistry C, 2022, 10, 10464-10472.	2.7	2
1844	Photoelectrochemical performance of ligand-free CsPb ₂ Br ₅ perovskites. Inorganic Chemistry Frontiers, 2022, 9, 4548-4553.	3.0	1
1845	Absorption Modulation, Enhancement, and Narrowing Using Sub-Wavelength Gratings. , 2022, , .		0
1846	Stable and Bright Electroluminescent Devices utilizing Emissive 0D Perovskite Nanocrystals Incorporated in a 3D CsPbBr ₃ Matrix. Advanced Materials, 2022, 34, .	11.1	18
1847	Physics of defects in metal halide perovskites. Reports on Progress in Physics, 2022, 85, 096501.	8.1	13
1848	Efficient Multicolor and White Photoluminescence in Erbium- and Holmium-Incorporated Cs ₂ NaInCl ₆ :Sb ³⁺ Double Perovskites. Chemistry of Materials, 2022, 34, 6288-6295.	3.2	49
1849	Third-order optical nonlinearity of CsPb(Br/I) ₃ metal halide perovskites nano-crystals embedded chalcogenide glass. Optics Express, 2022, 30, 28647.	1.7	2
1850	Ultralow-voltage operation of light-emitting diodes. Nature Communications, 2022, 13, .	5.8	23
1851	Amplified Spontaneous Emission from Thermally Evaporated High-Quality Thin Films of CsPb(Br _{1–<i>x</i>} Y _{<i>x</i>}) ₃ (Y = I, Cl) Perovskites. Langmuir, 2022, 38, 8607-8613.	1.6	10
1852	High-Performance Deep Red Colloidal Quantum Well Light-Emitting Diodes Enabled by the Understanding of Charge Dynamics. ACS Nano, 2022, 16, 10840-10851.	7.3	21
1853	Zinc Borosilicate Glass-Stabilized CsPbX ₃ (X = Cl, Br, I) Perovskite Quantum Dots for Photoluminescence Lighting and Display Applications. ACS Applied Nano Materials, 2022, 5, 9503-9513.	2.4	14
1854	Carbazole ontaining Polymerâ€Assisted Trap Passivation and Holeâ€Injection Promotion for Efficient and Stable CsCu ₂ 1 ₃ â€Based Yellow LEDs. Advanced Science, 2022, 9, .	5.6	32
1855	Triangular Microâ€Grating via Femtosecond Laser Direct Writing toward Highâ€Performance Polarizationâ€5ensitive Perovskite Photodetectors. Advanced Optical Materials, 2022, 10, .	3.6	14
1856	Revealing Charge Transfer Dynamics in Methylammonium Lead Bromide Perovskites via Transient Photoluminescence Characterization. ACS Applied Energy Materials, 0, , .	2.5	0
1857	Stability of perovskite materials and devices. Materials Today, 2022, 58, 275-296.	8.3	35
1858	Spectral Narrowing and Enhancement of Directional Emission of Perovskite Light Emitting Diode by Microcavity. Laser and Photonics Reviews, 2022, 16, .	4.4	9
1859	Optical Properties of Perovskiteâ€Organic Multiple Quantum Wells. Advanced Science, 2022, 9, .	5.6	9
1860	Radical Hybrids with Multiple Responses to Thermal Stimuli via Electron Transfer. Advanced Functional Materials, 2022, 32, .	7.8	4

#	Article	IF	CITATIONS
1861	Lecithin Capping Ligands Enable Ultrastable Perovskite-Phase CsPbl ₃ Quantum Dots for Rec. 2020 Bright-Red Light-Emitting Diodes. Journal of the American Chemical Society, 2022, 144, 13302-13310.	6.6	59
1862	Acetamidinium-Methylammonium-Based Layered Hybrid Halide Perovskite [CH3C(NH2)2][CH3NH3]PbI4: Synthesis, Structure, and Optical Properties. Russian Journal of Inorganic Chemistry, 2022, 67, 997-1003.	0.3	5
1863	Optimal Solvents for Interfacial Solution Engineering of Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	6
1864	Deepâ€Blue Lightâ€Emitting Diodes Constructed with Perovskite Quasiâ€2D and Nanocrystal Mixtures. Advanced Optical Materials, 2022, 10, .	3.6	8
1865	Characterization on Lead-Free Hybrid Perovskite [NH3(CH2)5NH3]CuCl4: Thermodynamic Properties and Molecular Dynamics. Molecules, 2022, 27, 4546.	1.7	3
1866	Effect of perovskite composition regulation on its crystallization in SiO2–Al2O3–Li2CO3–AlF3–LiF glass system. Optical Materials, 2022, 131, 112674.	1.7	2
1867	An environment-friendly backlight display material: Dy3+-doped CsPbBr3 perovskite quantum dot glass with super high stability and ultra-wide color gamut. Materials Today Chemistry, 2022, 26, 101020.	1.7	3
1868	Modulating phase distribution and passivating surface defects of quasi-2D perovskites via potassium tetrafluoroborate for light-emitting diodes. Chemical Engineering Journal, 2022, 450, 138021.	6.6	15
1869	Brightness and Lifetime Improved Light-Emitting Diodes from Sr-Doped Quasi-Two-Dimensional Perovskite Layers. Tsinghua Science and Technology, 2023, 28, 131-140.	4.1	3
1870	Combinatorial Synthesis and Screening of Mixed Halide Perovskite Megalibraries. Journal of the American Chemical Society, 2022, 144, 13823-13830.	6.6	8
1871	Efficient and Stable Blue Light Emitting Diodes Based on CsPbBr ₃ Nanoplatelets with Surface Passivation by a Multifunctional Organic Sulfate. Advanced Energy Materials, 2023, 13, .	10.2	13
1872	Solution-processable copper(I) iodide-based inorganic-organic hybrid semiconductors composed of both coordinate and ionic bonds. Journal of Solid State Chemistry, 2022, 314, 123427.	1.4	8
1873	Stable Yellow Light-Emitting Diodes Based on Quasi-Two-Dimensional Perovskites. ACS Applied Materials & Interfaces, 2022, 14, 34918-34925.	4.0	4
1874	Grading patterning perovskite nanocrystal-polymer composite films for robust multilevel information encryption and decryption. Chemical Engineering Journal, 2023, 451, 138240.	6.6	6
1875	Deep Learning for Additive Screening in Perovskite Lightâ€Emitting Diodes. Angewandte Chemie, 0, , .	1.6	0
1876	Deep Learning for Additive Screening in Perovskite Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
1877	Strategies to Improve the Stability of Perovskite Light-Emitting Diodes: Progress and Perspective. Journal of Physical Chemistry Letters, 2022, 13, 6806-6819.	2.1	5
1878	Red Perovskite Lightâ€Emitting Diodes with Efficiency Exceeding 25% Realized by Coâ€Spacer Cations. Advanced Materials, 2022, 34, .	11.1	135

#	Article	IF	CITATIONS
1879	Macroporous perovskite nanocrystal composites for ultrasensitive copper ion detection. Nanoscale, 2022, 14, 11953-11962.	2.8	5
1880	Alignment of Metal Halide Perovskite Nanowires and Their Application in Photodetectors. Korean Journal of Materials Research, 2022, 32, 307-312.	0.1	0
1881	Metal Halide Perovskites toward Electrically Pumped Lasers. Laser and Photonics Reviews, 2022, 16, .	4.4	26
1882	Mass Transfer Printing of Metalâ€Halide Perovskite Films and Nanostructures. Advanced Materials, 2022, 34, .	11.1	10
1883	Revealing the Variation of Photodetectivity in MAPbI ₃ and MAPb(I _{0.88} Br _{0.12}) ₃ Single Crystal Based Photodetectors Under Electrical Poling-Induced Polarization. Journal of Physical Chemistry C, 2022, 126, 13458-13466.	1.5	11
1884	Monodisperse Lead-Free Perovskite Cs ₃ Cu ₂ I ₅ Nanocrystals: Role of the Metal Halide Additive. Chemistry of Materials, 2022, 34, 6921-6932.	3.2	16
1885	Highâ€Efficiency Blue Perovskite Lightâ€Emitting Diodes with Improved Photoluminescence Quantum Yield via Reducing Trapâ€Induced Recombination and Exciton–Exciton Annihilation. Advanced Functional Materials, 2022, 32, .	7.8	16
1886	Low Temperature Photoluminescence Properties of αâ€CsPbI ₃ Nanocrystals with High Quantum Yield. Crystal Research and Technology, 0, , 2100243.	0.6	0
1887	Technological Breakthroughs in Chip Fabrication, Transfer, and Color Conversion for Highâ€Performance Micro‣ED Displays. Advanced Materials, 2023, 35, .	11.1	27
1888	Hybrid modeling of perovskite light-emitting diodes with nanostructured emissive layers. Optics Express, 2022, 30, 33145.	1.7	0
1889	Cesium Lead Iodide Perovskites: Optically Active Crystal Phase Stability to Surface Engineering. Micromachines, 2022, 13, 1318.	1.4	8
1890	Solutionâ€Processing of CsPbCl _{<i>x</i>} Br _{3â~' <i>x</i>} Perovskite Micro/Nanostructure Nearâ€Ultraviolet Photodetectors with High Performance. Advanced Optical Materials, 0, , 2201270.	3.6	4
1891	Confining Light in Porous Perovskite Heterostructures for Light Amplification. Journal of Physical Chemistry C, 2022, 126, 13830-13839.	1.5	0
1892	3D Meniscusâ€Guided Evaporative Assembly for Rapid Templateâ€Free Synthesis of Highly Crystalline Perovskite Nanowire Arrays. Advanced Functional Materials, 2022, 32, .	7.8	5
1893	Spectrally Stable Blue Light-Emitting Diodes Based on All-Inorganic Halide Perovskite Films. Nanomaterials, 2022, 12, 2906.	1.9	5
1894	High-throughput screening of perovskite inspired bismuth halide materials: toward lead-free photovoltaic cells and light-emitting diodes. Nanotechnology, 2022, 33, 485706.	1.3	3
1895	A roadmap for the commercialization of perovskite light emitters. Nature Reviews Materials, 2022, 7, 757-777.	23.3	96
1896	Ultrastable near-infrared perovskite light-emitting diodes. Nature Photonics, 2022, 16, 637-643.	15.6	125

ARTICLE IF CITATIONS Metal Halide Perovskite Nanowires: Synthesis, Integration, Properties, and Applications in 1897 10.2 18 Optoelectronics. Advanced Energy Materials, 2023, 13, . Vaporâ€Assisted In Situ Recrystallization for Efficient Tinâ€Based Perovskite Lightâ€Emitting Diodes. 1898 11.1 Advanced Materials, 2022, 34, . Self-passivated perovskite film by overdoping MABr to enhance the luminescence efficiency of 1899 0.54 MAPbBr3-based light-emitting diodes. Optical Engineering, 2022, 61, . Allâ€Inorganic Perovskite Singleâ€Crystal Photoelectric Anisotropy. Advanced Materials, 2022, 34, . 1900 11.1 Flexible self-powered CsPbI3/rGO/P(VDF-TrFE) pressure sensor and photodetector based on 1901 1.35 piezo-phototronic effect with long Term stability. Physica B: Condensed Matter, 2022, 646, 414264. Quantum dots enhanced stability of in-situ fabricated perovskite nanocrystals based light-emitting diodes: Electrical field distribution effects. Fundamental Research, 2022, , . 1.6 Stability of Perovskite Lightâ€Emitting Diodes: Existing Issues and Mitigation Strategies Related to Both 1903 11.1 65 Material and Device Aspects. Advanced Materials, 2022, 34, . MAPbBr ₃ Firstâ€Order Distributed Feedback Laser with High Stability. Advanced Photonics 1904 1.7 Research, 0, , 2200071. 1905 Inverted Hysteresis in n–i–p and p–i–n Perovskite Solar Cells. Energy Technology, 2022, 10, . 1.8 13 Negative Differential Resistance in the Au-Coated CH₃NH₃PbBr₃ 1.5 Perovskite Photodetectors with Fast Response. Journal of Physical Chemistry C, 2022, 126, 13748-13754. Ligand Coverage and Exciton Delocalization Control Chiral Imprinting in Perovskite Nanoplatelets. 1907 7 1.5 Journal of Physical Chemistry C, 2022, 126, 15986-15995. Improving Photoelectric Conversion with Broadband Perovskite Metasurface. Nano Letters, 2022, 22, 1908 4.5 6655-6663. Crystallization Kinetics in a Glass-Forming Hybrid Metal Halide Perovskite. , 2022, 4, 1840-1847. 1909 10 Rare-earth ion-doped perovskite quantum dots: synthesis and optoelectronic properties. Journal of 1910 1.1 Materials Science: Materials in Electronics, 2022, 33, 19019-19025. All Solutionâ€Processed High Performance Pureâ€Blue Perovskite Quantumâ€Dot Lightâ€Emitting Diodes. 1911 42 7.8 Advanced Functional Materials, 2022, 32, . Strain-induced enhancement of carrier transport and optical absorption in Cs3Bi2Br9 perovskite. Solid State Communications, 2022, 354, 114918. Multicolor carbon dots assembled polyvinyl alcohol with enhanced emission for white light-emitting 1913 1.57 diode. Journal of Luminescence, 2022, 251, 119164. 2D Ruddlesden-Popper perovskite ferroelectric film for high-performance, self-powered and 1914 ultra-stable UV photodetector boosted by ferro-pyro-phototronic effect and surface passivation. 8.2 Nano Energy, 2022, 102, 107714.

#	Article	IF	CITATIONS
1915	Tunable Multicolor Fluorescence of Perovskite-Based Composites for Optical Steganography and Light-Emitting Devices. Research, 2022, 2022, .	2.8	3
1916	How the Microstructure of MAPbI ₃ Powder Impacts Pressure-Induced Compaction and Optoelectronic Thick-Film Properties. Journal of Physical Chemistry C, 2022, 126, 15424-15435.	1.5	2
1917	Structural and optoelectronic properties of Ge- and Si -based inorganic two dimensional Ruddlesden Popper halide perovskites. Materials Today Communications, 2022, 33, 104368.	0.9	1
1918	Triple-functional fluoropolymers for inkjet-printing perovskite light-emitting diodes. Materials Today Chemistry, 2022, 26, 101105.	1.7	3
1919	A comparative study of the mechanical stability, electronic, optical and photocatalytic properties of CsPbX ₃ (X = Cl, Br, I) by DFT calculations for optoelectronic applications. RSC Advances, 2022, 12, 23704-23717.	1.7	12
1920	Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives. , 2022, 1, 220006-220006.		17
1921	Strain effects on halide perovskite solar cells. Chemical Society Reviews, 2022, 51, 7509-7530.	18.7	89
1922	Pressure-induced non-radiative losses in halide perovskite light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 12560-12568.	2.7	6
1923	Advances in Perovskite Solar Cells: Prospects of Lead-Free Perovskite Materials. Advances in Sustainability Science and Technology, 2022, , 105-130.	0.4	0
1924	Copper-incorporation for polytypism and bandgap engineering of MAPbBr ₃ perovskite thin films with enhanced near-Infrared photocurrent-response. Materials Chemistry Frontiers, 2022, 6, 2690-2702.	3.2	4
1925	Acid-mediated phase transition synthesis of stable nanocrystals for high-power LED backlights. Nanoscale, 2022, 14, 13628-13638.	2.8	4
1926	Inkjet printing for scalable and patterned fabrication of halide perovskite-based optoelectronic devices. Journal of Materials Chemistry C, 2022, 10, 14379-14398.	2.7	7
1927	Recent advances of NIR-TADF (<i>λ</i> maxPL/EL > 700 nm) emitters and their applications in OLEDs. Journal of Materials Chemistry C, 2022, 10, 15681-15707.	2.7	14
1928	Stable perovskite solar cells with 25.17% efficiency enabled by improving crystallization and passivating defects synergistically. Energy and Environmental Science, 2022, 15, 4700-4709.	15.6	86
1929	Light-induced crosslinking of perovskite nanocrystals for all-solution-processed electroluminescent devices. Applied Surface Science, 2023, 608, 155016.	3.1	8
1930	Highly luminescent and stable bright-blue CH3NH3Pb(Cl/Br)3 perovskite quantum dots with in-situ formed silica shell. Materials Research Bulletin, 2023, 158, 112049.	2.7	0
1931	Investigation of the Surface Coating, Humidity Degradation, and Recovery of Perovskite Film Phase for Solar-Cell Applications. Nanomaterials, 2022, 12, 3027.	1.9	16
1932	Thickness-Dependent Dark-Bright Exciton Splitting and Phonon Bottleneck in CsPbBr ₃ -Based Nanoplatelets Revealed via Magneto-Optical Spectroscopy. Nano Letters, 2022, 22, 7011-7019.	4.5	11

#	Article	IF	CITATIONS
1933	Giant blue-violet photoluminescence enhancement of Mn:CsPbCl3 nanocrystals by CdCl2 post-synthetic treatment. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	1
1934	Improved extraction efficiency of CsPbBr3 perovskite light-emitting diodes due to anodic aluminum oxide nanopore structure. Scientific Reports, 2022, 12, .	1.6	4
1935	Electrospun Triâ€Cation Perovskite Nanofibers for Infrared Photodetection. Advanced Functional Materials, 2022, 32, .	7.8	4
1936	Tailoring the 2D/3D Phase Segregation for Highly Efficient Si-Based Perovskite Light-Emitting Diodes. , 2022, 4, 2080-2089.		3
1937	Optical Simulations in Perovskite Devices: A Critical Analysis. ACS Photonics, 2022, 9, 3196-3214.	3.2	3
1938	Manipulated Interface for Enhanced Energy Cascade in Quasi-2D Blue Perovskite Light-Emitting Diodes. ACS Energy Letters, 2022, 7, 3345-3352.	8.8	14
1939	In Situ Observing and Tuning the Crystal Orientation of Two-Dimensional Layered Perovskite via the Chlorine Additive. Nano Letters, 2022, 22, 7826-7833.	4.5	11
1940	Metal halide perovskites-based white light-emitting diodes. JPhys Photonics, 2022, 4, 042001.	2.2	4
1941	Highly efficient green emission Cs ₄ PbBr ₆ quantum dots with stable water endurance. Optics Letters, 2022, 47, 5020.	1.7	4
1942	Growth, characterization and photoelectrical properties of orthorhombic and cubic CsPbBr3 single crystals. Journal of Materials Science: Materials in Electronics, 2022, 33, 24895-24905.	1.1	4
1943	Highâ€Efficiency Perovskite–Organic Blend Lightâ€Emitting Diodes Featuring Selfâ€Assembled Monolayers as Holeâ€injecting Interlayers. Advanced Energy Materials, 2023, 13, .	10.2	11
1944	Enabling full-scale grain boundary mitigation in polycrystalline perovskite solids. Science Advances, 2022, 8, .	4.7	34
1945	Vacuumâ€Vaporâ€Deposited 0D/3D Allâ€Inorganic Perovskite Composite Films toward Lowâ€Threshold Amplified Spontaneous Emission and Lasing. Small, 2022, 18, .	5.2	9
1946	Impacts of the Lattice Strain on Perovskite Lightâ€Emitting Diodes. Advanced Energy Materials, 2023, 13, .	10.2	11
1947	Revealing the Low-Temperature Interplay of Electronic, Ionic, and Optical Effects in Perovskite Electroluminescent Devices. , 2023, 1, 193-200.		0
1948	Understanding on the formation mechanisms of quasi-2D Ruddlesden- Popper halide perovskites. Ceramist, 2022, 25, 356-367.	0.0	0
1949	Organic–Inorganic Hybrid Cuprousâ€Based Metal Halides for Warm White Lightâ€Emitting Diodes. Advanced Science, 2022, 9, .	5.6	38
1950	Stabilized Low-Dimensional Species for Deep-Blue Perovskite Light-Emitting Diodes with EQE Approaching 3.4%. Journal of the American Chemical Society, 2022, 144, 18470-18478.	6.6	26

		CITATION REPORT		
#	Article		IF	CITATIONS
1951	Metal halide perovskite nanocrystals for x-ray scintillators. Nano Futures, 2022, 6, 0420)01.	1.0	5
1952	Quasiâ€2D Ruddlesden–Popper Perovskites with Low Trapâ€States for High Perform Selfâ€Powered Ultraviolet Photodetectors. Advanced Optical Materials, 2022, 10, .	ance Flexible	3.6	7
1953	FA+ and Mn2+ codoped CsPbCl3 perovskite quantum dots with super thermal stability International, 2023, 49, 1002-1008.	. Ceramics	2.3	3
1954	Recent Progress of Eco-friendly Lead-free Halide Perovskite Light-Emitting Diodes. Cera 332-355.	mist, 2022, 25,	0.0	0
1955	CsPbBr3 deposited by laser ablation: effects of post-growth aging, oxygen adsorption a on film properties. Applied Physics A: Materials Science and Processing, 2022, 128, .	ind annealing	1.1	3
1956	Overcoming the Outcoupling Limit of Perovskite Lightâ€Emitting Diodes with Artificiall Nanostructures. Advanced Materials, 2022, 34, .	y Formed	11.1	12
1957	Structural Descriptors to Correlate Pb Ion Displacement and Broadband Emission in 2D Perovskites. Journal of the American Chemical Society, 2022, 144, 18595-18606.	Halide	6.6	40
1958	Effect of Structural Morphology and Material Factors on Radiative Properties of Hybrid Perovskite/Nanoporous GaN Hierarchical Composite Structure. , 2023, 1, 261-273.			1
1959	Dielectric effects, crystal field, and shape anisotropy tuning of the exciton fine structur perovskite nanocrystals. Physical Review Materials, 2022, 6, .	e of halide	0.9	2
1960	Electric field induced degradation in sky-blue perovskite light-emitting diodes. Materials 2022, 29, 101139.	s Today Energy,	2.5	3
1961	Tuning Halide Composition Allows Low Dark Current Perovskite Photodetectors With H Detectivity. Advanced Optical Materials, 2022, 10, .	ligh Specific	3.6	9
1962	Metal halide perovskite nanocrystals with enhanced photoluminescence and stability to anti-counterfeiting high-performance flexible fibers. Nano Research, 2023, 16, 3542-35		5.8	10
1963	Considering the effectiveness of a unique combined annealing-based postprocessing moptoelectronic properties of MAPbBr3-based light emitting diodes. Solid State Commu 356, 114965.	ethod on the nications, 2022,	0.9	2
1964	Argon Plasma treated Silver-Nanowire-based Perovskite Light Emitting Diode. Materials Physics, 2022, 292, 126807.	Chemistry and	2.0	3
1965	Inter-band and mid-gap luminescence in CH3NH3PbBr3 single crystal. Journal of Lumine 252, 119382.	escence, 2022,	1.5	0
1966	Green synthesis of highly stable CsPbBr ₃ perovskite nanocrystals using na eutectic solvents as solvents and surface ligands. Nanoscale, 0, , .	tural deep	2.8	5
1967	Microfluidic Synthesis, Doping Strategy, and Optoelectronic Applications of Nanostruc Perovskite Materials. Micromachines, 2022, 13, 1647.	tured Halide	1.4	1
1968	Realizing Efficient Emission in Three-Dimensional CsCdCl ₃ Single Crystals Separated Emitting Centers. Inorganic Chemistry, 2022, 61, 17902-17910.	by Introducing	1.9	4

#	Article	IF	CITATIONS
1970	Effect of 1,3-Disubstituted Urea Derivatives as Additives on the Efficiency and Stability of Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 13617-13626.	2.5	8
1971	Electroluminescence of Halide Perovskite Single Crystals Showing Stochastically Active Multiple Emitting Centers. Journal of Physical Chemistry C, 2022, 126, 17826-17835.	1.5	3
1972	Dual Metalâ€Assisted Defect Engineering towards Highâ€Performance Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	16
1973	Promoting Energy Transfer Between Quasiâ€⊉D Perovskite Layers Toward Highly Efficient Red Lightâ€Emitting Diodes. Small, 2022, 18, .	5.2	12
1974	Polarizationâ€Tunable Perovskite Lightâ€Emitting Metatransistor. Advanced Materials, 2023, 35, .	11.1	10
1975	Light-tunable three-phase coexistence in mixed halide perovskites. Physical Review B, 2022, 106, .	1.1	0
1976	Carbonized polymer dots enhanced stability and flexibility of quasi-2D perovskite photodetector. Light: Science and Applications, 2022, 11, .	7.7	12
1977	Flexible perovskite light-emitting diodes: Progress, challenges and perspective. Science China Materials, 2023, 66, 1-21.	3.5	15
1978	Novel broad spectral response perovskite solar cells: A review of the current status and advanced strategies for breaking the theoretical limit efficiency. Journal of Materials Science and Technology, 2023, 140, 33-57.	5.6	5
1979	Active Manipulation of Luminescent Dynamics via Au NPs sPbBr ₃ Interfacial Engineering. Laser and Photonics Reviews, 2023, 17, .	4.4	6
1980	Atmospheric Allâ€Solutionâ€Processed Perovskite Lightâ€Emitting Diodes. Physica Status Solidi - Rapid Research Letters, 2023, 17, .	1.2	5
1981	Engineering Coinage Metal Nanoclusters for Electroluminescent Light-Emitting Diodes. Nanomaterials, 2022, 12, 3837.	1.9	4
1982	Ultrahigh-resolution full-color perovskite nanocrystal patterning for ultrathin skin-attachable displays. Science Advances, 2022, 8, .	4.7	25
1983	Hole Transport Layer Modification for Highly Efficient Divalent Ionâ€Doped Pure Blue Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2023, 11, .	3.6	3
1984	Exciton Photoluminescence of Strongly Quantum-Confined Formamidinium Lead Bromide (FAPbBr ₃) Quantum Dots. Journal of Physical Chemistry C, 2022, 126, 18366-18373.	1.5	2
1985	Phaseâ€Transition ycleâ€Induced Recrystallization of FAPbI3 Film in An Open Environment Toward Excellent Photodetectors with High Reproducibility. Advanced Science, 2022, 9, .	5.6	6
1986	Direct Observation of Size-Dependent Phase Transition in Methylammonium Lead Bromide Perovskite Microcrystals and Nanocrystals. ACS Omega, 2022, 7, 39970-39974.	1.6	4
1987	Modified Fabrication of Perovskite-Based Composites and Its Exploration in Printable Humidity Sensors. Polymers, 2022, 14, 4354.	2.0	3

#	Article	IF	CITATIONS
1988	Enhanced Performance of Perovskite Light-emitting Diodes via Phenylmethylamine Passivation. Micromachines, 2022, 13, 1857.	1.4	0
1989	Enhanced Optoelectronic Performance Induced by Ion Migration in Lead-Free CsCu ₂ I ₃ Single-Crystal Microrods. ACS Applied Materials & Interfaces, 2022, 14, 49975-49985.	4.0	5
1990	Flexible Thin-Film Speaker Integrated with an Array of Quantum-Dot Light-Emitting Diodes for the Interactive Audiovisual Display of Multi-functional Sensor Signals. ACS Applied Materials & Interfaces, 2022, 14, 48844-48856.	4.0	7
1991	Optical and structural properties of cost-effective nanostructured calcium titanate blue phosphor. Ceramics International, 2023, 49, 6314-6323.	2.3	1
1993	Vacancy-ordered chloride perovskites for reversible release–storage of chlorine. Journal of Materials Science, 2022, 57, 18266-18276.	1.7	3
1994	Efficient emission of quasi-two-dimensional perovskite films cast by inkjet printing for pixel-defined matrix light-emitting diodes. Materials Futures, 2022, 1, 045301.	3.1	5
1995	Bifunctional Molecule Enables High-Quality CsPb(Br/Cl) ₃ Nanocrystals for Efficient and Stable Pure-Blue Perovskite Light-Emitting Diodes. ACS Energy Letters, 2022, 7, 3974-3981.	8.8	18
1996	Sandwich-structured ion exchange membrane/cotton fabric based flexible high-efficient and constant electricity generator. Polymer, 2022, 261, 125411.	1.8	2
1997	Ethylenediamine Addition Improves Performance and Suppresses Phase Instabilities in Mixed-Halide Perovskites. ACS Energy Letters, 2022, 7, 4265-4273.	8.8	24
1998	Spectrally stable and efficient pure-blue light-emitting diodes based on CsPb(Br/Cl)3 nanocrystals with surface passivation by organic sulfonate. Materials Today Physics, 2022, 28, 100899.	2.9	4
1999	Origin of ultralow phonon transport and strong anharmonicity in lead-free halide perovskites. Materials Today Physics, 2022, 28, 100881.	2.9	13
2000	Red shift in optical excitations on layered copper perovskites under pressure: role of the orthorhombic instability. Chemistry - A European Journal, 0, , .	1.7	2
2001	Unraveling the Hole-Transport-Layer-Manipulated Carrier Transfer Dynamics in Perovskite Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2022, 13, 10455-10463.	2.1	2
2002	Recent progress and future prospects on halide perovskite nanocrystals for optoelectronics and beyond. IScience, 2022, 25, 105371.	1.9	10
2003	Elucidating the role of two-dimensional cations in green perovskite light emitting diodes. Organic Electronics, 2022, 111, 106655.	1.4	2
2004	Three-dimensional (3D) and two-dimensional (2D) lead iodide-based perovskite materials: A comparison of material stability and ammonia gas sensitivity. Chemical Physics Impact, 2022, 5, 100116.	1.7	1
2005	Stabilizing dynamic surface of highly luminescent perovskite quantum dots for light-emitting diodes. Chemical Engineering Journal, 2023, 453, 139909.	6.6	15
2006	Transition metal(<scp>ii</scp>) ion doping of CsPb ₂ Br ₅ /CsPbBr ₃ perovskite nanocrystals enables high luminescence efficiency and stability. Journal of Materials Chemistry C, 2022, 10, 18336-18342.	2.7	5

		CITATION REPORT		
#	Article		IF	CITATIONS
2007	Recent advances in perovskites-based optoelectronics. Nanotechnology Reviews, 2022	, 11, 3063-3094.	2.6	2
2008	Flexible and stretchable transparent conductive graphene-based electrodes for emergir electronics. Carbon, 2023, 202, 495-527.	ig wearable	5.4	54
2009	A Spacer Cation Assisted Nucleation and Growth Strategy Enables Efficient and Highâ€ Quasiâ€2D Perovskite LEDs. Advanced Functional Materials, 2023, 33, .	Luminance	7.8	24
2010	Perovskite Solar Cellâ€Gated Organic Electrochemical Transistors for Flexible Photodet Ultrahigh Sensitivity and Fast Response. Advanced Materials, 2023, 35, .	ectors with	11.1	16
2011	Degradation mechanisms of perovskite light-emitting diodes under electrical bias. Nano 2023, 12, 451-476.	ophotonics,	2.9	3
2012	Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature, 2022, 611, 68	88-694.	13.7	307
2013	Conversion of the non-luminous lead-free inorganic halide perovskite variant CsNiCl <su nanocrystals into photoluminescent materials by Cu⁺ and In³⁺</su Materials, 2022, 10, 111110.	ıb>3 p> doping. APL	2.2	1
2014	Synergistic Effect of Cation Composition Engineering of Hybrid Cs _{1â~'<i>x</i>} FA _{<i>x</i>} PbBr ₃ Nanocrystals fo Electronics Application. Advanced Materials, 2023, 35, .	r Selfâ€Healing	11.1	19
2015	Planar defect–free pure red perovskite light-emitting diodes via metastable phase cry Science Advances, 2022, 8, .	stallization.	4.7	23
2016	Direct in situ photolithography of perovskite quantum dots based on photocatalysis of complexes. Nature Communications, 2022, 13, .	lead bromide	5.8	40
2017	Opportunities and challenges in CsPbX3@Glasses@Film with High Quality for LCD by F Optimization towards commercialization. Ceramics International, 2023, 49, 9010-9016	Process 5.	2.3	1
2018	Blue Perovskite Nanocrystal Lightâ€Emitting Diodes: Overcoming RuddlesdenPoppe Nonradiative Recombination via Postâ€Halide Exchange. Small, 0, , 2205011.	r Faultâ€induced	5.2	2
2019	Conformal Imidazolium 1D Perovskite Capping Layer Stabilized 3D Perovskite Films for Modules. Advanced Science, 2022, 9, .	Efficient Solar	5.6	11
2020	Stable Blue-Emitting CsPbBr ₃ Nanoplatelets for Lighting and Display Appli Applied Nano Materials, 2022, 5, 17012-17021.	cations. ACS	2.4	10
2021	Red Perovskite Lightâ $\in\!\!\!E$ mitting Diodes: Recent Advances and Perspectives. Laser and P 2023, 17, .	hotonics Reviews,	4.4	19
2022	Zwitterions Narrow Distribution of Perovskite Quantum Wells for Blue Lightâ€Emitting Efficiency Exceeding 15%. Advanced Materials, 2023, 35, .	Diodes with	11.1	49
2023	Initializing film homogeneity to retard phase segregation for stable perovskite solar cel 2022, 378, 747-754.	ls. Science,	6.0	81
2024	Revealing the Intrinsic Chiroptical Activity in Chiral Metal-Halide Semiconductors. Journ American Chemical Society, 2022, 144, 22242-22250.	al of the	6.6	27

#	Article	IF	CITATIONS
2025	Interfacial engineering of halide perovskites and two-dimensional materials. Chemical Society Reviews, 2023, 52, 212-247.	18.7	13
2026	Sky Blue and Yellow Cluster Light-Emitting Diodes Based on Asymmetric Cu ₄ I ₄ Nanocubes. Research, 2022, 2022, .	2.8	3
2027	Review on the promising roles of alkali metals toward highly efficient perovskite light-emitting diodes. Journal of Materials Chemistry C, 2023, 11, 2011-2025.	2.7	3
2028	Enhancing the stability of the polymeric Lewis-base-assisted dual-phase 3D CsPbBr ₃ –Cs ₄ PbBr ₆ perovskite by molecular engineering and self-passivation. Journal of Materials Chemistry C, 2022, 11, 307-320.	2.7	2
2029	Vitamin needed: Lanthanides in optoelectronic applications of metal halide perovskites. Materials Science and Engineering Reports, 2023, 152, 100710.	14.8	12
2030	Perovskite light-emitting diodes with solution-processed MoO3 films as the hole-transport layers. Journal of Luminescence, 2023, 256, 119621.	1.5	3
2031	Universal surface tailoring of perovskite nanocrystals <i>via</i> organic pseudohalide ligands applicable to green and blue light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 18226-18233.	2.7	0
2032	Ultra-small α-CsPbI ₃ perovskite quantum dots with stable, bright and pure red emission for Rec. 2020 display backlights. Nanoscale, 2023, 15, 1661-1668.	2.8	6
2034	Ground-State Surface of All-Inorganic Halide Perovskites. Journal of Physical Chemistry C, 2022, 126, 21155-21161.	1.5	4
2035	Dual-function perovskite light-emitting/sensing devices for optical interactive display. Light: Science and Applications, 2022, 11, .	7.7	18
2036	2D‣ayered Manganese Perovskite with High Mobility. Advanced Functional Materials, 2023, 33, .	7.8	4
2037	Using Blue Mini-LEDs as a Light Source Designed a Miniaturized Optomechanical Device for the Detection of Direct Bilirubin. Nanoscale Research Letters, 2022, 17, .	3.1	1
2038	Mixed halide perovskite nanocrystals with surface engineering based on pseudohalide passivation and Short-Chain ligand exchange for High-Performance blue Light-Emitting diodes. Chemical Engineering Journal, 2023, 455, 140594.	6.6	8
2039	Synergistic passivation and stepped-dimensional perovskite analogs enable high-efficiency near-infrared light-emitting diodes. Nature Communications, 2022, 13, .	5.8	18
2040	Assessing the influence of microwave-assisted synthesis parameters and stabilizing ligands on the optical properties of AIS/ZnS quantum dots. Scientific Reports, 2022, 12, .	1.6	1
2041	Pivotal Role of A-Site Cations in Tailoring the Band-Edge States, Optical Properties, and Stability of OD Hybrid Indium Chlorides. Chemistry of Materials, 2022, 34, 10928-10939.	3.2	4
2042	Responsive Optical Materials Based on Ligand-Free Perovskite Quantum Dots Embedded in Mesoporous Scaffolds. ACS Applied Materials & Interfaces, 2023, 15, 1808-1816.	4.0	2
2043	Antisolvent Choice Determines the Domain Distribution of Quasiâ€2D Perovskite for Blueâ€Emitting Perovskitesâ€Based Light Emitting Devices. Advanced Optical Materials, 2023, 11, .	3.6	5

#	Article	IF	CITATIONS
2044	Morphology and Luminescence Regulation for CsPbBr ₃ Perovskite Light-Emitting Diodes by Controlling Growth of Low-Dimensional Phases. ACS Applied Materials & Interfaces, 2022, 14, 56374-56383.	4.0	6
2045	Enhancing Luminescence Efficiency by Controlled Island Formation of CsPbBr ₃ Perovskite. Advanced Optical Materials, 2023, 11, .	3.6	4
2046	Laserâ€Triggered Vaporâ€Phase Anion Exchange on Allâ€Inorganic Perovskites for Multicolor Patterns and Microfabrications. Advanced Optical Materials, 2023, 11, .	3.6	9
2047	Modulating Residual Lead Iodide via Functionalized Buried Interface for Efficient and Stable Perovskite Solar Cells. ACS Energy Letters, 2023, 8, 666-676.	8.8	34
2048	Observation of Carrier Transfer in Vertical 0D-CsPbBrâ,ƒ/2D-MoSâ,, Mixed-Dimensional van der Waals Heterojunction. Optics Express, 0, , .	1.7	1
2049	Tailoring of Photoluminescence Properties in Allâ€Vacuum Deposited Perovskite via Ruddlesden–Popper Faults. Advanced Functional Materials, 2023, 33, .	7.8	1
2050	Stable Mott Polaron State Limits the Charge Density in Lead Halide Perovskites. ACS Energy Letters, 2023, 8, 420-428.	8.8	3
2052	Reliable Bil ₃ -Based Resistive Random-Access Memory Devices with a High On/Off Ratio. ACS Applied Electronic Materials, 2023, 5, 255-264.	2.0	0
2053	Recent Progress and Challenges of Bismuthâ€Based Halide Perovskites for Emerging Optoelectronic Applications. Advanced Optical Materials, 2023, 11, .	3.6	19
2054	Perovskite single crystals: Dimensional control, optoelectronic properties, and applications. Materials Today, 2023, 62, 225-250.	8.3	17
2055	Crystallization Pathways of FABr-PbBr2-DMF and FABr-PbBr2-DMSO Systems: The Comprehensive Picture of Formamidinium-Based Low-Dimensional Perovskite-Related Phases and Intermediate Solvates. International Journal of Molecular Sciences, 2022, 23, 15344.	1.8	2
2056	Inorganic lead-based halide perovskites: From fundamental properties to photovoltaic applications. Materials Today, 2022, 61, 191-217.	8.3	25
2057	All-inorganic quantum dot light-emitting diodes realizing a synergistically regulated carrier mobility dynamic equilibrium mechanism. Journal of Materials Science, 2022, 57, 21630-21643.	1.7	0
2058	Heterointerface engineering of perovskite defects and energetics for light-emitting diodes. Nano Research, 2023, 16, 5525-5532.	5.8	7
2059	Blue Halide Perovskite Materials: Preparation, Progress, and Challenges. Laser and Photonics Reviews, 2023, 17, .	4.4	10
2060	Perovskite photonic crystal photoelectric devices. Applied Physics Reviews, 2022, 9, .	5.5	6
2061	Simple Visualization of Universal Ferroelastic Domain Walls in Lead Halide Perovskites. Advanced Materials, 2023, 35, .	11.1	4
2062	Controllable Growth of High Quality MAPbX ₃ Perovskite Single Crystals for X-ray Detection. ACS Applied Electronic Materials, 2023, 5, 388-396.	2.0	5

#	Article	IF	CITATIONS
2063	A Multifunctional "Halideâ€Equivalent―Anion Enabling Efficient CsPb(Br/I) ₃ Nanocrystals Pureâ€Red Lightâ€Emitting Diodes with External Quantum Efficiency Exceeding 23%. Advanced Materials, 2023, 35, .	11.1	38
2064	Go beyond the limit: Rationally designed mixed-dimensional perovskite/semiconductor heterostructures and their applications. Innovation(China), 2023, 4, 100363.	5.2	8
2065	Composition Engineering of Perovskite Single Crystals for Highâ€Performance Optoelectronics. Advanced Functional Materials, 2023, 33, .	7.8	17
2066	Synthesis-on-substrate of quantum dot solids. Nature, 2022, 612, 679-684.	13.7	167
2067	High efficiency pure blue perovskite quantum dot light-emitting diodes based on formamidinium manipulating carrier dynamics and electron state filling. Light: Science and Applications, 2022, 11, .	7.7	20
2068	Weakening Ligand–Liquid Affinity to Suppress the Desorption of Surface-Passivated Ligands from Perovskite Nanocrystals. Langmuir, 2022, 38, 15747-15755.	1.6	3
2069	Performance Enhancement of Perovskite Quantum Dot Light-Emitting Diodes via Management of Hole Injection. Micromachines, 2023, 14, 11.	1.4	2
2070	Unraveling the Defect-Dominated Broadband Emission Mechanisms in (001)-Preferred Two-Dimensional Layered Antimony-Halide Perovskite Film. Journal of Physical Chemistry Letters, 2022, 13, 11736-11744.	2.1	4
2071	An Overview of Iron Oxide (Fe3O4) Nanoparticles: From Synthetic Strategies, Characterization to Antibacterial and Anticancer Applications. Crystals, 2022, 12, 1809.	1.0	7
2072	Rapid crystallization-driven high-efficiency phase-pure deep-blue Ruddlesden–Popper perovskite light-emitting diodes. Advanced Photonics, 2023, 5, .	6.2	8
2073	Biomolecules incorporated in halide perovskite nanocrystals: synthesis, optical properties, and applications. Nanoscale, 2023, 15, 2997-3031.	2.8	2
2074	Ultrasound-activated luminescence with color tunability enabled by mechanoluminescent colloids and perovskite quantum dots. Nanoscale, 2023, 15, 1629-1636.	2.8	8
2075	Thermodynamic Origin of the Photostability of the Two-Dimensional Perovskite PEA ₂ Pb(I _{1–<i>x</i>} Br _{<i>x</i>}) ₄ . ACS Energy Letters, 2023, 8, 943-949.	8.8	9
2076	Temperature-Dependent Amplified Spontaneous Emission in CsPbBr3 Thin Films Deposited by Single-Step RF-Magnetron Sputtering. Nanomaterials, 2023, 13, 306.	1.9	1
2077	Measurement of Optical Properties of CH3NH3PbX3 (X = Br, I) Single Crystals Using Terahertz Time-Domain Spectroscopy. Materials, 2023, 16, 610.	1.3	2
2078	Light-Induced Phase Segregation Evolution of All-Inorganic Mixed Halide Perovskites. Journal of Physical Chemistry Letters, 2023, 14, 267-272.	2.1	5
2079	CsPbBr ₃ /CsCaAl ₂ O ₄ :Nd,Er Nanoriveted Structure Perovskites with Long Afterglow Dual-Wavelength Emission for Flexible Photoelectric Devices. ACS Applied Nano Materials, 2023, 6, 885-898.	2.4	5
2080	Template-free synthesis of perovskite (PEA)2PbI4 nanowires by ion-intercalation processing for single-nanowire photodetectors. Journal of Alloys and Compounds, 2023, , 168894.	2.8	3

#	Article	IF	CITATIONS
2081	Interface regulation toward low driving voltage perovskite light-emitting diodes. Applied Physics Letters, 2023, 122, .	1.5	3
2082	Core/Shell ZnO/ZnS Nanoparticle Electron Transport Layers Enable Efficient Allâ€Solutionâ€Processed Perovskite Lightâ€Emitting Diodes. Small, 2023, 19, .	5.2	5
2083	Molecular Bridging Strategy Enables High Performance and Stable Quasi-2D Perovskite Light-Emitting Devices. ACS Energy Letters, 2023, 8, 1018-1025.	8.8	20
2084	Perovskite Nanowire Laser for Hydrogen Chloride Gas Sensing. ACS Nano, 2023, 17, 1570-1582.	7.3	14
2085	Manipulating Crystallization Dynamics for Efficient and Spectrally Stable Blue Perovskite Lightâ€Emitting Diodes. Laser and Photonics Reviews, 2023, 17, .	4.4	3
2086	Towards micro-PeLED displays. Nature Reviews Materials, 2023, 8, 341-353.	23.3	15
2087	Exploring the Links between Photoluminescence and Microstructure in Cs ₂ InBr ₅ ·H ₂ O Samples Doped with Pb ²⁺ . Chemistry of Materials, 2023, 35, 482-489.	3.2	2
2088	Strategic Compositional Engineering in Quasi-2D Ruddlesden–Popper Perovskites to Decipher Deep Blue Emission. Journal of Physical Chemistry Letters, 2023, 14, 395-402.	2.1	0
2089	In Situ Observation of Photoinduced Halide Segregation in Mixed Halide Perovskite. ACS Applied Energy Materials, 2023, 6, 1565-1574.	2.5	9
2090	Enhanced Blue Emission in Rb ₂ HfCl ₆ Double Perovskite via Bi ³⁺ Doping and Cs ⁺ Alloying. Chemistry of Materials, 2023, 35, 948-953.	3.2	6
2091	Metal Halide Perovskite for next-generation optoelectronics: progresses and prospects. ELight, 2023, 3, .	11.9	74
2092	Influence of Mn2+ doping on the optical properties of Cs2AgBiCl6 double perovskite luminescent phosphors. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	4
2093	Recent Progress of Halide Perovskites Applied to Five Senses Sensors. ACS Applied Electronic Materials, 2023, 5, 5261-5277.	2.0	3
2094	Superâ€Bright Green Perovskite Lightâ€Emitting Diodes Using Ionic Liquid Additives. Small Methods, 2023, 7, .	4.6	13
2095	Layer-dependent structure-optoelectronic property relationships for two-dimensional ruddlesden-popper phase (BA)2Csnâ~'1PbnBr3n+1 perovskites. Computational Materials Science, 2023, 218, 111998.	1.4	3
2096	Water-induced construction of Cs4PbBr6/CsPbBr3 heterojunction for efficient perovskite light-emitting diode. Applied Materials Today, 2023, 30, 101733.	2.3	1
2097	Probing the stability of perovskite solar cell under working condition through an ultra-thin silver electrode: Beyond the halide ion diffusion and metal diffusion. Chemical Engineering Journal, 2023, 458, 141405.	6.6	4
2098	Ternary diagrams of phase, stability, and optical properties of cesium lead mixed-halide perovskites. Acta Materialia, 2023, 246, 118661.	3.8	3

#	Article	IF	CITATIONS
2099	Localization control of 2D/3D perovskite heterostructures at grain boundaries by amine-vapor-induced dimensionality reduction. Journal of Alloys and Compounds, 2023, 939, 168680.	2.8	3
2100	Metal Halide Perovskite Surfaces with Mixed A‧ite Cations: Atomic Structure and Device Stability. Advanced Functional Materials, 2023, 33, .	7.8	6
2101	Broad-Spectrum Germanium Photodetector Based on the Ytterbium-Doped Perovskite Nanocrystal Downshifting Effect. , 2023, 1, 507-512.		2
2102	The Recent Development of Blue LED. , 0, 27, 377-384.		1
2103	Multidentate Molecule Anchoring Halide Perovskite Surface and Regulating Crystallization Kinetics toward Efficient Lightâ€Emitting Diodes. Small, 2023, 19, .	5.2	10
2104	Suppressing Auger Recombination of Perovskite Quantum Dots for Efficient Pure-Blue-Light-Emitting Diodes. ACS Energy Letters, 2023, 8, 731-739.	8.8	32
2105	Colloidal Quantum Dots: Synthesis, Composition, Structure, and Emerging Optoelectronic Applications. Laser and Photonics Reviews, 2023, 17, .	4.4	14
2106	Enhancing Photoluminescence and Stability of CsPbI3 Perovskite Quantum Dots via Cysteine Post-Processing. Crystals, 2023, 13, 45.	1.0	3
2107	Photocarrier-induced persistent structural polarization in soft-lattice lead halide perovskites. Nature Nanotechnology, 2023, 18, 357-364.	15.6	15
2108	Universal Molecular Control Strategy for Scalable Fabrication of Perovskite Light-Emitting Diodes. Nano Letters, 2023, 23, 985-992.	4.5	15
2109	Spatial Control of the Hole Accumulation Zone for Hole-Dominated Perovskite Light-Emitting Diodes by Inserting a CsAc Layer. ACS Applied Materials & Interfaces, 2023, 15, 7044-7052.	4.0	3
2110	Phosphine oxide additives for perovskite light-emitting diodes and solar cells. CheM, 2023, 9, 562-575.	5.8	18
2111	3D Printing of Arbitrary Perovskite Nanowire Heterostructures. Advanced Functional Materials, 2023, 33, .	7.8	5
2112	Ultraâ€ S table and Sensitive Ultraviolet Photodetectors Based on Monocrystalline Perovskite Thin Films. Advanced Functional Materials, 2023, 33, .	7.8	7
2113	A hole injection monolayer enables cost-effective perovskite light-emitting diodes. Journal of Materials Chemistry C, 2023, 11, 2851-2862.	2.7	2
2114	Balanced Chargeâ€Carrier Transport and Defect Passivation in Farâ€Red Perovskite Lightâ€Emitting Diodes. Laser and Photonics Reviews, 2023, 17, .	4.4	2
2115	Modeling Monte Carlo simulation on photon regeneration effects of perovskite FAPbI ₃ for photovoltaic applications. Physical Chemistry Chemical Physics, 0, , .	1.3	0
2116	Flexible Microspectrometers Based on Printed Perovskite Pixels with Graded Bandgaps. ACS Applied Materials & amp; Interfaces, 2023, 15, 7129-7136.	4.0	4

ARTICLE IF CITATIONS Recent Progress of Narrowband Perovskite Photodetectors: Fundamental Physics and Strategies. 2117 4.0 9 Advanced Devices & Instrumentation, 2023, 4, . Suppressing phase disproportionation in quasi-2D perovskite light-emitting diodes. Nature 5.8 Communications, 2023, 14, . From optical pumping to electrical pumping: the threshold overestimation in metal halide perovskites. 2119 6.4 5 Materials Horizons, 2023, 10, 1446-1453. Leadâ€Free Bismuthâ€Based Halide Perovskites with Excellent Stability for Visibleâ€lightâ€Driven 2120 Photoelectrochemical Water Splitting. ChemistrySelect, 2023, 8, . Fundamentals and classification of halide perovskites., 2023, , 19-55. 2121 0 Tb3+ and Bi3+ Co-Doping of Lead-Free Cs2NaInCl6 Double Perovskite Nanocrystals for Tailoring Optical Properties. Nanomaterials, 2023, 13, 549. Copolymer Mediated Engineering of Halide Perovskites and Associated Devices: Current State and 2124 3 Future., 2023, 2, . Interfacial modification for the fabrication of Silicon-based green perovskite Light-Emitting diodes. 3.1 Applied Surface Science, 2023, 616, 156547. Control of <i>n</i>-Phase Distribution in Quasi Two-Dimensional Perovskite for Efficient Blue 2126 4.0 8 Light-Emitting Diodes. ACS Applied Materials & amp; Interfaces, 2023, 15, 9574-9583. Structural geometry and molecular dynamics of hybrid organic–inorganic [NH3(CH2)6NH3]CdCl4 2127 1.8 crystals close to phase transition temperatures. Journal of Molecular Structure, 2023, 1279, 134993. Phase evolution and fluorescence stability of CsPb₂Br₅ microwires and their application in stable and sensitive photodetectors. Journal of Materials Chemistry C, 2023, 11, 2128 4 2.7 6046-6056. Halide perovskites and high-pressure technologies: a fruitful encounter. Materials Chemistry 3.2 Frontiers, 2023, 7, 2102-2119. Controlled growth of lead-free cesium zirconium halide double perovskite nanocrystals through a 2130 2.8 3 microfluidic reactor. Nanoscale, 2023, 15, 6371-6378. A New Descriptor for Complicated Effects of Electronic Density of States on Ion Migration. Advanced Functional Materials, 2023, 33, . Visible Light-Driven Luminescence Evolution of CsPbBr₃ Quantum Dots via Surface 2132 1.5 1 Reconstruction. Journal of Physical Chemistry C, 2023, 127, 7371-7379. Highly spectra-stable pure blue perovskite light-emitting diodes based on copper and potassium 5.8 co-doped quantum dots. Nano Research, 2023, 16, 7654-7660. Manipulating Local Lattice Distortion for Spectrally Stable and Efficient Mixedâ€halide Blue Perovskite 2134 7.2 16 LEDs. Angewandte Chemie - International Edition, 2023, 62, . Simultaneous Photoluminescence and Photothermal Investigation of Individual CH₃NH₃PbBr₃ Microcrystals. Journal of Physical Chemistry 2.1 Letters, 2023, 14, 3506-3511.

#	Article	IF	CITATIONS
2136	Solvent vapor annealing-assisted mesoporous PbBr2 frameworks for high-performance inorganic CsPbBr3 perovskite solar cells. Surfaces and Interfaces, 2023, 37, 102707.	1.5	0
2137	Recent developments of lead-free halide-perovskite nanocrystals: Synthesis strategies, stability, challenges, and potential in optoelectronic applications. Materials Today Physics, 2023, 34, 101079.	2.9	8
2138	Room temperature synthesis of highly stable near-infrared FAPbI3@TEOS perovskite phosphor for NIR light-emitting diodes. Ceramics International, 2023, 49, 15802-15810.	2.3	2
2139	High-efficiency dual-mode luminescence of metal halide perovskite Cs3Bi2Cl9:Er3+ and its use in optical temperature measurement with high sensitivity. Journal of Alloys and Compounds, 2023, 944, 169134.	2.8	16
2140	Enhancement performance of vapor-deposition processed perovskite photodetectors enabled by manipulation of interface engineering. Organic Electronics, 2023, 116, 106773.	1.4	1
2141	All-inorganic green light-emitting diode based on p-NiO/CsPbBr3/n-GaN heterojunction structure. Journal of Luminescence, 2023, 258, 119826.	1.5	5
2142	An ethanol-induced on-paper perovskite nanocrystal crystallization mechanism for expiratory alcohol screening and information encryption. Sensors and Actuators B: Chemical, 2023, 384, 133649.	4.0	1
2143	Femtosecond laser direct-writing of perovskite nanocrystals in glasses. Journal of Non-Crystalline Solids: X, 2023, 18, 100182.	0.5	0
2144	Study on carrier dynamics of perovskite solar cells via transient absorption. Journal of Alloys and Compounds, 2023, 952, 170051.	2.8	3
2145	Synthesis and crystal structure of pyrazine-based one-dimensional perovskite compound. Materials Letters, 2023, 339, 134099.	1.3	1
2146	Phonon modes and exciton-phonon interactions in CsPbCl3 single nanocrystals. Physica E: Low-Dimensional Systems and Nanostructures, 2023, 151, 115713.	1.3	2
2147	Laser-induced inverted patterning of nanocrystals embedded glass for micro-light-emitting diodes. Journal of Materials Science and Technology, 2023, 150, 138-144.	5.6	5
2148	Recent Progress in Controlled Nanostructure of Colloidal Nanocrystal Powders for Efficient Light Emission. KONA Powder and Particle Journal, 2024, 41, 172-182.	0.9	0
2149	Recent Progress in Blue Perovskite LEDs. Korean Journal of Materials Research, 2022, 32, 449-457.	0.1	0
2150	Pure Blue Perovskites Nanocrystals in Glass: Ultrafast Laser Direct Writing and Bandgap Tuning. Laser and Photonics Reviews, 2023, 17, .	4.4	9
2151	Enhance the Properties of Bil ₃ â€Based Resistive Switching Devices via Mixing Ag and Au Electrodes. Advanced Materials Interfaces, 2023, 10, .	1.9	1
2152	Chemical doping of lead-free metal-halide-perovskite related materials for efficient white-light photoluminescence. Materials Today Physics, 2023, 31, 100992.	2.9	12
2153	High-efficiency narrow-band blue emission from lead-doped Cs2ZnBr4 nanocrystals. Chemical Engineering Journal, 2023, 460, 141683.	6.6	5

#	Article	IF	CITATIONS
2154	A Polymer Strategy toward Highâ€Performance Multifunctional Perovskite Optoelectronics: From Polymer Matrix to Device Applications. Advanced Optical Materials, 2023, 11, .	3.6	4
2155	Current Understanding of Band-Edge Properties of Halide Perovskites: Urbach Tail, Rashba Splitting, and Exciton Binding Energy. Journal of Physical Chemistry Letters, 2023, 14, 1592-1603.	2.1	15
2156	Highly Thermally Sensitive Cascaded Wannier–Mott Exciton Ionization/Carrier Localization in Manganese-Doped Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2023, 14, 1684-1692.	2.1	2
2157	Structural Symmetry Impressing Carrier Dynamics of Halide Perovskite. Advanced Functional Materials, 2023, 33, .	7.8	5
2158	Unveiling the Intrinsic Structure and Intragrain Defects of Organic–Inorganic Hybrid Perovskites by Ultralow Dose Transmission Electron Microscopy. Advanced Materials, 2023, 35, .	11.1	1
2159	Improved Performance of Allâ€Inorganic Perovskite Lightâ€emitting Diodes via Nanostructured Stamp Imprinting. ChemPhysChem, 0, , .	1.0	0
2160	Efficient and Stable Perovskite White Lightâ€Emitting Diodes for Backlit Display. Advanced Functional Materials, 2023, 33, .	7.8	45
2161	Additive engineering for highly efficient and stable perovskite solar cells. Applied Physics Reviews, 2023, 10, .	5.5	13
2162	Passivation strategies for mitigating defect challenges in halide perovskite light-emitting diodes. Joule, 2023, 7, 272-308.	11.7	32
2163	Achieving Efficient Lightâ€Emitting Diodes by Controlling Phase Distribution of Quasiâ€2D Perovskites. Advanced Electronic Materials, 2023, 9, .	2.6	5
2164	Intrinsic <i>vs.</i> extrinsic STE emission enhancement in ns ² ion doped metal (Cd, In) halide hybrids. Journal of Materials Chemistry C, 2023, 11, 3855-3864.	2.7	2
2165	Gigantic suppression of recombination rate in 3D lead-halide perovskites for enhanced photodetector performance. Nature Photonics, 2023, 17, 236-243.	15.6	13
2166	Glutamine Induced Highâ€Quality Perovskite Film to Improve the Efficiency of NIR Perovskite Lightâ€Emitting Diodes. Small, 2023, 19, .	5.2	1
2167	Ultrafast optical investigation of carrier and spin dynamics in low-dimensional perovskites. Science China Technological Sciences, 2024, 67, 2-18.	2.0	1
2168	Large area inkjet-printed metal halide perovskite LEDs enabled by gas flow assisted drying and crystallization. Nanoscale, 2023, 15, 5649-5654.	2.8	5
2169	Morphology dependent light-induced photoluminescence enhancement of CsPbBr ₃ microcrystals. Chemical Communications, 2023, 59, 3403-3406.	2.2	3
2170	Oriented Attachment of Tin Halide Perovskites for Photovoltaic Applications. ACS Energy Letters, 2023, 8, 1590-1596.	8.8	6
2171	Suppressing Disproportionation Decomposition in Sn-Based Perovskite Light-Emitting Diodes. ACS Energy Letters, 2023, 8, 1597-1605.	8.8	13

#	Article	IF	CITATIONS
2172	Recent progress with one-dimensional metal halide perovskites: from rational synthesis to optoelectronic applications. NPG Asia Materials, 2023, 15, .	3.8	14
2173	Highly bright and stable single-crystal perovskite light-emitting diodes. Nature Photonics, 2023, 17, 401-407.	15.6	34
2174	Perovskite Microlaser Integration with Metasurface Supporting Topological Waveguiding. ACS Nano, 2023, 17, 4445-4452.	7.3	5
2175	Unlocking the Potential of Blue Perovskite Lightâ€Emitting Diodes for Activeâ€Matrix Displays. Advanced Optical Materials, 2023, 11, .	3.6	2
2176	Enhanced Circularly Polarized Photoluminescence of Chiral Perovskite Films by Surface Passivation with Chiral Amines. Journal of Physical Chemistry Letters, 2023, 14, 2317-2322.	2.1	3
2177	Intrinsic Formamidinium Tin Iodide Nanocrystals by Suppressing the Sn(IV) Impurities. Nano Letters, 2023, 23, 1914-1923.	4.5	8
2178	Anisotropic emission of orientation-controlled mixed-dimensional perovskites for light-emitting devices. Journal of Materiomics, 2023, 9, 762-767.	2.8	0
2179	Electrostatic Epitaxy of Orientational Perovskites for Microlasers. Advanced Materials, 2023, 35, .	11.1	7
2180	Imaging the Terahertz Nanoscale Conductivity of Polycrystalline CsPbBr ₃ Perovskite Thin Films. Nano Letters, 2023, 23, 2074-2080.	4.5	1
2181	Water-ultrastable perovskite CsPbBr3 nanocrystals for fluorescence-enhanced cellular imaging. Rare Metals, 2023, 42, 1624-1634.	3.6	9
2182	Reversible Growth of Halide Perovskites via Lead Oxide Hydroxide Nitrates Anchored Zeolitic Imidazolate Frameworks for Information Encryption and Decryption. ACS Nano, 2023, 17, 4483-4494.	7.3	5
2183	Manipulating Local Lattice Distortion for Spectrally Stable and Efficient Mixedâ€halide Blue Perovskite LEDs. Angewandte Chemie, 0, , .	1.6	0
2184	Energy and Charge Transfer Dynamics in Red-Emitting Hybrid Organo-Inorganic Mixed Halide Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2023, 14, 2580-2587.	2.1	1
2185	Controlled on-chip fabrication of large-scale perovskite single crystal arrays for high-performance laser and photodetector integration. Light: Science and Applications, 2023, 12, .	7.7	10
2186	Precise modulation strategies of 2D/3D perovskite heterojunctions in efficient and stable solar cells. Chemical Communications, 2023, 59, 4128-4141.	2.2	9
2187	Blue Transparent OLEDs with High Stability and Transmittance for Modulating Sleep Disorders. Advanced Materials Interfaces, 2023, 10, .	1.9	3
2188	Chemical vapor deposition growth and photodetector performance of lead-free all-inorganic crystalline Cs ₃ Sb ₂ X ₉ (X = I, Br) perovskite thin films. Journal of Materials Chemistry C, 2023, 11, 4603-4613.	2.7	2
2189	Multidentate Zwitterionic Ligand-Assisted Formation of Pure Bromide-Based Perovskite Nanosheets and Their Application in Blue Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2023, 14, 2736-2743.	2.1	0

#	Article	IF	CITATIONS
2190	Smoothing Energy Transfer Enabling Efficient Largeâ€Area Quasiâ€2D Perovskite Lightâ€Emitting Diodes. Laser and Photonics Reviews, 2023, 17, .	4.4	1
2191	Cs2SnCl6:Bi3+, Te4+ flexibility polysiloxane luminescent ceramics and application. Optical Engineering, 2023, 62, .	0.5	0
2192	Probing the Local Electronic Structure in Metal Halide Perovskites through Cobalt Substitution. Small Methods, 2023, 7, .	4.6	0
2193	Morphology-Dependent Carrier Accumulation Dynamics in Mixed Halide Perovskite Thin Films Caused by Phase Segregation. Journal of Physical Chemistry Letters, 2023, 14, 2800-2806.	2.1	1
2194	Understanding Illumination Effect on Saturation Behavior of Thin Film Transistor. Photonics, 2023, 10, 309.	0.9	0
2195	Stable and Intense Violet-Emitting CsPbCl ₃ Nanocrystals for Light-Emitting Diodes: Directly Obtained by L-Type Surface Passivation. ACS Applied Nano Materials, 2023, 6, 4812-4820.	2.4	1
2196	Photosensitive Dielectric 2D Perovskite Based Photodetector for Dual Wavelength Demultiplexing. Advanced Materials, 2023, 35, .	11.1	8
2197	Bright and stable perovskite light-emitting diodes in the near-infrared range. Nature, 2023, 615, 830-835.	13.7	87
2198	In-Situ Interfacial Reaction Induced Amino-Rich Oxide Surface to Grow High-Quality FAPbBr ₃ Crystals for Efficient Inverted Light-Emitting Diodes. , 2023, 5, 1179-1187.		2
2199	The Synergy of the Buried Interface Surface Energy and Temperature for Thermal Evaporated Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2023, 15, 15768-15774.	4.0	1
2200	Multifunctional Conjugated Molecular Additives for Highly Efficient Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2023, 35, .	11.1	10
2201	Ultraâ€stable perovskite quantum dot composites encapsulated with mesoporous SiO ₂ and PbBr(OH) for white lightâ€emitting diodes. Luminescence, 2023, 38, 536-545.	1.5	2
2202	Lowâ€Threshold, External avityâ€Free Flexible Perovskite Lasers. Advanced Functional Materials, 2023, 33,	7.8	2
2203	lonic Liquid Passivation for Highâ€Performance Skyâ€Blue Quasiâ€2D Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2023, 11, .	3.6	2
2204	Effect of Electron–Phonon Coupling on the Color Purity of Two-Dimensional Ruddlesden–Popper Hybrid Lead Iodide Perovskites. Journal of Physical Chemistry C, 2023, 127, 6380-6388.	1.5	2
2205	Recent Progress on Synthesis, Intrinsic Properties and Optoelectronic Applications of Perovskite Single Crystals. Advanced Functional Materials, 2023, 33, .	7.8	12
2206	Green Synthesis of Ce Doped Cs3MnBr5 for Highly Stable Violet Light Emitting Diodes. Electronic Materials Letters, 2023, 19, 518-526.	1.0	1
2207	Energyâ€Level Regulation and Lowâ€Dimensional Phase Rearrangement via a Multifunctional Spacer Group toward Efficient Skyâ€Blue Quasiâ€2D Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2023, 11, .	3.6	2

#	Article	IF	CITATIONS
2208	Single-crystal perovskite for highly efficient and stable light-emitting diodes. Science China Chemistry, 0, , .	4.2	1
2209	Stabilizing FASnI ₃ -based perovskite light-emitting diodes with crystallization control. Nanoscale, 2023, 15, 6954-6959.	2.8	3
2210	High-performance p–i–n perovskite photodetectors and image sensors with long-term operational stability enabled by a corrosion-resistant titanium nitride back electrode. Nanoscale, 2023, 15, 7803-7811.	2.8	6
2211	Steric Effects in Ruddlesden–Popper Blue Perovskites for High Quantum Efficiency. Advanced Optical Materials, 2023, 11, .	3.6	1
2212	All-inorganic lead halide perovskite nanocrystals applied in advanced display devices. Materials Horizons, 2023, 10, 1969-1989.	6.4	5
2213	Two-step spin coating CsPbBrâ, f thin films and photo detectors at atmosphere. Optics Letters, 0, , .	1.7	1
2214	Effect of Air Exposure on Electron-Beam-Induced Degradation of Perovskite Films. ACS Nanoscience Au, 2023, 3, 230-240.	2.0	1
2215	Ultra-small perovskites: breakthrough of blue LEDs. Science Bulletin, 2023, 68, 770-772.	4.3	1
2216	Effect of a-SiCxNy:H Encapsulation on the Stability and Photoluminescence Property of CsPbBr3 Quantum Dots. Nanomaterials, 2023, 13, 1228.	1.9	2
2217	Surface Defect Suppression for High Color Purity Lightâ€Emitting Diode of Freeâ€Standing Singleâ€Crystal Perovskite Film. Advanced Functional Materials, 2023, 33, .	7.8	4
2218	In situ growth of perovskite single-crystal thin films with low trap density. Cell Reports Physical Science, 2023, 4, 101363.	2.8	4
2219	The effect of permanent electric dipoles on the stability and photoelectric properties of MAPbI ₃ films. Journal of Materials Chemistry C, 2023, 11, 5806-5814.	2.7	2
2220	Deciphering the roles of ammonium doping for lead-free (NH ₄) _{<i>x</i>} Cs _{3â^'<i>x</i>} Cu ₂ I ₅ perovskites to regulate the photoelectronic properties. Chemical Communications, 2023, 59, 5677-5680.	2.2	1
2221	Manipulating the sublattice distortion induced by Mn ²⁺ doping for boosting the emission characteristics of self-trapped excitons in Cs ₄ SnBr ₆ . Journal of Materials Chemistry C, 0, , .	2.7	3
2222	Self-powered perovskite photon-counting detectors. Nature, 2023, 616, 712-718.	13.7	28
2223	Efficient all-thermally evaporated perovskite light-emitting diodes for active-matrix displays. Nature Photonics, 2023, 17, 435-441.	15.6	25
2224	Carrier Balanced Distribution Regulation of Multi-emissive Centers in Tandem PeLEDs. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2023, 38, 1062.	0.6	1
2225	Ultrabright Blue Light-emitting Cesium Bromide Quantum Dots for White LEDs. Chemical Communications, 0, , .	2.2	0

#	Article	IF	CITATIONS
2226	Efficient Zn2+ doping into CsBr nanocrystals using benzoyl bromide. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 442, 114760.	2.0	2
2227	Controllable Transformation of 2D Perovskite for Multifunctional Sensing Properties. Journal of Physical Chemistry C, 2023, 127, 7730-7739.	1.5	1
2228	Halide Perovskite glues activate two-dimensional covalent organic framework crystallites for selective NO2 sensing. Nature Communications, 2023, 14, .	5.8	9
2229	Origin of the bias instability in CsPbI3 light-emitting diodes. Applied Surface Science, 2023, 626, 157289.	3.1	3
2230	Optically Pumped Polaritons in Perovskite Light-Emitting Diodes. ACS Photonics, 2023, 10, 1349-1355.	3.2	2
2231	Enabling monodisperse perovskite phase with buried interface modification toward efficient light-emitting diodes. , 2023, 2, e9120069.		4
2232	Narrow-band violet light-emitting diodes based on one-dimensional lead bromides. Journal of Luminescence, 2023, 260, 119872.	1.5	2
2233	Deep-blue hybrid perovskite light emitting diode with high color purity based on CH3NH3PbCl3. Organic Electronics, 2023, , 106829.	1.4	0
2234	Perovskite Light-Emitting Diodes. , 2023, , 53-71.		0
2252	In-situ solid-phase anion-exchange full-color perovskite light-emitting devices. Science China Chemistry, 2023, 66, 1707-1713.	4.2	0
2266	Light management using photonic structures towards high-index perovskite optoelectronics: fundamentals, designing, and applications. Energy and Environmental Science, 2023, 16, 4135-4163.	15.6	6
2272	Perovskite-based LEDs and lasers. , 2023, , 519-548.		0
2292	Atomic-Scale Polarization and Strain at the Surface of Lead Halide Perovskite Nanocrystals. Nano Letters, 2023, 23, 6002-6009.	4.5	3
2308	Low-temperature solution-processed LaNiO ₃ hole-transport layer for UV-stable inverted perovskite solar cells. Chemical Communications, 2023, 59, 7787-7790.	2.2	3
2309	Perovskite-Based Materials for Photovoltaic Applications: A Machine Learning Approach. , 2023, , 139-162.		0
2329	Recent Progress of Layered Perovskite Solar Cells Incorporating Aromatic Spacers. Nano-Micro Letters, 2023, 15, .	14.4	5
2332	Advances in the Application of Perovskite Materials. Nano-Micro Letters, 2023, 15, .	14.4	40
2338	Organic-inorganic hybrid perovskite material and its application for transistor. Materials Chemistry Frontiers, 0, , .	3.2	0

	CHATION	LEPUKI	
#	Article	IF	CITATIONS
2343	Focus on perovskite emitters in blue light-emitting diodes. Light: Science and Applications, 2023, 12, .	7.7	14
2349	From LEDs to lasing by electrical injection, this is possible for lead halide perovskites?. , 2023, , 183-199.		0
2351	Tailoring the spontaneous emission of nanocube perovskites. , 2023, , 475-506.		0
2353	Multifunctional Perovskite Photodetectors: From Molecular-Scale Crystal Structure Design to Micro/Nano-scale Morphology Manipulation. Nano-Micro Letters, 2023, 15, .	14.4	4
2357	Design of perovskite light-emitting diodes based on FAPbBr3 nanocrystals synthesized by ultrasonic crushing method. , 2023, , .		0
2365	Impact of Bi doping on the structural and optical properties of the lead-free double perovskites (Cs2SnCl6:Bi3+) for optoelectronic applications. , 2023, , .		0
2373	Light management for perovskite light-emitting diodes. Nature Nanotechnology, 2023, 18, 981-992.	15.6	12
2377	Ultrasmall water-stable CsPbBr ₃ quantum dots with high intensity blue emission enabled by zeolite confinement engineering. Materials Horizons, 2023, 10, 5079-5086.	6.4	2
2378	Mechanical milling processed highly luminescent Cs–Pb–Br perovskite emitters. Chemical Communications, 2023, 59, 11827-11830.	2.2	0
2442	The role of oxygen defects in the electronic, optical and phonon dispersion of the LAGO perovskite: a density functional theory investigation. Dalton Transactions, 2023, 52, 16128-16139.	1.6	0
2462	Recent Advances in Patterning Strategies for Full-Color Perovskite Light-Emitting Diodes. Nano-Micro Letters, 2024, 16, .	14.4	1
2474	Perovskite as color conversion materials for micro-LED display. , 2023, , .		0
2513	Metal halide perovskites for CO ₂ photoreduction: recent advances and future perspectives. , 2024, 2, 448-474.		0
2525	Metal oxide charge transport layers for halide perovskite light-emitting diodes. , 2024, , 301-342.		0
2545	Vapour-deposited perovskite light-emitting diodes. Nature Reviews Materials, 2024, 9, 282-294.	23.3	0
2562	Halide Perovskite Materials for Photovoltaics and Lighting. Advances in Chemical and Materials Engineering Book Series, 2024, , 126-146.	0.2	0