Alterations in the Abundance and Co-occurrence of Akk Faecalibacterium prausnitzii in the Colonic Mucosa of Is Subjects

Frontiers in Cellular and Infection Microbiology 8, 281

DOI: 10.3389/fcimb.2018.00281

Citation Report

#	Article	IF	CITATIONS
1	Causal Relationship between Diet-Induced Gut Microbiota Changes and Diabetes: A Novel Strategy to Transplant Faecalibacterium prausnitzii in Preventing Diabetes. International Journal of Molecular Sciences, 2018, 19, 3720.	1.8	138
2	The impact of human-facilitated selection on the gut microbiota of domesticated mammals. FEMS Microbiology Ecology, 2019, 95, .	1.3	29
3	Strain-Specific Anti-inflammatory Properties of Two Akkermansia muciniphila Strains on Chronic Colitis in Mice. Frontiers in Cellular and Infection Microbiology, 2019, 9, 239.	1.8	233
4	The abundance of Akkermansia muciniphila and its relationship with sulphated colonic mucins in health and ulcerative colitis. Scientific Reports, 2019, 9, 15683.	1.6	139
5	Ursodeoxycholic acid: a promising therapeutic target for inflammatory bowel diseases?. American Journal of Physiology - Renal Physiology, 2019, 317, G872-G881.	1.6	22
6	Metagenomic dissection of the canine gut microbiota: insights into taxonomic, metabolic and nutritional features. Environmental Microbiology, 2019, 21, 1331-1343.	1.8	60
8	Multidonor FMT capsules improve symptoms and decrease fecal calprotectin in ulcerative colitis patients while treated – an open-label pilot study. Scandinavian Journal of Gastroenterology, 2019, 54, 289-296.	0.6	33
9	Whole-Virome Analysis Sheds Light on Viral Dark Matter in Inflammatory Bowel Disease. Cell Host and Microbe, 2019, 26, 764-778.e5.	5.1	287
10	Dietary Saccharomyces cerevisiae boulardii CNCM I-1079 Positively Affects Performance and Intestinal Ecosystem in Broilers during a Campylobacter jejuni Infection. Microorganisms, 2019, 7, 596.	1.6	21
11	Immunomodulating Activity and Therapeutic Effects of Short Chain Fatty Acids and Tryptophan Post-biotics in Inflammatory Bowel Disease. Frontiers in Immunology, 2019, 10, 2754.	2.2	125
12	Development of an Index Score for Intestinal Inflammation-Associated Dysbiosis Using Real-World Stool Test Results. Digestive Diseases and Sciences, 2020, 65, 1111-1124.	1.1	11
13	Relationship(s) between obesity and inflammatory bowel diseases: possible intertwined pathogenic mechanisms. Clinical Journal of Gastroenterology, 2020, 13, 139-152.	0.4	30
14	Comparative Genomics Guides Elucidation of Vitamin B ₁₂ Biosynthesis in Novel Human-Associated <i>Akkermansia</i> Strains. Applied and Environmental Microbiology, 2020, 86, .	1.4	48
15	Newly Explored Faecalibacterium Diversity Is Connected to Age, Lifestyle, Geography, and Disease. Current Biology, 2020, 30, 4932-4943.e4.	1.8	72
16	Physical Activity Shapes the Intestinal Microbiome and Immunity of Healthy Mice but Has No Protective Effects against Colitis in MUC2 ^{â°'/â°'} Mice. MSystems, 2020, 5, .	1.7	13
17	Molecular Insights Into O-Linked Glycan Utilization by Gut Microbes. Frontiers in Microbiology, 2020, 11, 591568.	1.5	27
18	Global scientific output trend for Akkermansia muciniphila research: a bibliometric and scientometric analysis. BMC Medical Informatics and Decision Making, 2020, 20, 291.	1.5	17
19	Ulcerative colitis: Gut microbiota, immunopathogenesis and application of natural products in animal models. Life Sciences, 2020, 258, 118129.	2.0	67

#	ARTICLE	IF	Citations
20	Prakriti phenotypes as a stratifier of gut microbiome: A new frontier in personalized medicine?. Journal of Ayurveda and Integrative Medicine, 2020, 11, 360-365.	0.9	9
21	Barrier Protection and Recovery Effects of Gut Commensal Bacteria on Differentiated Intestinal Epithelial Cells In Vitro. Nutrients, 2020, 12, 2251.	1.7	26
22	A novel distinctive form of identification for differential diagnosis of irritable bowel syndrome, inflammatory bowel disease, and healthy controls. GastroHep, 2020, 2, 193-204.	0.3	3
23	State of the Art in the Culture of the Human Microbiota: New Interests and Strategies. Clinical Microbiology Reviews, 2020, 34, .	5.7	33
24	Abiraterone acetate preferentially enriches for the gut commensal Akkermansia muciniphila in castrate-resistant prostate cancer patients. Nature Communications, 2020, 11, 4822.	5.8	74
25	Host <i>Akkermansia muciniphila</i> Abundance Correlates With Gulf War Illness Symptom Persistence via NLRP3-Mediated Neuroinflammation and Decreased Brain-Derived Neurotrophic Factor. Neuroscience Insights, 2020, 15, 263310552094248.	0.9	28
26	Streptococcus Thermophilus UASt-09 Upregulates Goblet Cell Activity in Colonic Epithelial Cells to a Greater Degree than other Probiotic Strains. Microorganisms, 2020, 8, 1758.	1.6	9
27	Potent In Vitro Activity of Citrus aurantium Essential Oil and Vitis vinifera Hydrolate Against Gut Yeast Isolates from Irritable Bowel Syndrome Patients—The Right Mix for Potential Therapeutic Use. Nutrients, 2020, 12, 1329.	1.7	12
28	Bisphenol A exposure induces gut microbiota dysbiosis and consequent activation of gut-liver axis leading to hepatic steatosis in CD-1 mice. Environmental Pollution, 2020, 265, 114880.	3.7	71
29	Metabolic modulation during intestinal fibrosis. Journal of Digestive Diseases, 2020, 21, 319-325.	0.7	15
30	Prebiotics effects in vitro of polysaccharides from tea flowers on gut microbiota of healthy persons and patients with inflammatory bowel disease. International Journal of Biological Macromolecules, 2020, 158, 968-976.	3.6	38
31	Co-Culture with Bifidobacterium catenulatum Improves the Growth, Gut Colonization, and Butyrate Production of Faecalibacterium prausnitzii: In Vitro and In Vivo Studies. Microorganisms, 2020, 8, 788.	1.6	58
32	Towards a disease-associated common trait of gut microbiota dysbiosis: The pivotal role of Akkermansia muciniphila. Digestive and Liver Disease, 2020, 52, 1002-1010.	0.4	23
33	Metataxonomic and Histopathological Study of Rabbit Epizootic Enteropathy in Mexico. Animals, 2020, 10, 936.	1.0	7
34	Development of a Novel Metagenomic Biomarker for Prediction of Upper Gastrointestinal Tract Involvement in Patients With Crohn's Disease. Frontiers in Microbiology, 2020, 11, 1162.	1.5	13
35	The critical role of Faecalibacterium prausnitzii in human health: An overview. Microbial Pathogenesis, 2020, 149, 104344.	1.3	102
36	MICROBIOTA INSIGHTS IN CLOSTRIDIUM DIFFICILE INFECTION AND INFLAMMATORY BOWEL DISEASE. Gut Microbes, 2020, 12, 1725220.	4.3	49
37	Function of Akkermansia muciniphila in Obesity: Interactions With Lipid Metabolism, Immune Response and Gut Systems. Frontiers in Microbiology, 2020, 11, 219.	1.5	272

#	ARTICLE	IF	Citations
38	The role of a plant-based diet in the pathogenesis, etiology and management of the inflammatory bowel diseases. Expert Review of Gastroenterology and Hepatology, 2020, 14, 137-145.	1.4	22
39	Late weaning is associated with increased microbial diversity and Faecalibacterium prausnitzii abundance in the fecal microbiota of piglets. Animal Microbiome, 2020, 2, 2.	1.5	31
40	Regulatory Considerations for Fecal Microbiota Transplantation Products. Cell Host and Microbe, 2020, 27, 173-175.	5.1	45
41	The canine gastrointestinal microbiota: early studies and research frontiers. Gut Microbes, 2020, 11, 635-654.	4.3	22
42	The Influence of Polyphenol Compounds on Human Gastrointestinal Tract Microbiota. Nutrients, 2020, 12, 350.	1.7	37
43	Characterization of Gut Microbiota in Hospitalized Patients with Clostridioides difficile Infection. Current Microbiology, 2020, 77, 1673-1680.	1.0	19
44	Colitis-Induced Microbial Perturbation Promotes Postinflammatory Visceral Hypersensitivity. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 225-244.	2.3	33
45	Commensal epitopes drive differentiation of colonic T _{regs} . Science Advances, 2020, 6, eaaz3186.	4.7	44
46	Microbiome-Metabolome Signature of Acute Kidney Injury. Metabolites, 2020, 10, 142.	1.3	29
47	Metabolomic Analysis in Inflammatory Bowel Disease: A Systematic Review. Journal of Crohn's and Colitis, 2021, 15, 813-826.	0.6	65
48	Systematic review and metaâ€analysis of the role of <scp><i>Faecalibacterium prausnitzii</i></scp> alteration in inflammatory bowel disease. Journal of Gastroenterology and Hepatology (Australia), 2021, 36, 320-328.	1.4	37
49	Dynamics of Microbiomes. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 57-99.	0.2	0
50	Intestinal Regulatory T Cells. Advances in Experimental Medicine and Biology, 2021, 1278, 141-190.	0.8	7
51	Multi-omic modelling of inflammatory bowel disease with regularized canonical correlation analysis. PLoS ONE, 2021, 16, e0246367.	1.1	9
52	The microbiome and rodent models of immune mediated diseases. Mammalian Genome, 2021, 32, 251-262.	1.0	9
53	Effect of Akkermansia muciniphila, Faecalibacterium prausnitzii, and Their Extracellular Vesicles on the Serotonin System in Intestinal Epithelial Cells. Probiotics and Antimicrobial Proteins, 2021, 13, 1546-1556.	1.9	22
54	Influence of Dietary Components and Traditional Chinese Medicine on Hypertension: A Potential Role for Gut Microbiota. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-10.	0.5	5
55	Comparative analysis of type 2 diabetes-associated gut microbiota between Han and Mongolian people. Journal of Microbiology, 2021, 59, 693-701.	1.3	11

#	Article	IF	Citations
56	Characterization and description of Faecalibacterium butyricigenerans sp. nov. and F. longum sp. nov., isolated from human faeces. Scientific Reports, 2021, 11, 11340.	1.6	42
57	Effects of vitamin D supplementation on blood markers in ulcerative colitis patients: a systematic review and meta-analysis. European Journal of Nutrition, 2022, 61, 23-35.	1.8	2
59	Key Technologies for Progressing Discovery of Microbiome-Based Medicines. Frontiers in Microbiology, 2021, 12, 685935.	1.5	13
60	The potential of Akkermansia muciniphila in inflammatory bowel disease. Applied Microbiology and Biotechnology, 2021, 105, 5785-5794.	1.7	87
61	Novel Gut Microbiota Modulator, Which Markedly Increases Akkermansia muciniphila Occupancy, Ameliorates Experimental Colitis in Rats. Digestive Diseases and Sciences, 2022, 67, 2899-2911.	1.1	8
62	Dihydrotanshinone attenuates chemotherapy-induced intestinal mucositis and alters fecal microbiota in mice. Biomedicine and Pharmacotherapy, 2020, 128, 110262.	2.5	23
65	The gut microflora assay in patients with colorectal cancer: in feces or tissue samples?. Iranian Journal of Microbiology, 0, , .	0.8	12
66	The Effect of 5-Aminosalicylic Acid on Intestinal Microbiota. Proceedings of the Latvian Academy of Sciences, 2020, 74, 53-57.	0.0	2
67	Epithelial-microbial diplomacy: escalating border tensions drive inflammation in inflammatory bowel disease. Intestinal Research, 2019, 17, 177-191.	1.0	14
68	Resolvin D1 Ameliorates Hepatic Steatosis via Remodeling Gut Microbiota and Restoring Intestinal Barrier Integrity in DSS-Induced Chronic Colitis. SSRN Electronic Journal, 0, , .	0.4	0
69	In vitro Prebiotic Effect of Bread-Making Process in Inflammatory Bowel Disease Microbiome. Frontiers in Microbiology, 2021, 12, 716307.	1.5	3
73	Dietâ€"microbiome interaction in colorectal cancer: a potentially discriminatory role for Fusobacterium nucleatum., 2020,, 211-241.		0
74	Strategies for inflammatory bowel disease drug research by targeting gut microbiota. World Chinese Journal of Digestology, 2020, 28, 1112-1120.	0.0	0
75	The gut microflora assay in patients with colorectal cancer: in feces or tissue samples?. Iranian Journal of Microbiology, 2019, 11, 1-6.	0.8	10
76	Short-Term Tolerability, Safety, and Gut Microbial Composition Responses to a Multi-Strain Probiotic Supplement: An Open-Label Study in Healthy Adults. Integrative Medicine, 2021, 20, 24-34.	0.1	1
77	Non-pharmacologic strategies for the management of intestinal inflammation. Biomedicine and Pharmacotherapy, 2022, 145, 112414.	2.5	6
78	Correlation of Periodontal Bacteria with Chronic Inflammation Present in Patients with Metabolic Syndrome. Biomedicines, 2021, 9, 1709.	1.4	7
79	Metagenomic analysis explores the interaction of aged microplastics and roxithromycin on gut microbiota and antibiotic resistance genes of Carassius auratus. Journal of Hazardous Materials, 2022, 425, 127773.	6.5	33

#	Article	IF	CITATIONS
80	Gut microbiota in burned patients with Clostridioides difficile infection. Burns, 2022, 48, 1120-1129.	1.1	8
81	Akkermansia muciniphila – obiecujący kandydat na probiotyk nowej generacji. Postepy Higieny I Medycyny Doswiadczalnej, 2021, 75, 724-748.	0.1	0
82	Akkermansia mucinifila and the part that it plays in metabolic disturbance. Ukrainian Therapeutical Journal, 2020, .	0.0	0
83	<i>Akkermansia muciniphila</i> administration exacerbated the development of colitis-associated colorectal cancer in mice. Journal of Cancer, 2022, 13, 124-133.	1.2	43
84	The Role of Gut Microbiota and Metabolites in Obesity-Associated Chronic Gastrointestinal Disorders. Nutrients, 2022, 14, 624.	1.7	19
85	Alterations of gut bacteria Akkermansia muciniphila and Faecalibacterium prausnitzii in late post-transplant period after liver transplantation. Iberoamerican Journal of Medicine, 0, , 45-51.	0.1	0
86	Successful Manipulation of the Gut Microbiome to Treat Spontaneous and Induced Murine Models of Colitis., 2022, 1, 359-374.		1
87	Establishment and evaluation of a specific antibiotic-induced inflammatory bowel disease model in rats. PLoS ONE, 2022, 17, e0264194.	1.1	1
88	Helicobacter pylori may participate in the development of inflammatory bowel disease by modulating the intestinal microbiota. Chinese Medical Journal, 2022, 135, 634-638.	0.9	8
89	The evolution and competitive strategies of <i>Akkermansia muciniphila</i> in gut. Gut Microbes, 2022, 14, 2025017.	4.3	25
90	Active or Autoclaved Akkermansia muciniphila Relieves TNF-α-Induced Inflammation in Intestinal Epithelial Cells Through Distinct Pathways. Frontiers in Immunology, 2021, 12, 788638.	2.2	8
91	Composite Sophora Colon-Soluble Capsule Ameliorates DSS-Induced Ulcerative Colitis in Mice via Gut Microbiota-Derived Butyric Acid and NCR+ ILC3. Chinese Journal of Integrative Medicine, 2023, 29, 424-433.	0.7	2
96	<i>Akkermansia muciniphila</i> plays critical roles in host health. Critical Reviews in Microbiology, 2023, 49, 82-100.	2.7	28
97	Downregulation of ACE, AGTR1, and ACE2 Genes Mediating SARS-CoV-2 Pathogenesis by Gut Microbiota Members and Their Postbiotics on Caco-2 Cells. SSRN Electronic Journal, 0, , .	0.4	1
98	Revisiting the role of <i>Akkermansia muciniphila</i> as a therapeutic bacterium. Gut Microbes, 2022, 14, .	4.3	30
99	Gut microbiota in mucosa and feces of newly diagnosed, treatment-na $ ilde{A}$ -ve adult inflammatory bowel disease and irritable bowel syndrome patients. Gut Microbes, 2022, 14, .	4.3	20
101	Alteration of microbiota antibodyâ€mediated immune selection contributes to dysbiosis in inflammatory bowel diseases. EMBO Molecular Medicine, 2022, 14, .	3.3	8
102	Comparative Genomics and Pan-Genome Driven Prediction of a Reduced Genome of Akkermansia muciniphila. Microorganisms, 2022, 10, 1350.	1.6	5

#	Article	IF	CITATIONS
103	Probiotic-Based Intervention in the Treatment of Ulcerative Colitis: Conventional and New Approaches. Biomedicines, 2022, 10, 2236.	1.4	20
104	\hat{l}^2 -Caryophyllene: A Therapeutic Alternative for Intestinal Barrier Dysfunction Caused by Obesity. Molecules, 2022, 27, 6156.	1.7	1
105	Inflammatory bowel disease - A peek into the bacterial community shift and algae-based †biotic†approach to combat the disease. Trends in Food Science and Technology, 2022, 129, 210-220.	7.8	4
106	Downregulation of ACE, AGTR1, and ACE2 genes mediating SARS-CoV-2 pathogenesis by gut microbiota members and their postbiotics on Caco-2 cells. Microbial Pathogenesis, 2022, 173, 105798.	1.3	12
107	Rational consideration of Akkermansia muciniphila targeting intestinal health: advantages and challenges. Npj Biofilms and Microbiomes, 2022, 8, .	2.9	21
108	Quantitative real-time PCR analysis of bacterial biomarkers enable fast and accurate monitoring in inflammatory bowel disease. PeerJ, 0, 10, e14217.	0.9	3
109	Global trends in Akkermansia muciniphila research: A bibliometric visualization. Frontiers in Microbiology, 0, 13 , .	1.5	1
110	Do we need to change our perspective about gut biomarkers? A public data mining approach to identify differentially abundant bacteria in intestinal inflammatory diseases. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	1
111	Microbiota Composition in Diverticular Disease: Implications for Therapy. International Journal of Molecular Sciences, 2022, 23, 14799.	1.8	1
112	Impact of IBD-Associated Dysbiosis on Bacterial Quorum Sensing Mediated by Acyl-Homoserine Lactone in Human Gut Microbiota. International Journal of Molecular Sciences, 2022, 23, 15404.	1.8	6
113	Systematic evaluation of genome-wide metabolic landscapes in lactic acid bacteria reveals diet- and strain-specific probiotic idiosyncrasies. Cell Reports, 2022, 41, 111735.	2.9	8
114	The administration of Enterococcus faecium SF68 counteracts compositional shifts in the gut microbiota of diet-induced obese mice. Frontiers in Microbiology, 0, 13, .	1.5	5
115	Homeostasis and Dysbiosis of the Intestinal Microbiota: Comparing Hallmarks of a Healthy State with Changes in Inflammatory Bowel Disease. Microorganisms, 2022, 10, 2405.	1.6	11
116	Research trends on the relationship between gut microbiota and colorectal cancer: A bibliometric analysis. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	11
117	The role of Akkermansia muciniphila in inflammatory bowel disease: Current knowledge and perspectives. Frontiers in Immunology, 0, 13, .	2.2	22
118	Impact of Saccharomyces boulardii CNCM I-745 on Bacterial Overgrowth and Composition of Intestinal Microbiota in Diarrhea-Predominant Irritable Bowel Syndrome Patients: Results of a Randomized Pilot Study. Digestive Diseases, 2023, 41, 798-809.	0.8	4
119	Akkermansia muciniphila as a Next-Generation Probiotic in Modulating Human Metabolic Homeostasis and Disease Progression: A Role Mediated by Gut–Liver–Brain Axes?. International Journal of Molecular Sciences, 2023, 24, 3900.	1.8	22
120	Culturing the Human Oral Microbiota, Updating Methodologies and Cultivation Techniques. Microorganisms, 2023, 11, 836.	1.6	1

#	ARTICLE	IF	CITATIONS
121	Intestinal Microbiota and miRNA in IBD: A Narrative Review about Discoveries and Perspectives for the Future. International Journal of Molecular Sciences, 2023, 24, 7176.	1.8	5
130	Host mucin glycosylation and gut symbiosis. , 2024, , 153-173.		О