Coastal wetland adaptation to sea level rise: Quantifying migration and coastal squeeze

Journal of Applied Ecology 55, 2876-2887

DOI: 10.1111/1365-2664.13169

Citation Report

#	Article	IF	CITATIONS
1	Mangrove forests in a rapidly changing world: Global change impacts and conservation opportunities along the Gulf of Mexico coast. Estuarine, Coastal and Shelf Science, 2018, 214, 120-140.	0.9	83
2	Future response of global coastal wetlands to sea-level rise. Nature, 2018, 561, 231-234.	13.7	615
3	Tropical cyclones and the organization of mangrove forests: a review. Annals of Botany, 2020, 125, 213-234.	1.4	67
4	Socio-ecological Mobility: A Research Strategy for a New Coastline. Coastal Management, 2019, 47, 611-620.	1.0	4
5	Sea-level driven land conversion and the formation of ghost forests. Nature Climate Change, 2019, 9, 450-457.	8.1	175
6	Evaluating the Response of Mediterranean-Atlantic Saltmarshes to Sea-Level Rise. Resources, 2019, 8, 50.	1.6	14
7	Participatory coastal management through elicitation of ecosystem service preferences and modelling driven by "coastal squeeze― Science of the Total Environment, 2019, 652, 1113-1128.	3.9	32
8	Zonation of mangrove flora and fauna in a subtropical estuarine wetland based on surface elevation. Ecology and Evolution, 2020, 10, 7404-7418.	0.8	15
9	Impact of Relative Sea-Level Rise on Low-Lying Coastal Areas of Catalonia, NW Mediterranean, Spain. Water (Switzerland), 2020, 12, 3252.	1.2	12
10	Modeling Marshâ€Forest Boundary Transgression in Response to Storms and Seaâ€Level Rise. Geophysical Research Letters, 2020, 47, e2020GL088998.	1.5	18
11	A climate adaptation strategy for Mai Po Inner Deep Bay Ramsar site: Steppingstone to climate proofing the East Asian-Australasian Flyway. PLoS ONE, 2020, 15, e0239945.	1.1	9
12	Marsh Migration, Climate Change, and Coastal Resilience: Human Dimensions Considerations for a Fair Path Forward. Wetlands, 2020, 40, 1751-1764.	0.7	18
13	Modeling longâ€term salt marsh response to sea level rise in the sedimentâ€deficient Plum Island Estuary, <scp>MA</scp> . Limnology and Oceanography, 2020, 65, 2142-2157.	1.6	30
14	Salt marsh elevation and responses to future sea-level rise in the Knysna Estuary, South Africa. African Journal of Aquatic Science, 2020, 45, 49-64.	0.5	27
15	Rapid peat development beneath created, maturing mangrove forests: ecosystem changes across a 25â€yr chronosequence. Ecological Applications, 2020, 30, e02085.	1.8	41
16	Establishing Targets for Regional Coastal Wetland Restoration Planning Using Historical Ecology and Future Scenario Analysis: The Past, Present, Future Approach. Estuaries and Coasts, 2020, 43, 207-222.	1.0	12
17	Future losses of ecosystem services due to coastal erosion in Europe. Science of the Total Environment, 2021, 760, 144310.	3.9	31
18	Habitat use across multiple scales suggests resilience to rising seas for endangered island endemic compared to sympatric invasive species. Animal Conservation, 2021, 24, 280-290.	1.5	4

#	Article	IF	Citations
19	Cultural ecosystem services caught in a †coastal squeeze†between sea level rise and urban expansion. Global Environmental Change, 2021, 66, 102209.	3.6	25
20	Assessing the spatial–temporal response of groundwaterâ€fed anchialine ecosystems to seaâ€level rise for coastal zone management. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 853-869.	0.9	3
21	Coastal protection assessment: a tradeoff between ecological, social, and economic issues. Ecosphere, 2021, 12, e03364.	1.0	9
22	Tropicalization of temperate ecosystems in North America: The northward range expansion of tropical organisms in response to warming winter temperatures. Global Change Biology, 2021, 27, 3009-3034.	4.2	108
23	Upland Migration of North American Salt Marshes. , 2021, , 423-442.		0
24	Intertidal wetland vegetation dynamics under rising sea levels. Science of the Total Environment, 2021, 766, 144237.	3.9	31
25	Breeding Ecology of Mottled Ducks: A Review. Journal of Wildlife Management, 2021, 85, 825.	0.7	3
27	Oil, fisheries and coastal communities: A review of impacts on the environment, livelihoods, space and governance. Energy Research and Social Science, 2021, 75, 102009.	3.0	56
28	Using Decision Analysis to Integrate Habitat and Community Values for Coastal Resilience Planning. Estuaries and Coasts, 0 , 1 .	1.0	1
29	The Effect of Marsh Age on Ecosystem Function in a Rapidly Transgressing Marsh. Ecosystems, 2022, 25, 252-264.	1.6	11
30	Salt marsh climate change adaptation: Using runnels to adapt to accelerating sea level rise within a drowning New England salt marsh. Restoration Ecology, 2022, 30, e13466.	1.4	10
31	Foundations for a Practical Approach to Considering Sea-Level Rise in Coastal Projects. Marine Technology Society Journal, 2021, 55, 47-55.	0.3	0
32	Vulnerability to sea-level rise and the potential for restoration to enhance blue carbon storage in salt marshes of an urban estuary. Estuarine, Coastal and Shelf Science, 2021, 260, 107495.	0.9	24
33	The effects of large-scale breakwaters on shoreline vegetation. Ecological Engineering, 2021, 169, 106319.	1.6	7
34	Effect of climate change on marine ecosystems. , 2021, , 115-176.		13
35	Spatial variation and drivers of vegetation structure and composition in coastal freshwater wetlands of subtropical Australia. Marine and Freshwater Research, 2021, 72, 1746-1759.	0.7	4
36	Aboveground carbon loss associated with the spread of ghost forests as sea levels rise. Environmental Research Letters, 2020, 15, 104028.	2.2	39
37	Environmental Gradients and Overlapping Ranges of Dominant Coastal Wetland Plants in Weeks Bay, AL. Southeastern Naturalist, 2019, 18, 224.	0.2	7

#	Article	IF	CITATIONS
38	Salt Marsh Migration Potential at Cape Cod National Seashore (Massachusetts, U.S.A.) in Response to Sea-Level Rise. Journal of Coastal Research, 2020, 36, 771.	0.1	2
39	The status and future of tidal marshes in New Jersey faced with sea level rise. Anthropocene Coasts, 2021, 4, 168-192.	0.6	11
40	Projected impact of sea-level rise and urbanization on mottled duck (Anas fulvigula) habitat along the Gulf Coast of Louisiana and Texas through 2100. Ecological Indicators, 2021, 132, 108276.	2.6	5
41	Coastal adaptation to climate change through zonation: A review of coastal change management areas (CCMAs) in England. Ocean and Coastal Management, 2021, 215, 105950.	2.0	16
42	The Spatiotemporal Characteristics and Dynamic Changes of Tidal Flats in Florida from 1984 to 2020. Geographies, 2021, 1, 292-314.	0.6	5
43	Cutting the costs of coastal protection by integrating vegetation in flood defences. Nature Communications, 2021, 12, 6533.	5.8	39
44	Predicting the in-between: Present and future habitat suitability of an intertidal euryhaline fish. Ecological Informatics, 2022, 68, 101523.	2.3	2
45	Berms, Floodwalls, and Dunes - How High? Considering sea-level rise in coastal projects. , 2020, , .		0
46	The impacts of mangrove range expansion on wetland ecosystem services in the southeastern United States: Current understanding, knowledge gaps, and emerging research needs. Global Change Biology, 2022, 28, 3163-3187.	4.2	25
47	Wetlands Under Global Change. , 2022, , .		0
48	Salt Marsh Restoration for the Provision of Multiple Ecosystem Services. Diversity, 2021, 13, 680.	0.7	14
50	Effects of Sea Level Rise on Land Use and Ecosystem Services in the Liaohe Delta. Water (Switzerland), 2022, 14, 841.	1.2	6
51	Secular diachronic analysis of coastal marshes and lagoons evolution: Study case of the Po river delta (Italy). Estuarine, Coastal and Shelf Science, 2022, 268, 107781.	0.9	1
52	Maximising resilience to sea-level rise in urban coastal ecosystems through systematic conservation planning. Landscape and Urban Planning, 2022, 221, 104374.	3.4	10
53	Experimental Tree Mortality Does Not Induce Marsh Transgression in a Chesapeake Bay Low-Lying Coastal Forest. Frontiers in Marine Science, 2021, 8, .	1.2	5
54	Ambitious global targets for mangrove and seagrass recovery. Current Biology, 2022, 32, 1641-1649.e3.	1.8	23
55	Salt Transport Under Tide and Evaporation in a Subtropical Wetland: Field Monitoring and Numerical Simulation. Water Resources Research, 2022, 58, .	1.7	6
56	The Spatiotemporal Characteristics and Interactions between Urban Expansion and Tidal Flat Dynamics: A Case Study of Three Highly Urbanized Coastal Counties in the Southeastern United States. Earth, 2022, 3, 557-576.	0.9	2

#	ARTICLE	IF	CITATIONS
57	Trends in surface elevation and accretion in a retrograding delta in coastal Mississippi, USA from 2012–2016. Wetlands Ecology and Management, 2022, 30, 461-475.	0.7	3
58	Managed retreat and planned retreat: a systematic literature review. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210129.	1.8	6
59	Considering the influence of landâ€use/land cover on estuarine biotic richness with Bayesian hierarchical models. Ecological Applications, 2022, , e2675.	1.8	1
60	Traits of tidal marsh plants determine survival and growth response to hydrodynamic forcing: implications for nature-based shoreline protection. Marine Ecology - Progress Series, 2022, 693, 107-124.	0.9	2
61	Investigation of Barrier Island Highway and Marsh Vulnerability to Bay-Side Flooding and Erosion. Journal of Marine Science and Engineering, 2022, 10, 734.	1.2	2
62	Variability in marsh migration potential determined by topographic rather than anthropogenic constraints in the Chesapeake Bay region. Limnology and Oceanography Letters, 2022, 7, 321-331.	1.6	15
63	Surface Elevation Change Dynamics in Coastal Marshes Along the Northwestern Gulf of Mexico: Anticipating Effects of Rising Sea-Level and Intensifying Hurricanes. Wetlands, 2022, 42, .	0.7	11
64	Understanding the consequences of sea level rise: the ecological implications of losing intertidal habitat. New Zealand Journal of Marine and Freshwater Research, 2022, 56, 353-370.	0.8	9
65	A Model of the Spatiotemporal Dynamics of Soil Carbon Following Coastal Wetland Loss Applied to a Louisiana Salt Marsh in the Mississippi River Deltaic Plain. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	2
66	The Race for Space: Modelling Coastal Wetland Distribution Under Sea Level Rises at Reginal Scale. SSRN Electronic Journal, 0, , .	0.4	0
67	Random Forest Classification Method for Predicting Intertidal Wetland Migration Under Sea Level Rise. Frontiers in Environmental Science, 0, 10, .	1.5	5
68	Migration and transformation of coastal wetlands in response to rising seas. Science Advances, 2022, 8, .	4.7	45
69	Estuaries as coastal reactors: importance of shallow seafloor habitats for primary productivity and nutrient transformation, and impacts of sea level rise. New Zealand Journal of Marine and Freshwater Research, 2022, 56, 553-569.	0.8	4
70	Plant traits affect vertical accretion of salt marshes. Estuarine, Coastal and Shelf Science, 2022, 276, 108010.	0.9	4
71	State of the practice and engineering framework for using emergent vegetation in coastal infrastructure. Frontiers in Built Environment, 0, 8, .	1.2	2
72	Stepping Stones Along Urban Coastlinesâ€"Improving Habitat Connectivity for Aquatic Fauna with Constructed Floating Wetlands. Wetlands, 2022, 42, .	0.7	3
73	Analysis on the ecological impact of the Xiaolangdi Reservoir on the Yellow River Delta wetland and coastal areas. Frontiers in Earth Science, $0,10,10$	0.8	1
74	Defining estuarine squeeze: The loss of upper estuarine transitional zones against in-channel barriers through saline intrusion. Estuarine, Coastal and Shelf Science, 2022, 278, 108107.	0.9	3

#	Article	IF	Citations
75	Hidden levees: Small-scale flood defense on rural coasts. Anthropocene, 2022, 40, 100350.	1.6	3
76	Seawall-induced impacts on large river delta wetlands and blue carbon storage under sea level rise. Science of the Total Environment, 2023, 859, 159891.	3.9	5
77	Tidal influence on dissolved CO ₂ at Sapelo Island, Georgia, USA., 2023, 2, 015002.		2
78	Improved mapping of coastal salt marsh habitat change at Barnegat Bay (NJ, USA) using object-based image analysis of high-resolution aerial imagery. Remote Sensing Applications: Society and Environment, 2023, 29, 100910.	0.8	3
79	Land loss implications of sea level rise along the coastline of Colombia under different climate change scenarios. Climate Risk Management, 2023, 39, 100470.	1.5	5
80	The race for space: Modelling the landward migration of coastal wetlands under sea level rise at regional scale. Science of the Total Environment, 2023, 859, 160483.	3.9	1
81	Toward Collaborative Adaptation: Assessing Impacts of Coastal Flooding at the Watershed Scale. Environmental Management, 2023, 71, 741-754.	1.2	2
82	Prediction of the joint impacts of sea level rise and land development on distribution patterns of mangrove communities. Forest Ecosystems, 2023, 10, 100100.	1.3	0
83	Sea level rise implications on future inland migration of coastal wetlands. Global Ecology and Conservation, 2023, 43, e02421.	1.0	2
84	Preferred atmospheric circulations associated with favorable prescribed burns in the Gulf of Mexico coast, USA. Fire Ecology, 2023, 19, .	1.1	1
85	Above- and Belowground Biomass Carbon Stock and Net Primary Productivity Maps for Tidal Herbaceous Marshes of the United States. Remote Sensing, 2023, 15, 1697.	1.8	6
86	A novel GIS-based multicriteria analysis approach for ascertaining the catchment-scale degradation of a Himalayan wetland. Environmental Research, 2023, 229, 115967.	3.7	8
101	Estuarine and Coastal Structures: Environmental Effects and a Focus on Shore and Nearshore Structures. , 2024, , 57-91.		0
103	Beneficiaries, Equity, and Trade-Offs in Estuarine and Coastal Ecosystem Services. , 2024, , 208-237.		O