The origin of the diverse morphologies and kinematics FIRE-2 simulations

Monthly Notices of the Royal Astronomical Society 481, 4133-4157

DOI: 10.1093/mnras/sty2513

Citation Report

#	Article	IF	CITATIONS
1	Reconciling Observed and Simulated Stellar Halo Masses. Astrophysical Journal, 2018, 869, 12.	1.6	48
2	The origins of the circumgalactic medium in the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1248-1272.	1.6	132
3	Morphology and star formation in IllustrisTNG: the build-up of spheroids and discs. Monthly Notices of the Royal Astronomical Society, 2019, 487, 5416-5440.	1.6	109
4	Dark and luminous satellites of LMC-mass galaxies in the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2019, 489, 5348-5364.	1.6	38
5	Dwarf galaxies in CDM, WDM, and SIDM: disentangling baryons and dark matter physics. Monthly Notices of the Royal Astronomical Society, 2019, 490, 962-977.	1.6	54
6	New Horizon: On the Origin of the Stellar Disk and Spheroid of Field Galaxies at zÂ=Â0.7. Astrophysical Journal, 2019, 883, 25.	1.6	34
7	Cosmic ray feedback in the FIRE simulations: constraining cosmic ray propagation with GeV γ-ray emission. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3716-3744.	1.6	106
8	The Implications of Local Fluctuations in the Galactic Midplane for Dynamical Analysis in the Gaia Era. Astrophysical Journal, 2019, 883, 103.	1.6	13
9	The prevalence of pseudo-bulges in the Auriga simulations. Monthly Notices of the Royal Astronomical Society, 2019, 489, 5742-5763.	1.6	40
10	Star formation histories of dwarf galaxies in the FIRE simulations: dependence on mass and Local Group environment. Monthly Notices of the Royal Astronomical Society, 2019, 489, 4574-4588.	1.6	83
11	The hidden giant: discovery of an enormous Galactic dwarf satellite in Gaia DR2. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2743-2766.	1.6	116
12	On the Origin of Star–Gas Counterrotation in Low-mass Galaxies. Astrophysical Journal, 2019, 878, 143.	1.6	37
13	The Local Group on FIRE: dwarf galaxy populations across a suite of hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1380-1399.	1.6	137
14	Prospects for recovering galaxy intrinsic shapes from projected quantities. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2354-2371.	1.6	13
15	Formation, vertex deviation, and age of the Milky Way's bulge: input from a cosmological simulation with a late-forming bar. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5073-5085.	1.6	31
16	Structure and stability of high-redshift galaxies in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1574-1589.	1.6	16
17	Comparing galaxy morphology in hydrodynamical simulation and in semi-analytic model. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2083-2091.	1.6	5
18	Cosmological simulations of the circumgalactic medium with 1 kpc resolution: enhanced H <scp>i</scp> column densities. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 482, L85-L89.	1.2	149

ATION RED

	CITATION	I REPORT	
#	Article	IF	CITATIONS
19	The star formation rate and stellar content contributions of morphological components in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2019, 483, 744-766.	1.6	47
20	NIHAO-UHD: The properties of MW-like stellar disks in high resolution cosmological simulations. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	53
21	Under the FIRElight: Stellar Tracers of the Local Dark Matter Velocity Distribution in the Milky Way. Astrophysical Journal, 2019, 883, 27.	1.6	40
22	Fornax 3D project: a two-dimensional view of the stellar initial mass function in the massive lenticular galaxy FCC 167. Astronomy and Astrophysics, 2019, 626, A124.	2.1	27
23	Evolution of giant molecular clouds across cosmic time. Monthly Notices of the Royal Astronomical Society, 2020, 492, 488-502.	1.6	36
24	Pressure balance in the multiphase ISM of cosmologically simulated disc galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3664-3683.	1.6	35
25	The imprint of dark subhaloes on the circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3255-3266.	1.6	1
26	Cataloging accreted stars within <i>Gaia</i> DR2 using deep learning. Astronomy and Astrophysics, 2020, 636, A75.	2.1	17
27	The mass of our Galaxy from satellite proper motions in the Gaia era. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5178-5193.	1.6	32
28	The formation times and building blocks of Milky Way-mass galaxies in the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2020, 497, 747-764.	1.6	47
29	The <scp>artemis</scp> simulations: stellar haloes of Milky Way-mass galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1765-1785.	1.6	60
30	Formation of the large nearby galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4386-4395.	1.6	33
31	A Blueprint for the Milky Way's Stellar Populations: The Power of Large Photometric and Astrometric Surveys. Astrophysical Journal, 2020, 897, 39.	1.6	28
32	Cosmological insights into the assembly of the radial and compact stellar halo of the Milky Way. Monthly Notices of the Royal Astronomical Society, 2020, 495, 29-39.	1.6	19
33	But what about: cosmic rays, magnetic fields, conduction,Âand viscosity in galaxy formation. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3465-3498.	1.6	107
34	From peculiar morphologies to Hubble-type spirals: the relation between galaxy dynamics and morphology in star-forming galaxies at z â ⁻¹ ⁄4 1.5. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1492-1512.	1.6	11
35	Fiery Cores: Bursty and Smooth Star Formation Distributions across Galaxy Centers in Cosmological Zoom-in Simulations. Astrophysical Journal Letters, 2021, 908, L31.	3.0	9
36	The structural evolution of isolated galaxies at low redshift in the IllustrisTNG simulation. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1677-1693.	1.6	4

#	Article	IF	CITATIONS
37	Virialization of the Inner CGM in the FIRE Simulations and Implications for Galaxy Disks, Star Formation, and Feedback. Astrophysical Journal, 2021, 911, 88.	1.6	66
38	VINTERGATAN – I. The origins of chemically, kinematically, and structurally distinct discs in a simulated Milky Way-mass galaxy. Monthly Notices of the Royal Astronomical Society, 2021, 503, 5826-5845.	1.6	75
39	The origin of metal-poor stars on prograde disc orbits in FIRE simulations of Milky Way-mass galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 505, 921-938.	1.6	21
40	Can cosmological simulations capture the diverse satellite populations of observed Milky Way analogues?. Monthly Notices of the Royal Astronomical Society, 2021, 505, 783-801.	1.6	30
41	Morphological Types of DM Halos in Milky Way-like Galaxies in the TNG50 Simulation: Simple, Twisted, or Stretched. Astrophysical Journal, 2021, 913, 36.	1.6	15
42	Dissipative dark matter on FIRE – I. Structural and kinematic properties of dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4421-4445.	1.6	18
43	Inferring the Morphology of Stellar Distribution in TNG50: Twisted and Twisted-stretched Shapes. Astrophysical Journal, 2021, 918, 7.	1.6	9
44	Formation of massive disc galaxies in the IllustrisTNG simulation. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3301-3311.	1.6	17
45	Neutral CGM as damped Ly α absorbers at high redshift. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2869-2884.	1.6	17
46	Cosmological Simulations of Quasar Fueling to Subparsec Scales Using Lagrangian Hyper-refinement. Astrophysical Journal, 2021, 917, 53.	1.6	49
47	High-resolution, 3D radiative transfer modelling. Astronomy and Astrophysics, 2020, 637, A24.	2.1	17
48	Informing dark matter direct detection limits with the ARTEMIS simulations. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 016-016.	1.9	10
49	Testing physical models for cosmic ray transport coefficients on galactic scales: self-confinement and extrinsic turbulence at â^1⁄4GeV energies. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4184-4213.	1.6	64
50	Realistic mock observations of the sizes and stellar mass surface densities of massive galaxies in FIRE-2 zoom-in simulations. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1591-1602.	1.6	29
51	Antlia 2's Role in Driving the Ripples in the Outer Gas Disk of the Galaxy. Astrophysical Journal, 2019, 886, 67.	1.6	12
52	The Angular Momentum of the Circumgalactic Medium in the TNG100 Simulation. Astrophysical Journal, 2020, 895, 17.	1.6	26
53	A first estimate of the Milky Way dark matter halo spin. Astronomy and Astrophysics, 2022, 657, A15.	2.1	11
54	Using angular momentum maps to detect kinematically distinct galactic components. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2182-2197.	1.6	4

CITATION REPORT

#	Article	IF	CITATIONS
55	Orbital phase-driven biases in galactic mass constraints from stellar streams. Monthly Notices of the Royal Astronomical Society, 2021, 509, 5365-5381.	1.6	2
56	New Families in our Solar Neighborhood: Applying Gaussian Mixture Models for Objective Classification of Structures in the Milky Way and in Simulations. Astrophysical Journal, 2021, 921, 106.	1.6	8
57	Using action space clustering to constrain the recent accretion history of Milky Way-like galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 509, 5882-5901.	1.6	11
58	Tracing Birth Properties of Stars with Abundance Clustering. Astrophysical Journal, 2022, 924, 60.	1.6	7
59	The galaxy–halo size relation of low-mass galaxies in FIRE. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3967-3985.	1.6	13
60	Non-parametric spherical Jeans mass estimation with B-splines. Monthly Notices of the Royal Astronomical Society, 2022, 511, 5536-5549.	1.6	5
61	The origin of star–gas misalignments in simulated galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2031-2048.	1.6	7
62	The Galaxy Progenitors of Stellar Streams around Milky Way–mass Galaxies in the FIRE Cosmological Simulations. Astrophysical Journal, 2021, 920, 10.	1.6	20
63	Amplified J-factors in the Galactic Centre for velocity-dependent dark matter annihilation in FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2022, 513, 55-70.	1.6	12
64	The physical connection between central stellar surface density and stellar spin in SAMI and MaNGA nearby galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 513, 3709-3718.	1.6	2
65	3D elemental abundances of stars at formation across the histories of Milky Way-mass galaxies in the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2022, 514, 4270-4289.	1.6	14
66	Hot-mode accretion and the physics of thin-discÂgalaxyÂformation. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5056-5073.	1.6	32
67	First predicted cosmic ray spectra, primary-to-secondary ratios, and ionization rates from MHD galaxy formation simulations. Monthly Notices of the Royal Astronomical Society, 2022, 516, 3470-3514.	1.6	22
68	Milky Way-like galaxies: stellar population properties of dynamically defined discs, bulges and stellar haloes. Monthly Notices of the Royal Astronomical Society, 2022, 516, 197-215.	1.6	3
69	Shapes of Milky-Way-mass galaxies with self-interacting dark matter. Monthly Notices of the Royal Astronomical Society, 2022, 516, 2389-2405.	1.6	9
70	Gusts in the Headwind: Uncertainties in direct dark matter detection. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	1
71	The merger and assembly histories of Milky Way- and M31-like galaxies with TNG50: disc survival through mergers. Monthly Notices of the Royal Astronomical Society, 2022, 516, 5404-5427.	1.6	19
72	Stellar angular momentum can be controlled from cosmological initial conditions. Monthly Notices of the Royal Astronomical Society, 2022, 517, 3459-3468.	1.6	6

#	Article	IF	Citations
73	On the Stability of Tidal Streams in Action Space. Astrophysical Journal, 2022, 939, 2.	1.6	6
74	Galaxy–halo size relation from Sloan Digital Sky Survey Data Release 7 and the ELUCID simulation. Monthly Notices of the Royal Astronomical Society, 2022, 517, 3579-3587.	1.6	1
75	The specific angular momentum of disc galaxies and its connection with galaxy morphology, bar structure, and disc gravitational instability. Monthly Notices of the Royal Astronomical Society, 2022, 518, 1002-1021.	1.6	18
76	Orbital dynamics and histories of satellite galaxies around Milky Way – mass galaxies in the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2022, 518, 1427-1447.	1.6	11
77	Anomalies in physical cosmology. Annals of Physics, 2022, 447, 169159.	1.0	23
78	Realistic H <scp>i</scp> Âscale heights of Milky Way-mass galaxies in the FIREbox cosmological volume. Monthly Notices of the Royal Astronomical Society: Letters, 2022, 518, L63-L68.	1.2	6
79	Rapid disc settling and the transition from bursty to steady star formation in Milky Way-mass galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 519, 2598-2614.	1.6	22
80	Exploring the effects of primordial non-Gaussianity at galactic scales. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 024.	1.9	4
81	Public Data Release of the FIRE-2 Cosmological Zoom-in Simulations of Galaxy Formation. Astrophysical Journal, Supplement Series, 2023, 265, 44.	3.0	32

CITATION REPORT