CITATION REPORT List of articles citing

DOI: 10.1021/jacs.8b09375 Journal of the American Chemical Society, 2018, 140, 15883-15

Source: https://exaly.com/paper-pdf/70639955/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
154	Establishing the Golden Range of Seebeck Coefficient for Maximizing Thermoelectric Performance.		
153	Integration of multi-scale defects for optimizing thermoelectric properties of n-type CuCdFeS (x = 0-0.1). 2019 , 11, 17340-17349		11
152	Band and Phonon Engineering for Thermoelectric Enhancements of Rhombohedral GeTe. <i>ACS Applied Materials & Applied &</i>	9.5	23
151	Effects on phase transition and thermoelectric properties in the Pb-doped GeTe-Bi2Te3 alloys with thermal annealing. <i>Journal of Alloys and Compounds</i> , 2019 , 808, 151747	5.7	7
150	Realizing high figure of merit plateau in Ge Bi Te via enhanced Bi solution and Ge precipitation. <i>Journal of Alloys and Compounds</i> , 2019 , 805, 831-839	5.7	15
149	Thermoelectric power generation: from new materials to devices. 2019 , 377, 20180450		70
148	Transport Properties of CdSb Alloys with a Promising Thermoelectric Performance. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 27098-27103	9.5	6
147	Extraordinary n-Type Mg SbBi Thermoelectrics Enabled by Yttrium Doping. 2019 , 31, e1903387		74
146	The n- and p-type thermoelectricity property of GeTe by first-principles study. <i>Journal of Alloys and Compounds</i> , 2019 , 810, 151838	5.7	5
145	Enhanced thermoelectric performance in the n-type NbFeSb half-Heusler compound with heavy element Ir doping. <i>Materials Today Physics</i> , 2019 , 8, 62-70	8	29
144	Dilute Cu2Te-alloying enables extraordinary performance of r-GeTe thermoelectrics. <i>Materials Today Physics</i> , 2019 , 9, 100096	8	52
143	Stacking Fault-Induced Minimized Lattice Thermal Conductivity in the High-Performance GeTe-Based Thermoelectric Materials upon BiTe Alloying. <i>ACS Applied Materials & Conduction (Conductivity in the High-Performance (Condu</i>	9.5	39
142	Enhanced thermoelectric performance of GeTe through in situ microdomain and Ge-vacancy control. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 15181-15189	13	35
141	A descriptive model of thermoelectric transport in a resonant system of PbSe doped with Tl. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 12859-12868	13	9
140	Manipulation of Ni Interstitials for Realizing Large Power Factor in TiNiSn-Based Materials. 2019 , 5, 19	00166	23
139	Enhanced thermoelectric performance through crystal field engineering in transition metaldoped GeTe. <i>Materials Today Physics</i> , 2019 , 9, 100094	8	66
138	Cu/Sb Codoping for Tuning Carrier Concentration and Thermoelectric Performance of GeTe-Based Alloys with Ultralow Lattice Thermal Conductivity. 2019 , 2, 2596-2603		27

(2020-2019)

137	Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance. 2019 , 12, 1396-1403		147	
136	Maximization of transporting bands for high-performance SnTe alloy thermoelectrics. <i>Materials Today Physics</i> , 2019 , 9, 100091	8	34	
135	Experimental revelation of multiband transport in heavily doped BaCd2Sb2 with promising thermoelectric performance. <i>Materials Today Physics</i> , 2019 , 8, 123-127	8	18	•
134	Thermoelectric GeTe with Diverse Degrees of Freedom Having Secured Superhigh Performance. 2019 , 31, e1807071		134	
133	Design, Performance, and Application of Thermoelectric Nanogenerators. 2019 , 15, e1805241		45	
132	High-performance electron-doped GeMnTe2: hierarchical structure and low thermal conductivity. Journal of Materials Chemistry A, 2019 , 7, 27361-27366	13	10	
131	Realizing high thermoelectric performance in GeTe through decreasing the phase transition temperature via entropy engineering. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 26393-26401	13	58	
130	Zr vacancy interfaces: an effective strategy for collaborative optimization of ZrNiSn-based thermoelectric performance. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 26053-26061	13	7	
129	Chalcogenide Thermoelectrics Empowered by an Unconventional Bonding Mechanism. 2020 , 30, 19048	362	88	
128	Excellent Thermoelectric Performance Realized in p-Type Pseudolayered Sb2Te3(GeTe)12 via Rhenium Doping. 2020 , 3, 2063-2069		10	
127	Discordant nature of Cd in GeTe enhances phonon scattering and improves band convergence for high thermoelectric performance. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 1193-1204	13	49	
126	Ternary thermoelectric AB2C2 Zintls. <i>Journal of Alloys and Compounds</i> , 2020 , 821, 153497	5.7	11	
125	Revealing nano-chemistry at lattice defects in thermoelectric materials using atom probe tomography. 2020 , 32, 260-274		31	
124	Discovery of low-temperature GeTe-based thermoelectric alloys with high performance competing with Bi2Te3. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 1660-1667	13	30	
123	Stacking faults modulation for scattering optimization in GeTe-based thermoelectric materials. <i>Nano Energy</i> , 2020 , 68, 104347	17.1	46	
122	Near-room-temperature thermoelectric materials and their application prospects in geothermal power generation. 2020 , 6, 1		14	
121	Suppressed phase transition and enhanced thermoelectric performance in iodine-doped AgCuTe. <i>Nano Energy</i> , 2020 , 77, 105297	17.1	8	
120	High Power Factor and Enhanced Thermoelectric Performance in Sc and Bi Codoped GeTe: Insights into the Hidden Role of Rhombohedral Distortion Degree. <i>Advanced Energy Materials</i> , 2020 , 10, 200258	38 ^{21.8}	45	

119	Shaping the role of germanium vacancies in germanium telluride: metastable cubic structure stabilization, band structure modification, and stable N-type conduction. 2020 , 12,		19
118	Near-room-temperature rhombohedral Ge1-Pb Te thermoelectrics. <i>Materials Today Physics</i> , 2020 , 15, 100260	8	14
117	Ultralow Thermal Conductivity, Enhanced Mechanical Stability, and High Thermoelectric Performance in (GeTe)(SnSe)(SnS). <i>Journal of the American Chemical Society</i> , 2020 ,	16.4	32
116	Origins of the enhanced thermoelectric performance for p-type Ge1-xPbxTe alloys. 2020 , 596, 412397		6
115	Rational structural design and manipulation advance SnSe thermoelectrics. 2020 , 7, 3065-3096		37
114	Vacancy engineering in rock-salt type (IV-VI)x(V-VI) materials for high thermoelectric performance. <i>Nano Energy</i> , 2020 , 78, 105198	17.1	6
113	Ternary Compounds CuTe (= Y, Sm, and Dy): A Family of New Thermoelectric Materials with Trigonal Structures. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 40486-40494	9.5	1
112	Achieving Enhanced Thermoelectric Performance in (SnTe)(SbTe) and (SnTe)(SbSe) Synthesized via Solvothermal Reaction and Sintering. <i>ACS Applied Materials & Distributed Mater</i>	9.5	11
111	Tailoring the phase transition temperature to achieve high-performance cubic GeTe-based thermoelectrics. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 18880-18890	13	33
110	Thermoelectric properties of flexible PEDOT:PSS-based films tuned by SnSe the vacuum filtration method 2020 , 10, 43840-43846		7
109	Constructing van der Waals gaps in cubic-structured SnTe-based thermoelectric materials. 2020 , 13, 51	35-514	221
108	Structural and thermal transport properties of ferroelectric domain walls in GeTe from first principles. 2020 , 101,		4
107	Half-Heusler Thermoelectric Module with High Conversion Efficiency and High Power Density. <i>Advanced Energy Materials</i> , 2020 , 10, 2000888	21.8	40
106	Mg/Ca doping ameliorates the thermoelectric properties of GeTe: Influence of electronic structure engineering. <i>Journal of Alloys and Compounds</i> , 2020 , 843, 155989	5.7	16
105	Achieving high thermoelectric quality factor toward high figure of merit in GeTe. <i>Materials Today Physics</i> , 2020 , 14, 100239	8	37
104	Al-Si Alloy as a Diffusion Barrier for GeTe-Based Thermoelectric Legs with High Interfacial Reliability and Mechanical Strength. <i>ACS Applied Materials & Discrete Section</i> , 12, 18562-18569	9.5	10
103	Effects of multi-scale defects on the thermoelectric properties of delafossite CuCr1-xMgxO2 materials. <i>Journal of Alloys and Compounds</i> , 2020 , 844, 156119	5.7	8
102	Advanced Thermoelectric Design: From Materials and Structures to Devices. 2020 , 120, 7399-7515		482

(2021-2020)

101	Manipulating the Ge Vacancies and Ge Precipitates through Cr Doping for Realizing the High-Performance GeTe Thermoelectric Material. 2020 , 16, e1906921		80
100	Positive Effect of Ge Vacancies on Facilitating Band Convergence and Suppressing Bipolar Transport in GeTe-Based Alloys for High Thermoelectric Performance. 2020 , 30, 1910059		32
99	Cu Interstitials Enable Carriers and Dislocations for Thermoelectric Enhancements in n-PbTe0.75Se0.25. 2020 , 6, 523-537		33
98	Band Engineering and Thermoelectric Performance Optimization of p-Type GeTe-Based Alloys through Ti/Sb Co-Doping. 2020 , 124, 5583-5590		10
97	Impact of atomic vacancy on phase change and structure in GexTe1⊠ films. 2020 , 31, 5936-5940		1
96	Synergistic optimization of thermoelectric performance of Sb doped GeTe with a strained domain and domain boundaries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 5332-5341		29
95	High-Performance Thermoelectric SnSe: Aqueous Synthesis, Innovations, and Challenges. 2020 , 7, 1902923		85
94	Promising and Eco-Friendly Cu X-Based Thermoelectric Materials: Progress and Applications. 2020 , 32, e1905703		92
93	Toward Accelerated Thermoelectric Materials and Process Discovery. 2020 , 3, 2240-2257		42
92	Realizing Improved Thermoelectric Performance in Bil3-Doped Sb2Te3(GeTe)17 via Introducing Dual Vacancy Defects. 2020 , 32, 1693-1701		17
91	Enhancing the Thermoelectric Performance of p-Type MgSb via Codoping of Li and Cd. <i>ACS Applied Materials & Materi</i>		25
90	PbTe nanodots confined on ternary B2O3/BC2O/C nanosheets as electrode for efficient sodium storage. 2020 , 461, 228110		10
89	GeTe Thermoelectrics. 2020 , 4, 986-1003		89
88	Defect Engineering for Realizing p-Type AgBiSe2 with a Promising Thermoelectric Performance. 2020 , 32, 3528-3536		7
87	Vacancy-Based Defect Regulation for High Thermoelectric Performance in GeSbTe Compounds. ACS Applied Materials & Defect Regulation for High Thermoelectric Performance in GeSbTe Compounds. 9.5		24
86	Improved Figure of Merit of CuSnSe via Band Structure Modification and Energy-Dependent Carrier Scattering. <i>ACS Applied Materials & Description</i> Scattering.		11
85	High-Performance GeTe-Based Thermoelectrics: from Materials to Devices. <i>Advanced Energy Materials</i> , 2020 , 10, 2000367	8	94
84	Tailoring the chemical bonding of GeTe-based alloys by MgB2 alloying to simultaneously enhance their mechanical and thermoelectric performance. <i>Materials Today Physics</i> , 2021 , 16, 100308		15

83	Enhancing thermoelectric performance of Sn1-Sb2/3Te via synergistic charge balanced compensation doping. <i>Chemical Engineering Journal</i> , 2021 , 404, 126925	6
82	Elucidating the role of lattice thermal conductivity in Ephases of IV-VI monochalcogenides for highly efficient thermoelectric performance. 2021 , 45, 6369-6382	2
81	Realizing widespread resonance effects to enhance thermoelectric performance of SnTe. <i>Journal of Alloys and Compounds</i> , 2021 , 852, 156989	2
80	Compositional Fluctuations Locked by Athermal Transformation Yielding High Thermoelectric Performance in GeTe. 2021 , 33, e2005612	22
79	High thermoelectric performance by chemical potential tuning and lattice anharmonicity in GeTe1IIIx compounds. 2021 , 8, 1205-1214	О
78	Generation of multi-dimensional defect structures for synergetic engineering of hole and phonon transport: enhanced thermoelectric performance in Sb and Cu co-doped GeTe. 2021 , 8, 2782-2787	4
77	High efficiency GeTe-based materials and modules for thermoelectric power generation. 2021 , 14, 995-1003	33
76	Realizing zT Values of 2.0 in Cubic GeTe. 2021 , 7, 476-482	16
75	Ultralow Lattice Thermal Conductivity and Superhigh Thermoelectric Figure-of-Merit in (Mg, Bi) Co-Doped GeTe. 2021 , 33, e2008773	44
74	Anomalous Thermopower and High in GeMnTe Driven by Spin@Thermodynamic Entropy. <i>Research</i> , 2021 , 2021, 1949070	O
73	Simultaneously optimized thermoelectric performance of n-type Cu2Se alloyed Bi2Te3. 2021 , 296, 121987	4
72	Enhanced Thermoelectric Performance in Ge Sb Te/FeGe Composites Enabled by Hierarchical Defects. 2021 , 17, e2100915	O
71	Carbon allotrope hybrids advance thermoelectric development and applications. 2021, 141, 110800	46
70	Eliciting High-Performance Thermoelectric Materials via Phase Diagram Engineering: A Review. 2021 , 2, 2100054	1
69	Alloying Cr2/3Te in AgCrSe2 compound for improving thermoelectrics. <i>Applied Physics Letters</i> , 2021 , 118, 193902	1
68	Lead-free SnTe-based compounds as advanced thermoelectrics. <i>Materials Today Physics</i> , 2021 , 19, 10040 5	17
67	Enhancing Near-Room-Temperature GeTe Thermoelectrics through In/Pb Co-doping. <i>ACS Applied Materials & ACS Applied Materials &</i>	3
66	Lone-Pair Engineering: Achieving Ultralow Lattice Thermal Conductivity and Enhanced Thermoelectric Performance in Al-doped GeTe-based alloys. <i>Materials Today Physics</i> , 2021 , 100497	9

(2021-2021)

65	Boron Strengthened GeTe-Based Alloys for Robust Thermoelectric Devices with High Output Power Density. <i>Advanced Energy Materials</i> , 2021 , 11, 2102012	21.8	12
64	Regulating Te Vacancies through Dopant Balancing via Excess Ag Enables Rebounding Power Factor and High Thermoelectric Performance in p-Type PbTe. 2021 , 8, e2100895		9
63	Optimizing Electronic Quality Factor toward High-Performance Ge Ta Sb Te Thermoelectrics: The Role of Transition Metal Doping. 2021 , 33, e2102575		24
62	Stabilizing the Optimal Carrier Concentration in Al/Sb-Codoped GeTe for High Thermoelectric Performance. <i>ACS Applied Materials & Description</i> (2015) 13, 45717-45725	9.5	6
61	Band structure and microstructure modulations enable high quality factor to elevate thermoelectric performance in Ge0.9Sb0.1Te-x%FeTe2. <i>Materials Today Physics</i> , 2021 , 20, 100444	8	6
60	Enhanced thermoelectric performance in GeTe-Sb2Te3 pseudo-binary via lattice symmetry regulation and microstructure stabilization. <i>Materials Today Physics</i> , 2021 , 21, 100507	8	5
59	Decoupling of thermoelectric transport performance of Ag doped and Se alloyed tellurium induced by carrier mobility compensation. <i>Journal of Materials Science and Technology</i> , 2022 , 101, 71-79	9.1	1
58	Intrinsic vacancy suppression and band convergence to enhance thermoelectric performance of (Ge, Bi, Sb)Te crystals. <i>Chemical Engineering Journal</i> , 2022 , 429, 132275	14.7	5
57	Enhanced thermoelectric performance of Cu1.8S via lattice softening. <i>Chemical Engineering Journal</i> , 2022 , 428, 131153	14.7	3
56	Effect of the polar distortion on the thermoelectric properties of GeTe. 2021 , 94, 1		2
55	Cu2Se thermoelectrics: property, methodology, and device. 2020 , 35, 100938		57
55 54	Cu2Se thermoelectrics: property, methodology, and device. 2020 , 35, 100938 Band convergence and carrier-density fine-tuning as the electronic origin of high-average thermoelectric performance in Pb-doped GeTe-based alloys. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 11370-11380	13	57
	Band convergence and carrier-density fine-tuning as the electronic origin of high-average thermoelectric performance in Pb-doped GeTe-based alloys. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 11370-11380 Influence of Ge1-xInxTe Microstructure on Thermoelectric Properties. <i>Wuji Cailiao Xuebao/Journal</i>	13	
54	Band convergence and carrier-density fine-tuning as the electronic origin of high-average thermoelectric performance in Pb-doped GeTe-based alloys. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 11370-11380 Influence of Ge1-xInxTe Microstructure on Thermoelectric Properties. <i>Wuji Cailiao Xuebao/Journal</i>	1	15
54	Band convergence and carrier-density fine-tuning as the electronic origin of high-average thermoelectric performance in Pb-doped GeTe-based alloys. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 11370-11380 Influence of Ge1-xInxTe Microstructure on Thermoelectric Properties. <i>Wuji Cailiao Xuebao/Journal of Inorganic Materials</i> , 2020 , 35, 916 Defects Engineering with Multiple Dimensions in Thermoelectric Materials. <i>Research</i> , 2020 , 2020, 96527 Se-alloving reducing lattice thermal conductivity of Ge0.95Bi0.05Te. <i>Journal of Materials Science</i>	1	15
545352	Band convergence and carrier-density fine-tuning as the electronic origin of high-average thermoelectric performance in Pb-doped GeTe-based alloys. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 11370-11380 Influence of Ge1-xInxTe Microstructure on Thermoelectric Properties. <i>Wuji Cailiao Xuebao/Journal of Inorganic Materials</i> , 2020 , 35, 916 Defects Engineering with Multiple Dimensions in Thermoelectric Materials. <i>Research</i> , 2020 , 2020, 96527 Se-alloying reducing lattice thermal conductivity of Ge0.95Bi0.05Te. <i>Journal of Materials Science and Technology</i> , 2022 , 106, 249-256	1 7 4 %	15 2 33 7
54535251	Band convergence and carrier-density fine-tuning as the electronic origin of high-average thermoelectric performance in Pb-doped GeTe-based alloys. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 11370-11380 Influence of Ge1-xInxTe Microstructure on Thermoelectric Properties. <i>Wuji Cailiao Xuebao/Journal of Inorganic Materials</i> , 2020 , 35, 916 Defects Engineering with Multiple Dimensions in Thermoelectric Materials. <i>Research</i> , 2020 , 2020, 96527 Se-alloying reducing lattice thermal conductivity of Ge0.95Bi0.05Te. <i>Journal of Materials Science and Technology</i> , 2022 , 106, 249-256 Achieving Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in GeTe Alloys via Introducing CuTe Nanocrystals and Resonant Level Doping. <i>ACS Nano</i> , 2021 , The challenge of tuning the ratio of lattice/total thermal conductivity toward conversion efficiency.	1 7 4 % 9.1	15 2 33 7

47	An Overview of the Strategies for Tin Selenide Advancement in Thermoelectric Application <i>Micromachines</i> , 2021 , 12,	3.3	1
46	High Thermoelectric Performance Achieved in Sb-Doped GeTe by Manipulating Carrier Concentration and Nanoscale Twin Grains <i>Materials</i> , 2022 , 15,	3.5	O
45	Cation disorder and thermoelectric properties in layered ternary compounds MBi2Te4 (M = Ge, Sn). Journal of Materials Chemistry C,	7.1	О
44	Ferroelectric engineering: Enhanced thermoelectric performance by local structural heterogeneity. <i>Science China Materials</i> , 1	7.1	1
43	Regulation of Ge vacancies through Sm doping resulting in superior thermoelectric performance in GeTe. <i>Journal of Materials Chemistry A</i> ,	13	7
42	Micro thermoelectric devices: from principles to innovative applications. Chinese Physics B,	1.2	1
41	Synergistically Optimized Thermal Conductivity and Carrier Concentration in GeTe by Bi-Se Codoping <i>ACS Applied Materials & amp; Interfaces</i> , 2022 ,	9.5	1
40	Electron Delocalization Enhances the Thermoelectric Performance of Misfit Layer Compound (Sn1 $\mbox{\sc B}$) Bi x S)1.2(TiS2)2. <i>Chinese Physics B</i> ,	1.2	
39	The role of Ge vacancies and Sb doping in GeTe: a comparative study of Thermoelectric Transport Properties in SbxGe1-1.5xTe and SbxGe1-xTe Compounds. <i>Materials Today Physics</i> , 2022 , 100682	8	1
38	Enhanced thermoelectric performance of n-type (PbSe)n(Sb2Te3) pseudo-binary via Zn filling and Ag2Se compositing. <i>Journal of Alloys and Compounds</i> , 2022 , 907, 164416	5.7	1
37	Designing good compatibility factor in segmented Bi0.5Sb1.5Te3 ©eTe thermoelectrics for high power conversion efficiency. <i>Nano Energy</i> , 2022 , 96, 107147	17.1	2
36	Simultaneously achieving high ZT and mechanical hardness in highly alloyed GeTe with symmetric nanodomains. <i>Chemical Engineering Journal</i> , 2022 , 441, 136131	14.7	9
35	Realizing n-type gete through suppressing the formation of cation vacancies and bi-doping*. <i>Chinese Physics Letters</i> , 2021 , 38, 127201	1.8	1
34	Stepwise Ge vacancy manipulation enhances the thermoelectric performance of cubic GeSe. <i>Chemical Engineering Journal</i> , 2022 , 442, 136332	14.7	3
33	Realizing high thermoelectric performance in GeTe by defect engineering on cation sites. <i>Journal of Materials Chemistry C</i> ,	7.1	2
32	Band Modulation and Strain Fluctuation for Realizing High Average zT in GeTe. <i>Advanced Energy Materials</i> , 2201043	21.8	3
31	Individualization of optimal operation currents for promoting multi-stage thermoelectric cooling. <i>Materials Today Physics</i> , 2022 , 100746	8	O
30	The effect of rare earth element doping on thermoelectric properties of GeTe. <i>Chemical Engineering Journal</i> , 2022 , 446, 137278	14.7	1

29	Effect of aliovalent substituted highly disordered GeTe compound@thermoelectric performance. Journal of Alloys and Compounds, 2022, 922, 166221 5.7	
28	Highly Thermoelectric ZnO@MXene (Ti3C2Tx) Composite Films Grown by Atomic Layer Deposition. ACS Applied Materials & amp; Interfaces, 9.5	Ο
27	Enhancing the thermoelectric performance of Sb2Si2Te6 by germanium doping.	
26	Microstructure design via novel thermodynamic route to enhance the thermoelectric performance of GeTe. 2022 , 27, 100820	O
25	Isovalent substitution in metal chalcogenide materials for improving thermoelectric power generation & amp; ndash; A critical review. 2022,	1
24	Thermoelectric Materials. 2022 ,	O
23	Chemistry in Advancing Thermoelectric GeTe Materials. 2022 , 55, 3178-3190	3
22	Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials. 2022, 13,	3
21	Advances in Versatile GeTe Thermoelectrics from Materials to Devices. 2208272	Ο
20	High performance GeTe thermoelectrics enabled by lattice strain construction. 2023 , 244, 118565	Ο
19	Realizing n-type CdSb with promising thermoelectric performance. 2023 , 144, 54-61	0
18	Grain Boundary Complexions Enable a Simultaneous Optimization of Electron and Phonon Transport Leading to High-Performance GeTe Thermoelectric Devices. 2203361	2
17	Exploration of Metal Alloys as Zero-Resistance Interfacial Modification Layers for Garnet-Type Solid Electrolytes. 2210192	0
16	The enhanced negative thermal expansion in less-oxygen-vacancies copper pyrophosphate. 2023 , 146, 80-85	Ο
15	Extremely high corrosion resistance of Zn Ni1[1r2O4 spinel as sidewalls in the aluminum electrolyte. 2022 ,	0
14	Enhanced Thermoelectric Performance in GeTe by Synergy of Midgap state and Band Convergence. 2212421	0
13	Enhanced Density of States Facilitates High Thermoelectric Performance in Solution-Grown Ge- and In-Codoped SnSe Nanoplates. 2023 , 17, 801-810	0
12	All Cubic-Phase ETAGS Thermoelectrics Over the Entire Mid-Temperature Range. 2206439	O

11	Screening Metal Electrodes for Thermoelectric PbTe. 2023 , 15, 6169-6176	1
10	Band Effective Masses of Cubic (GeTe) ₁₀ Sb ₂ Te ₃ and Its Anisotropy. 2023 , 64, 522-526	O
9	Theoretical Study of Intrinsic and Extrinsic Point Defects and Their Effects on Thermoelectric Properties of Cu2SnSe3. 2023 , 62, 2607-2616	O
8	High-Power Factor Enabled by Efficient Manipulation Interaxial Angle for Enhancing Thermoelectrics of GeTe-Cu2Te Alloys.	O
7	Fine electron and phonon transports manipulation by Mn compensation for high thermoelectric performance of Sb2Te3(SnTe)n materials. 2023 , 33, 101055	О
6	Colloidal Ternary Telluride Quantum Dots for Tunable Phase Change Optics in the Visible and Near-Infrared. 2023 , 17, 6985-6997	O
5	Unraveling the Role of Entropy in Thermoelectrics: Entropy-Stabilized Quintuple Rock Salt PbGeSnCdxTe3+x.	О
4	Effect of crystal field engineering and Fermi level optimization on thermoelectric properties of Ge1.01Te: Experimental investigation and theoretical insight. 2023 , 7,	O
3	High-performance thermoelectric ceramics and their applications. 2023, 347-362	О
2	Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in Ge1 DBixCayTe with Ultrafine Ferroelectric Domain Structure.	O
1	Fundamentals of thermoelectrics. 2023 , 259-281	0