Phosphine Organocatalysis

Chemical Reviews 118, 10049-10293 DOI: 10.1021/acs.chemrev.8b00081

Citation Report

	CITATION REPORT	
Article	IF	CITATIONS
Carbon–nitrogen bond cleavage of pyridine with two molecular substituted allenoates: access t 2-arylpyrimidin-4(3 <i>H</i>)-one. Chemical Communications, 2018, 54, 14128-14131.	.0 2.2	4
Phosphine-mediated enantioselective [1 + 4]-annulation of Morita–Baylis–Hillman carbonates 2-enoylpyridines. RSC Advances, 2018, 8, 41620-41623.	s with 1.7	13
Organophosphine-Catalyzed [4C+X] Annulations. Molecules, 2018, 23, 3022.	1.7	8
Phosphineâ€Catalyzed Enantioselective [1+4] Annulation of Moritaâ€Baylisâ€Hillman Carbonates α,βâ€Unsaturated Imines. Asian Journal of Organic Chemistry, 2019, 8, 242-245.	s with 1.3	21
Complementary Synthetic Approaches toward 9-Phosphatriptycene and Structure–Reactivity Investigations of Its Association with Sterically Hindered Lewis Acids. Journal of Organic Chemistry 2019, 84, 11268-11274.	y, 1.7	15
Flexible Synthesis of Phosphoryl-Substituted Imidazolines, Tetrahydropyrimidines, and Thioamides Sulfur-Mediated Processes. Journal of Organic Chemistry, 2019, 84, 11533-11541.	by 1.7	14
Facile access to highly functionalized hydroisoquinoline derivatives <i>via</i> phosphine-catalyzed sequential [3+3]/[3+3] annulation. Chemical Communications, 2019, 55, 10976-10979.	2.2	17
Access to Arylâ€Naphthaquinone Atropisomers by Phosphineâ€Catalyzed Atroposelective (4+2) Annulations of δâ€Acetoxy Allenoates with 2â€Hydroxyquinone Derivatives. Angewandte Chemie, 15478-15482.	, 2019, 131, 1.6	14
Access to Arylâ€Naphthaquinone Atropisomers by Phosphineâ€Catalyzed Atroposelective (4+2) Annulations of δâ€Acetoxy Allenoates with 2â€Hydroxyquinone Derivatives. Angewandte Chemie International Edition, 2019, 58, 15334-15338.	- 7.2	41
NHCâ€Coordinated Diphospheneâ€Stabilized Gold(I) Hydride and Its Reversible Conversion to Go Formate with CO ₂ . Angewandte Chemie - International Edition, 2019, 58, 15367-15	ld(I) 371. 7.2	10
NHCâ€Coordinated Diphospheneâ€Stabilized Gold(I) Hydride and Its Reversible Conversion to Go Formate with CO 2. Angewandte Chemie, 2019, 131, 15511-15515.	ld(I) 1.6	0
Phosphine-Catalyzed Divergent [4+3] Domino Annulations of CF3-Containing Imines with MBH Carbonates: Construction of Perfluoroalkylated Benzazepines. Organic Letters, 2019, 21, 7060-70	064. ^{2.4}	27
Phosphine-catalyzed Michael additions to α-methylene-γ-butyrolactones. Organic and Biomolecu Chemistry, 2019, 17, 7293-7299.	lar 1.5	10
Enantioselective Nâ€Heterocyclic Carbene Catalyzed Bis(enoate) Rauhut–Currier Reaction. Ang Chemie - International Edition, 2019, 58, 13370-13374.	ewandte 7.2	17
Phosphineâ€Catalyzed [3+2] Cycloaddition and Vinylation of Indoleâ€Derived α,αâ€Dicyanoolef γ‣ubstituted Allenoates. Asian Journal of Organic Chemistry, 2019, 8, 1893-1902.	ins with 1.3	3
Catalystâ€Free Synthesis of Novel Dimeric Tetrahydroisoquinoline Derivatives through [2+2+2] Annulation. European Journal of Organic Chemistry, 2019, 2019, 4941-4950.	1.2	9

17	Driving Recursive Dehydration by P ^{III} /P ^V Catalysis: Annulation of Amines and Carboxylic Acids by Sequential C–N and C–C Bond Formation. Journal of the American Chemical Society, 2019, 141, 12507-12512.	6.6	47
18	Scandium catalysed stereoselective thio-allylation of allenyl-imidates. Chemical Communications, 2019, 55, 9669-9672.	2.2	3

#

#	Article	IF	CITATIONS
19	Enantioselective Nâ€Heterocyclic Carbene Catalyzed Bis(enoate) Rauhut–Currier Reaction. Angewandte Chemie, 2019, 131, 13504-13508.	1.6	4
20	Phosphine-catalyzed regiodivergent annulations of Î ³ -substituted allenoates with conjugated dienes. Chemical Communications, 2019, 55, 10120-10123.	2.2	18
21	Direct methylation and carbonylation of <i>in situ</i> generated arynes <i>via</i> HDDA-Wittig coupling. Organic Chemistry Frontiers, 2019, 6, 2788-2791.	2.3	9
22	Aromatic-fused diketophosphanyl-core organic functional materials: phosphorus mimics of imides or beyond?. Organic and Biomolecular Chemistry, 2019, 17, 7807-7821.	1.5	10
23	Phosphineâ€Catalyzed [4+2] Cycloadditions of Allenic Ketones: Enantioselective Synthesis of Functionalized Tetrahydropyridines. Chemistry - an Asian Journal, 2019, 14, 3409-3413.	1.7	18
24	Catalytic CO ₂ Reduction with Boron―and Aluminum Hydrides. ChemCatChem, 2019, 11, 5275-5281.	1.8	46
25	Phosphonium Phenolate Zwitterion <i>vs</i> Phosphonium Ylide: Synthesis, Characterization and Reactivity Study of a Trimethylphosphonium Phenolate Zwitterion. Advanced Synthesis and Catalysis, 2019, 361, 5715-5720.	2.1	20
26	Rh-Catalyzed Asymmetric Hydrogenation of (Z)-β-Phosphorylated Enamides: Highly Enantioselective Access to β-Aminophosphines. Organic Letters, 2019, 21, 8921-8924.	2.4	17
27	1,5-Phosphonium betaines from <i>N</i> -triflylpropiolamides, triphenylphosphane, and active methylene compounds. Beilstein Journal of Organic Chemistry, 2019, 15, 2603-2611.	1.3	3
28	Acidâ€Catalyzed Synthesis of Quinoline Derivatives from 2â€Methylquinolines and 2â€Aryloxy/Alkoxybenzaldehyde in Aqueous Medium. European Journal of Organic Chemistry, 2019, 2019, 7452-7462.	1.2	9
29	Butenolide Synthesis from Functionalized Cyclopropenones. Organic Letters, 2019, 21, 8695-8699.	2.4	23
30	Organophosphorusâ€Catalyzed Deoxygenation of Sulfonyl Chlorides: Electrophilic (Fluoroalkyl)sulfenylation by P ^{III} /P ^V =O Redox Cycling. Angewandte Chemie - International Edition, 2019, 58, 2864-2869.	7.2	76
31	Redox-neutral organocatalytic Mitsunobu reactions. Science, 2019, 365, 910-914.	6.0	144
32	Phosphineâ€Catalyzed βâ€Selective Conjugate Addition of αâ€Fluoroâ€Î²â€ketoamides to Allenic Esters. Europe Journal of Organic Chemistry, 2019, 2019, 6138-6142.	an 1.2	13
33	Phosphine-Catalyzed Asymmetric Cycloaddition Reaction of Diazenes: Enantioselective Synthesis of Chiral Dihydropyrazoles. Organic Letters, 2019, 21, 7519-7523.	2.4	25
34	Design, synthesis and application of a new type of bifunctional Le-Phos in highly enantioselective γ-addition reactions of N-centered nucleophiles to allenoates. Chemical Science, 2019, 10, 10510-10515.	3.7	21
35	Catalyst-free hydrophosphination of alkenes in presence of 2-methyltetrahydrofuran: a green and easy access to a wide range of tertiary phosphines. RSC Advances, 2019, 9, 27250-27256.	1.7	18
36	New Bisoxazoline Ligands Enable Enantioselective Electrocatalytic Cyanofunctionalization of Vinylarenes. Journal of the American Chemical Society, 2019, 141, 14480-14485.	6.6	164

#	Article	IF	CITATIONS
37	Phosphine-Catalyzed Chemo- and Diastereoselective $[2 + 2 + 2]$ and $[3 + 2]$ Annulations of \hat{I}^3 -Methyl Allenoates with Doubly Activated Olefins: Syntheses of Highly Substituted Cyclohexanes and Cyclopentenes. Journal of Organic Chemistry, 2019, 84, 12490-12498.	1.7	23
38	Phosphine-mediated sequential annulations of allenyl ketone and isocyanide: a bicyclization strategy to access a furan-fused eight-membered ring and a spirocycle. Chemical Communications, 2019, 55, 12180-12183.	2.2	15
39	Organophosphane-Promoted Synthesis of Functionalized α,β-Unsaturated Alkenes and Furanones via Direct β-Acylation. Organic Letters, 2019, 21, 8339-8343.	2.4	13
40	Divergent synthesis of spirocyclopentene-pyrazolones and pyrano[2,3-c]-pyrazoles via Lewis base controlled annulation reactions. Tetrahedron Letters, 2019, 60, 151206.	0.7	17
41	Ni-Catalyzed Asymmetric Allylation of Secondary Phosphine Oxides. Journal of the American Chemical Society, 2019, 141, 16584-16589.	6.6	93
42	Iridium-Catalyzed Cross-Coupling Reactions of Alkenes by Hydrogen Transfer. Organic Letters, 2019, 21, 8219-8224.	2.4	33
43	Cyclohexyl-Fused, Spirobiindane-Derived, Phosphine-Catalyzed Synthesis of Tricyclic Î ³ -Lactams and Kinetic Resolution of Î ³ -Substituted Allenoates. Journal of the American Chemical Society, 2019, 141, 16362-16373.	6.6	47
44	Decarboxylative Phosphine Synthesis: Insights into the Catalytic, Autocatalytic, and Inhibitory Roles of Additives and Intermediates. ACS Catalysis, 2019, 9, 9764-9774.	5.5	38
45	Phosphine Sequentially Catalyzed Domino 1,6-Addition/Annulation: Access to Functionalized Chromans and Tetrahydroquinolines with an Ethynyl-Substituted All-Carbon Quaternary Center. Organic Letters, 2019, 21, 908-912.	2.4	51
46	Phosphine- and water-promoted pentannulative aldol reaction. Organic and Biomolecular Chemistry, 2019, 17, 1547-1551.	1.5	7
47	Phosphine-promoted [4 + 3] annulation of allenoate with aziridines for synthesis of tetrahydroazepines: phosphine-dependent [3 + 3] and [4 + 3] pathways. RSC Advances, 2019, 9, 1214-1221.	1.7	9
48	Baseâ€Catalyzed Stereoselective 1,6â€Conjugated Addition/Aromatization of P(O)–H Compounds with <i>para</i> â€Quinone Methides. European Journal of Organic Chemistry, 2019, 2019, 3273-3282.	1.2	15
49	Nâ€Heterocyclic Carbene Catalyzed (5+1) Annulations Exploiting a Vinyl Dianion Synthon Strategy. Angewandte Chemie, 2019, 131, 11607-11614.	1.6	6
50	Phosphine-Catalyzed α-Umpolung–Aldol Reaction for the Synthesis of Benzo[b]azapin-3-ones. Organic Letters, 2019, 21, 5143-5146.	2.4	33
51	Phosphine-catalyzed dearomative [3+2] annulation of 3-nitroindoles and allenoates. Tetrahedron Letters, 2019, 60, 1885-1890.	0.7	12
52	Efficient synthesis of (<i>E</i>)-2-nitromethylcinnamates <i>via</i> phosphine-catalyzed tandem α-addition and 1,3-rearrangement. Organic Chemistry Frontiers, 2019, 6, 2872-2876.	2.3	11
53	Allylic Phosphorus Ylides Directly Generated from Alcohols with Water as the Only Byproduct. Organic Letters, 2019, 21, 4168-4172.	2.4	18
54	A bicyclization reaction with two molecular allenyl ketones and isocyanides: synthesis of a lactone-containing azaspirocycle derivative. Chemical Communications, 2019, 55, 7231-7234.	2.2	19

#	Article	IF	CITATIONS
55	Phosphineâ€Catalyzed Activation of Alkylidenecyclopropanes: Rearrangement to Form Polysubstituted Furans and Dienones. Angewandte Chemie, 2019, 131, 10808-10812.	1.6	8
56	Direct Activation of Unmodified Morita–Baylis–Hillman Alcohols through Phosphine Catalysis for Rapid Construction of Three-Dimensional Heterocyclic Compounds. Organic Letters, 2019, 21, 4882-4886.	2.4	28
57	Nâ€Heterocyclic Carbene Catalyzed (5+1) Annulations Exploiting a Vinyl Dianion Synthon Strategy. Angewandte Chemie - International Edition, 2019, 58, 11483-11490.	7.2	19
58	Catalytic and Asymmetric Process via P ^{III} /P ^V â•O Redox Cycling: Access to (Trifluoromethyl)cyclobutenes via a Michael Addition/Wittig Olefination Reaction. Journal of the American Chemical Society, 2019, 141, 10142-10147.	6.6	40
59	An Intramolecular Wittig Approach toward Heteroarenes: Synthesis of Pyrazoles, Isoxazoles, and Chromenone-oximes. Organic Letters, 2019, 21, 4219-4223.	2.4	45
60	Direct Alkenylation of 2â€Methylquinolines with Aldehydes through Synergistic Catalysis of 1,3â€Dimethylbarbituric Acid and HOAc. Advanced Synthesis and Catalysis, 2019, 361, 3619-3623.	2.1	15
61	Design and Optimization of Catalysts Based on Mechanistic Insights Derived from Quantum Chemical Reaction Modeling. Chemical Reviews, 2019, 119, 6509-6560.	23.0	130
62	Phosphane-Catalyzed [3+2] Annulation of Allenoates with 3-Nitro-2H -chromenes: Synthesis of Tetrahydrocyclopenta[c]chromenes. European Journal of Organic Chemistry, 2019, 2019, 5441-5451.	1.2	15
63	Phosphine-catalyzed dearomative (3 + 2) annulation of 2-nitrobenzofurans and nitrobenzothiophenes with allenoates. Organic and Biomolecular Chemistry, 2019, 17, 5294-5304.	1.5	26
64	Phosphineâ€Catalyzed Activation of Alkylidenecyclopropanes: Rearrangement to Form Polysubstituted Furans and Dienones. Angewandte Chemie - International Edition, 2019, 58, 10698-10702.	7.2	52
65	DMAP-catalyzed [4+2] annulation of α-substituded allenoates with unsaturated pyrazolones. Tetrahedron, 2019, 75, 3609-3616.	1.0	5
66	Highly Regio- and Enantioselective Dienylation of p-Quinone Methides Enabled by an Organocatalyzed Isomerization/Addition Cascade of Allenoates. Organic Letters, 2019, 21, 3963-3967.	2.4	40
67	Phosphine-Catalyzed Stereoselective Dearomatization of 3-NO ₂ -Indoles with Allenoates. Journal of Organic Chemistry, 2019, 84, 6347-6355.	1.7	32
68	Creation of bispiro[pyrazolone-3,3′-oxindoles] <i>via</i> a phosphine-catalyzed enantioselective [3 + 2] annulation of the Morita–Baylis–Hillman carbonates with pyrazoloneyldiene oxindoles. Organic Chemistry Frontiers, 2019, 6, 2210-2214.	2.3	39
69	Choline Chloride-Based Deep Eutectic Systems in Sequential Friedläder Reaction and Palladium-Catalyzed sp ³ CH Functionalization of Methyl Ketones. ACS Omega, 2019, 4, 8046-8055.	1.6	26
70	Catalytic Staudinger Reduction at Room Temperature. Journal of Organic Chemistry, 2019, 84, 6536-6545.	1.7	20
71	Phosphine-Promoted Divergent Annulations of δ-Acetoxy Allenoates with α-Hydroxy-β-carbonyl Ester Derivatives: Synthesis of Tetrasubstituted Cyclopentadienes and Benzenes. Organic Letters, 2019, 21, 1944-1947.	2.4	27
72	Synthesis of Phosphoryl Thioamides <i>via</i> Threeâ€Component Reaction of Phosphinic Chlorides with Amines and Sulfur. Advanced Synthesis and Catalysis, 2019, 361, 2904-2915.	2.1	15

#	Article	IF	CITATIONS
73	Phosphine-Catalyzed Domino [3 + 3] Cyclization of para-Quinamines with Morita–Baylis–Hillman Carbonates: Access to Hydroquinoline Derivatives. Organic Letters, 2019, 21, 2843-2846.	2.4	40
74	Phosphine-catalyzed bishydrophosphorylation of electron-deficient alkynes. Tetrahedron, 2019, 75, 2676-2686.	1.0	11
75	Biomimetic Enantioselective Total Synthesis of (â^')-Robustanoids A and B and Analogues. Journal of Organic Chemistry, 2019, 84, 5627-5634.	1.7	12
76	Metal-Free Synthesis of Aryltriphenylphosphonium Bromides by the Reaction of Triphenylphosphine with Aryl Bromides in Refluxing Phenol. ACS Omega, 2019, 4, 6690-6696.	1.6	20
77	Chiral aminophosphines derived from hydroxyproline and their application in allene–imine [4 + 2] annulation. Journal of Antibiotics, 2019, 72, 389-396.	1.0	3
78	Dearomatization of 3â€Nitroindoles by a Phosphineâ€Catalyzed Enantioselective [3+2] Annulation Reaction. Angewandte Chemie - International Edition, 2019, 58, 5427-5431.	7.2	105
79	Phosphineâ€Catalyzed Enantioselective Dearomative [3+2]â€Cycloaddition of 3â€Nitroindoles and 2â€Nitrobenzofurans. Angewandte Chemie - International Edition, 2019, 58, 5422-5426.	7.2	144
80	Phosphineâ€Catalyzed (3+2) Annulation of Isoindigos with Allenes: Enantioselective Formation of Two Vicinal Quaternary Stereogenic Centers. Angewandte Chemie - International Edition, 2019, 58, 6260-6264.	7.2	76
81	Sequential Phosphine-Catalyzed [4 + 2] Annulation of β′-Acetoxy Allenoates: Enantioselective Synthesis of 3-Ethynyl-Substituted Tetrahydroquinolines. Organic Letters, 2019, 21, 1407-1411.	2.4	31
82	Phosphineâ€Catalyzed Intermolecular Annulations of Fluorinated <i>ortho</i> â€Aminophenones with Alkynones <i>–</i> The Switchable [4+2] or [4+2]/[3+2] Cycloaddition. Advanced Synthesis and Catalysis, 2019, 361, 2129-2135.	2.1	20
83	Dearomatization of 3â€Nitroindoles by a Phosphineâ€Catalyzed Enantioselective [3+2] Annulation Reaction. Angewandte Chemie, 2019, 131, 5481-5485.	1.6	22
84	Phosphineâ€Catalyzed Enantioselective Dearomative [3+2]â€Cycloaddition of 3â€Nitroindoles and 2â€Nitrobenzofurans. Angewandte Chemie, 2019, 131, 5476-5480.	1.6	29
85	Phosphineâ€Catalyzed (3+2) Annulation of Isoindigos with Allenes: Enantioselective Formation of Two Vicinal Quaternary Stereogenic Centers. Angewandte Chemie, 2019, 131, 6326-6330.	1.6	22
86	Reduction of Phosphine Oxide by Using Chlorination Reagents and Dihydrogen: DFT Mechanistic Insights. Chemistry - A European Journal, 2019, 25, 4670-4672.	1.7	16
87	Phosphine-catalysed asymmetric dearomative formal [4+2] cycloadditions of 3-benzofuranyl vinyl ketones. Chemical Communications, 2019, 55, 3097-3100.	2.2	22
88	Benzannulated N-heterocyclic plumbylene: An efficient catalyst in ring opening polymerization of -lactide. Polymer, 2019, 180, 121748.	1.8	3
89	Transition metal-free access to 3,4-dihydro-1,2-oxaphosphinine-2-oxides from phosphonochloridates and chalcones through tandem Michael addition and nucleophilic substitution. Chemical Communications, 2019, 55, 13124-13127.	2.2	14
90	Phosphine-catalyzed (3+2)/(2+3) sequential annulation involving a triple nucleophilic addition reaction of Î ³ -vinyl allenoates. Chemical Communications, 2019, 55, 14011-14014.	2.2	19

#	Article	IF	CITATIONS
91	P-Chiral Phosphines Enabled by Palladium/Xiao-Phos-Catalyzed Asymmetric P–C Cross-Coupling of Secondary Phosphine Oxides and Aryl Bromides. Journal of the American Chemical Society, 2019, 141, 20556-20564.	6.6	105
92	Tri-n-butylphosphine-Catalyzed Phosphonoethylation Reactions of Hydrophosphoryl Compounds. Russian Journal of General Chemistry, 2019, 89, 2207-2211.	0.3	1
93	Synthesis of 5-phosphoryl-substituted 1,3,4(3H)-thiadiazolones. Russian Chemical Bulletin, 2019, 68, 2105-2107.	0.4	6
94	Phospha-Michael reaction of tertiary phosphanes Ph ₂ P–X (X=SiMe ₃ , Cl) and <i>N</i> -triflyl-propiolamides. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2019, 74, 671-676.	0.3	2
95	A Phosphorus(III)â€Mediated (4+1)â€Cycloaddition of 1,2â€Dicarbonyls and Aza―o â€Quinone Methides to Acc 2,3â€Dihydroindoles. Helvetica Chimica Acta, 2019, 102, e1900192.	cess 1.0	10
96	Enantioselective aryl–aryl coupling facilitated by chiral binuclear gold complexes. Chemical Communications, 2019, 55, 12988-12991.	2.2	18
97	Phosphine-Catalyzed [3+2] Annulation of β-Sulfonamido-Substituted Enones with Sulfamate-Derived Cyclic Imines. Journal of Organic Chemistry, 2019, 84, 679-686.	1.7	25
98	Reduction of phosphine oxides to phosphines. Tetrahedron Letters, 2019, 60, 575-582.	0.7	28
99	Enantioselective Construction of Pyridine <i>N</i> -Oxides Featuring 2,3-Dihydrofuran Motifs via Phosphine-Catalyzed [4 + 1]-Annulation of 2-Enoylpyridine <i>N</i> -Oxides with Morita–Baylis–Hillman Carbonates. Organic Letters, 2019, 21, 152-155.	2.4	41
100	Unravelling the Synthesis and Chemistry of Stable, Acyclic, and Doubleâ€Deficient 1,3â€Butadienes: An endo â€Selective Diels–Alder Route to Hedgehog Pathway Inhibitors. Chemistry - A European Journal, 2019, 25, 2717-2722.	1.7	7
101	Enantioselective γâ€Addition of Pyrazole and Imidazole Heterocycles to Allenoates Catalyzed by Chiral Phosphine. Angewandte Chemie, 2019, 131, 2880-2884.	1.6	13
102	Enantioselective γâ€Addition of Pyrazole and Imidazole Heterocycles to Allenoates Catalyzed by Chiral Phosphine. Angewandte Chemie - International Edition, 2019, 58, 2854-2858.	7.2	36
103	Metal- and Hydride-Free Pentannulative Reductive Aldol Reaction. Organic Letters, 2019, 21, 170-174.	2.4	16
104	Pyridinylidenaminophosphines: Facile Access to Highly Electronâ€Rich Phosphines. Chemistry - A European Journal, 2020, 26, 406-411.	1.7	34
105	Phosphineâ€Catalyzed Chemoselective [4+3] Cycloaddition of Alminine Esters and β′â€acetoxy Allenoates for Divergent Synthesis of Azepines. Advanced Synthesis and Catalysis, 2020, 362, 545-551.	2.1	28
106	Halide Anion Triggered Reactions of Michael Acceptors with Tropylium Ion. Angewandte Chemie, 2020, 132, 1471-1475.	1.6	4
107	Halide Anion Triggered Reactions of Michael Acceptors with Tropylium Ion. Angewandte Chemie - International Edition, 2020, 59, 1455-1459.	7.2	22
108	The Game of Electrons: Organocatalytic Higherâ€Order Cycloadditions Involving Fulvene―and Troponeâ€Derived Systems. Chemistry - A European Journal, 2020, 26, 2120-2132.	1.7	35

#	Article	IF	CITATIONS
109	Novel Oneâ€Pot Access to Diastereoisomeric Tertiary Phospholanes Oxides by Using Enantiomerically Pure Phospholane Oxides Under Catalystâ€Free Conditions. ChemistrySelect, 2020, 5, 379-383.	0.7	8
110	Recent advances in phosphine catalysis involving Î ³ -substituted allenoates. Chemical Communications, 2020, 56, 680-694.	2.2	131
111	Enantioselective Synthesis of Multifunctionalized 4 <i>H</i> -Pyrans via Formal [4 + 2] Annulation Process by Bifunctional Phosphonium Salt Catalysis. Organic Letters, 2020, 22, 395-399.	2.4	24
112	Phosphine-Catalyzed (3 + 2)/(3 + 2) Sequential Annulation of γ-Vinyl Allenoates: Access to Fused Carbocycles. Organic Letters, 2020, 22, 433-437.	2.4	29
113	Phosphine-Mediated MBH-Type/Umpolung Addition Domino Sequence: Divergent Construction of Coumarins. Organic Letters, 2020, 22, 488-492.	2.4	14
114	P III /P V =O Catalyzed Cascade Synthesis of Nâ€Functionalized Azaheterocycles. Angewandte Chemie, 2020, 132, 4535-4540.	1.6	6
115	P ^{III} /P ^V =O Catalyzed Cascade Synthesis of Nâ€Functionalized Azaheterocycles. Angewandte Chemie - International Edition, 2020, 59, 4505-4510.	7.2	49
116	Phosphineâ€Catalyzed [4+1] Cycloadditions of Allenes with Methyl Ketimines, Enamines, and a Primary Amine. Angewandte Chemie - International Edition, 2020, 59, 1884-1890.	7.2	30
117	Molecular diversity of triphenylphosphine promoted reaction of electron-deficient alkynes and arylidene Meldrum acid (N,N'-dimethylbarbituric acid). Chinese Chemical Letters, 2020, 31, 1337-1341.	4.8	8
118	Ph3P-mediated synthesis of fused 1,2-dihydropyridines. Monatshefte Für Chemie, 2020, 151, 107-112.	0.9	1
119	Asymmetric Michael reaction promoted by chiral thiazolidine-thiourea catalyst. Tetrahedron, 2020, 76, 130874.	1.0	10
120	Catalyst Repurposing Sequential Catalysis by Harnessing Regenerated Prolinamide Organocatalysts as Transfer Hydrogenation Ligands. Organic Letters, 2020, 22, 110-115.	2.4	9
121	Mechanisms of 1,4â€dipolar cycloaddition between propaâ€1,2â€diene and imines catalyzed by PBu3: A DFT investigation. Journal of Physical Organic Chemistry, 2020, 33, e4035.	0.9	1
122	Phosphineâ€Catalyzed [4+1] Cycloadditions of Allenes with Methyl Ketimines, Enamines, and a Primary Amine. Angewandte Chemie, 2020, 132, 1900-1906.	1.6	1
123	Phosphineâ€Catalyzed [3+2] and [2+4] Annulations of γâ€Methyl Allenoates with Aryl αâ€Keto Esters: Stereoselective Syntheses of Functionalized Tetrahydrofurans and 4â€Chromanols. Asian Journal of Organic Chemistry, 2020, 9, 86-93.	1.3	5
124	Recent advances in asymmetric phosphine oxide catalysis. Tetrahedron Letters, 2020, 61, 151421.	0.7	19
125	Heterogeneous Organo- and Metal Catalysis Using Phosphine Oxide Derivatives Anchored on Multiwalled Carbon Nanotubes. Journal of Carbon Research, 2020, 6, 57.	1.4	1
126	Synthesis of heterocyclic compounds through nucleophilic phosphine catalysis. Chemical Communications, 2020, 56, 15235-15281.	2.2	80

#	Article	IF	CITATIONS
127	Sterically Encumbered 2,3â€Dihydrophosphindole and Its Chalcogenides. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1812-1819.	0.6	1
128	Vinylogous Elimination/C–H Functionalization/Allylation Cascade Reaction of Allenoate Adducts: Synthesis of Ring-Fused Dihydropyridinones. Organic Letters, 2020, 22, 8313-8319.	2.4	8
129	P(NMe ₂) ₃ -Mediated Umpolung Spirocyclopropanation Reaction of <i>p</i> -Quinone Methides: Diastereoselective Synthesis of Spirocyclopropane-Cyclohexadienones. Organic Letters, 2020, 22, 8376-8381.	2.4	35
130	Simultaneous Formation and Functionalization of Aryliminophosphoranes Using 1,3-Dihydro-1 <i>H</i> -benzimidazol-2-ones as Precursors. Journal of Organic Chemistry, 2020, 85, 13330-13338.	1.7	8
131	Phosphine-Catalyzed Intermolecular Acylfluorination of Alkynes via a P(V) Intermediate. Journal of the American Chemical Society, 2020, 142, 17323-17328.	6.6	54
132	Addition reactions of a phosphorus triamide to nitrosoarenes and acylpyridines. Phosphorus, Sulfur and Silicon and the Related Elements, 2020, 195, 940-946.	0.8	2
133	Catalytic Enantiodivergent Michael Addition by Subtle Adjustment of Achiral Amino Moiety of Dipeptide Phosphines. IScience, 2020, 23, 101138.	1.9	15
134	Phosphine-Catalyzed Sequential [3+3]/Aza-6Ï€-Electrocyclization Reaction of Cross-Conjugated Azatrienes and δ-Sulfonamido-Allenoates. Organic Letters, 2020, 22, 9392-9397.	2.4	13
135	Cyclic 1â€Azadienes in the Organocatalytic Inverseâ€Electronâ€Demand Azaâ€Dielsâ€Alder Cycloadditions. Asian Journal of Organic Chemistry, 2020, 9, 1688-1700.	1.3	20
136	Substrate-controlled, PBu ₃ -catalyzed annulation of phenacylmalononitriles with allenoates enables tunable access to cyclopentenes. Chemical Communications, 2020, 56, 11054-11057.	2.2	16
137	Recent Advances in the Cycloaddition Reactions of 2â€Benzylideneâ€1â€benzofuranâ€3â€ones, and Their Sulfur, Nitrogen and Methylene Analogues. Chemistry - an Asian Journal, 2020, 15, 2838-2853.	1.7	34
138	Trialkylphosphines Having a Bulky Phosphacyclopentane Backbone: Structural and Redox Properties Depending on the Exocyclic Alkyl Groups and EPR Observation of a Persistent Trialkylphosphine Radical Cation. Journal of Organic Chemistry, 2020, 85, 14634-14642.	1.7	6
139	Direct Access to Highly Enantioenriched α-Branched Acrylonitriles through a One-Pot Sequential Asymmetric Michael Addition/Retro-Dieckmann/Retro-Michael Fragmentation Cascade. Organic Letters, 2020, 22, 5995-6000.	2.4	8
140	Phosphine catalyzed addition of long-chain dialkyl phosphites to electron-deficient alkenes. Synthetic Communications, 2020, 50, 3287-3297.	1.1	4
141	Potassium lodide as a New Nucleophilic Catalyst for the Novel Synthesis of Ionic Vinyl Compounds: Experimental and Theoretical Kinetic Approaches. ChemistrySelect, 2020, 5, 8806-8813.	0.7	0
142	Phosphine-catalyzed conjugate cyanation of β-trifluoromethyl enones: access to α-trifluoromethyl γ-carbonyl nitriles. Organic Chemistry Frontiers, 2020, 7, 2644-2648.	2.3	11
143	Construction of Pâ€Chiral Alkenylphosphine Oxides through Highly Chemoâ€, Regioâ€, and Enantioselective Hydrophosphinylation of Alkynes. Angewandte Chemie, 2020, 132, 20826-20831.	1.6	18
144	Construction of Pâ€Chiral Alkenylphosphine Oxides through Highly Chemoâ€, Regioâ€, and Enantioselective Hydrophosphinylation of Alkynes. Angewandte Chemie - International Edition, 2020, 59, 20645-20650. ————————————————————————————————————	7.2	79

#	Article	IF	CITATIONS
145	Beyond CO2 Reduction: Vistas on Electrochemical Reduction of Heavy Non-metal Oxides with Very Strong E—O Bonds (E = Si, P, S). Journal of the American Chemical Society, 2020, 142, 14772-14788.	6.6	22
146	Addition of triphenylphosphine to electron-deficient alkenes in mixed binary solvents: Overcoming the problem of preferential solvation to determine the reaction order with respect to protic solvent. Journal of Molecular Liquids, 2020, 318, 113911.	2.3	5
147	Construction of CF ₃ -Containing Tetrahydropyrano[3,2- <i>b</i>]indoles through DMAP-Catalyzed [4+1]/[3+3] Domino Sequential Annulation. Organic Letters, 2020, 22, 6750-6755.	2.4	17
148	Synthesis of <i>P</i> -chiral phosphine compounds by palladium-catalyzed C–P coupling reactions. Chemical Communications, 2020, 56, 11775-11778.	2.2	12
149	Stay positive: catalysis with 1,3,2-diazaphospholenes. Organic Chemistry Frontiers, 2020, 7, 3521-3529.	2.3	20
150	P(III)/P(V)-Catalyzed Methylamination of Arylboronic Acids and Esters: Reductive C–N Coupling with Nitromethane as a Methylamine Surrogate. Journal of the American Chemical Society, 2020, 142, 16205-16210.	6.6	43
151	Access to <i>P</i> -chiral <i>sec</i> - and <i>tert</i> -phosphine oxides enabled by Le-Phos-catalyzed asymmetric kinetic resolution. Chemical Science, 2020, 11, 9983-9988.	3.7	53
152	Tetrabromomethane as an Organic Catalyst: a Kinetic Study of CBr ₄ atalyzed Schiff Condensation. European Journal of Organic Chemistry, 2020, 2020, 6763-6769.	1.2	6
153	1,1-Addition of α-C ₂ -Bridged Biphospholes with Alkynes. Organic Letters, 2020, 22, 6972-6976.	2.4	4
154	Organophosphane-Catalyzed Direct β-Acylation of 4-Arylidene Pyrazolones and 5-Arylidene Thiazolones with Acyl Chlorides. Organic Letters, 2020, 22, 6868-6872.	2.4	11
155	Organophosphorus zwitterions engaged in a conjugated macrocycle on fullerene. Communications Chemistry, 2020, 3, .	2.0	26
156	Organocatalytic Asymmetric C(sp ²)â^'H Allylic Alkylation: Enantioselective Synthesis of Tetrasubstituted Allenoates. Angewandte Chemie - International Edition, 2020, 59, 19820-19824.	7.2	36
157	Phosphine-Catalyzed Stereoselective Tandem Annulation Reaction for the Synthesis of Chromeno[4,3- <i>b</i>]pyrroles. Organic Letters, 2020, 22, 7008-7012.	2.4	28
158	Organocatalytic Asymmetric C(sp 2)â^'H Allylic Alkylation: Enantioselective Synthesis of Tetrasubstituted Allenoates. Angewandte Chemie, 2020, 132, 19992-19996.	1.6	11
159	Phosphine catalyzed [3+2] cyclization/Michael addition of allenoate with CS ₂ to form 2-thineyl vinyl sulfide. Chemical Communications, 2020, 56, 11669-11672.	2.2	11
160	Palladium-Catalyzed Enantioselective Cycloaddition of Carbonylogous 1,4-Dipoles: Efficient Access to Chiral Cyclohexanones. Journal of the American Chemical Society, 2020, 142, 21645-21650.	6.6	35
161	Phosphorus-Recycling Wittig Reaction: Design and Facile Synthesis of a Fluorous Phosphine and Its Reusable Process in the Wittig Reaction. Journal of Organic Chemistry, 2020, 85, 14684-14696.	1.7	8
162	Benchmarking the inversion barriers in $ f < \sup 3 < \sup > 3 < \sup > 3 < \sup > 3 < \sup > -phosphorus compounds: a computational study. New Journal of Chemistry, 2020, 44, 8763-8770.$	1.4	18

#	Article	IF	CITATIONS
163	Let's Make White Phosphorus Obsolete. ACS Central Science, 2020, 6, 848-860.	5.3	53
164	Metal-Free C–C Coupling of an Allenyl Sulfone with Picolyl Amides to Access Vinyl Sulfones via Pyridine-Initiated In Situ Generation of Sulfinate Anion. Journal of Organic Chemistry, 2020, 85, 7959-7975.	1.7	7
165	Access to enantioenriched 4-phosphorylated l´-lactones from l²-phosphorylenones and enals <i>via</i> carbene organocatalysis. Chemical Communications, 2020, 56, 7155-7158.	2.2	12
166	Asymmetric Reactions Catalyzed by Chiral Tertiary Phosphines. Chinese Journal of Chemistry, 2020, 38, 1395-1421.	2.6	20
167	O-Phosphination of Aldehydes/Ketones toward Phosphoric Esters: Experimental and Mechanistic Studies. Organic Letters, 2020, 22, 4742-4748.	2.4	28
168	Triphenylphosphineâ€Based Covalent Organic Frameworks and Heterogeneous Rhâ€Pâ€COFs Catalysts. Chemistry - A European Journal, 2020, 26, 12134-12139.	1.7	37
169	Synthesis, Structure, and Solution Studies of Lithiated Allylic Phosphines and Phosphine Oxides. Organometallics, 2020, 39, 2080-2090.	1.1	2
170	Î ³ -Substituted Allenic Amides in the Phosphine-Catalyzed Enantioselective Higher Order Cycloaddition with Azaheptafulvenes. Organic Letters, 2020, 22, 4721-4725.	2.4	19
171	Highly enantioselective [3+2] cycloadditions of terminal allenoates with β-trifluoromethyl α,β-enones. Chemical Communications, 2020, 56, 8842-8845.	2.2	10
172	Radical reactions promoted by trivalent tertiary phosphines. Organic Chemistry Frontiers, 2020, 7, 2349-2371.	2.3	52
173	Phosphoranyl Radical Fragmentation Reactions Driven by Photoredox Catalysis. ACS Catalysis, 2020, 10, 7250-7261.	5.5	112
174	Diversity-Oriented Synthesis of Spiropentadiene Pyrazolones and 1 <i>H</i> -Oxepino[2,3- <i>c</i>]pyrazoles from Doubly Conjugated Pyrazolones via Intramolecular Wittig Reaction. Organic Letters, 2020, 22, 4760-4765.	2.4	18
175	An Improved P ^{III} /P ^V â•O-Catalyzed Reductive C–N Coupling of Nitroaromatics and Boronic Acids by Mechanistic Differentiation of Rate- and Product-Determining Steps. Journal of the American Chemical Society, 2020, 142, 6786-6799.	6.6	68
176	Phosphine-Catalyzed Cascade Michael Addition/[4+2] Cycloaddition Reaction of Allenoates and 2-Arylidene-1,3-indanediones. Organic Letters, 2020, 22, 2675-2680.	2.4	33
177	A Chemical Probe for Dehydrobutyrine. Angewandte Chemie - International Edition, 2020, 59, 7350-7355.	7.2	13
178	Highly Enantioselective [3 + 2] Annulation of 3-Butynoates with β-Trifluoromethyl Enones Promoted by an Amineâ^'Phosphine Binary Catalytic System. Organic Letters, 2020, 22, 2460-2463.	2.4	24
179	Construction of spirooxindole-fused spiropyrazolones containing contiguous three stereogenic centres <i>via</i> [3 + 2] annulation utilizing a ferrocene derived bifunctional phosphine catalyst. Organic Chemistry Frontiers, 2020, 7, 1016-1021.	2.3	34
180	Multicomponent benzannulation of allylic P-ylides with isocyanates or aldehydes for construction of anilines and biaryls. Chemical Communications, 2020, 56, 8865-8868.	2.2	3

#	Article	IF	CITATIONS
181	Ultrasoundâ€Promoted Mild, and Efficient Protocol for Threeâ€Component Synthesis of 2,4,5â€Trisubstituted Imidazoles Using Urea and PPh ₃ as the Sources of Nitrogen and Organocatalyst. ChemistrySelect, 2020, 5, 7467-7473.	0.7	11
182	Recent Advances in Organocatalystâ€Mediated Benzannulation Reactions. Advanced Synthesis and Catalysis, 2020, 362, 4010-4026.	2.1	49
183	Unraveling the Selectivity Patterns in Phosphine-Catalyzed Annulations of Azomethine Imines and Allenoates. Journal of Organic Chemistry, 2020, 85, 9272-9280.	1.7	12
184	Scalable Enantiomeric Separation of Dialkylâ€Arylphosphine Oxides Based on Host–Guest Complexation with TADDOLâ€Derivatives, and their Recovery. European Journal of Organic Chemistry, 2020, 2020, 1840-1852.	1.2	10
185	Recent Advances in Phosphineâ€₽romoted (4 + 1) Annulation Reactions. European Journal of Organic Chemistry, 2020, 2020, 4098-4107.	1.2	26
186	Rapid Synthesis of Chiral 1,2â€Bisphosphine Derivatives through Copper(I)â€Catalyzed Asymmetric Conjugate Hydrophosphination. Angewandte Chemie, 2020, 132, 7123-7128.	1.6	22
187	Mechanism of Phosphine-Catalyzed Novel Rearrangement of Vinylcyclopropylketone to Cycloheptenone: A DFT Study. ACS Omega, 2020, 5, 2957-2966.	1.6	6
188	Phosphine-Catalyzed Remote 1,7-Addition for Synthesis of Diene Carboxylates. ACS Catalysis, 2020, 10, 3541-3547.	5.5	34
189	Photoinduced Pyramidal Inversion Behavior of Phosphanes Involved with Aggregationâ€Induced Emission Behavior. Chemistry - A European Journal, 2020, 26, 8028-8034.	1.7	11
190	Enantioselective [4+2] Annulation to the Concise Synthesis of Chiral Dihydrocarbazoles. IScience, 2020, 23, 100840.	1.9	16
191	Lewis Base-Switched [3 + 3] and [4 + 2] Annulation Reactions of δ-Acetoxy Allenoates with Cyclic <i>N</i> -Sulfonyl Imines: Divergent Synthesis of Functionalized α-Pyridyl Acetates and Teraryl Scaffolds. Journal of Organic Chemistry, 2020, 85, 4130-4144.	1.7	27
192	Rapid Synthesis of Chiral 1,2â€Bisphosphine Derivatives through Copper(I)â€Catalyzed Asymmetric Conjugate Hydrophosphination. Angewandte Chemie - International Edition, 2020, 59, 7057-7062.	7.2	89
193	Asymmetric catalysis in direct nitromethane-free Henry reactions. RSC Advances, 2020, 10, 2313-2326.	1.7	28
194	Enantioselective synthesis of mixed 3,3′-bisindoles via a phosphine-catalyzed umpolung γ-addition of 3′-indolyl-3-oxindoles to allenoates. Science Bulletin, 2020, 65, 557-563.	4.3	12
195	Functionalized Macrocycles in Supramolecular Organocatalysis. ChemPlusChem, 2020, 85, 889-899.	1.3	22
196	Introducing Chirality at Phosphorus Atoms: An Update on the Recent Synthetic Strategies for the Preparation of Optically Pure Pâ€Stereogenic Molecules. European Journal of Organic Chemistry, 2020, 2020, 3351-3366.	1.2	82
197	Enantiopure Chiral Phosphines Bearing a Sulfinyl Group and their Application in Catalytic Enantiodivergent Synthesis of Polysubstituted Pyrrolines. Advanced Synthesis and Catalysis, 2020, 362, 2760-2766.	2.1	6
198	A Chemical Probe for Dehydrobutyrine. Angewandte Chemie, 2020, 132, 7420-7425.	1.6	3

#	Article	IF	CITATIONS
199	Lewis Base-Catalyzed Amino-Acylation of Arylallenes via C–N Bond Cleavage: Reaction Development and Mechanistic Studies. ACS Catalysis, 2020, 10, 5419-5429.	5.5	20
200	Organocatalytic Synthesis of Highly Functionalized Heterocycles by Enantioselective aza-Morita–Baylis–Hillman-Type Domino Reactions. Chemical and Pharmaceutical Bulletin, 2020, 68, 299-315.	0.6	9
201	Highly Enantioselective Construction of Fully Substituted Stereocenters Enabled by <i>In Situ</i> Phosphonium-Containing Organocatalysis. ACS Catalysis, 2020, 10, 5698-5706.	5.5	33
202	Mechanistic details of metalâ€free cyclization reaction of organophosphorus oxide with alkynes mediated by 2,6″utidine and Tf 2 O. Journal of Computational Chemistry, 2020, 41, 1709-1717.	1.5	5
203	C–H Functionalization of Benzothiazoles via Thiazol-2-yl-phosphonium Intermediates. Organic Letters, 2020, 22, 3407-3411.	2.4	28
204	Generation and Reactivity of C(1)â€Ammonium Enolates by Using Isothiourea Catalysis. Chemistry - A European Journal, 2021, 27, 1533-1555.	1.7	60
205	Carbon-halogen bond activation by a structurally constrained phosphorus(III) platform. Chinese Chemical Letters, 2021, 32, 1432-1436.	4.8	5
206	Facile Reduction of Phosphine Oxides by O-Silylated Hydrazide Supported Hydrosilanes. Silicon, 2021, 13, 2881-2893.	1.8	4
207	Organophosphine bearing multiple hydrogen-bond donors for asymmetric Michael addition reaction of 1-oxoindane-2-carboxylic acid ester via dual-reagent catalysis. Chinese Chemical Letters, 2021, 32, 708-712.	4.8	7
208	Stereoselective allylic 1,3-dienylation of Morita–Baylis–Hillman carbonates via an alkylation–denitration sequence. Synthetic Communications, 2021, 51, 419-427.	1.1	1
209	Nonclassical Abramov Products Formed on Orifices of Cageâ€Opened C ₆₀ Derivatives. Chemistry - A European Journal, 2021, 27, 4864-4868.	1.7	14
210	Organophosphorus-catalyzed relay oxidation of H-Bpin: electrophilic C–H borylation of heteroarenes. Chemical Science, 2021, 12, 1031-1037.	3.7	19
211	Remote methylene C(sp ³)–H functionalization enabled by organophosphine-catalyzed alkyne isomerization. Organic Chemistry Frontiers, 2021, 8, 1125-1131.	2.3	6
212	Enantioselective Cyclopropanation/[1,5]-Hydrogen Shift to Access Rauhut–Currier Product. Organic Letters, 2021, 23, 213-217.	2.4	8
213	Is the reaction sequence in phosphine-catalyzed [8+2] cycloaddition controlled by electrophilicity?. Chemical Communications, 2021, 57, 761-764.	2.2	2
214	Discovery of Annulating Reagents Enabling the One-Step and Highly Stereoselective Synthesis of Cyclopentyl and Cyclohexyl Cores. Organic Letters, 2021, 23, 60-65.	2.4	3
215	Gold(I)â€Catalyzed Intramolecular Hydroarylation of o â€Ethynylarylphosphonium Salt Leading to the Formation of Seven―and Sixâ€membered Phosphacycles. Asian Journal of Organic Chemistry, 2021, 10, 154-159.	1.3	1
216	Visible Light–Initiated Synergistic/Cascade Reactions over Metal–Organic Frameworks. Solar Rrl, 2021, 5, 2000454.	3.1	24

ARTICLE IF CITATIONS # Recent Advances in Asymmetric Organomulticatalysis. Advanced Synthesis and Catalysis, 2021, 363, 217 2.1 37 352-387. The Total Synthesis of Diquinaneâ€Containing Natural Products. Chemistry - A European Journal, 2021, 1.7 27, 4839-4858. 219 Phosphine-catalyzed stereoselective dimerizations of ketenes. Tetrahedron, 2021, 78, 131838. 1.0 9 Synthesis of \hat{t} -(aminoethyl)- \hat{t} - \hat{t} -enones <i>via</i> alkyne aza-Prins cyclization and their synthetic application to pyrrolidines. Organic and Biomolecular Chemistry, 2021, 19, 2959-2967. Synthesis of 2-chromanone-fused [3.2.0] bicycles through a phosphine-mediated tandem [3 + 2]221 2.3 3 cýclization/intramolecular Wittig reaction. Organic Chemistry Frontiers, 0, , . Phosphine-catalyzed enantioselective [4 + 1] annulation of oxindoles with allenic ketones for the construction of spirocyclopentene oxindoles. Organic Chemistry Frontiers, 2021, 8, 4485-4489. 2.3 Chapter 11. Stabilising and Characterising Homogeneous Catalysts in MOFs. Monographs in 223 0.2 0 Supramolecular Chemistry, 2021, , 340-369. Organocatalytic enantioselective [2 + 4]-annulation of \hat{I}^3 -substituted allenoates with <i>N</i>-acyldiazenes for the synthesis of optically active 1,3,4-oxadiazines. Organic and Biomolecular Chemistry, 2021, 19, 1727-1731. 224 1.5 A phosphine-catalysed one-pot domino sequence to access cyclopentene-fused coumarins. Organic and 225 1.5 7 Biomolecular Chemistry, 2021, 19, 7074-7080. Diastereodivergent synthesis of fully disubstituted spiro[indoline-3,2â€2-pyrrolidin]-2-ones <i>via</i> tuneable Lewis base/BrÃnsted base-promoted (3 + 2) cycloadditions. Organic Chemistry Frontiers, 2021, 2.3 9, 19-24. Reductive Csp2–N Coupling by PIII/PV=O–Catalysis. Trends in Chemistry, 2021, 3, 72-73. 227 4.4 13 Phosphine-catalyzed sequential (2+3)/(2+4) annulation of \hat{I}^3 -vinyl allenoates: access to the synthesis of 2.2 chromeno[4,3-<i>b</i>jpyrroles. Chemical Communications, 2021, 57, 9934-9937. Organic reactions in aqueous media catalyzed by nickel. Green Chemistry, 2021, 23, 6273-6300. 229 4.6 24 Hydroxyl-group-activated azomethine ylides in organocatalytic H-bond-assisted 1,3-dipolar cycloadditions and beyond. Organic and Biomolecular Chemistry, 2021, 19, 3075-3086. 1.5 Conjugated ynones in catalytic enantioselective reactions. Organic and Biomolecular Chemistry, 2021, 231 19 1.5 19, 2110-2145. Asymmetric synthesis of organophosphorus compounds using H–P reagents derived from chiral 34 alcohols. Organic and Biomolecular Chemistry, 2021, 19, 2823-2846. Phosphine-catalyzed Î³-addition of nitroacetates to allenoates for enantioselective creation of 233 2.35 \hat{l} +, \hat{l} +-disubstituted \hat{l} +-amino acid precursors. Organic Chemistry Frontiers, 2021, 8, 6114-6118. Phosphorus containing porous organic polymers: synthetic techniques and applications in organic 234 1.5 24 synthesis and catalysis. Organic and Biomolecular Chemistry, 2021, 19, 4174-4192.

#	Article	IF	CITATIONS
235	Dielectrophilic Allenic Ketone-Enabled [4 + 2] Annulation with 3,3'-Bisoxindoles: Enantioselective Creation of Two Contiguous Quaternary Stereogenic Centers. ACS Catalysis, 2021, 11, 1361-1367.	5.5	20
236	Enantioselective synthesis of functionalized 1,4-dihydropyrazolo-[4′,3′:5,6]pyrano[2,3- <i>b</i>]quinolines through ferrocenyl-phosphine-catalyzed annulation of modified MBH carbonates and pyrazolones. Chemical Communications, 2021, 57, 4690-4693.	2.2	13
237	Iminophosphorane-mediated regioselective umpolung alkylation reaction of α-iminoesters. Organic and Biomolecular Chemistry, 2021, 19, 4551-4564.	1.5	3
238	Auto-tandem palladium/phosphine cooperative catalysis: synthesis of bicyclo[3.1.0]hexenes by selective activation of Morita–Baylis–Hillman carbonates. Organic Chemistry Frontiers, 2021, 8, 3366-3371.	2.3	12
239	Main Group Redox Catalysis of Organopnictogens: Vertical Periodic Trends and Emerging Opportunities in Group 15. Journal of the American Chemical Society, 2021, 143, 1699-1721.	6.6	145
240	A comprehensive review of caged phosphines: synthesis, catalytic applications, and future perspectives. Organic Chemistry Frontiers, 2021, 8, 1599-1656.	2.3	29
241	Palladium-catalyzed C–P bond activation of aroyl phosphine oxides without the adjacent "anchoring atom― Tetrahedron, 2021, 81, 131912.	1.0	7
242	Recent Advances in Transition-Metal-Free (4+3)-Annulations. Synthesis, 2021, 53, 4134-4177.	1.2	8
243	Ruthenium-Catalyzed PIII-Directed Remote ε-C–H Alkylation of Phosphines. Organic Letters, 2021, 23, 2052-2056.	2.4	21
244	PPh 3 Catalyzed Postâ€Transformation Ugiâ€4CR Intramolecular Cyclization Reaction: Oneâ€Pot Synthesis of Functionalized Spiropyrrolidinochromanones. ChemistrySelect, 2021, 6, 1216-1222.	0.7	1
245	De Novo Construction of Substituted Terephthalates via Phosphine Catalyzed Domino Benzannulation Reactions. Advanced Synthesis and Catalysis, 2021, 363, 1873-1877.	2.1	6
246	Highly efficient phosphine-catalyzed routes to α-imidoacrylates and 2,3-diimidopropanoates. Chemistry of Heterocyclic Compounds, 2021, 57, 175-180.	0.6	6
247	Recent Advances in the Synthesis of Heterocycles by the Aza-Wittig Reaction. Synthesis, 2021, 53, 2342-2366.	1.2	13
248	Origins of catalyst-controlled enantiodivergent hydroamination of enones with pyridazinones: A computational study. Chinese Chemical Letters, 2021, 32, 2769-2772.	4.8	4
249	Phosphine-Catalyzed Asymmetric Allylic Alkylation of Achiral MBH Carbonates with 3,3′-Bisindolines: Enantioselective Construction of Quaternary Stereogenic Centers. Organic Letters, 2021, 23, 1787-1792.	2.4	18
250	Chiral phosphine-catalyzed asymmetric [4Â+Â1] annulation of polar dienes with allylic derivatives: Enantioselective synthesis of substituted cyclopentenes. Tetrahedron Letters, 2021, 67, 152863.	0.7	4
251	Base-Mediated Intramolecular Cyclization of α-Nitroethylallenic Esters as a Synthetic Route to 5-Hydroxy-3-pyrrolin-2-ones. Journal of Organic Chemistry, 2021, 86, 5630-5638.	1.7	2
252	Phosphorus-Based Catalysis. ACS Central Science, 2021, 7, 536-558.	5.3	157

#	Article	IF	CITATIONS
253	Diverse C–P Cross-Couplings of Arylsulfonium Salts with Diarylphosphines via Selective C–S Bond Cleavage. Organic Letters, 2021, 23, 2386-2391.	2.4	35
254	Group-assisted purification chemistry principles to access highly substituted zwitterionic furans via fast, concise, and efficient one-pot three-component assembly. Chemistry of Heterocyclic Compounds, 2021, 57, 239-244.	0.6	5
255	Organocatalytic Synthesis of Heterocycles: A Brief Overview Covering Recent Aspects. Current Organocatalysis, 2021, 8, 93-108.	0.3	3
256	Reductive conversion of phosphoryl P(O) compounds to trivalent organophosphines R3P. Tetrahedron Letters, 2021, 67, 152870.	0.7	3
257	DMAP Mediated Efficient Construction of Functionalized Chromenes through Oneâ€Pot Reaction of para â€Quinone Methides with Allenoates. European Journal of Organic Chemistry, 2021, 2021, 1942-1948.	1.2	8
258	Stereo- and Regioselective <i>cis</i> -Hydrophosphorylation of 1,3-Enynes Enabled by the Visible-Light Irradiation of NiCl ₂ (PPh ₃) ₂ . Organic Letters, 2021, 23, 2981-2987.	2.4	24
259	Recent Advances in Organocatalytic Asymmetric Cycloaddition Reactions Through <i>Ortho</i> â€Quinone Methide Scaffolds. Asian Journal of Organic Chemistry, 2021, 10, 1233-1250.	1.3	30
260	Phosphine-Catalyzed Chemoselective Reduction/Elimination/Wittig Sequence for Synthesis of Functionalized 3-Alkenyl Benzofurans. Organic Letters, 2021, 23, 3064-3069.	2.4	9
261	Asymmetric Synthesis of P-Stereogenic Secondary Phosphine-Boranes by an Unsymmetric Bisphosphine Pincer-Nickel Complex. Journal of the American Chemical Society, 2021, 143, 5685-5690.	6.6	85
262	Design of 1-Phosphanorbornene Derivatives as Chiral Organocatalysts for Enantioselective (4 + 2) Annulation Reactions of Î ³ -Benzyl Allenoates. Organic Letters, 2021, 23, 3337-3342.	2.4	20
263	Rh(I) Complexes in Catalysis: A Five-Year Trend. Molecules, 2021, 26, 2553.	1.7	10
264	Phosphine-Catalyzed (4 + 2) Cycloaddition of Conjugated Dienes with Enones and Its Asymmetric Variant. Organic Letters, 2021, 23, 3094-3099.	2.4	11
265	Catalytic chemodivergent annulations between α-diketones and alkynyl α-diketones. Science China Chemistry, 2021, 64, 991-998.	4.2	7
266	The Trityl ation Mediated Phosphine Oxides Reduction. Advanced Synthesis and Catalysis, 2021, 363, 3035-3043.	2.1	16
267	Bu3P-mediated acylation of (E)-7-arylidene-6,7-dihydroindolizin-8(5H)-ones with acyl chlorides. Chemistry of Heterocyclic Compounds, 2021, 57, 538-542.	0.6	0
268	Phosphine-Catalyzed Cross-Coupling of Benzyl Halides and Fumarates. Organic Letters, 2021, 23, 4570-4574.	2.4	12
269	A Bifunctional N-Heterocyclic Carbene as a Noncovalent Organocatalyst for Enantioselective Aza-Michael Addition Reactions. ACS Catalysis, 2021, 11, 6316-6324.	5.5	23
270	Phosphine-catalyzed [3+2] cycloaddition of Morita—Baylis—Hillman carbonates to isothiocyanates in the synthesis of adamantane-containing trisubstituted aminothiophenes. Russian Chemical Bulletin, 2021, 70, 880-884.	0.4	2

#	Article	IF	CITATIONS
271	Metalâ€Free Deoxygenation of Amine <i>N</i> â€Oxides: Synthetic and Mechanistic Studies. ChemPhysChem, 2021, 22, 1237-1242.	1.0	2
272	Selective Phosphoranation of Unactivated Alkynes with Phosphonium Cation To Achieve Isoquinoline Synthesis. Organic Letters, 2021, 23, 4023-4028.	2.4	15
273	Diastereoselective Synthesis of Tetracyclic Tetrahydroquinoline Derivative Enabled by Multicomponent Reaction of Isocyanide, Allenoate, and 2-Aminochalcone. Organic Letters, 2021, 23, 4094-4098.	2.4	15
274	Bioorthogonal Reactions of Triarylphosphines and Related Analogues. Chemical Reviews, 2021, 121, 6802-6849.	23.0	42
275	Sulfideâ€Catalyzed Diastereoselective Spirocyclopropanation: Constructing Spiroâ€cyclopropanylâ€pyrazolones From αâ€Arylidenepyrazolones. Asian Journal of Organic Chemistry, 2021, 10, 1778-1785.	1.3	4
276	Chemistry of oxaphosphirane complexes. Coordination Chemistry Reviews, 2021, 437, 213818.	9.5	3
277	Phosphine-Catalyzed Intermolecular Dienylation of Alkynoate with para-Quinone Methides. Journal of Organic Chemistry, 2021, 86, 8590-8599.	1.7	10
278	Asymmetric Catalytic Ketimine Mannich Reactions and Related Transformations. Catalysts, 2021, 11, 712.	1.6	16
279	Phosphineâ€Catalyzed Synthesis of Chiral <i>N</i> â€Heterocycles through (Asymmetric) P(III)/P(V) Redox Cycling. European Journal of Organic Chemistry, 2021, 2021, 3340-3344.	1.2	5
280	The role of organonickel reagents in organophosphorus chemistry. Coordination Chemistry Reviews, 2021, 438, 213889.	9.5	16
281	Ni-Catalyzed Asymmetric Hydrophosphination of Unactivated Alkynes. Journal of the American Chemical Society, 2021, 143, 11309-11316.	6.6	76
282	Phosphine-Catalyzed Cascade Annulation of MBH Carbonates and Diazenes: Synthesis of Hexahydrocyclopenta[c]pyrazole Derivatives. Organic Letters, 2021, 23, 5571-5575.	2.4	18
283	Electron-rich triarylphosphines as nucleophilic catalysts for oxa-Michael reactions. Beilstein Journal of Organic Chemistry, 2021, 17, 1689-1697.	1.3	8
284	Palladium-Catalyzed (3+3) Annulation of Allenylethylene Carbonates with Nitrile Oxides. Organic Letters, 2021, 23, 5750-5754.	2.4	8
285	Designing and Accurately Developing a [6 + 2] Dipolar Cycloaddition for the Synthesis of Benzodiazocines. Organic Letters, 2021, 23, 5430-5434.	2.4	17
286	Selective P-C bond cleavage of tertiary phosphine boranes by sodium. Phosphorus, Sulfur and Silicon and the Related Elements, 2021, 196, 961-964.	0.8	4
288	Stereoselective Access to Spirooxindoles and Bisoxindoles Through Organocatalyzed Asymmetric Divergent Transformations of Isatinâ€derived MBH Carbonates. Chemistry - an Asian Journal, 2021, 16, 3086-3090.	1.7	5
289	Divergent Reactivity of Î ⁻ - and β′-Acetoxy Allenoates with 2-Sulfonamidoindoles via Phosphine Catalysis: Entry to Dihydro-α-carboline, α-Carboline, and Spiro-cyclopentene Motifs. Journal of Organic Chemistry, 2021, 86, 11583-11598.	1.7	26

	Сітатіо	CITATION REPORT	
#	Article	IF	CITATIONS
290	Enantioselective Phosphine-Catalyzed Trimerization of γ-Aryl-3-butynoates via Isomerization/[3 + 2] Cyclization/Michael Addition Cascade. Organic Letters, 2021, 23, 6377-6381.	2.4	6
291	Recent Advances in Organophosphorusâ€Catalyzed Borylation and Silylation Reactions. Advanced Synthesis and Catalysis, 2021, 363, 4475-4496.	2.1	9
292	Regiodivergent Organocatalytic Reactions. Catalysts, 2021, 11, 1013.	1.6	21
293	Catalyst-Controlled Divergent Intramolecular Cyclizations of Morita–Baylis–Hillman Carbonates. Journal of Organic Chemistry, 2021, 86, 12267-12276.	1.7	13
294	Ylide-Substituted Phosphines with a Cyclic Ylide-Backbone: Angle Dependence of the Donor Strength. Organometallics, 2021, 40, 2888-2900.	1.1	11
295	Phosphineâ€Mediated Rauhutâ€Currierâ€Type/Acyl Transfer/Wittig Strategy for Synthesis of Spirocyclopenta[<i>c</i>]chromeneâ€Indolinones. Advanced Synthesis and Catalysis, 2021, 363, 5429-543	5. 2.1	6
296	Organocatalytic trans Semireduction of Primary and Secondary Propiolamides: Substrate Scope and Mechanistic Studies. Advanced Synthesis and Catalysis, 0, , .	2.1	5
297	Phosphineâ€Catalyzed Substitution of Allenoates with Oxindoles: An Approach to 3â€Allenic or 3â€Dienoic Oxindoles. ChemistrySelect, 2021, 6, 9709-9713.	0.7	2
298	Synthesis of Morita–Baylis–Hillman-fluorides using 1,1,2,2-tetrafluoroethyl-N,N-dimethylamine. Tetrahedron, 2021, 97, 132387.	1.0	3
299	Enantioselective Palladium atalyzed Hydrophosphinylation of Allenes with Phosphine Oxides: Access to Chiral Allylic Phosphine Oxides. Angewandte Chemie - International Edition, 2021, 60, 27288-27292.	7.2	58
300	Enantioselective Palladiumâ€Catalyzed Hydrophosphinylation of Allenes with Phosphine Oxides: Facile Access to Chiral Allylic Phosphine Oxides. Angewandte Chemie, 0, , .	1.6	14
301	Nucleophilic Phosphine Catalysis: The Untold Story. Asian Journal of Organic Chemistry, 2021, 10, 2699-2708.	1.3	26
302	Synthesis of Functionalized Cyclobutenes and Spirocycles <i>via</i> Asymmetric P(III)/P(V) Redox Catalysis. Advanced Synthesis and Catalysis, 2021, 363, 4805-4810.	2.1	6
303	P ^{III} /P ^V â•O-Catalyzed Intermolecular N–N Bond Formation: Cross-Selective Reductive Coupling of Nitroarenes and Anilines. Journal of the American Chemical Society, 2021, 143, 14464-14469.	6.6	32
304	Redox Isomerization/(3+2) Allenoate Annulation by Autoâ€Tandem Phosphine Catalysis. Chemistry - A European Journal, 2021, 27, 16232-16236.	1.7	10
305	Pentaphosphaferrocene-mediated synthesis of asymmetric organo-phosphines starting from white phosphorus. Nature Communications, 2021, 12, 5774.	5.8	31
306	P-stereogenic N-vinylphosphonamides enabled by asymmetric allylic substitution-isomerization. Cell Reports Physical Science, 2021, 2, 100594.	2.8	14
307	Construction of indeno[1,2- <i>b</i>]pyrroles <i>via</i> chemoselective <i>N</i> -acylation/cyclization/Wittig reaction sequence. Chemical Communications, 2021, 57, 2045-2048.	2.2	3

#	Article	IF	CITATIONS
308	The conversion of ether bonds to hydroxyl <i>via</i> a base-promoted rearrangement of cyclic phosphine oxides. Organic Chemistry Frontiers, 2021, 8, 5693-5698.	2.3	2
309	Phosphine-catalysed (4+1) annulations of β′-acetoxy allenoate with β,γ-unsaturated carbonyl compounds. Chemical Communications, 2021, 57, 3488-3491.	2.2	7
310	DABCO catalyzed [4+2] annulations of Morita–Baylis–Hillman carbonates with isocyanates. Chemical Communications, 2021, 57, 8985-8988.	2.2	12
311	Copper/Lewis base cooperatively catalyzed asymmetric allylic alkylation of Morita–Baylis–Hillman carbonates with azomethine ylides. Chemical Communications, 2021, 57, 8059-8062.	2.2	11
312	lodonium salts as efficient iodine(<scp>iii</scp>)-based noncovalent organocatalysts for Knorr-type reactions. RSC Advances, 2021, 11, 4574-4583.	1.7	32
313	Asymmetric organocatalysis: an enabling technology for medicinal chemistry. Chemical Society Reviews, 2021, 50, 1522-1586.	18.7	219
314	Phosphine-Mediated MBH-Type/Acyl Transfer/Wittig Sequence for Construction of Functionalized Furo[3,2- <i>c</i>]coumarins. Organic Letters, 2021, 23, 842-846.	2.4	20
315	Metal-free access to 3-allyl-2-alkoxychromanones <i>via</i> phosphine-catalyzed alkoxy allylation of chromones with MBH carbonates and alcohols. Organic and Biomolecular Chemistry, 2021, 19, 2663-2667.	1.5	4
316	Phosphorus Kl² X-ray emission spectroscopy detects non-covalent interactions of phosphate biomolecules <i>in situ</i> . Chemical Science, 2021, 12, 7888-7901.	3.7	7
317	Beyond Allylic Alkylation: Applications of Trost Chemistry in Complex Molecule Synthesis. Israel Journal of Chemistry, 2021, 61, 340-366.	1.0	2
318	Azavinylidene Complexes from Coupling Reactions of Organonitriles with Phosphines. Organometallics, 2021, 40, 358-369.	1.1	5
319	Predicting the catalytic activity of azolium-based halogen bond donors: an experimentally-verified theoretical study. Organic and Biomolecular Chemistry, 2021, 19, 7611-7620.	1.5	21
320	<i>In situ</i> generation of highly reactive allenes from nitrocyclopropanes: controllable synthesis of enynes and enesters. Chemical Communications, 2021, 57, 6424-6427.	2.2	7
321	Phosphine-Catalyzed [3 + 2] Annulation of Morita–Baylis–Hillman Carbonates with Isoxazole-Based Alkenes. Journal of Organic Chemistry, 2021, 86, 2090-2099.	1.7	13
322	Organophosphorusâ€Catalyzed Deoxygenation of Sulfonyl Chlorides: Electrophilic (Fluoroalkyl)sulfenylation by P III /P V =O Redox Cycling. Angewandte Chemie, 2019, 131, 2890-2895.	1.6	16
323	Phosphineâ€Catalyzed (4+1) Annulation: Rearrangement of Allenylic Carbamates to 3â€Pyrrolines through Phosphonium Diene Intermediates. ChemCatChem, 2020, 12, 4352-4372.	1.8	8
324	Between Oxirane and Phosphirane: The Springâ€loaded Oxaphosphirane Ring. European Journal of Inorganic Chemistry, 2021, 2021, 348-353.	1.0	11
325	Phosphine-catalyzed [3 + 2] cycloadditions of trifluoromethyl enynes/enediynes with allenoates: access to cyclopentenes containing a CF ₃ -substituted quaternary carbon center. Organic Chemistry Frontiers, 2020, 7, 3399-3405.	2.3	18

#	Article	IF	CITATIONS
326	1,3-Dipolar Cycloadditions Involving Allenes: Synthesis of Five-Membered Rings. Current Organic Chemistry, 2020, 23, 3064-3134.	0.9	16
327	Preparation of Enantiomerically Enriched P-Stereogenic Dialkyl-Arylphosphine Oxides via Coordination Mediated Optical Resolution. Symmetry, 2020, 12, 215.	1.1	4
328	\hat{l}^2 -Keto acids in asymmetric metal catalysis and organocatalysis. Organic and Biomolecular Chemistry, 2021, 19, 10030-10046.	1.5	7
329	Organometallic chemistry and application of palladacycles in asymmetric hydrophosphination reactions. Dalton Transactions, 2021, 50, 16909-16915.	1.6	16
330	Dual roles of bisphosphines and epoxides: Rh-catalyzed highly chemoselective and diastereoselective (3 + 2) transannulations of 1,2,3-thiadiazoles with cyanoepoxides. Organic Chemistry Frontiers, 2021, 8, 6687-6698.	2.3	13
331	Phosphine-Catalyzed (4 + 2) Annulation of \hat{i} -Sulfonamido-Substituted Enones with 1,1-Dicyanoalkenes: Synthesis of Piperidine Derivatives. Organic Letters, 2021, 23, 7703-7707.	2.4	16
332	Organocatalysis: A Tool of Choice for the Enantioselective Nucleophilic Dearomatization of Electron-Deficient Six-Membered Ring Azaarenium Salts. Catalysts, 2021, 11, 1249.	1.6	6
333	Enantioseparation of <i>P</i> -Stereogenic Secondary Phosphine Oxides and Their Stereospecific Transformation to Various Tertiary Phosphine Oxides and a Thiophosphinate. Journal of Organic Chemistry, 2021, 86, 14493-14507.	1.7	11
334	lridium-Catalyzed Enantioselective C–H Borylation of Diarylphosphinates. ACS Catalysis, 2021, 11, 13445-13451.	5.5	37
335	Carbene atalyzed Enantioselective HydrophosphinationÂof aâ€Bromoenals to Prepare Phosphine ontaining Chiral Molecules. Angewandte Chemie, 0, , .	1.6	5
336	Sequential Selective C–H and C(sp3)–+P Bond Functionalizations: An Entry to Bioactive Arylated Scaffolds. Angewandte Chemie, 0, , .	1.6	1
337	Phosphine-Catalyzed Annulations Based on [3+3] and [3+2] Trapping of Ketene Intermediates with Thioamides. Organic Letters, 2021, 23, 8147-8152.	2.4	8
338	Local Electric Field Modulated Reactivity of <i>Pseudomonas aeruginosa</i> Acid Phosphatase for Enhancing Phosphorylation of <scp>l</scp> -Ascorbic Acid. ACS Catalysis, 2021, 11, 13397-13407.	5.5	10
339	Palladium/Xiaoâ€Phosâ€CatalyzedÂKinetic Resolution of secâ€Phosphine Oxides by Pâ€Benzylation. Angewandte Chemie, 0, , .	1.6	11
340	Palladium/Xiaoâ€Phosâ€Catalyzed Kinetic Resolution of <i>sec</i> â€Phosphine Oxides by <i>P</i> â€Benzylation. Angewandte Chemie - International Edition, 2021, 60, 27247-27252.	7.2	51
341	Carbene atalyzed Enantioselective Hydrophosphination of αâ€Bromoenals to Prepare Phosphine ontaining Chiral Molecules. Angewandte Chemie - International Edition, 2021, 60, 26616-26621.	7.2	36
342	Sequential Selective Câ^'H and C(sp ³)â^' ⁺ P Bond Functionalizations: An Entry to Bioactive Arylated Scaffolds. Angewandte Chemie - International Edition, 2021, 60, 26199-26209.	7.2	13
344	Development of Aromatic-Fused Diketophosphanyl-Cored Functional ï€-Conjugated Molecules. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 792-800.	0.0	0

#	Article	IF	CITATIONS
345	Silver-Catalyzed Regioselective Phosphorylation of <i>para</i> -Quinone Methides with P(III)-Nucleophiles. Journal of Organic Chemistry, 2021, 86, 14983-15003.	1.7	16
346	Three-Component Coupling of Acyl Fluorides, Silyl Enol Ethers, and Alkynes by P(III)/P(V) Catalysis. Journal of the American Chemical Society, 2021, 143, 18394-18399.	6.6	25
347	Ni-Catalyzed Enantioselective Allylic Alkylation of <i>H</i> -Phosphinates. Organic Letters, 2021, 23, 8683-8687.	2.4	31
348	Cobaltâ€Catalysed Asymmetric Addition and Alkylation of Secondary Phosphine Oxides for the Synthesis of <i>P</i> â€Stereogenic Compounds. Angewandte Chemie, 2021, 133, 27447-27452.	1.6	8
349	Cobaltâ€Catalysed Asymmetric Addition and Alkylation of Secondary Phosphine Oxides for the Synthesis of <i>P</i> ‣tereogenic Compounds. Angewandte Chemie - International Edition, 2021, 60, 27241-27246.	7.2	48
350	Discussion Addendum for: Phosphine-Catalyzed [4 + 2] Annulation: Synthesis of Ethyl 6-Phenyl-1-tosyl-1,2,5,6-tetrahydropyridine-3-carboxylate. Organic Syntheses, 2019, 96, 110-123.	1.0	1
351	Organic photoredox catalytic α-C(sp ³)–H phosphorylation of saturated <i>aza</i> -heterocycles. Chemical Communications, 2021, 57, 13158-13161.	2.2	12
352	PPh3-catalyzed β-selective addition of α-fluoro β-dicarbonyl compounds to allenoates. Tetrahedron, 2022, 103, 132577.	1.0	5
353	A combined experimental and computational study of NHC-catalyzed allylation of allenoate with MBH esters: new regiospecific and stereoselective access to 1,5-enyne. Organic Chemistry Frontiers, 0, , .	2.3	8
354	<i>In situ</i> phosphonium-containing Lewis base-catalyzed 1,6-cyanation reaction: a facile way to obtain α-diaryl and α-triaryl acetonitriles. Organic Chemistry Frontiers, 2021, 9, 156-162.	2.3	6
355	Mechanochemical Organocatalysis: Do High Enantioselectivities Contradict What We Might Expect?. ChemSusChem, 2022, 15, .	3.6	37
356	Synthesis of 1-Substituted Cyclopropylamines via Formal Tertiary C _{sp³} –H Amination of Cyclopropanes. Organic Letters, 2021, 23, 9309-9314.	2.4	5
357	Enzymatic Production of Ascorbic Acid-2-Phosphate by Engineered Pseudomonas aeruginosa Acid Phosphatase. Journal of Agricultural and Food Chemistry, 2021, 69, 14215-14221.	2.4	5
358	Phosphine-Catalyzed Internal Redox [4 + 2] Annulation between 1,4-Enynoates and Electron-Deficient Alkenes. Organic Letters, 2021, 23, 9030-9035.	2.4	8
359	Enantioselective Rauhut–Currier Reaction with β-Substituted Acrylamides Catalyzed by N-Heterocyclic Carbenes. Organic Letters, 2021, 23, 9413-9418.	2.4	7
360	Phosphine-Catalyzed Asymmetric Tandem Isomerization/Annulation of Allyl Amines with Allenoates: Enantioselective Annulation of a Saturated C–N Bond. Organic Letters, 2021, 23, 9173-9178.	2.4	14
361	Nickel-Catalyzed Asymmetric Synthesis of P-Stereogenic Vinyl Phosphines. Synlett, 2022, 33, 301-306.	1.0	1
362	Recent advances in tertiary amine Lewis base-promoted cycloadditions of allenoates. Chinese Chemical Letters, 2022, 33, 2372-2382.	4.8	20

#	Article	IF	CITATIONS
363	Formal (3 + 1 + 1) Carboannulation of Morita–Baylis–Hillman Carbonates with Pyridinium Ylides: Access to Spiro-Cyclopentadiene Oxindoles. Organic Letters, 2021, 23, 8937-8941.	2.4	20
364	Catalytic Asymmetric Hydroalkoxylation of C–C Multiple Bonds. Chemical Reviews, 2021, 121, 14649-14681.	23.0	53
365	1,4-Diazabicyclo[2.2.2]octane-Promoted Addition Reaction of Tricarbonyl Monohydrates with Active Alkynes via Consecutive C—C/C—O Cleavage. Chinese Journal of Organic Chemistry, 2021, 41, 4384.	0.6	0
366	Phosphine-catalyzed [3 + 2] annulation of β-sulfonamido-substituted enones with <i>trans</i> -α-cyano-α,β-unsaturated ketones for the synthesis of highly substituted pyrrolidines. RSC Advances, 2021, 11, 40136-40139.	1.7	5
367	The Morita–Baylis–Hillman reaction for non-electron-deficient olefins enabled by photoredox catalysis. Chemical Science, 2022, 13, 1478-1483.	3.7	14
368	Synthesis of oxindoles bearing a stereogenic 3-fluorinated carbon center from 3-fluorooxindoles. Organic and Biomolecular Chemistry, 2022, 20, 538-552.	1.5	11
369	[3+2] regioselective annulation reaction of 2-arylidene-1,3-indandiones towards synthesis of spirocyclopentenes: understanding the mechanism of γ-attack <i>vs.</i> α-attack using DFT studies. RSC Advances, 2021, 11, 38648-38653.	1.7	10
370	4â€(Dimethylamino)pyridineâ€Catalyzed (3+2) Annulation of Pyrazoledioneâ€Derived Morita–Baylis–Hillman Carbonates with 2â€Arylideneindaneâ€1,3â€Diones: An Access to Dispirocyclic Compounds. Advanced Synthesis and Catalysis, 2022, 364, 1074-1079.	2.1	10
371	Bismuth Redox Catalysis: An Emerging Main-Group Platform for Organic Synthesis. ACS Catalysis, 2022, 12, 1382-1393.	5.5	93
372	Pyridine vs DABCO vs TBAB in Annulations of δ-Acetoxy Allenoates with Thioamides Leading to Dihydrothiophene, Thiopyran, and Thiazole Scaffolds. Journal of Organic Chemistry, 2022, 87, 1285-1301.	1.7	9
373	Phosphine-Mediated Morita–Baylis–Hillman-Type/Wittig Cascade: Access to <i>E</i> -Configured 3-Styryl- and 3-(Benzopyrrole/furan-2-yl) Quinolinones. Journal of Organic Chemistry, 2022, 87, 974-984.	1.7	2
374	Phosphine-Catalyzed Dearomative [3 + 2] Cycloaddition of Benzoxazoles with a Cyclopropenone. Organic Letters, 2022, 24, 1127-1131.	2.4	14
375	New αâ€Imidoâ€Î²â€diarylphosphorylpropanoates and their Complexes with Gadolinium(III). ChemistrySelect, 2022, 7, .	0.7	2
376	The synthesis of a copper metalâ€organic framework Cu 3 TDPAT and its application in a Moritaâ€Baylisâ€Hillman (MBH) reaction. Applied Organometallic Chemistry, 0, , .	1.7	1
377	An Electrochemical Way to Generate Amphiphiles from Hydrazones for the Synthesis of 1,2,4‶riazole Scaffold Cyclic Compounds. ChemistryOpen, 2022, 11, e202100268.	0.9	2
378	Ni-Catalyzed Enantioselective Benzylation of Secondary Phosphine Oxide. Organic Letters, 2022, 24, 1258-1262.	2.4	26
379	Synthesis and application of novel P-chiral monophosphorus ligands. Organic Chemistry Frontiers, 2022, 9, 1589-1592.	2.3	14
380	Phosphine-catalyzed divergent domino processes between Î ³ -substituted allenoates and carbonyl-activated alkenes. Chemical Science, 2022, 13, 3161-3168.	3.7	15

#	Article	IF	CITATIONS
381	Organocatalytic Regio- and Enantioselective [3 + 2]-Annulations of Ninhydrin-Derived Morita–Baylis–Hillman Carbonates with 3-Methyleneoxindoles. Journal of Organic Chemistry, 2022, 87, 3184-3194.	1.7	14
382	Phosphine(III)â€Triggered Oneâ€Pot Domino Sequences towards 5,6â€Dihydropyridineâ€2â€(1 <i>H</i>)â€One a Pyridineâ€2(1 <i>H</i>)â€One Scaffolds. Advanced Synthesis and Catalysis, 2022, 364, 1134-1143.	nd 2.1	0
383	Reactivities of allenic and olefinic Michael acceptors towards phosphines. Chemical Communications, 2022, 58, 3358-3361.	2.2	10
384	Ni-catalyzed asymmetric hydrophosphinylation of conjugated enynes and mechanistic studies. Chemical Science, 2022, 13, 4095-4102.	3.7	31
385	Research Progress of Vinyl/Aryl Phosphonium Salts in Organic Synthesis. Chinese Journal of Organic Chemistry, 2022, 42, 471.	0.6	1
386	Metal-free C(aryl)–P bond cleavage: experimental and computational studies of the Michael addition/aryl migration of triarylphosphines to alkynyl esters. Organic Chemistry Frontiers, 0, , .	2.3	1
387	Organocatalyzed trifunctionalization of alkynyl 1,2-diones for the concise synthesis of acyloxy allylidene malonates and γ-alkylidenebutenolides. Green Chemistry, 2022, 24, 3623-3628.	4.6	3
388	Resolution of aryl-H-phosphinates applied in the synthesis of P-stereogenic compounds including a BrÃ,nsted acid NMR solvating agent. Organic Chemistry Frontiers, 0, , .	2.3	1
389	Rh-Catalyzed Regio- and Enantioselective Allylic Phosphinylation. Journal of the American Chemical Society, 2022, 144, 2893-2898.	6.6	28
390	Visible-Light-Promoted Aerobic Oxyphosphorylation of α-Diazoesters with H-Phosphine Oxides. Organic Letters, 2022, 24, 1530-1535.	2.4	15
391	Asymmetric αâ€Allylation of Glycinate with Switched Chemoselectivity Enabled by Customized Bifunctional Pyridoxal Catalysts. Angewandte Chemie, 2022, 134, .	1.6	2
392	Diaryliodoniums as Hybrid Hydrogen- and Halogen-Bond-Donating Organocatalysts for the Groebke–Blackburn–Bienaymé Reaction. Journal of Organic Chemistry, 2022, 87, 4569-4579.	1.7	27
393	Two-Component Redox Organocatalyst for Peptide Bond Formation. Journal of the American Chemical Society, 2022, 144, 3637-3643.	6.6	16
394	Asymmetric Addition of α-Diazomethylphosphonate to Alkylideneindolenine Catalyzed by a Trifunctional BINAP-Based Monophosphonium Salt. Organic Letters, 2022, 24, 1657-1661.	2.4	6
395	Catalytic Cleavage of Unactivated C(aryl)–P Bonds by Chromium. Organic Letters, 2022, 24, 1581-1586.	2.4	4
396	Asymmetric αâ€Allylation of Glycinate with Switched Chemoselectivity Enabled by Customized Bifunctional Pyridoxal Catalysts. Angewandte Chemie - International Edition, 2022, 61, e202200850.	7.2	24
397	Phosphineâ€Catalyzed Enantioselective (3+2) Annulation of Vinylcyclopropanes with Imines for the Synthesis of Chiral Pyrrolidines. Angewandte Chemie - International Edition, 2022, 61, .	7.2	21
398	Controlled Triphenylphosphine Reactivity for Epoxy Resin Cure by Transition-Metal β-Diketonates. Chemistry of Materials, 0, , .	3.2	2

#	Article	IF	Citations
399	The story of acyl phosphines: Synthesis, reactivity, and catalytic applications. Applied Organometallic Chemistry, 2022, 36, .	1.7	8
400	Iron(II)-Catalyzed Bisphosphorylation Cascade Cycloisomerization of γ-Hydroxyl Ynones and Diphenylphosphine Oxides: Synthesis of Highly Substituted Bisphosphorylated Dihydrofuran Derivatives. Organic Letters, 2022, 24, 2264-2268.	2.4	10
401	Phosphine atalyzed Enantioselective (3+2) Annulation of Vinylcyclopropanes with Imines for the Synthesis of Chiral Pyrrolidines. Angewandte Chemie, 2022, 134, .	1.6	3
402	Dearomatization of Nitro(hetero)arenes through Annulation. European Journal of Organic Chemistry, 2022, 2022, .	1.2	12
403	Direct conversion of white phosphorus to versatile phosphorus transfer reagents via oxidative onioation. Nature Chemistry, 2022, 14, 384-391.	6.6	31
404	Reactivity of pyrimidinylphosphazenes with acetylenic esters: Competitive [4 + 2] and [2 + 2] ta cycloaddition or retro ycloaddition approaches. Journal of Heterocyclic Chemistry, 0, , .	andem 1.4	0
405	Recent Advances in Lewis Baseâ€Catalysed Chemoâ€, Diastereo―and Enantiodivergent Reactions of Electronâ€Deficient Olefins and Alkynes. Chemical Record, 2022, 22, e202100276.	2.9	11
406	Metal-free synthesis of 1,3-dioxane derivatives from aromatic alkynes and paraformaldehyde. Synlett, 0, , .	1.0	1
407	Phosphine-Mediated [4 + 3] Annulation of Diynoates and 2-Arylidene Indane-1,3-diones: Access of Indeno[1,2- <i>b</i>]oxepin-4-ylidenes and Beyond. Organic Letters, 2022, 24, 2993-2997.	2.4	5
408	Homogeneous and Heterogeneous Pd-Catalyzed Selective C–P Activation and Transfer Hydrogenation for "Group-Substitution―Synthesis of Trivalent Phosphines. Organic Letters, 2022, 24, 2868-2872.	2.4	11
409	Enantioselective Synthesis of Pyrrolidines by a Phosphine-Catalyzed Î ³ -Umpolung/Î ² -Umpolung Cascade. Organic Letters, 2022, 24, 2847-2852.	2.4	10
410	DABCO-Catalyzed [4 + 2] Annulation of 5-Methylenehex-2-ynedioates with Electron-Deficient Alkenes. Journal of Organic Chemistry, 2022, 87, 6362-6370.	1.7	4
411	Construction of <i>N</i> -Acyliminophosphoranes via Iron(II)-Catalyzed Imidization of Phosphines with <i>N</i> -Acyloxyamides. Organic Letters, 2022, 24, 3302-3306.	2.4	11
412	Chiral (phosphine)-(imidazoline) PCN pincer palladium(<scp>ii</scp>) complexes: synthesis and application in asymmetric hydrophosphination of 2-alkenoylpyridines with diphenylphosphine. Dalton Transactions, 2022, 51, 8350-8367.	1.6	3
413	[3+2] vs [4+1] Annulation: Revisiting mechanism studies on phosphine-catalysed domino sequence of alkynoates and activated methylenes. Organic and Biomolecular Chemistry, 2022, , .	1.5	0
414	Atom- and step-economic 1,3-thiosulfonylation of activated allenes with thiosulfonates to access vinyl sulfones/sulfides. Chemical Communications, 2022, 58, 6765-6768.	2.2	11
415	Rhodium catalyzed asymmetric synthesis of Chiraphos derivatives. Chinese Chemical Letters, 2022, 33, 5084-5087.	4.8	4
416	Free Metallophosphines: Extremely Electronâ€Rich Phosphorus Superbases That Are Electronically and Sterically Tunable**. Angewandte Chemie, 2022, 134, .	1.6	2

#	Article	IF	CITATIONS
417	Oneâ€Pot Synthesis of 2,3,6â€Trisubstituted Pyridines by Phosphineâ€Catalyzed Annulation of γâ€Vinyl Allenoates with Enamino Esters Followed by DDQâ€Promoted Oxidative Aromatization. Advanced Synthesis and Catalysis, 2022, 364, 1879-1883.	2.1	7
418	9-Phosphatriptycene Derivatives: From Their Weak Basicity to Their Application in Frustrated Lewis Pair Chemistry. Journal of Physical Chemistry A, 2022, 126, 2794-2801.	1.1	4
419	Free Metallophosphines: Extremely Electronâ€Rich Phosphorus Superbases That Are Electronically and Sterically Tunable**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	8
420	Catalystâ€Free Visible Light Mediated Synthesis of Unsymmetrical Tertiary Arylphosphines. Advanced Synthesis and Catalysis, 2022, 364, 2248-2253.	2.1	7
421	Recent Advances in C–F Bond Activation of Acyl Fluorides Directed toward Catalytic Transformation by Transition Metals, N-Heterocyclic Carbenes, or Phosphines. Synthesis, 2022, 54, 3667-3697.	1.2	17
422	Phosphine-Catalyzed (4 + 2) Annulation of Allenoates with Benzofuran-Derived Azadienes and Subsequent Thio-Michael Addition. Organic Letters, 2022, 24, 3747-3752.	2.4	6
423	Pyridinylidenaminophosphines as Versatile Organocatalysts for CO2 Transformations into Valueâ€Added Chemicals. Asian Journal of Organic Chemistry, 0, , .	1.3	0
424	Green and Effective Preparation of α-Hydroxyphosphonates by Ecocatalysis. Molecules, 2022, 27, 3075.	1.7	5
425	Enabling Reductive C–N Cross-Coupling of Nitroalkanes and Boronic Acids by Steric Design of P(III)/P(V)â•O Catalysts. Journal of the American Chemical Society, 2022, 144, 8242-8248.	6.6	20
426	Acidic Hydrogenâ€Tethered Allylic Carbonates for Phosphineâ€Catalyzed (4+2) Annulation of Sulfamateâ€Derived Cyclic Imines. Advanced Synthesis and Catalysis, 2022, 364, 2146-2151.	2.1	9
427	Phosphine-Catalyzed Sequential [3 + 2]/[3 + 2] Annulation between Allenoates and Arylidenemalononitriles for the Enantioselective Construction of Bicyclo[3,3,0]octenes and Cyclopenta[<i>c</i>]quinolinones. Organic Letters, 2022, 24, 3712-3716.	2.4	10
428	Relative rates of alkylation for B-substituted triarylphosphines: an <i>ortho</i> -Boron group enhances reactivity on phosphorus. Organic and Biomolecular Chemistry, 0, , .	1.5	0
429	Design, Synthesis and Application of Multifunctional Chiral Amiâ€nophosphine Catalyst for Highly Efficient Catalyst for Asymmetric Intermolecular Cross <scp>Rauhutâ€Currier</scp> Reaction. Chinese Journal of Chemistry, 0, , .	2.6	3
430	Design and Application of Chiral Bifunctional 4-Pyrrolidinopyridines: Powerful Catalysts for Asymmetric Cycloaddition of Allylic <i>N</i> -Ylide. ACS Catalysis, 2022, 12, 7221-7232.	5.5	31
431	Ï€-Delocalization in phosphaphthalimide and its ambident reactivity (O/P) toward main-group electrophiles. Dalton Transactions, 0, , .	1.6	0
432	Nickel-catalysed diversification of phosphine ligands by formal substitution at phosphorus. Chemical Science, 2022, 13, 7914-7919.	3.7	14
433	Visibleâ€Light Mediated Arbuzovâ€Like Reaction with Thiophenols. Chemistry - A European Journal, 2022, 28,	1.7	8
434	Tri(<i>n</i> -butyl)phosphine-promoted domino reaction for the efficient construction of spiro[cyclohexane-1,3'-indolines] and spiro[indoline-3,2'-furan-3',3''-indolines]. Beilstein Journal of Organic Chemistry, 0, 18, 669-679.	1.3	5

#	Apticie	IF	CITATION
435	Easy Removal of Triphenylphosphine Oxide from Reaction Mixtures by Precipitation with CaBr ₂ . Organic Process Research and Development, 2022, 26, 1845-1853.	1.3	5
436	Highly efficient synthesis of chiral \hat{l}^2 -amino phosphine derivatives via direct asymmetric reductive amination with ammonium salts and H2. Green Synthesis and Catalysis, 2022, , .	3.7	6
437	Asymmetric Synthesis of Cyclopentene Compounds Containing All-Carbon Quaternary Stereocenters by (3 + 2) Cycloaddition and Its Application in the Formal Synthesis of (<i>R</i>)-(â^)-Puraquinonic Acid. Journal of Organic Chemistry, 0, , .	1.7	3
438	Phosphine-Catalyzed Divergent Reactivity of Alkynoates with Acid Anhydrides: Chemo- and Stereoselective Synthesis of Polysubstituted Olefins and Dienes. Organic Chemistry Frontiers, 0, , .	2.3	0
439	Inversion of configuration in modern synthesis. , 2022, , 245-266.		0
440	Bimetallic ruthenium–rhodium particles supported on carbon nanotubes for the hydrophosphinylation of alkenes and alkynes. Catalysis Science and Technology, 2022, 12, 4983-4987.	2.1	4
441	Lewis base catalyzed allylation reaction of N-aryl amides with Morita–Baylis–Hillman carbonates. Tetrahedron, 2022, 120, 132903.	1.0	3
442	Xenon Derivatives as Aerogen Bond-Donating Catalysts for Organic Transformations: A Theoretical Study on the Metaphorical "Spherical Cow in a Vacuum―Provides Insights into Noncovalent Organocatalysis. Journal of Organic Chemistry, 0, , .	1.7	8
443	Lewis Baseâ€catalyzed βâ€Addition of (Arylsulfonyl) fluoromethane Derivatives to Allenoates. ChemistrySelect, 2022, 7, .	0.7	0
444	Oneâ€Pot Divergent Synthesis of Benzoxazines and Dihydroquinolines from Moritaâ€Baylisâ€Hillman Alcohols. European Journal of Organic Chemistry, 2022, 2022, .	1.2	3
445	Synthesis of Mixed Arylalkyl Tertiary Phosphines via the Grignard Approach. Molecules, 2022, 27, 4253.	1.7	0
446	Synthesis and Chemistry of Ammonioethenyl and Phosphonioethenyl Ligands in Zwitterionic Dirhenium Carbonyl Complexes. Inorganic Chemistry, 0, , .	1.9	2
447	Asymmetric cross Rauhut–Currier reactions of vinyl ketones with carbonyl <i>para</i> -quinone methides <i>via</i> phosphine catalysis. Organic Chemistry Frontiers, 2022, 9, 4840-4845.	2.3	8
448	Phosphine-catalysed intermolecular cyclopropanation reaction between benzyl bromides and activated alkenes. New Journal of Chemistry, 2022, 46, 16382-16386.	1.4	3
449	Phosphine-Catalyzed Reactions of Imides and Hydrophosphoryl Compounds Addition to Divinyl Sulfone. Russian Journal of General Chemistry, 2022, 92, 1190-1198.	0.3	0
450	Effects of Anchimeric Assistance in Phosphonium Enolates Chemistry. Russian Journal of General Chemistry, 2022, 92, 1173-1183.	0.3	2
451	C(sp ²)–C(sp ²) Reductive Cross-Coupling of Triarylphosphines with Aryl Halides by Palladium/Nickel Co-catalysis. Organic Letters, 2022, 24, 5573-5578.	2.4	8
452	Enantioselective synthesis of P-stereogenic allenylphosphines through Ni-catalysed propargylic substitution. , 2022, 1, 738-747.		15

#	Article	IF	Citations
453	Palladacycle-Catalyzed Olefinic C–P Cross-Coupling of Alkenylsulfonium Salts with Diarylphosphines to Access Alkenylphosphines. Organometallics, 2022, 41, 2342-2348.	1.1	14
454	Visible-Light-Induced [1+5] Annulation of Phosphoryl Diazomethylarenes and Pyridinium 1,4-Zwitterionic Thiolates. Organic Letters, 2022, 24, 6024-6030.	2.4	19
455	Synthetic and Computational Study of the Enantioselective [3+2]-Cycloaddition of Chromones with MBH Carbonates. Organic Letters, 2022, 24, 5890-5895.	2.4	7
456	Photoredox Catalytic Phosphine-Mediated Deoxygenation of Hydroxylamines Enables the Construction of <i>N</i> -Acyliminophosphoranes. Organic Letters, 2022, 24, 6247-6251.	2.4	9
457	Racemization Pathway for MoO ₂ (acac) ₂ Favored over Ray–Dutt, Bailar, and Conte–Hippler Twists. Inorganic Chemistry, 2022, 61, 14918-14923.	1.9	5
458	Vinylogous Hydrazone Strategy in Stereoselective Synthesis of 2,3â€Dihydroâ€1 <i>H </i> â€pyrrolizines – An Organocatalytic, Metalâ€Free Route to Ketorolac. Advanced Synthesis and Catalysis, 2022, 364, 3607-3616.	2.1	3
459	C – C coupling of alkynes to the CH2 group in a 1-phosphonioethenyl ligand in a zwitterionic dirhenium carbonyl complex. Journal of Organometallic Chemistry, 2022, 979, 122490.	0.8	2
460	Phosphineâ€Catalyzed (4+2) Annulation of Alkenes with Acidic Hydrogenâ€Tethered Allylic Carbonates. Advanced Synthesis and Catalysis, 2022, 364, 3283-3288.	2.1	6
461	Sequential Baseâ€Promoted Formal [4+2] Allenoate Based Cycloaddition: Synthesis of Functionalized Acridines. European Journal of Organic Chemistry, 2022, 2022, .	1.2	1
462	Catalytic Asymmetric Synthesis of C-Chiral Phosphonates. Symmetry, 2022, 14, 1758.	1.1	5
463	C–C Bond Activation of Cyclopropanes Enabled by Phosphine-Catalyzed <i>In Situ</i> Formation of High-Strain Methylenecycopropane Intermediate. Organic Letters, 2022, 24, 6489-6493.	2.4	5
464	Late stage modifications of phosphine oxide ligands by ironâ€catalyzed hydrogen borrowing reactions. Journal of Organometallic Chemistry, 2022, 979, 122510.	0.8	2
465	Prediction on chemoselectivity for selected organocatalytic reactions by the DFT version of the Hückel-defined free valence index. Catalysis Science and Technology, 2022, 12, 6486-6494.	2.1	2
466	Multicomponent synthesis of substituted pyridines <i>via</i> a catalytic intermolecular aza-Wittig/Diels–Alder sequence. RSC Advances, 2022, 12, 26233-26237.	1.7	2
467	Synthesis of <i>trans</i> -stilbenes <i>via</i> phosphine-catalyzed coupling reactions of benzylic halides. Organic and Biomolecular Chemistry, 2022, 20, 6869-6878.	1.5	1
468	Tris(2,4,6-trimethoxyphenyl)phosphine – a Lewis base able to compete with phosphazene bases in catalysing oxa-Michael reactions. Catalysis Science and Technology, 2022, 12, 6204-6212.	2.1	4
469	Enantioselective phosphonation of isoquinolines <i>via</i> chiral phosphoric acid-catalyzed dearomatization. Chemical Communications, 2022, 58, 9393-9396.	2.2	6
470	Decarboxylative Selective Phosphorylation of Aliphatic Acids: A Transitionâ€Metal―and Photocatalystâ€Free Avenue to Dialkyl and Trialkyl Phosphine Oxides from White Phosphorus. Angewandte Chemie, 2022, 134, .	1.6	2

#	Article	IF	CITATIONS
471	Synthesis of Fluoroalkyl Cyclopentenes: Highly Diastereoselective Phosphineâ€Catalyzed [3+2] Annulation of βâ€Fluoroalkylvinyl Arylsulfones with Moritaâ€Baylisâ€Hillman Carbonates. ChemistrySelect, 2022, 7, .	0.7	1
472	Catalytic Chemodivergent Annulations of <i>o</i> â€Aminotrifluoroacetophenone and Allenyl Imide through β' â~H Functionalization or β/γâ€Bisfunctionalization. Advanced Synthesis and Catalysis, 2022, 1 3690-3696.	36241,	3
473	Decarboxylative Selective Phosphorylation of Aliphatic Acids: A Transitionâ€Metal―and Photocatalystâ€Free Avenue to Dialkyl and Trialkyl Phosphine Oxides from White Phosphorus. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
474	Palladium-catalyzed asymmetric hydrophosphination of internal alkynes: Atroposelective access to phosphine-functionalized olefins. CheM, 2022, 8, 3346-3362.	5.8	41
475	Phosphine-Catalyzed Atroposelective Formal [3 + 2] Cycloaddition Desymmetrization of <i>N</i> -Arylmaleimides. Organic Letters, 2022, 24, 6494-6498.	2.4	4
476	Synthesis of Axially Chiral CF3â€Substituted 2â€Arylpyrroles by Sequential Phosphineâ€Catalyzed Asymmetric [3+2] Annulation and Oxidative Centralâ€toâ€Axial Chirality Transfer. Angewandte Chemie, 0, ,	1.6	0
477	Allenoates in organic synthesis. Tetrahedron, 2022, 126, 133053.	1.0	4
478	Synthesis of Axially Chiral CF ₃ â€Substituted 2â€Arylpyrroles by Sequential Phosphineâ€Catalyzed Asymmetric [3+2] Annulation and Oxidative Centralâ€toâ€Axial Chirality Transfer. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
479	Divergent Reactivity of Phosphorylated and Related Allenes: [4 + 2] Cycloaddition with 3,6-Diphenyltetrazine, Self-Addition Leading to Dimers and [Pd]-Complex Formation. Journal of Organic Chemistry, 2022, 87, 13683-13697.	1.7	2
480	Phosphine-catalyzed activation of cyclopropenones: a versatile C ₃ synthon for (3+2) annulations with unsaturated electrophiles. Chemical Science, 2022, 13, 12769-12775.	3.7	12
481	Rational design of arsine catalysts for arsa-Wittig reaction. Organic Chemistry Frontiers, 2022, 9, 6786-6794.	2.3	2
482	Fluorinated Tetraarylethenes: Universal Tags for the Synthesis of Solid State Luminogens. Angewandte Chemie, 2022, 134, .	1.6	1
483	Synthesis of Chiral αâ€6ubstituted βâ€Aminophosphine Derivatives through Asymmetric Hydrophosphinylation Utilizing Secondary Phosphine Sulfides. Chemistry - an Asian Journal, 2022, 17, .	1.7	1
484	Pincer-nickel catalyzed asymmetric addition of HPPh2 to enones toward the synthesis of chiral phosphines. Journal of Organometallic Chemistry, 2023, 983, 122552.	0.8	2
485	Pyridine-promoted diazotization of P H bonds with aryl diazonium tetrafluoroborates: Synthesis of azo organophosphorus compounds. Tetrahedron Letters, 2022, , 154207.	0.7	0
486	New insights into phosphorus biphilicity: Stereochemistry of monocyclic aminophosphoranes formation. International Journal of Quantum Chemistry, 0, , .	1.0	0
487	Fluorinated Tetraarylethenes: Universal Tags for the Synthesis of Solid State Luminogens. Angewandte Chemie - International Edition, 2022, 61, .	7.2	3
488	Phosphine-Mediated Redox Cyclization of 1-(2-Nitroaryl)prop-2-ynones to 3-Hydroxyquinolin-4-ones: Formal Intramolecular Oxyamination of α,Ĵ²-Ynones. Organic Letters, 2022, 24, 7665-7670.	2.4	5

#	Article	IF	CITATIONS
489	Unveiling a family of spiro-Î ² -lactams with anti-HIV and antiplasmodial activity via phosphine-catalyzed [3+2] annulation of 6-alkylidene-penicillanates and allenoates. Frontiers in Chemistry, 0, 10, .	1.8	3
490	Enantioselective [3 + 2] cycloadditions of terminal allenoates with β-sulfonyl-α,β-unsaturated ketones. Green Synthesis and Catalysis, 2023, 4, 54-57.	3.7	1
491	A one-component phosphonium borane Lewis pair serves as a dual initiator and catalyst in the ring-opening alternating copolymerization of anhydrides and epoxides. Polymer Chemistry, 2022, 13, 6551-6563.	1.9	9
492	DFT Computational Insight into Pd(0)-Catalyzed Oxidative Cross-Couplings of 1,2-Allenyl Ketones and Aryl Boronic Acid: Pd(II)-Carbenoid Intermediate versus ïº-Allyl-Pd(II) Intermediate. Catalysis Science and Technology, 0, , .	2.1	0
493	Cobalt-catalyzed asymmetric phospha-Michael reaction of diarylphosphine oxides for the synthesis of chiral organophosphorus compounds. Organic Chemistry Frontiers, 2022, 10, 133-139.	2.3	3
494	Progress in Synthesis of Nitrogen Heterocycles Catalyzed by Chiral Phosphine. Chinese Journal of Organic Chemistry, 2022, 42, 3129.	0.6	1
495	Propeller-like structure-stabilized phosphole and its aromaticity-promoted electrochemiluminescence. Sensors and Actuators B: Chemical, 2023, 375, 132977.	4.0	0
496	Lewisâ€Base Dependent (3+3) Annulations of Acetoxy Allenoates with Iminoindolines: <i>α</i> â€Carboline Scaffolds with Varied Substituents. Advanced Synthesis and Catalysis, 2022, 364, 4316-4332.	2.1	7
497	Enantioselective Synthesis of Quaternary Oxindoles: Desymmetrizing Staudinger–Aza-Wittig Reaction Enabled by a Bespoke HypPhos Oxide Catalyst. Journal of the American Chemical Society, 2022, 144, 21318-21327.	6.6	6
498	Activation of Alkynes by a Redox-Active Carboranyl Diphosphine and Formation of Boron-Containing Phosphacycles. Inorganic Chemistry, 2022, 61, 18568-18573.	1.9	1
499	Universal one-pot strategy for fabricating supported chiral organocatalysts via direct covalent immobilization upon hollow mesoporous polystyrene nanospheres. Applied Catalysis A: General, 2023, 649, 118976.	2.2	5
500	Access to Polysubstituted Halophosphorylated Dihydrofurans via Halotrimethylsilane-Promoted Cascade Cyclization of γ-Hydroxyl Ynones with Diphenylphosphine Oxides. Organic Letters, 2022, 24, 8609-8614.	2.4	4
501	Rational design and organocatalytic enantioselective [1 + 4]-annulations of MBH carbonates with modified enones. Organic Chemistry Frontiers, 2022, 10, 150-156.	2.3	5
502	Phosphine-catalysed denitrative rearomatising (3 + 2) annulation of α,β-ynones and 3-nitroindoles. Organic and Biomolecular Chemistry, 2023, 21, 738-742.	1.5	1
503	[4+2] Annulation of arylmethylphosphonochloridates with dibenzo[<i>b</i> , <i>f</i>][1,4]oxazepines: a practical approach to polycyclic benzo-δ-phosphonolactams. New Journal of Chemistry, 2023, 47, 2431-2435.	1.4	5
504	Microwave-mediated stereocontrolled annulations of diazo(aryl)methyl(diaryl)phosphine oxides with pyridinium 1,4-zwitterionic thiolates. Chemical Communications, 2022, 59, 239-242.	2.2	9
505	Phosphine-catalyzed regio- and stereo-selective hydroboration of ynamides to (<i>Z</i>)-β-borylenamides. Chemical Communications, 2022, 58, 13751-13754.	2.2	3
506	Synthesis of Chromoneâ€Spiroindolinoneâ€Cyclopentene Derivatives through Phosphineâ€Catalyzed (3+2) Annulation of Moritaâ€Baylisâ€Hillman Carbonates with Oxindoleâ€Chromones. ChemistrySelect, 2022, 7, .	0.7	3

#	Article	IF	CITATIONS
507	Synthesis of 4-Imidazolidinones from Diamides and Ethynyl Benziodoxolones via Double Michael-Type Addition: Ethynyl Benziodoxolones as Electrophilic Ynol Synthons. Organic Letters, 2022, 24, 8859-8863.	2.4	4
508	Asymmetric Inverse-Electron-Demand Oxa-Diels–Alder Reaction with Morita–Baylis–Hillman Carbonates of 2-Cyclopentenone via a Palladium-Catalyzed Umpolung Strategy. Journal of Organic Chemistry, 2023, 88, 7800-7809.	1.7	6
509	Selective Synthesis of αâ€Alkoxy Enones by αâ€Addition of Alcohols to Alkynones Using 1,1,1,3,3,3â€Hexafluoroisopropanol and PPh ₃ as Co atalysts. European Journal of Organic Chemistry, 2022, 2022, .	1.2	1
510	lodomethane as an organocatalyst for the aerobic ortho-selective trifluoromethylation of pyridines. Science China Chemistry, 2023, 66, 133-138.	4.2	2
511	On the Edge of the Known: Extremely Electronâ€rich (Di)carboranyl Phosphines. Angewandte Chemie, 0, ,	1.6	0
512	Tandem C/N-Difunctionalization of Nitroarenes: Reductive Amination and Annulation by a Ring Expansion/Contraction Sequence. Journal of the American Chemical Society, 2023, 145, 41-46.	6.6	18
513	Phosphineâ€Functionalized Porous Materials for Catalytic Organic Synthesis. European Journal of Organic Chemistry, 2022, 2022, .	1.2	6
514	Asymmetric Hydrophosphinylation of Alkynes: Facile Access to Axially Chiral Styreneâ€Phosphines. Angewandte Chemie - International Edition, 2023, 62, .	7.2	16
515	Visibleâ€Lightâ€Induced Cascade Phosphinoylation/Cyclization of Phenacylmalononitriles with Secondary <i>H</i> â€phosphine Oxides. Advanced Synthesis and Catalysis, 2022, 364, 4392-4401.	2.1	2
516	On the Edge of the Known: Extremely Electronâ€Rich (Di)Carboranyl Phosphines. Angewandte Chemie - International Edition, 2023, 62, .	7.2	7
517	Light-induced phosphine-catalyzed asymmetric functionalization of benzylic C-H bonds. Science China Chemistry, 2023, 66, 127-132.	4.2	7
518	Visibleâ€Lightâ€Driven Hydrophosphorylation of Azobenzenes Enabled by <i>trans</i> â€ŧoâ€ <i>cis</i> Photoisomerization. Advanced Synthesis and Catalysis, 2022, 364, 4275-4280.	2.1	6
519	Asymmetric Hydrophosphinylation of Alkynes: Facile Access to Axially Chiral Styreneâ€Phosphines. Angewandte Chemie, 2023, 135, .	1.6	0
520	Deamination of 1-Aminoalkylphosphonic Acids: Reaction Intermediates and Selectivity. Molecules, 2022, 27, 8849.	1.7	2
521	Synthesis, Structures, and Properties of Ï€â€Extended Phosphindolizine Derivatives. Chemistry - A European Journal, 0, , .	1.7	0
522	Phosphineâ€Catalyzed [3+2] Cycloaddition of Azaâ€aurones and Allenoates: Enantioselective Synthesis of 2â€Spirocyclopentylâ€indolinâ€3â€ones. European Journal of Organic Chemistry, 0, , .	1.2	0
523	Investigation of the Asymmetric Addition Reactions Induced by Pentacoordinated Hydrospirophosphorane Substrate. Journal of Organic Chemistry, 2023, 88, 1385-1402.	1.7	3
524	Nal/PPh ₃ -catalyzed visible-light-mediated decarboxylative radical cascade cyclization of <i>N</i> -arylacrylamides for the efficient synthesis of quaternary oxindoles. Beilstein Journal of Organic Chemistry, 0, 19, 57-65.	1.3	3

#	Article	IF	CITATIONS
525	1,2-Diacylation of Alkynes Using Acyl Fluorides and Acylsilanes by P(III)/P(V) Catalysis. Organic Letters, 2023, 25, 336-340.	2.4	9
526	Copper-Catalyzed Asymmetric Boroprotonation of Phosphinylallenes. Organic Letters, 2023, 25, 488-493.	2.4	2
527	Asymmetric Organocatalysis: A Survival Guide to Medicinal Chemists. Molecules, 2023, 28, 271.	1.7	2
528	Advances in Organocatalytic Asymmetric Reactions Involving Thioesters. Acta Chimica Sinica, 2023, 81, 64.	0.5	6
529	Organocatalytic Polymers from Affordable and Readily Available Building Blocks for the Cycloaddition of CO ₂ to Epoxides. Journal of Organic Chemistry, 2023, 88, 4894-4924.	1.7	9
530	Facile Oneâ€Pot Synthesis of Polysubstituted Pyridinium Salts by Annulation of Enamines with Alkynes. Chemistry - A European Journal, 2023, 29, .	1.7	2
531	Borane-Protecting Strategy for Hydrosilylation of Phosphorus-Containing Olefins. ACS Omega, 2023, 8, 5672-5682.	1.6	1
532	Asymmetric Organocatalysis Under Mechanochemical Conditions. Chemical Record, 0, , .	2.9	2
533	Progress of Catalytic Mitsunobu Reaction in the Two Decades. Asian Journal of Organic Chemistry, 2023, 12, .	1.3	2
534	Ph ₃ P-mediated decarboxylative ring-opening of maleic anhydride by thiolic compounds: formation of two carbon–sulfur bonds. RSC Advances, 2023, 13, 9242-9246.	1.7	0
535	Novel synthetic route for (parent) phosphetanes, phospholanes, phosphinanes and phosphepanes. Chemical Science, 2023, 14, 3834-3838.	3.7	3
536	Enantioselective Radicalâ€Type 1,2â€Alkoxyâ€Phosphinoylation to Styrenes Catalyzed by Chiral Vanadyl Complexes. Angewandte Chemie - International Edition, 2023, 62, .	7.2	1
537	Phosphineâ€Catalyzed Activation of Phenylsilane for Benzaldehyde Reduction. ChemPlusChem, 2023, 88, .	1.3	3
538	Phosphine-Mediated [3+2] Cyclization for the Synthesis of Coumarin-Based CF3-Containing Furanones. Synlett, 0, , .	1.0	0
539	Copper-catalyzed cross-dehydrogenative coupling of P(O)â^'H compounds with O-/S-nucleophiles. Journal of Organometallic Chemistry, 2023, 991, 122670.	0.8	1
540	(3Â+ 2) Cycloadditions by Nucleophilic Organocatalysis. , 2022, , .		0
541	Copper-catalyzed 2,3-dihydro-1,2,4-triazoles synthesis through [3+2]-cycloaddition of nitrile ylides with azodicarboxylates. Green Synthesis and Catalysis, 2023, , .	3.7	1
542	Novel Synergistic Catalysis by Ethylcarbodiimide Hydrochloride Salt and Cul Towards Moritaâ€Baylisâ€Hillman Reaction. ChemistrySelect, 2023, 8, .	0.7	Ο

#	Article	IF	CITATIONS
543	Enantioseparation of P-Stereogenic 1-Adamantyl Arylthiophosphonates and Their Stereospecific Transformation to 1-Adamantyl Aryl-H-phosphinates. Molecules, 2023, 28, 1584.	1.7	0
544	Olefin Hydrofunctionalization; Hydrofunctionalization of Olefins With P, S, and Se Heteroatoms. , 2022, , .		Ο
545	Solvent-Mediated Enantioselective Rauhut–Currier Cyclization via Iminium and Enamine Activation. Organic Letters, 2023, 25, 1072-1077.	2.4	3
546	Enantioselective Radicalâ€Type 1,2â€Alkoxyâ€Phosphinoylation to Styrenes Catalyzed by Chiral Vanadyl Complexes. Angewandte Chemie, 2023, 135, .	1.6	0
547	A general copper-catalysed enantioconvergent radical Michaelis–Becker-type C(sp3)–P cross-coupling. , 2023, 2, 430-438.		14
548	Reductive Asymmetric Azaâ€Mislowâ€Evans Rearrangement by 1,3,2â€Diazaphospholene Catalysis**. Angewandte Chemie, 2023, 135, .	1.6	0
549	Reductive Asymmetric Azaâ€Mislowâ€Evans Rearrangement by 1,3,2â€Diazaphospholene Catalysis**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
550	Photoinduced Copper-Catalyzed C(sp ³)–P Bond Formation by Coupling of Secondary Phosphines with N-(Acyloxy)phthalimides and N-Fluorocarboxamides. Organic Letters, 2023, 25, 1583-1588.	2.4	6
551	Advances in organocatalysis of the Michael reaction by tertiary Phosphines. Catalysis Reviews - Science and Engineering, 0, , 1-90.	5.7	2
552	Csp ³ â^'P ^{III} Bond Formation via Cross oupling of Umpolung Carbonyls with Phosphine Halides Catalyzed by Nickel. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
553	Csp ³ â^'P ^{III} Bond Formation via Crossâ€Coupling of Umpolung Carbonyls with Phosphine Halides Catalyzed by Nickel. Angewandte Chemie, 0, , .	1.6	0
554	1,2,5-Trimethylpyrrolyl Phosphines: A Class of Strongly Donating Arylphosphines. Organometallics, 2023, 42, 597-605.	1.1	2
555	Enantioselective copper-catalyzed hydrophosphination of alkenyl isoquinolines. Chemical Science, 2023, 14, 4413-4417.	3.7	11
556	[4 + 2] Cycloadditions Catalyzed by Nucleophilic Catalysts. , 2022, , .		0
557	Nickel-catalysed enantioselective reaction of secondary phosphine oxides and activated vinylcyclopropanes. Organic and Biomolecular Chemistry, 2023, 21, 3096-3100.	1.5	5
558	Visible-Light-Induced Carbene Insertion into P–H Bonds between Acylsilanes and <i>H</i> -Phosphorus Oxides. Organic Letters, 2023, 25, 2338-2343.	2.4	5
559	Expanding Reaction Profile of Allyl Carboxylates via 1,2-Radical Migration (RaM): Visible-Light-Induced Phosphine-Catalyzed 1,3-Carbobromination of Allyl Carboxylates. Journal of the American Chemical Society, 0, , .	6.6	2
560	Copper atalyzed Dynamic Kinetic Asymmetric P Coupling of Secondary Phosphine Oxides and Aryl iodides. Angewandte Chemie, 0, , .	1.6	0

#	Article	IF	CITATIONS
561	Copper atalyzed Dynamic Kinetic Asymmetric Pâ^'C Coupling of Secondary Phosphine Oxides and Aryl Iodides. Angewandte Chemie - International Edition, 2023, 62, .	7.2	10
562	Asymmetric Organocatalyzed Intermolecular Functionalization of Cyclohexanoneâ€Đerived Dienones. Chemical Record, 2023, 23, .	2.9	3
572	Iridium-Catalyzed Enantioselective Formal α-Allylic Alkylation of Acrylonitrile. Organic Letters, 2023, 25, 4520-4524.	2.4	2
576	Phosphine-Catalyzed Tandem Annulation of Allenylic Alcohols with 1,1-Dicyanoalkenes. Organic Letters, 2023, 25, 3298-3302.	2.4	5
587	Chemo- and Diastereoselective Synthesis of Spirooxindole-pyrazolines and Pyrazolones via P(NMe ₂) ₃ -Mediated Substrate-Controlled Annulations of Azoalkenes with α-Dicarbonyl Compounds. Organic Letters, 2023, 25, 4776-4781.	2.4	2
588	Fluorinated 2-Azetines: Synthesis, Applications, Biological Tests, and Development of a Catalytic Process. Organic Letters, 2023, 25, 5140-5144.	2.4	2
592	Radical Phosphorylation of Aliphatic C–H Bonds via Iron Photocatalysis. Organic Letters, 2023, 25, 5279-5284.	2.4	9
605	Aerobic oxidative C–H phosphorylation of quinoxalines under catalyst-free conditions. Chemical Communications, 0, , .	2.2	0
616	β-Trifluoromethylated enones as trifluoromethylated synthons in asymmetric catalysis. Organic Chemistry Frontiers, 2023, 10, 5519-5537.	2.3	0
617	Phosphine-catalyzed [5+1] annulation of β′-acetoxy allenoates: straightforward access to tetrahydroquinoline derivatives. Chemical Communications, 2023, 59, 11712-11715.	2.2	3
620	Synthesis of Phosphonium Ylides. , 2023, , .		0
641	Phosphine-catalyzed formal Buchner [6+1] annulation: <i>de novo</i> construction of cycloheptatrienes. Chemical Communications, 2023, 59, 13215-13218.	2.2	1
644	Umpolung trifluoromethylthiolation of alcohols. Organic and Biomolecular Chemistry, 0, , .	1.5	0
648	Recent Advances in Palladium-Catalyzed [4 + n] Cycloaddition of Lactones, Benzoxazinanones, Allylic Carbonates, and Vinyloxetanes. Topics in Current Chemistry, 2023, 381, .	3.0	1
651	Enantioselective organocatalytic cycloadditions for the synthesis of medium-sized rings. , 2023, 2, 1142-1158.		0
669	Straight-chain ω-amino-α,β-unsaturated carbonyl compounds: versatile synthons for the synthesis of nitrogen-containing heterocycles <i>via</i> organocatalytic reactions. Organic Chemistry Frontiers, 2023, 11, 236-253.	2.3	1
685	Towards tetrasubstituted furans through rearrangement and cyclodimerization of acetylenic ketones. Organic and Biomolecular Chemistry, 2024, 22, 1172-1175.	1.5	0