CITATION REPORT List of articles citing

DOI: 10.1371/journal.pone.0208273 PLoS ONE, 2018, 13, e0208273.

Source: https://exaly.com/paper-pdf/70570465/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
32	Monitoring structural modulation of redox-sensitive proteins in cells with MS-CETSA. <i>Redox Biology</i> , 2019 , 24, 101168	11.3	23
31	Horizontal Cell Biology: Monitoring Global Changes of Protein Interaction States with the Proteome-Wide Cellular Thermal Shift Assay (CETSA). <i>Annual Review of Biochemistry</i> , 2019 , 88, 383-408	29.1	39
30	Perspective on CETSA Literature: Toward More Quantitative Data Interpretation. <i>SLAS Discovery</i> , 2020 , 25, 118-126	3.4	16
29	CETSA in integrated proteomics studies of cellular processes. <i>Current Opinion in Chemical Biology</i> , 2020 , 54, 54-62	9.7	16
28	A Novel Mechanism of Monoethylhexyl Phthalate in Lipid Accumulation via Inhibiting Fatty Acid Beta-Oxidation on Hepatic Cells. <i>Environmental Science & Emp; Technology</i> , 2020 , 54, 15925-15934	10.3	5
27	Paroxetine binding and activation of phosphofructokinase implicates energy metabolism in antidepressant mode of action. <i>Journal of Psychiatric Research</i> , 2020 , 129, 8-14	5.2	5
26	Interaction profiling methods to map protein and pathway targets of bioactive ligands. <i>Current Opinion in Chemical Biology</i> , 2020 , 54, 76-84	9.7	2
25	The discovery and maturation of peptide biologics targeting the small G-protein Cdc42: A bioblockade for Ras-driven signaling. <i>Journal of Biological Chemistry</i> , 2020 , 295, 2866-2884	5.4	10
24	Thermal proteome profiling for interrogating protein interactions. <i>Molecular Systems Biology</i> , 2020 , 16, e9232	12.2	53
23	Cellular thermal shift assay for the identification of drug-target interactions in the Plasmodium falciparum proteome. <i>Nature Protocols</i> , 2020 , 15, 1881-1921	18.8	27
22	System Biology-Guided Chemical Proteomics to Discover Protein Targets of Monoethylhexyl Phthalate in Regulating Cell Cycle. <i>Environmental Science & Environmental Science & E</i>	10.3	6
21	Improved Proteomics-Based Drug Mechanism-of-Action Studies Using 16-Plex Isobaric Mass Tags. Journal of Proteome Research, 2021 , 20, 1792-1801	5.6	5
20	TP-MAP - an Integrated Software Package for the Analysis of 1D and 2D Thermal Profiling Data.		O
19	Recent advances in identifying protein targets in drug discovery. Cell Chemical Biology, 2021, 28, 394-42	238.2	17
18	Chemoproteomics for Plasmodium Parasite Drug Target Discovery. ChemBioChem, 2021 , 22, 2591-2599	3.8	2
17	Mutant p53-reactivating compound APR-246 synergizes with asparaginase in inducing growth suppression in acute lymphoblastic leukemia cells. <i>Cell Death and Disease</i> , 2021 , 12, 709	9.8	2
16	CETSA interaction proteomics define specific RNA-modification pathways as key components of fluorouracil-based cancer drug cytotoxicity. <i>Cell Chemical Biology</i> , 2021 ,	8.2	1

CITATION REPORT

15	Sensitive Measurement of Drug-Target Engagement by a Cellular Thermal Shift Assay with Multiplex Proximity Extension Readout. <i>Analytical Chemistry</i> , 2021 , 93, 10999-11009	7.8	4
14	Three Essential Resources to Improve Differential Scanning Fluorimetry (DSF) Experiments.		6
13	Capsaicin acts through tNOX (ENOX2) to induce autophagic apoptosis in p53-mutated HSC-3 cells but autophagy in p53-functional SAS oral cancer cells. <i>American Journal of Cancer Research</i> , 2020 , 10, 3230-3247	4.4	2
12	Capsaicin exerts therapeutic effects by targeting tNOX-SIRT1 axis and augmenting ROS-dependent autophagy in melanoma cancer cells. <i>American Journal of Cancer Research</i> , 2021 , 11, 4199-4219	4.4	1
11	Thermal Proteome Profiling to Identify Protein-ligand Interactions in the Apicomplexan Parasite. <i>Bio-protocol</i> , 2021 , 11, e4207	0.9	0
10	A novel role of 3ほ社AMP in the regulation of actin cytoskeleton in Arabidopsis.		
9	Lung Adenocarcinoma Transcriptomic Analysis Predicts Adenylate Kinase Signatures Contributing to Tumor Progression and Negative Patient Prognosis <i>Metabolites</i> , 2021 , 11,	5.6	1
8	A new strategy for the rapid identification and validation of direct toxicity targets of psoralen-induced hepatotoxicity. <i>Toxicology Letters</i> , 2022 , 363, 11-26	4.4	O
7	De novo mapping of the apicomplexan Ca2+-responsive proteome.		
6	18beta-Glycyrrhetinic acid induces ROS-mediated apoptosis to ameliorate hepatic fibrosis by targeting PRDX1/2 in activated HSCs. <i>Journal of Pharmaceutical Analysis</i> , 2022 ,	14	O
5	Human peroxiredoxin 6 is essential for malaria parasites and provides a host-based drug target. <i>Cell Reports</i> , 2022 , 39, 110923	10.6	О
4	Temporal and thermal profiling of the Toxoplasma proteome implicates parasite Protein Phosphatase 1 in the regulation of Ca2+-responsive pathways. 11,		O
3	Metabolites as signalling molecules.		1
2	DonElet go Ito-fractionation mass spectrometry for untargeted mapping of protein-metabolite interactomes.		О
1	Identification and evaluation of small-molecule inhibitors against the dNTPase SAMHD1viaa comprehensive screening funnel.		0