A general reinforcement learning algorithm that master self-play

Science 362, 1140-1144 DOI: 10.1126/science.aar6404

Citation Report

#	Article	IF	CITATIONS
1	Artificial Intelligence, Algorithmic Pricing and Collusion. SSRN Electronic Journal, 0, , .	0.4	17
2	Mastering board games. Science, 2018, 362, 1118-1118.	12.6	3
3	Deep learning: A philosophical introduction. Philosophy Compass, 2019, 14, e12625.	1.3	52
4	Improving Attacks on Round-Reduced Speck32/64 Using Deep Learning. Lecture Notes in Computer Science, 2019, , 150-179.	1.3	79
5	Performance optimization of criminal network hidden link prediction model with deep reinforcement learning. Journal of King Saud University - Computer and Information Sciences, 2021, 33, 1202-1210.	3.9	33
6	Deep Learning: The Good, the Bad, and the Ugly. Annual Review of Vision Science, 2019, 5, 399-426.	4.4	142
7	Indicators and Criteria of Consciousness in Animals and Intelligent Machines: An Inside-Out Approach. Frontiers in Systems Neuroscience, 2019, 13, 25.	2.5	34
8	Computational design of syntheses leading to compound libraries or isotopically labelled targets. Chemical Science, 2019, 10, 9219-9232.	7.4	16
9	Chess endgame news: an endgame challenge for neural nets. ICGA Journal, 2019, 41, 176-176.	0.3	0
10	A critique of pure learning and what artificial neural networks can learn from animal brains. Nature Communications, 2019, 10, 3770.	12.8	285
11	Pre-training with non-expert human demonstration for deep reinforcement learning. Knowledge Engineering Review, 2019, 34, .	2.6	15
12	What does Al's success playing complex board games tell brain scientists?. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14785-14787.	7.1	4
13	AIR ₅ : Five Pillars of Artificial Intelligence Research. IEEE Transactions on Emerging Topics in Computational Intelligence, 2019, 3, 411-415.	4.9	33
14	Deep-learning continuous gravitational waves. Physical Review D, 2019, 100, .	4.7	59
15	Modeling the Game of Go by Ising Hamiltonian, Deep Belief Networks and Common Fate Graphs. IEEE Access, 2019, 7, 120117-120127.	4.2	2
16	Leadership in the Digital Era: Social Media, Big Data, Virtual Reality, Computational Methods, and Deep Learning. Leadership Quarterly, 2019, 30, I-II.	5.8	1
17	TCEC CupÂ2. ICGA Journal, 2019, 41, 100-107.	0.3	3
18	Artificial intelligence for materials discovery. MRS Bulletin, 2019, 44, 538-544.	3.5	60

ATION REDO

#	Article	IF	CITATIONS
19	Fast preliminary design of low-thrust trajectories for multi-asteroid exploration. Aerospace Science and Technology, 2019, 93, 105295.	4.8	26
20	α-Rank: Multi-Agent Evaluation by Evolution. Scientific Reports, 2019, 9, 9937.	3.3	28
21	Solving the Rubik's cube with deep reinforcement learning and search. Nature Machine Intelligence, 2019, 1, 356-363.	16.0	75
22	Distributed Fusion-Based Policy Search for Fast Robot Locomotion Learning. IEEE Computational Intelligence Magazine, 2019, 14, 19-28.	3.2	19
23	Agentâ€based models of inflammation in translational systems biology: A decade later. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2019, 11, e1460.	6.6	19
24	Commentary: I am not throwing away my shot…to predict when your patient will decompensate. Journal of Thoracic and Cardiovascular Surgery, 2019, 158, 246-247.	0.8	0
25	Multi-Dimensional Urban Sensing in Sparse Mobile Crowdsensing. IEEE Access, 2019, 7, 82066-82079.	4.2	15
26	Iterated Deep Reinforcement Learning in Games. , 2019, , .		7
27	Leadership in the Digital Era: Social Media, Big Data, Virtual Reality, Computational Methods, and Deep Learning. Leadership Quarterly, 2019, 30, 185-186.	5.8	1
29	Muddling-Through and Deep Learning for Managing Large-Scale Uncertain Risks. Journal of Benefit-Cost Analysis, 2019, 10, 226-250.	1.2	5
30	Solar-stimulated optoelectronic synapse based on organic heterojunction with linearly potentiated synaptic weight for neuromorphic computing. Nano Energy, 2019, 66, 104095.	16.0	100
31	Why deep-learning Als are so easy to fool. Nature, 2019, 574, 163-166.	27.8	200
32	Algorithm-Aided Prediction of Patient Preferences — An Ethics Sneak Peek. New England Journal of Medicine, 2019, 381, 1480-1485.	27.0	28
33	Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature, 2019, 575, 350-354.	27.8	1,491
34	TCEC14: The 14th Top Chess Engine Championship. ICGA Journal, 2019, 41, 143-151.	0.3	2
35	How We Know What Not To Think. Trends in Cognitive Sciences, 2019, 23, 1026-1040.	7.8	56
36	Improved Online Sequential Extreme Learning Machine: A New Intelligent Evaluation Method for AZ-Style Algorithms. IEEE Access, 2019, 7, 124891-124901.	4.2	4
37	Machine Learning for Security and the Internet of Things: The Good, the Bad, and the Ugly. IEEE Access, 2019, 7, 158126-158147.	4.2	84

# 38	ARTICLE Exploring Deep Reinforcement Learning for Autonomous Powerline Tracking. , 2019, , .	IF	CITATIONS
39	Becoming Cognitive Science. Topics in Cognitive Science, 2019, 11, 902-913.	1.9	5
40	Project Thyia: A Forever Gameplayer. , 2019, , .		3
41	A Middle Game Search Algorithm Applicable to Low-Cost Personal Computer for Go. IEEE Access, 2019, 7, 121719-121727.	4.2	3
42	Teaching Machines to Recognize Neurodynamic Correlates of Team and Team Member Uncertainty. Journal of Cognitive Engineering and Decision Making, 2019, 13, 310-327.	2.3	13
43	Deep Learning Competition Framework on Othello for Education. IEEE Transactions on Games, 2019, 11, 300-304.	1.4	2
44	A Deep Learning Approach for Probabilistic Security in Multi-Robot Teams. IEEE Robotics and Automation Letters, 2019, 4, 4262-4269.	5.1	5
45	Neural packet classification. , 2019, , .		83
46	Tactile Sensors for Advanced Intelligent Systems. Advanced Intelligent Systems, 2019, 1, 1900090.	6.1	80
47	Country-wide high-resolution vegetation height mapping with Sentinel-2. Remote Sensing of Environment, 2019, 233, 111347.	11.0	113
48	Biasing MCTS with Features for General Games. , 2019, , .		6
49	PokerBot: Hand Strength Reinforcement Learning. , 2019, , .		1
50	Evolutionary approaches to dynamic earth observation satellites mission planning under uncertainty. , 2019, , .		5
51	Towards a data-driven framework for realistic self-organized virtual humans. , 2019, , .		0
52	The Rhetoric and Reality of Anthropomorphism in Artificial Intelligence. Minds and Machines, 2019, 29, 417-440.	4.8	55
53	A robot made of robots: Emergent transport and control of a smarticle ensemble. Science Robotics, 2019, 4, .	17.6	53
54	Fail-safe genetic codes designed to intrinsically contain engineered organisms. Nucleic Acids Research, 2019, 47, 10439-10451.	14.5	22
55	Radiomics: A Well-Intentioned Leap of Faith. Annals of Surgical Oncology, 2019, 26, 4178-4179.	1.5	1

# 56	ARTICLE A Reinforcement Learning Model Based on Temporal Difference Algorithm. IEEE Access, 2019, 7, 121922-121930.	IF 4.2	CITATIONS
57	Artificial intelligence facilitates drug design in the big data era. Chemometrics and Intelligent Laboratory Systems, 2019, 194, 103850.	3.5	32
58	Virtual-to-Real Transfer via Dynamics Models (poster). , 2019, , .		0
59	Engineered self-organization for resilient robot self-assembly with minimal surprise. Robotics and Autonomous Systems, 2019, 122, 103293.	5.1	7
60	On the necessity of abstraction. Current Opinion in Behavioral Sciences, 2019, 29, 1-7.	3.9	36
61	<i>MLatom</i> : A program package for quantum chemical research assisted by machine learning. Journal of Computational Chemistry, 2019, 40, 2339-2347.	3.3	51
62	On Solving the Problem of 7-Piece Chess Endgames. Programming and Computer Software, 2019, 45, 96-98.	0.9	1
63	Learning Retrosynthetic Planning through Simulated Experience. ACS Central Science, 2019, 5, 970-981.	11.3	97
64	Toward evolutionary and developmental intelligence. Current Opinion in Behavioral Sciences, 2019, 29, 91-96.	3.9	6
65	Neural network based classification of crystal symmetries from x-ray diffraction patterns. Physical Review B, 2019, 99, .	3.2	57
66	RankNet for evaluation functions of the game of Go. ICGA Journal, 2019, 41, 78-91.	0.3	1
67	Large-Scale Optical Neural Networks Based on Photoelectric Multiplication. Physical Review X, 2019, 9,	8.9	179
68	Machine Discovery of Comprehensible Strategies for Simple Games Using Meta-interpretive Learning. New Generation Computing, 2019, 37, 203-217.	3.3	3
69	Obtaining Human Experience for Intelligent Dredger Control: A Reinforcement Learning Approach. Applied Sciences (Switzerland), 2019, 9, 1769.	2.5	9
70	Can Machines Be Artists? A Deweyan Response in Theory and Practice. Arts, 2019, 8, 36.	0.3	6
71	TCEC12: The 12th Top Chess Engine Championship. ICGA Journal, 2019, 41, 24-30.	0.3	1
72	Reinforcement Learning, Fast and Slow. Trends in Cognitive Sciences, 2019, 23, 408-422.	7.8	364
73	What the Near Future of Artificial Intelligence Could Be. Philosophy and Technology, 2019, 32, 1-15.	4.3	95

#	Article	IF	CITATIONS
74	Leadership in the Digital Era: Social Media, Big Data, Virtual Reality, Computational Methods, and Deep Learning. Leadership Quarterly, 2019, 30, I-II.	5.8	3
75	Comparison of Deep Neural Networks and Deep Hierarchical Models for Spatio-Temporal Data. Journal of Agricultural, Biological, and Environmental Statistics, 2019, 24, 175-203.	1.4	13
76	Unmasking Clever Hans predictors and assessing what machines really learn. Nature Communications, 2019, 10, 1096.	12.8	602
77	Deep Learning in Mobile and Wireless Networking: A Survey. IEEE Communications Surveys and Tutorials, 2019, 21, 2224-2287.	39.4	1,010
78	Learning and Acting in Peripersonal Space: Moving, Reaching, and Grasping. Frontiers in Neurorobotics, 2019, 13, 4.	2.8	7
79	Ionotronic Neuromorphic Devices for Bionic Neural Network Applications. Physica Status Solidi - Rapid Research Letters, 2019, 13, .	2.4	16
80	Intuition, intelligence, data compression. SynthÃ^se, 2019, , 1.	1.1	2
81	Conceptualizing cyber policy through complexity theory. Journal of Cyber Policy, 2019, 4, 275-289.	1.1	2
82	Unconventional Inorganicâ€Based Memristive Devices for Advanced Intelligent Systems. Advanced Materials Technologies, 2019, 4, 1900080.	5.8	14
83	Edge Intelligence—On the Challenging Road to a Trillion Smart Connected IoT Devices. IEEE Design and Test, 2019, 36, 41-64.	1.2	47
84	Deep Reinforcement Learning Applied to Airport Surface Movement Planning. , 2019, , .		4
85	Health Care in 2030: Will Artificial Intelligence Replace Physicians?. Annals of Internal Medicine, 2019, 170, 407.	3.9	30
86	Adaptive FPGA Placement Optimization via Reinforcement Learning. , 2019, , .		11
87	Parallel Monte Carlo Integration Algorithm Based on GPU. , 2019, , .		2
88	From self-tuning regulators to reinforcement learning and back again. , 2019, , .		44
89	Deep Reinforcement Learning Based Power Control for Wireless Multicast Systems. , 2019, , .		5
90	Influences of Neural Network Structures on an Efficient Reinforcement Learning Policy Search. , 2019, , .		1
91	Alternative Loss Functions in AlphaZero-like Self-play. , 2019, , .		9

		CITATION REP	PORT	
#	Article		IF	CITATIONS
92	Self-Play for Training General Fighting Game Al. , 2019, , .			4
93	A Preliminary Study on the Relationship Between Iterative Learning Control and Reinforcement Learning. IFAC-PapersOnLine, 2019, 52, 314-319.		0.9	15
94	Link Prediction in Time-Evolving Criminal Network With Deep Reinforcement Learning Techniqu Access, 2019, 7, 184797-184807.	e. IEEE	4.2	28
95	Two-Phase-Win Strategy for Improving the AlphaZeroâ \in ™s Strength. , 2019, , .			0
96	Long-Term Adaptivity in Distributed Intelligent Systems: Study of ViaBots in a Simulated Enviro Robotics, 2019, 8, 25.	ıment.	3.5	1
97	Scientific personnel training in convolutional neural networks for the implementation of researce projects of the MegaScience class. Journal of Physics: Conference Series, 2019, 1406, 012014.	:h	0.4	5
98	Deep Learning: Current State. IEEE Latin America Transactions, 2019, 17, 1925-1945.		1.6	13
99	A Multi-agent Design of a Computer Player for Nine Men's Morris Board Game using Deep Reinforcement Learning. , 2019, , .			0
100	Reverse Engineering of Option Pricing: An Al Application. International Journal of Financial Stud 2019, 7, 68.	ies,	2.3	2
101	Learning Policies from Self-Play with Policy Gradients and MCTS Value Estimates. , 2019, , .			1
102	Optimal Use of Experience in First Person Shooter Environments. , 2019, , .			1
103	Ludii as a Competition Platform. , 2019, , .			9
104	An accelerated asynchronous advantage actor-critic algorithm applied in papermaking. , 2019, ,			0
105	Evaluationâ€function modeling with neural networks for RoboCup soccer. Electronics and Communications in Japan, 2019, 102, 40-46.		0.5	3
106	Deep Reinforcement Learning for Optimal Critical Care Pain Management with Morphine using Double-Deep Q Networks. , 2019, 2019, 3960-3963.	Dueling		21
107	Deep Reinforcement Learning for Autonomous Model-Free Navigation with Partial Observability	.,2019,		0
108	Deep reinforcement learning in World-Earth system models to discover sustainable managemer strategies. Chaos, 2019, 29, 123122.	ıt	2.5	15
109	Simulation-Based Algorithms for Markov Decision Processes: Monte Carlo Tree Search from Alp to AlphaZero. Asia-Pacific Journal of Operational Research, 2019, 36, 1940009.	haGo	1.3	11

#	Article	IF	CITATIONS
110	Monster Carlo 2: Integrating Learning and Tree Search for Machine Playtesting. , 2019, , .		7
111	Computer Shogi Tournaments and Techniques. IEEE Transactions on Games, 2019, 11, 267-274.	1.4	2
112	Linking Big Data and Prediction Strategies: Tools, Pitfalls, and Lessons Learned. Critical Care Medicine, 2019, 47, 840-848.	0.9	16
113	Blood Bowl: A New Board Game Challenge and Competition for Al. , 2019, , .		12
114	RAACBook: a web server of reduced amino acid alphabet for sequence-dependent inference by using Chou's five-step rule. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	3.0	51
115	Development of a Computer Player for Seejeh (A.K.A Seega, Siga, Kharbga) Board Game with Deep Reinforcement Learning. Procedia Computer Science, 2019, 160, 241-247.	2.0	1
116	SAI a Sensible Artificial Intelligence that plays Go. , 2019, , .		6
117	Comparison Training for Computer Chinese Chess. IEEE Transactions on Games, 2020, 12, 169-176.	1.4	2
118	Autonomous Discovery in the Chemical Sciences Part I: Progress. Angewandte Chemie - International Edition, 2020, 59, 22858-22893.	13.8	180
119	Route selection for a three-dimensional elevator using deep reinforcement learning. Building Services Engineering Research and Technology, 2020, 41, 480-491.	1.8	2
120	Autonome Entdeckung in den chemischen Wissenschaften, Teil l: Fortschritt. Angewandte Chemie, 2020, 132, 23054-23091.	2.0	11
121	Predicting outcomes in crowdfunding campaigns with textual, visual, and linguistic signals. Small Business Economics, 2020, 55, 627-649.	6.7	76
122	Sentiment Analysis of the News Media on Artificial Intelligence Does Not Support Claims of Negative Bias Against Artificial Intelligence. OMICS A Journal of Integrative Biology, 2020, 24, 286-299.	2.0	23
124	Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach. European Journal of Operational Research, 2020, 283, 166-181.	5.7	120
125	A machine learning method correlating pulse pressure wave data with pregnancy. International Journal for Numerical Methods in Biomedical Engineering, 2020, 36, e3272.	2.1	17
126	Optimal production rampâ€up in the smartphone manufacturing industry. Naval Research Logistics, 2020, 67, 685-704.	2.2	0
127	Fast-developing machine learning support complex system research in environmental chemistry. New Journal of Chemistry, 2020, 44, 1179-1184.	2.8	8
128	Reinforcement Learning for Bioretrosynthesis. ACS Synthetic Biology, 2020, 9, 157-168.	3.8	77

# 129	ARTICLE Will recent advances in AI result in a paradigm shift in Astrobiology and SETI?. International Journal of Astrobiology, 2020, 19, 295-298.	IF 1.6	CITATIONS
130	Artificial Intelligence in Anesthesiology. Anesthesiology, 2020, 132, 379-394.	2.5	237
131	The Hanabi challenge: A new frontier for Al research. Artificial Intelligence, 2020, 280, 103216.	5.8	82
132	Shalosh B. Ekhad: a computer credit for mathematicians. Scientometrics, 2020, 122, 71-97.	3.0	1
133	Adversarial Skill Networks: Unsupervised Robot Skill Learning from Video. , 2020, , .		15
134	Beating the Stock Market with a Deep Reinforcement Learning Day Trading System. , 2020, , .		11
135	Big data, machine learning and artificial intelligence: a neurologist's guide. Practical Neurology, 2020, , practneurol-2020-002688.	1.1	14
136	Intelligent Buses in a Loop Service: Emergence of <i>No-Boarding</i> and <i>Holding</i> Strategies. Complexity, 2020, 2020, 1-18.	1.6	11
137	Applications of AI in classical software engineering. AI Perspectives, 2020, 2, .	3.9	36
138	Flow Synthesis of Metal Halide Perovskite Quantum Dots: From Rapid Parameter Space Mapping to Al-Guided Modular Manufacturing. Matter, 2020, 3, 1053-1086.	10.0	45
139	Setting Up Experimental Bell Tests with Reinforcement Learning. Physical Review Letters, 2020, 125, 160401.	7.8	20
140	Digital Reticular Chemistry. CheM, 2020, 6, 2219-2241.	11.7	96
141	The scaling of physics-informed machine learning with data and dimensions. Chaos, Solitons and Fractals: X, 2020, 5, 100046.	2.1	11
142	ALICE: a hybrid AI paradigm with enhanced connectivity and cybersecurity for a serendipitous encounter with circulating hybrid cells. Theranostics, 2020, 10, 11026-11048.	10.0	11
143	Artificial Intelligence, Algorithmic Pricing, and Collusion. American Economic Review, 2020, 110, 3267-3297.	8.5	207
144	Molecular Modeling Applied to the Discovery of New Lead Compounds for P2 Receptors Based on Natural Sources. Frontiers in Pharmacology, 2020, 11, 01221.	3.5	10
145	The present and future role of artificial intelligence and machine learning in anesthesiology. International Anesthesiology Clinics, 2020, 58, 7-16.	0.8	9
146	Overview of Machine Learning Part 1. Neuroimaging Clinics of North America, 2020, 30, e17-e32.	1.0	23

		CITATION REPORT	
#	Article	IF	CITATIONS
147	Targeted free energy estimation via learned mappings. Journal of Chemical Physics, 2020, 153, 144112.	3.0	44
148	Artificial intelligence techniques for stability analysis and control in smart grids: Methodologies, applications, challenges and future directions. Applied Energy, 2020, 278, 115733.	10.1	118
149	Element Code from Pseudopotential as Efficient Descriptors for a Machine Learning Model to Explore Potential Lead-Free Halide Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 8914-8921.	4.6	11
150	Generating attentive goals for prioritized hindsight reinforcement learning. Knowledge-Based Systems, 2020, 203, 106140.	7.1	8
151	Deep Reinforcement Learning and Its Neuroscientific Implications. Neuron, 2020, 107, 603-616.	8.1	102
153	The Game Is Not over Yet—Go in the Post-AlphaGo Era. Philosophies, 2020, 5, 37.	0.7	11
154	Deep Reinforcement Learning with Uncertain Data for Real-Time Stormwater System Control and Flood Mitigation. Water (Switzerland), 2020, 12, 3222.	2.7	22
155	Self-Learning Molecular Design for High Lithium-Ion Conductive Ionic Liquids using Maze Game. Journal of Chemical Information and Modeling, 2020, 60, 4904-4911.	5.4	4
156	K-spin Hamiltonian for quantum-resolvable Markov decision processes. Quantum Machine Intelligence, 2020, 2, 1.	4.8	1
157	The power of randomization by sex in multilocus genetic evolution. Biology Direct, 2020, 15, 26.	4.6	2
158	Protecting consumers from collusive prices due to AI. Science, 2020, 370, 1040-1042.	12.6	53
159	Towards digital engineering: the advent of digital systems engineering. International Journal of System of Systems Engineering, 2020, 10, 234.	0.5	11
160	Comparing Reinforcement Learning Methods for Real-Time Optimization of a Chemical Process. Processes, 2020, 8, 1497.	2.8	8
161	Special issue on machine learning and data-driven methods in fluid dynamics. Theoretical and Computational Fluid Dynamics, 2020, 34, 333-337.	2.2	44
162	Lessons from reinforcement learning for biological representations of space. Vision Research, 2020, 174, 79-93.	1.4	3
164	Autonomous and Cooperative Design of the Monitor Positions for a Team of UAVs to Maximize the Quantity and Quality of Detected Objects. IEEE Robotics and Automation Letters, 2020, 5, 4986-4993.	5.1	17
165	Biologically Inspired Visual System Architecture for Object Recognition in Autonomous Systems. Algorithms, 2020, 13, 167.	2.1	6
166	Some new trends of intelligent simulation optimization and scheduling in intelligent manufacturing. Service Oriented Computing and Applications, 2020, 14, 149-151.	1.6	3

		CITATION RE	PORT	
#	Article		IF	CITATIONS
167	A Survey of Planning and Learning in Games. Applied Sciences (Switzerland), 2020, 10	, 4529.	2.5	14
168	Discovery of Novel Inhibitors of a Critical Brain Enzyme Using a Homology Model and a Convolutional Neural Network. Journal of Medicinal Chemistry, 2020, 63, 8867-8875.	а Deep	6.4	31
169	Knowledge-primed neural networks enable biologically interpretable deep learning on sequencing data. Genome Biology, 2020, 21, 190.	single-cell	8.8	67
170	Strength Adjustment and Assessment for MCTS-Based Programs [Research Frontier]. Computational Intelligence Magazine, 2020, 15, 60-73.	EEE	3.2	4
171	Improving Maneuver Strategy in Air Combat by Alternate Freeze Games with a Deep R Learning Algorithm. Mathematical Problems in Engineering, 2020, 2020, 1-17.	einforcement	1.1	15
172	Visual Image Processing of Humanoid Go Game Robot Based on OPENCV. , 2020, , .			5
173	Machine learning in additive manufacturing: State-of-the-art and perspectives. Additive Manufacturing, 2020, 36, 101538.	2	3.0	230
174	Research on Topology Planning for Wireless Mesh Networks Based on Deep Reinforce 2020, , .	ment Learning. ,		1
175	Fast reinforcement learning with generalized policy updates. Proceedings of the Natio Sciences of the United States of America, 2020, 117, 30079-30087.	nal Academy of	7.1	33
176	Forest Fire Control with Learning from Demonstration and Reinforcement Learning. , 2	.020, , .		2
177	A Generic Markov Decision Process Model and Reinforcement Learning Method for Sch Earth Observation Satellites. IEEE Transactions on Systems, Man, and Cybernetics: Sys 1463-1474.	neduling Agile tems, 2022, 52,	9.3	40
178	Manipulating the Distributions of Experience used for Self-Play Learning in Expert Itera	tion. , 2020, , .		4
179	Improving the Performance of MCTS-Based $\hat{A}\mu$ RTS Agents Through Move Pruning. , 20	20, , .		2
180	A Brief View of Molecular Modeling Approaches to P2 Receptors. , 0, , .			0
181	Planning for the Known Unknown: Machine Learning for Human Healthcare Systems. A of Bioethics, 2020, 20, 1-3.	American Journal	0.9	9
182	Controlling Rayleigh–Bénard convection via reinforcement learning. Journal of Tur 585-605.	bulence, 2020, 21,	1.4	49
183	The Genius of the 'Original Imitation Game' Test. Minds and Machines, 2020, 30, 469-	486.	4.8	2
184	Distributed Non-Communicating Multi-Robot Collision Avoidance via Map-Based Deep Learning. Sensors, 2020, 20, 4836.	Reinforcement	3.8	22

	CITATION	REPORT	
#	Article	IF	Citations
185	Accelerating and Improving AlphaZero Using Population Based Training. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34, 1046-1053.	4.9	6
186	Trained Model Reuse of Autonomous-Driving in Pygame with Deep Reinforcement Learning. , 2020, , .		2
187	A Study on Fight Against COVID-19 from Latest Technological Intervention. SN Computer Science, 2020, 1, 277.	3.6	6
188	Considerations for Comparing Video Game Al Agents with Humans. Challenges, 2020, 11, 18.	1.7	3
189	Computers, People, and Thought. , 2020, , .		0
190	Enhanced Rolling Horizon Evolution Algorithm With Opponent Model Learning: Results for the Fighting Game Al Competition. IEEE Transactions on Games, 2023, 15, 5-15.	1.4	12
191	Archetypal landscapes for deep neural networks. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21857-21864.	7.1	12
192	Exploring communication protocols and centralized critics in multi-agent deep learning. Integrated Computer-Aided Engineering, 2020, 27, 333-351.	4.6	9
193	Attentive Weights Generation for Few Shot Learning via Information Maximization. , 2020, , .		59
194	Deep Reinforcement Learning for General Game Playing. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34, 1701-1708.	4.9	18
195	The brain, the artificial neural network and the snake: why we see what we see. Al and Society, 2021, 36, 1167-1175.	4.6	1
196	Unsupervised Anomaly Detection Using Intelligent and Heterogeneous Autonomous Systems: Highlights From the 2020 IEEE Signal Processing Cup Student Competition [SP Competitions]. IEEE Signal Processing Magazine, 2020, 37, 152-157.	5.6	1
197	Finding the ground state of spin Hamiltonians with reinforcement learning. Nature Machine Intelligence, 2020, 2, 509-517.	16.0	17
198	The foundation of efficient robot learning. Science, 2020, 369, 915-916.	12.6	20
199	Straight to the Point: Fast-Forwarding Videos via Reinforcement Learning Using Textual Data. , 2020, , .		4
200	Interactive Robot for Playing Russian Checkers. Robotics, 2020, 9, 107.	3.5	3
201	Adaptive Wireless Power Transfer Beam Scheduling for Non-Static IoT Devices Using Deep Reinforcement Learning. IEEE Access, 2020, 8, 206659-206673.	4.2	7

Robot Navigation with Map-Based Deep Reinforcement Learning. , 2020, , .

#	Article	IF	CITATIONS
203	Research Statement. , 2020, , .		0
204	The Go Transformer: Natural Language Modeling for Game Play. , 2020, , .		2
205	Effective scientific personnel training in the field of modern computer technologies for the implementation of advanced research projects of the Megascience class. Journal of Physics: Conference Series, 2020, 1685, 012011.	0.4	4
206	Mastering Atari, Go, chess and shogi by planning with a learned model. Nature, 2020, 588, 604-609.	27.8	570
207	Machine Learning-Based Unbalance Detection of a Rotating Shaft Using Vibration Data. , 2020, , .		18
208	Navigating the landscape of multiplayer games. Nature Communications, 2020, 11, 5603.	12.8	11
209	Advances in neural networks and potential for their application to steel metallurgy. Materials Science and Technology, 2020, 36, 1805-1819.	1.6	15
210	Machine Learning for Advanced Additive Manufacturing. Matter, 2020, 3, 1541-1556.	10.0	122
211	Guiding Multiplayer MCTS by Focusing on Yourself. , 2020, , .		7
212	Learning a Behavioral Repertoire from Demonstrations. , 2020, , .		0
213	Unpredictability of AI: On the Impossibility of Accurately Predicting All Actions of a Smarter Agent. Journal of Artificial Intelligence and Consciousness, 2020, 07, 109-118.	1.2	18
214	Al for social good: unlocking the opportunity for positive impact. Nature Communications, 2020, 11, 2468.	12.8	111
215	Deep reinforcement learning in fluid mechanics: A promising method for both active flow control and shape optimization. Journal of Hydrodynamics, 2020, 32, 234-246.	3.2	64
216	Convergence of Artificial Intelligence and the Internet of Things. Internet of Things, 2020, , .	1.7	11
217	Learning self-play agents for combinatorial optimization problems. Knowledge Engineering Review, 2020, 35, .	2.6	4
218	Dynamic Origin–Destination Matrix Prediction with Line Graph Neural Networks and Kalman Filter. Transportation Research Record, 2020, 2674, 491-503.	1.9	24
219	Biosystems Design by Machine Learning. ACS Synthetic Biology, 2020, 9, 1514-1533.	3.8	76
220	Improved Feature Learning: A Maximum-Average-Out Deep Neural Network for the Game Go. Mathematical Problems in Engineering, 2020, 2020, 1-6.	1.1	3

#	Article	IF	CITATIONS
221	Artificial Intelligence Accidentally Learned Ecology through Video Games. Trends in Ecology and Evolution, 2020, 35, 557-560.	8.7	3
222	Artificial Intelligence and Imagination. , 2020, , 162-172.		1
223	Crossing the Cleft: Communication Challenges Between Neuroscience and Artificial Intelligence. Frontiers in Computational Neuroscience, 2020, 14, 39.	2.1	12
224	Distance-based classifier on the Quantum Inspire. Digitale Welt, 2020, 4, 85-91.	0.3	7
225	Reinforcement learning for building controls: The opportunities and challenges. Applied Energy, 2020, 269, 115036.	10.1	240
226	Multi-component transfer metric learning for handling unrelated source domain samples. Knowledge-Based Systems, 2020, 203, 106132.	7.1	14
227	Adaptive stock trading strategies with deep reinforcement learning methods. Information Sciences, 2020, 538, 142-158.	6.9	110
228	Spatial planning with long visual range benefits escape from visual predators in complex naturalistic environments. Nature Communications, 2020, 11, 3057.	12.8	22
229	Decoding Motor Skills of Artificial Intelligence and Human Policies: A Study on Humanoid and Human Balance Control. IEEE Robotics and Automation Magazine, 2020, 27, 87-101.	2.0	7
230	EquiNox: Equivalent NoC Injection Routers for Silicon Interposer-Based Throughput Processors. , 2020, , .		0
231	Application of Internet of Things to Live Logging of Chinese Chess. , 2020, , .		0
232	A reinforcement learning approach for quantum state engineering. Quantum Machine Intelligence, 2020, 2, 1.	4.8	28
233	Explore and Exploit with Heterotic Line Bundle Models. Fortschritte Der Physik, 2020, 68, 2000034.	4.4	20
234	Physics-enhanced neural networks learn order and chaos. Physical Review E, 2020, 101, 062207.	2.1	42
235	Are Armageddon chess games implemented fairly?. ICGA Journal, 2020, 41, 180-190.	0.3	0
236	Recent progress in optoelectronic neuromorphic devices*. Chinese Physics B, 2020, 29, 078502.	1.4	21
237	Future Vision 2020 and Beyond—5 Critical Trends in Eye Research. Asia-Pacific Journal of Ophthalmology, 2020, 9, 180-185.	2.5	6
238	Formal Techniques for Distributed Objects, Components, and Systems. Lecture Notes in Computer Science, 2020, , .	1.3	0

#	Article	IF	CITATIONS
239	Moving Deep Learning to the Edge. Algorithms, 2020, 13, 125.	2.1	48
241	Putting deep learning in perspective for pest management scientists. Pest Management Science, 2020, 76, 2267-2275.	3.4	10
242	6G: Connecting Everything by 1000 Times Price Reduction. IEEE Open Journal of Vehicular Technology, 2020, 1, 107-115.	4.9	63
243	Model-Based Reinforcement Learning for Physical Systems Without Velocity and Acceleration Measurements. IEEE Robotics and Automation Letters, 2020, 5, 3548-3555.	5.1	9
244	Al in operations management: applications, challenges and opportunities. Journal of Data Information and Management, 2020, 2, 67-74.	2.7	30
245	Planning With Uncertain Specifications (PUnS). IEEE Robotics and Automation Letters, 2020, 5, 3414-3421.	5.1	5
246	No-boarding buses: Synchronisation for efficiency. PLoS ONE, 2020, 15, e0230377.	2.5	8
247	Artificial intelligence as structural estimation: Deep Blue, Bonanza, and AlphaGo. Econometrics Journal, 2020, 23, S1-S24.	2.3	19
248	A Steering Algorithm for Redirected Walking Using Reinforcement Learning. IEEE Transactions on Visualization and Computer Graphics, 2020, 26, 1955-1963.	4.4	50
249	Will Al Replace Ophthalmologists?. Translational Vision Science and Technology, 2020, 9, 2.	2.2	21
250	Deep Reinforcement Learning. , 2020, , .		81
251	CHAOPT: A Testbed for Evaluating Human-Autonomy Team Collaboration Using the Video Game Overcooked!2. , 2020, , .		9
252	Hybrid Online and Offline Reinforcement Learning for Tibetan Jiu Chess. Complexity, 2020, 2020, 1-11.	1.6	4
253	Reinforcement learning applied to games. SN Applied Sciences, 2020, 2, 1.	2.9	3
254	Machine learning enables design of on-chip integrated silicon T-junctions with footprint of 1.2Âl¼m×1.2l¼m. Nano Communication Networks, 2020, 25, 100312.	2.9	11
255	Deep learning based detection of intracranial aneurysms on digital subtraction angiography: A feasibility study. Neuroradiology Journal, 2020, 33, 311-317.	1.2	20
256	Humans and Technology: Forms of Conjoined Agency in Organizations. Academy of Management Review, 2021, 46, 552-571.	11.7	126
257	Reinforcement learning of adaptive online rescheduling timing and computing time allocation. Computers and Chemical Engineering, 2020, 141, 106994.	3.8	14

	CITATION	Report	
#	Article	IF	CITATIONS
258	Prediction of viscosity behavior in oxide glass materials using cation fingerprints with artificial neural networks. Science and Technology of Advanced Materials, 2020, 21, 492-504.	6.1	8
259	Machine learning and artificial intelligence based Diabetes Mellitus detection and self-management: A systematic review. Journal of King Saud University - Computer and Information Sciences, 2022, 34, 3204-3225.	3.9	71
260	Demystifying artificial intelligence in pharmacy. American Journal of Health-System Pharmacy, 2020, 77, 1556-1570.	1.0	29
261	Joint Computing and Caching in 5G-Envisioned Internet of Vehicles: A Deep Reinforcement Learning-Based Traffic Control System. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 5201-5212.	8.0	164
262	Petri-net-based dynamic scheduling of flexible manufacturing system via deep reinforcement learning with graph convolutional network. Journal of Manufacturing Systems, 2020, 55, 1-14.	13.9	111
263	From Apes to Cyborgs. , 2020, , .		1
264	Convolutional neural network-based power system transient stability assessment and instability mode prediction. Applied Energy, 2020, 263, 114586.	10.1	106
265	Deep learning enabled inverse design in nanophotonics. Nanophotonics, 2020, 9, 1041-1057.	6.0	295
266	From Chess and Atari to StarCraft and Beyond: How Game Al is Driving the World of Al. Kl - Kunstliche Intelligenz, 2020, 34, 7-17.	3.2	33
267	Finding appropriate settings for fairness and engagement in a newly designed game through self-playing Al program: A case study using Japanese crossword game 'MyoGo Renju'. Entertainment Computing, 2020, 34, 100358.	2.9	4
268	Photonic architecture for reinforcement learning. New Journal of Physics, 2020, 22, 045002.	2.9	19
269	Quantum Chemistry in the Age of Machine Learning. Journal of Physical Chemistry Letters, 2020, 11, 2336-2347.	4.6	258
270	Publish less, read more. Theory and Psychology, 2020, 30, 263-285.	1.2	28
271	Global optimization of quantum dynamics with AlphaZero deep exploration. Npj Quantum Information, 2020, 6, .	6.7	57
272	Probing Slow Earthquakes With Deep Learning. Geophysical Research Letters, 2020, 47, e2019GL085870.	4.0	34
273	Bio-polysaccharide electrolyte gated photoelectric synergic coupled oxide neuromorphic transistor with Pavlovian activities. Journal of Materials Chemistry C, 2020, 8, 2780-2789.	5.5	30
274	The 2019 Yearbook of the Digital Ethics Lab. Digital Ethics Lab Yearbook, 2020, , .	0.4	0
275	Situation-Aware Deep Reinforcement Learning Link Prediction Model for Evolving Criminal Networks. IEEE Access, 2020, 8, 16550-16559.	4.2	30

#	Article	IF	CITATIONS
276	Oscillatory evolution of collective behavior in evolutionary games played with reinforcement learning. Nonlinear Dynamics, 2020, 99, 3301-3312.	5.2	20
277	Machine learning based on reservoir computing with time-delayed optoelectronic and photonic systems. Chaos, 2020, 30, 013111.	2.5	51
278	Reinforcement learning for semi-autonomous approximate quantum eigensolver. Machine Learning: Science and Technology, 2020, 1, 015002.	5.0	14
279	Decentralized Cooperative Control of Multiple Energy Storage Systems in Urban Railway Based on Multiagent Deep Reinforcement Learning. IEEE Transactions on Power Electronics, 2020, 35, 9368-9379.	7.9	45
280	Review of the current state of digital image analysis in breast pathology. Breast Journal, 2020, 26, 1208-1212.	1.0	9
281	Learning to Play the Chess Variant Crazyhouse Above World Champion Level With Deep Neural Networks and Human Data. Frontiers in Artificial Intelligence, 2020, 3, 24.	3.4	4
282	Anthropomorphism in Al. AJOB Neuroscience, 2020, 11, 88-95.	1.1	72
283	A review On reinforcement learning: Introduction and applications in industrial process control. Computers and Chemical Engineering, 2020, 139, 106886.	3.8	253
284	Combined heat and power system intelligent economic dispatch: A deep reinforcement learning approach. International Journal of Electrical Power and Energy Systems, 2020, 120, 106016.	5.5	85
285	Homes, Communities and Games: Constructing Social Agency in Our Urban Futures. Architectural Design, 2020, 90, 60-65.	0.1	0
286	How Machine Learning Will Transform Biomedicine. Cell, 2020, 181, 92-101.	28.9	279
287	Personalized predictions of patient outcomes during and after hospitalization using artificial intelligence. Npj Digital Medicine, 2020, 3, 51.	10.9	34
288	Causation between Pathway Completion and Reduced Hospital Stay in Patients with Lung Cancer: a Retrospective Cohort Study Using Propensity Score Matching. Journal of Medical Systems, 2020, 44, 105.	3.6	2
289	Evolving the Materials Genome: How Machine Learning Is Fueling the Next Generation of Materials Discovery. Annual Review of Materials Research, 2020, 50, 1-25.	9.3	49
290	The explanation game: a formal framework for interpretable machine learning. SynthÃ^se, 2021, 198, 9211-9242.	1.1	28
291	Transparency and accountability in AI decision support: Explaining and visualizing convolutional neural networks for text information. Decision Support Systems, 2020, 134, 113302.	5.9	67
292	ANN modelling of CO2 refrigerant cooling system COP in a smart warehouse. Journal of Cleaner Production, 2020, 260, 120887.	9.3	16
293	Computational predictive approaches for interaction and structure of aptamers. Journal of Theoretical Biology, 2020, 497, 110268.	1.7	19

#	Article	IF	CITATIONS
294	Understanding collective behaviors in reinforcement learning evolutionary games via a belief-based formalization. Physical Review E, 2020, 101, 042402.	2.1	6
295	FFCNN: A Deep Neural Network for Surface Defect Detection of Magnetic Tile. IEEE Transactions on Industrial Electronics, 2021, 68, 3506-3516.	7.9	55
296	The automaton as a surgeon: the future of artificial intelligence in emergency and general surgery. European Journal of Trauma and Emergency Surgery, 2021, 47, 757-762.	1.7	13
297	Genes, the brain, and artificial intelligence in evolution. Journal of Human Genetics, 2021, 66, 103-109.	2.3	1
298	Artificial Intelligence – Challenges and Chances for Europe. European Review, 2021, 29, 142-158.	0.7	8
299	Computational Intelligence Methods in COVID-19: Surveillance, Prevention, Prediction and Diagnosis. Studies in Computational Intelligence, 2021, , .	0.9	0
300	A survey of approaches for implementing optical neural networks. Optics and Laser Technology, 2021, 136, 106787.	4.6	33
301	Deep reinforcement learning for energy management in a microgrid with flexible demand. Sustainable Energy, Grids and Networks, 2021, 25, 100413.	3.9	87
302	Optimization of DEM parameters using multi-objective reinforcement learning. Powder Technology, 2021, 379, 602-616.	4.2	12
303	Machine learning for metabolic engineering: A review. Metabolic Engineering, 2021, 63, 34-60.	7.0	135
304	A Roadmap for Reaching the Potential of Brainâ€Derived Computing. Advanced Intelligent Systems, 2021, 3, 2000191.	6.1	10
305	The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support. Environmental Modelling and Software, 2021, 137, 104954.	4.5	209
306	Method for Constructing Artificial Intelligence Player With Abstractions to Markov Decision Processes in Multiplayer Game of <i>Mahjong</i> . IEEE Transactions on Games, 2021, 13, 99-110.	1.4	9
307	Service skill improvement for home robots: Autonomous generation of action sequence based on reinforcement learning. Knowledge-Based Systems, 2021, 212, 106605.	7.1	16
308	Modelling Stock Markets by Multi-agent Reinforcement Learning. Computational Economics, 2021, 57, 113-147.	2.6	26
309	A Survey of Nash Equilibrium Strategy Solving Based on CFR. Archives of Computational Methods in Engineering, 2021, 28, 2749-2760.	10.2	4
310	Why Be Random?. Mind, 2021, 130, 111-139.	0.6	9
311	Al Efficiency Index: Identifying Regulatory and Policy Constraints for Resilient National Al Ecosystems. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
312	Optimal Planning of Emergency Communication Network Using Deep Reinforcement Learning. IEICE Transactions on Communications, 2021, E104.B, 20-26.	0.7	2
313	Agent-Based Modeling of Systemic Inflammation: A Pathway Toward Controlling Sepsis. Methods in Molecular Biology, 2021, 2321, 231-257.	0.9	2
314	Modern Al and How We Got Here. , 2021, , 49-74.		0
315	Predictability of AI Decisions. Advances in Computational Intelligence and Robotics Book Series, 2021, , 17-28.	0.4	1
316	RLPlace: Using Reinforcement Learning and Smart Perturbations to Optimize FPGA Placement. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 2532-2545.	2.7	11
318	The Road Most Rewarded. , 2021, , 141-157.		0
319	Artificial Intelligence: Opportunity or Risk?. , 2021, , 149-157.		0
320	How Do Machines Learn? Artificial Intelligence as a New Era in Medicine. Journal of Personalized Medicine, 2021, 11, 32.	2.5	45
321	A Novel Hierarchical Soft Actor-Critic Algorithm for Multi-Logistics Robots Task Allocation. IEEE Access, 2021, 9, 42568-42582.	4.2	25
322	Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nature Communications, 2021, 12, 96.	12.8	186
323	Model-free safe reinforcement learning for chemical processes using Gaussian processes. IFAC-PapersOnLine, 2021, 54, 504-509.	0.9	1
324	Computational Models of Mentalizing. , 2021, , 299-315.		6
325	Reinforcement Learning: An Industrial Perspective. Studies in Systems, Decision and Control, 2021, , 647-672.	1.0	1
326	What May Lie Ahead in Reinforcement Learning. Studies in Systems, Decision and Control, 2021, , 3-5.	1.0	Ο
327	Evaluating Critical Reinforcement Learning Framework in the Field. Lecture Notes in Computer Science, 2021, , 215-227.	1.3	4
328	Policy Evaluation and Seeking for Multiagent Reinforcement Learning via Best Response. IEEE Transactions on Automatic Control, 2022, 67, 1898-1913.	5.7	3
329	A Comparison of Self-Play Algorithms Under a Generalized Framework. IEEE Transactions on Games, 2022, 14, 221-231.	1.4	3
330	Learning the Rules of the Game: An Interpretable AI for Learning How to Play. IEEE Transactions on Games, 2022, 14, 253-261.	1.4	0

#	Article	IF	Citations
331	Trends and Emerging Technologies in Al. , 2021, , 163-181.		0
332	Towards sample-efficient policy learning with DAC-ML. Procedia Computer Science, 2021, 190, 256-262.	2.0	1
333	Optical tensor core architecture for neural network training based on dual-layer waveguide topology and homodyne detection. Chinese Optics Letters, 2021, 19, 082501.	2.9	4
334	EgoMap: Projective Mapping and Structured Egocentric Memory for Deep RL. Lecture Notes in Computer Science, 2021, , 525-540.	1.3	6
335	Composite Experience Replay-Based Deep Reinforcement Learning With Application in Wind Farm Control. IEEE Transactions on Control Systems Technology, 2022, 30, 1281-1295.	5.2	16
336	Full Gradient DQN Reinforcement Learning: A Provably Convergent Scheme. Emergence, Complexity and Computation, 2021, , 192-220.	0.3	1
337	Off-the-shelf deep learning is not enough, and requires parsimony, Bayesianity, and causality. Npj Computational Materials, 2021, 7, .	8.7	28
338	Towards Utilitarian Combinatorial Assignment with Deep Neural Networks and Heuristic Algorithms. Lecture Notes in Computer Science, 2021, , 104-111.	1.3	0
339	Self-Play or Group Practice: Learning to Play Alternating Markov Game in Multi-Agent System. , 2021, , .		1
340	Tectonic discrimination and application based on convolution neural network and incomplete big data. Journal of Geochemical Exploration, 2021, 220, 106662.	3.2	6
341	A Deep Reinforcement Learning Approach to Dynamic Loading Strategy of Repairable Multistate Systems. IEEE Transactions on Reliability, 2022, 71, 484-499.	4.6	19
342	Deep learning, transparency, and trust in human robot teamwork. , 2021, , 321-352.		11
343	Brain–minds: What's the best metaphor?. , 2021, , 39-59.		0
345	The Cerebral Cortex: A Delay-Coupled Recurrent Oscillator Network?. Natural Computing Series, 2021, , 3-28.	2.2	3
346	Multi-Armed Bandits for <i>Minesweeper</i> : Profiting From Exploration–Exploitation Synergy. IEEE Transactions on Games, 2022, 14, 403-412.	1.4	2
347	TraceVis: Towards Visualization for Deep Statistical Model Checking. Lecture Notes in Computer Science, 2021, , 27-46.	1.3	7
348	An Empirical Study of Artificial Participants. Journal of Technological Advancements, 2021, 1, 1-11.	0.2	0
349	Assessing Explainability in Reinforcement Learning. Lecture Notes in Computer Science, 2021, , 223-240.	1.3	2

#	Article	IF	CITATIONS
350	Improving Generalization in Reinforcement Learning–Based Trading by Using a Generative Adversarial Market Model. IEEE Access, 2021, 9, 50738-50754.	4.2	16
351	Machine learning and mechanistic computational modeling of inflammation as tools for designing immunomodulatory biomaterials. , 2021, , 251-272.		2
352	Quantum optimal control of multilevel dissipative quantum systems with reinforcement learning. Physical Review A, 2021, 103, .	2.5	26
353	Raising Ethical Machines. Advances in Human and Social Aspects of Technology Book Series, 2021, , 47-68.	0.3	0
354	Net Learning. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 7380-7389.	11.3	3
355	Intelligent Consumer Flexibility Management With Neural Network-Based Planning and Control. IEEE Access, 2021, 9, 40755-40767.	4.2	5
356	Precision Systems Medicine: A Control Discovery Problem. , 2021, , 318-330.		6
357	Matrix-Based Evolutionary Computation. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, 6, 315-328.	4.9	52
358	Towards Incorporating Human Knowledge in Fuzzy Pattern Tree Evolution. Lecture Notes in Computer Science, 2021, , 66-81.	1.3	9
359	Reinforcement Learning for Test Case Prioritization. IEEE Transactions on Software Engineering, 2022, 48, 2836-2856.	5.6	21
360	Artificial Intelligence (AI) in medicine as a strategic valuable tool. Pan African Medical Journal, 2021, 38, 184.	0.8	15
361	Spintronics for Neuromorphic Engineering. , 2021, , 297-315.		0
362	Machine learning assisted quantum adiabatic algorithm design. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 140306.	0.5	2
363	A Data-Driven Automatic Design Method for Electric Machines Based on Reinforcement Learning and Evolutionary Optimization. IEEE Access, 2021, 9, 71284-71294.	4.2	13
364	Evaluate, explain, and explore the state more exactly: an improved Actor-Critic algorithm for complex environment. Neural Computing and Applications, 2023, 35, 12271-12282.	5.6	3
365	Reinforcement Learning Applications in Health Informatics. Lecture Notes in Bioengineering, 2021, , 145-154.	0.4	0
366	A Survey of Sim-to-Real Transfer Techniques Applied to Reinforcement Learning for Bioinspired Robots. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 3444-3459.	11.3	7
367	Training of Mixed-Signal Optical Convolutional Neural Networks With Reduced Quantization Levels. IEEE Access, 2021, 9, 56645-56652.	4.2	0

#	Article	IF	CITATIONS
368	A Study of the Mathematics of Deep Learning. SSRN Electronic Journal, 0, , .	0.4	0
369	Neuroscience and Network Dynamics Toward Brain-Inspired Intelligence. IEEE Transactions on Cybernetics, 2022, 52, 10214-10227.	9.5	7
370	Emerging CMOS Compatible Magnetic Memories and Logic. IEEE Journal of the Electron Devices Society, 2021, 9, 456-463.	2.1	2
371	Distributed Methods for Reinforcement Learning Survey. Studies in Computational Intelligence, 2021, , 151-161.	0.9	10
372	Tackling the Credit Assignment Problem in Reinforcement Learning-Induced Pedagogical Policies with Neural Networks. Lecture Notes in Computer Science, 2021, , 356-368.	1.3	6
373	Comparing minds and machines: implications for financial stability. SSRN Electronic Journal, 0, , .	0.4	1
374	Model-Free Deep Reinforcement Learning—Algorithms and Applications. Studies in Computational Intelligence, 2021, , 109-121.	0.9	6
375	Addressing Hindsight Bias in Multigoal Reinforcement Learning. IEEE Transactions on Cybernetics, 2023, 53, 392-405.	9.5	4
376	Monte Carlo Tree Search as an intelligent search tool in structural design problems. Engineering With Computers, 2022, 38, 3219-3236.	6.1	7
378	A novel method for GPR imaging based on neural networks and dictionary learning. Waves in Random and Complex Media, 2023, 33, 393-413.	2.7	5
379	Deep Q-learning for the selection of optimal isocratic scouting runs in liquid chromatography. Journal of Chromatography A, 2021, 1638, 461900.	3.7	10
380	Deep Reinforcement Learning in Power Distribution Systems: Overview, Challenges, and Opportunities. , 2021, , .		11
381	AUTOMATION, PARTIAL AND FULL. Macroeconomic Dynamics, 2022, 26, 1731-1755.	0.7	4
382	Comparing driving behavior of humans and autonomous driving in a professional racing simulator. PLoS ONE, 2021, 16, e0245320.	2.5	9
383	Navigating through the Maze of Homogeneous Catalyst Design with Machine Learning. Trends in Chemistry, 2021, 3, 96-110.	8.5	39
384	Quantum Enhancements for Deep Reinforcement Learning in Large Spaces. PRX Quantum, 2021, 2, .	9.2	26
385	Probing the structure–function relationship with neural networks constructed by solving a system of linear equations. Scientific Reports, 2021, 11, 3808.	3.3	0
386	Quantum machine learning for particle physics using a variational quantum classifier. Journal of High Energy Physics, 2021, 2021, 1.	4.7	32

<u> </u>		<u> </u>	
(15	ГАТІ	NEDC	DT
	IAL	NLPC	ואר

#	ARTICLE	IF	CITATIONS
387	Algorithmic and human prediction of success in human collaboration from visual features. Scientific Reports, 2021, 11, 2756.	3.3	3
388	Artificial Intelligence and Deep Learning in Diagnostic Radiology—Is This The Next Phase of Scientific and Technological Development?. Radiation Protection Dosimetry, 2021, 195, 145-151.	0.8	0
389	Has machine learning rendered simple rules obsolete?. European Journal of Law and Economics, 0, , 1.	1.1	2
390	Current understanding of biological identity at the nanoscale and future prospects. Nature Nanotechnology, 2021, 16, 229-242.	31.5	97
391	Prospect of artificial intelligence for the assessment of cardiac function and treatment of cardiovascular disease. Future Cardiology, 2021, 17, 183-187.	1.2	2
392	Curiosity Based RL on Robot Manufacturing Cell. , 2021, , .		1
393	Induction and Exploitation of Subgoal Automata for Reinforcement Learning. Journal of Artificial Intelligence Research, 0, 70, 1031-1116.	7.0	11
394	Information Theory for Agents in Artificial Intelligence, Psychology, and Economics. Entropy, 2021, 23, 310.	2.2	15
395	Affordance as general value function: a computational model. Adaptive Behavior, 2022, 30, 307-327.	1.9	2
396	Solvent extraction process design using deep reinforcement learning. Journal of Advanced Manufacturing and Processing, 2021, 3, .	2.4	4
397	Gaming the beamlines—employing reinforcement learning to maximize scientific outcomes at large-scale user facilities. Machine Learning: Science and Technology, 2021, 2, 025025.	5.0	8
399	The Design Process for Google's Training Chips: TPUv2 and TPUv3. IEEE Micro, 2021, 41, 56-63.	1.8	43
400	The Philosophical Significance of Deep Learning. Kagaku Tetsugaku, 2021, 53, 151-167.	0.1	0
401	An autonomous debating system. Nature, 2021, 591, 379-384.	27.8	127
402	Competitive Physical Human-Robot Game Play. , 2021, , .		6
403	The fundamental principles of reproducibility. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200210.	3.4	17
405	Automatic discovery of interpretable planning strategies. Machine Learning, 2021, 110, 2641-2683.	5.4	7
406	Pathways to controlled 3D deformation of graphene: Manipulating the motion of topological defects. Current Opinion in Solid State and Materials Science, 2021, 25, 100893.	11.5	4

#	Article	IF	CITATIONS
407	Adaptive Machine Learning for Robust Diagnostics and Control of Time-Varying Particle Accelerator Components and Beams. Information (Switzerland), 2021, 12, 161.	2.9	6
408	Cognition as a Mechanical Process. NeuroSci, 2021, 2, 141-150.	1.2	1
409	LBA: Online Learning-Based Assignment of Patients to Medical Professionals. Sensors, 2021, 21, 3021.	3.8	1
410	Reinforcement Learning in Economics and Finance. Computational Economics, 2023, 62, 425-462.	2.6	36
411	Multi-agent deep reinforcement learning: a survey. Artificial Intelligence Review, 2022, 55, 895-943.	15.7	170
412	The Best Laid Plans: Computational Principles of Anterior Cingulate Cortex. Trends in Cognitive Sciences, 2021, 25, 316-329.	7.8	54
413	Making sense of sensory input. Artificial Intelligence, 2021, 293, 103438.	5.8	15
414	Predicting the components and types of kerogen in shale by combining machine learning with NMR spectra. Fuel, 2021, 290, 120006.	6.4	28
415	Increasing Trust in Development Processes Using Robust, Data-Driven Markov Games: An Application to PRESTIGE. IEEE Transactions on Computational Social Systems, 2021, 8, 475-488.	4.4	1
416	Collective intelligence evolution using ant colony optimization and neural networks. Neural Computing and Applications, 2021, 33, 12721-12735.	5.6	6
417	Introduction of a new dataset and method for location predicting based on deep learning in wargame. Journal of Intelligent and Fuzzy Systems, 2021, 40, 9259-9275.	1.4	2
418	Black Boxes or Unflattering Mirrors? Comparative Bias in the Science of Machine Behaviour. British Journal for the Philosophy of Science, 2023, 74, 681-712.	2.3	12
419	Deep reinforcement learning for feedback control in a collective flashing ratchet. Physical Review Research, 2021, 3, .	3.6	2
420	Optimization of a Spin-Orbit Torque Switching Scheme Based on Micromagnetic Simulations and Reinforcement Learning. Micromachines, 2021, 12, 443.	2.9	10
421	Organic Synaptic Transistors: The Evolutionary Path from Memory Cells to the Application of Artificial Neural Networks. Advanced Functional Materials, 2021, 31, 2101951.	14.9	73
422	Machine learning and deep learning. Electronic Markets, 2021, 31, 685-695.	8.1	764
423	Neural-Network Heuristics for Adaptive Bayesian Quantum Estimation. PRX Quantum, 2021, 2, .	9.2	30
424	The Applicability of Self-Play Algorithms to Trading and Forecasting Financial Markets. Frontiers in Artificial Intelligence, 2021, 4, 668465.	3.4	2

#	Article	IF	Citations
425	Binary Black-Box Attacks Against Static Malware Detectors with Reinforcement Learning in Discrete Action Spaces. , 2021, , .		5
426	Overview of current state of research on the application of artificial intelligence techniques for COVID-19. PeerJ Computer Science, 2021, 7, e564.	4.5	38
427	Basic Study for Transfer Learning for Autonomous Driving in Car Race of Model Car. , 2021, , .		11
428	Automated synthesis of steady-state continuous processes using reinforcement learning. Frontiers of Chemical Science and Engineering, 2022, 16, 288-302.	4.4	10
429	Reinforcement learning for robot research: A comprehensive review and open issues. International Journal of Advanced Robotic Systems, 2021, 18, 172988142110073.	2.1	46
430	Towards an Al-powered Player in Cyber Defence Exercises. , 2021, , .		2
431	Radiation Effects in a Post-Moore World. IEEE Transactions on Nuclear Science, 2021, 68, 509-545.	2.0	50
432	A strategic decision-making architecture toward hybrid teams for dynamic competitive problems. Decision Support Systems, 2021, 144, 113490.	5.9	9
433	Multi-Agent Reinforcement Learning: A Review of Challenges and Applications. Applied Sciences (Switzerland), 2021, 11, 4948.	2.5	96
434	A Computer-Based Method for the Investigation of Human Behavior in the Iterative Chicken Game. Frontiers in Psychology, 2021, 12, 576404.	2.1	2
435	Vector Quantization for Adaptive State Aggregation in Reinforcement Learning. , 2021, , .		4
436	Selfâ€Programming Synaptic Resistor Circuit for Intelligent Systems. Advanced Intelligent Systems, 2021, 3, 2100016.	6.1	4
437	Al tool makes phase identification crystal clear. Nature Computational Science, 2021, 1, 311-312.	8.0	0
438	Artificial Intelligence-Guided <i>De Novo</i> Molecular Design Targeting COVID-19. ACS Omega, 2021, 6, 12557-12566.	3.5	22
439	Predicting the 10-year risk of cataract surgery using machine learning techniques on questionnaire data: findings from the 45 and Up Study. British Journal of Ophthalmology, 2022, 106, 1503-1507.	3.9	5
441	Diagnosis of central serous chorioretinopathy by deep learning analysis of en face images of choroidal vasculature: A pilot study. PLoS ONE, 2021, 16, e0244469.	2.5	8
442	Nobel Turing Challenge: creating the engine for scientific discovery. Npj Systems Biology and Applications, 2021, 7, 29.	3.0	31
443	Applications of artificial intelligence to drug design and discovery in the big data era: a comprehensive review. Molecular Diversity, 2021, 25, 1643-1664.	3.9	16

#	Article	IF	CITATIONS
444	Recent advances in leveraging human guidance for sequential decision-making tasks. Autonomous Agents and Multi-Agent Systems, 2021, 35, 1.	2.1	5
445	Playing optical tweezers with deep reinforcement learning: in virtual, physical and augmented environments. Machine Learning: Science and Technology, 2021, 2, 035024.	5.0	7
446	"Machina ludens". Rzeczywista i wyobrażona historia komputerów szachowych. Adeptus, 2021, , .	0.2	0
447	Experimental semi-autonomous eigensolver using reinforcement learning. Scientific Reports, 2021, 11, 12241.	3.3	2
448	Data Evaluation and Enhancement for Quality Improvement of Machine Learning. IEEE Transactions on Reliability, 2021, 70, 831-847.	4.6	35
449	Deep reinforcement learning for efficient measurement of quantum devices. Npj Quantum Information, 2021, 7, .	6.7	18
450	Deep learning of HIV field-based rapid tests. Nature Medicine, 2021, 27, 1165-1170.	30.7	40
452	Reward function shape exploration in adversarial imitation learning: an empirical study. , 2021, , .		1
453	Efficiently Mastering the Game of NoGo with Deep Reinforcement Learning Supported by Domain Knowledge. Electronics (Switzerland), 2021, 10, 1533.	3.1	6
454	How much intelligence is there in artificial intelligence? A 2020 update. Intelligence, 2021, 87, 101548.	3.0	21
455	Adaptive course recommendation in MOOCs. Knowledge-Based Systems, 2021, 224, 107085.	7.1	39
456	Recent Advances in Deep Reinforcement Learning Applications for Solving Partially Observable Markov Decision Processes (POMDP) Problems: Part 1—Fundamentals and Applications in Games, Robotics and Natural Language Processing. Machine Learning and Knowledge Extraction, 2021, 3, 554-581.	5.0	23
457	Automated and Autonomous Experiments in Electron and Scanning Probe Microscopy. ACS Nano, 2021, 15, 12604-12627.	14.6	49
458	Trust, but Verify: Alleviating Pessimistic Errors in Model-Based Exploration. , 2021, , .		0
459	FoLaR: Foggy Latent Representations for Reinforcement Learning with Partial Observability. , 2021, , .		0
460	Existential risk from AI and orthogonality: Can we have it both ways?. Ratio, 2022, 35, 25-36.	0.5	5
461	The imperative to find the courage to redesign the biomedical research enterprise. F1000Research, 0, 10, 641.	1.6	1
462	Matrix Shuffle- Exchange Networks for Hard 2D Tasks. , 2021, , .		0

#	Article	IF	CITATIONS
463	Modified action decoder using Bayesian reasoning for multi-agent deep reinforcement learning. International Journal of Machine Learning and Cybernetics, 2021, 12, 2947-2961.	3.6	10
464	Temporal and state abstractions for efficient learning, transfer, and composition in humans Psychological Review, 2021, 128, 643-666.	3.8	13
465	Data-Driven Aerospace Engineering: Reframing the Industry with Machine Learning. AIAA Journal, 0, , 1-26.	2.6	37
466	A thousand brains: toward biologically constrained AI. SN Applied Sciences, 2021, 3, .	2.9	24
467	Gradient Descent Optimization in Deep Learning Model Training Based on Multistage and Method Combination Strategy. Security and Communication Networks, 2021, 2021, 1-15.	1.5	8
469	Structure and Randomness in Planning and Reinforcement Learning. , 2021, , .		0
470	Adaptive Supply Chain: Demand–Supply Synchronization Using Deep Reinforcement Learning. Algorithms, 2021, 14, 240.	2.1	25
471	Reinforcement learning approach for deterministic SOT-MRAM switching. , 2021, , .		0
472	An Interactive Robot Platform for Introducing Reinforcement Learning to K-12 Students. Advances in Intelligent Systems and Computing, 2022, , 288-301.	0.6	5
474	Autonomous algorithmic collusion: Qâ€learning under sequential pricing. RAND Journal of Economics, 2021, 52, 538-558.	2.3	79
475	Learning equilibria in symmetric auction games using artificial neural networks. Nature Machine Intelligence, 2021, 3, 687-695.	16.0	8
476	Prediction of protein–protein interactions based on elastic net and deep forest. Expert Systems With Applications, 2021, 176, 114876.	7.6	44
477	Automated Flowsheet Synthesis Using Hierarchical Reinforcement Learning: Proof of Concept. Chemie-Ingenieur-Technik, 2021, 93, 2010-2018.	0.8	12
478	Evaluation of Wizard-of-Oz and Self-Play Data Collection Techniques for Turkish Goal-Oriented Dialogue Agents. , 2021, , .		0
479	TCP-NeuRoc: Neural Adaptive TCP Congestion Control With Online Changepoint Detection. IEEE Journal on Selected Areas in Communications, 2021, 39, 2461-2475.	14.0	9
480	Anchor: The achieved goal to replace the subgoal for hierarchical reinforcement learning. Knowledge-Based Systems, 2021, 225, 107128.	7.1	6
481	Anatomizing the Elo transfer network of Weiqi players. European Physical Journal B, 2021, 94, 1.	1.5	1
482	Equiprobable and attacked-square chess entropies by phases, levels of play and game outcomes. International Journal of Modern Physics C, 2022, 33, .	1.7	0

#	Article	IF	CITATIONS
483	A Novel Methodology for Measuring the Abstraction Capabilities of Image Recognition Algorithms. Journal of Imaging, 2021, 7, 152.	3.0	0
484	Leveraging Granularity: Hierarchical Reinforcement Learning for Pedagogical Policy Induction. International Journal of Artificial Intelligence in Education, 2022, 32, 454-500.	5.5	2
485	Materials for emergent silicon-integrated optical computing. Journal of Applied Physics, 2021, 130, 070907.	2.5	27
486	Is there a role for statistics in artificial intelligence?. Advances in Data Analysis and Classification, 2022, 16, 823-846.	1.4	27
487	Deep Reinforcement Learning for Digital Materials Design. , 2021, 3, 1433-1439.		46
488	Machine Learning and Artificial Intelligence for Surgical Decision Making. Surgical Infections, 2021, 22, 626-634.	1.4	9
489	Newcomers, betweenness centrality, and creative success: A study of teams in the board game industry from 1951 to 2017. Poetics, 2021, 87, 101535.	1.3	4
490	Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs. Population Research and Policy Review, 2022, 41, 865-898.	2.2	23
491	Actor–Critic Reinforcement Learning and Application in Developing Computer-Vision-Based Interface Tracking. Engineering, 2021, 7, 1248-1261.	6.7	12
492	What Constitutes Fairness in Games? A Case Study with Scrabble. Information (Switzerland), 2021, 12, 352.	2.9	2
493	Recurrent dynamics in the cerebral cortex: Integration of sensory evidence with stored knowledge. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	44
494	Temporal Induced Self-Play for Stochastic Bayesian Games. , 2021, , .		0
496	Bias-reduced hindsight experience replay with virtual goal prioritization. Neurocomputing, 2021, 451, 305-315.	5.9	8
497	Artificial Intelligence, Chaos, Prediction and Understanding in Science. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, 2150173.	1.7	6
498	Coordinated Control Method for Ridesharing Service Area Using Deep Reinforcement Learning. Transactions of the Japanese Society for Artificial Intelligence, 2021, 36, AG21-D_1-10.	0.1	0
499	Learning representation of stock traders and immediate price impacts. Emerging Markets Review, 2021, 48, 100791.	4.4	0
500	Explainable reinforcement learning in production control of job shop manufacturing system. International Journal of Production Research, 2022, 60, 5812-5834.	7.5	23
501	Artificial intelligence in cancer research, diagnosis and therapy. Nature Reviews Cancer, 2021, 21, 747-752.	28.4	87

#	Article	IF	CITATIONS
502	Adversarial Risk via Optimal Transport and Optimal Couplings. IEEE Transactions on Information Theory, 2021, 67, 6031-6052.	2.4	8
503	Collaborating with an Al Swarm in an Adversarial Game. Transactions of the Japanese Society for Artificial Intelligence, 2021, 36, G-L45_1-6.	0.1	0
504	Comparing minds and machines: implications for financial stability. Oxford Review of Economic Policy, 2021, 37, 479-508.	1.9	4
505	Distribution System Resilience Under Asynchronous Information Using Deep Reinforcement Learning. IEEE Transactions on Power Systems, 2021, 36, 4235-4245.	6.5	26
506	With great power comes great responsibility: inquiry into the social roles and the power dynamics in human-Al interactions. Journal of Control and Decision, 0, , 1-8.	1.6	1
507	RLCFR: Minimize counterfactual regret by deep reinforcement learning. Expert Systems With Applications, 2022, 187, 115953.	7.6	2
508	A dual-memory architecture for reinforcement learning on neuromorphic platforms. Neuromorphic Computing and Engineering, 2021, 1, 024003.	5.9	2
509	Robust ASV Navigation Through Ground to Water Cross-Domain Deep Reinforcement Learning. Frontiers in Robotics and Al, 2021, 8, 739023.	3.2	2
510	Deep reinforcement learning for transportation network combinatorial optimization: A survey. Knowledge-Based Systems, 2021, 233, 107526.	7.1	60
511	Reinforcement Learning for Precision Oncology. Cancers, 2021, 13, 4624.	3.7	22
512	Deep Learning for Voltammetric Sensing in a Living Animal Brain. Angewandte Chemie - International Edition, 2021, 60, 23777-23783.	13.8	43
512 513	Deep Learning for Voltammetric Sensing in a Living Animal Brain. Angewandte Chemie - International Edition, 2021, 60, 23777-23783. Deep Learning for Voltammetric Sensing in a Living Animal Brain. Angewandte Chemie, 2021, 133, 23970-23976.	13.8 2.0	43 12
512 513 514	Deep Learning for Voltammetric Sensing in a Living Animal Brain. Angewandte Chemie - International Edition, 2021, 60, 23777-23783. Deep Learning for Voltammetric Sensing in a Living Animal Brain. Angewandte Chemie, 2021, 133, 23970-23976. Not so disruptive yet? Characteristics, distribution and determinants of robots in Europe. Structural Change and Economic Dynamics, 2021, 58, 76-89.	13.8 2.0 4.5	43 12 25
512513514515	Deep Learning for Voltammetric Sensing in a Living Animal Brain. Angewandte Chemie - International Deep Learning for Voltammetric Sensing in a Living Animal Brain. Angewandte Chemie, 2021, 133, 23970-23976. Not so disruptive yet? Characteristics, distribution and determinants of robots in Europe. Structural Change and Economic Dynamics, 2021, 58, 76-89. Dynamic Positioning using Deep Reinforcement Learning. Ocean Engineering, 2021, 235, 109433.	13.8 2.0 4.5 4.3	43 12 25 16
 512 513 514 515 516 	Deep Learning for Voltammetric Sensing in a Living Animal Brain. Angewandte Chemie - International Edition, 2021, 60, 23777-23783.Deep Learning for Voltammetric Sensing in a Living Animal Brain. Angewandte Chemie, 2021, 133, 23970-23976.Not so disruptive yet? Characteristics, distribution and determinants of robots in Europe. Structural Change and Economic Dynamics, 2021, 58, 76-89.Dynamic Positioning using Deep Reinforcement Learning. Ocean Engineering, 2021, 235, 109433.Two-stage training algorithm for Al robot soccer. PeerJ Computer Science, 2021, 7, e718.	 13.8 2.0 4.5 4.3 4.5 	43 12 25 16 3
 512 513 514 515 516 517 	Deep Learning for Voltammetric Sensing in a Living Animal Brain. Angewandte Chemie - International Edition, 2021, 60, 23777-23783.Deep Learning for Voltammetric Sensing in a Living Animal Brain. Angewandte Chemie, 2021, 133, 23970-23976.Not so disruptive yet? Characteristics, distribution and determinants of robots in Europe. Structural Change and Economic Dynamics, 2021, 58, 76-89.Dynamic Positioning using Deep Reinforcement Learning. Ocean Engineering, 2021, 235, 109433.Two-stage training algorithm for AI robot soccer. PeerJ Computer Science, 2021, 7, e718.Autonomous experimentation systems for materials development: A community perspective. Matter, 2021, 4, 2702-2726.	 13.8 2.0 4.5 4.3 4.5 10.0 	 43 12 25 16 3 143
 512 513 514 515 516 517 518 	Deep Learning for Voltammetric Sensing in a Living Animal Brain. Angewandte Chemie - International Edition, 2021, 60, 23777-23783.Deep Learning for Voltammetric Sensing in a Living Animal Brain. Angewandte Chemie, 2021, 133, 23970-23976.Not so disruptive yet? Characteristics, distribution and determinants of robots in Europe. Structural Change and Economic Dynamics, 2021, 58, 76-89.Dynamic Positioning using Deep Reinforcement Learning. Ocean Engineering, 2021, 235, 109433.Two-stage training algorithm for Al robot soccer. PeerJ Computer Science, 2021, 7, e718.Autonomous experimentation systems for materials development: A community perspective. Matter, 2021, 4, 2702-2726.A high-level overview of Al ethics. Patterns, 2021, 2, 100314.	 13.8 2.0 4.5 4.3 4.5 10.0 5.9 	 43 12 25 16 3 143 49

#	Article	IF	CITATIONS
520	Deep learning in retrosynthesis planning: datasets, models and tools. Briefings in Bioinformatics, 2022, 23, .	6.5	45
521	Reinforcement-learning-based matter-wave interferometer in a shaken optical lattice. Physical Review Research, 2021, 3, .	3.6	7
522	Boosting Intelligent Data Analysis in Smart Sensors by Integrating Knowledge and Machine Learning. Sensors, 2021, 21, 6168.	3.8	6
523	Artificial Intelligence and Free Will: The possibility of Artificial Free Will. Trt Akademi Dergisi, 2021, 6, 788-811.	0.4	4
524	Natural and Artificial Intelligence: A brief introduction to the interplay between AI and neuroscience research. Neural Networks, 2021, 144, 603-613.	5.9	50
525	Perturbation-based methods for explaining deep neural networks: A survey. Pattern Recognition Letters, 2021, 150, 228-234.	4.2	69
526	Reward is enough. Artificial Intelligence, 2021, 299, 103535.	5.8	187
527	Deep Learning Analysis for Split-Manufactured Layouts With Routing Perturbation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40, 1995-2008.	2.7	5
528	Deliberative acting, planning and learning with hierarchical operational models. Artificial Intelligence, 2021, 299, 103523.	5.8	6
529	Neural Tree Expansion for Multi-Robot Planning in Non-Cooperative Environments. IEEE Robotics and Automation Letters, 2021, 6, 6868-6875.	5.1	4
530	Learning to traverse over graphs with a Monte Carlo tree search-based self-play framework. Engineering Applications of Artificial Intelligence, 2021, 105, 104422.	8.1	11
531	Reinforcement and deep reinforcement learning for wireless Internet of Things: A survey. Computer Communications, 2021, 178, 98-113.	5.1	43
532	A visual path-following learning approach for industrial robots using DRL. Robotics and Computer-Integrated Manufacturing, 2021, 71, 102130.	9.9	20
533	Deep learning, explained: Fundamentals, explainability, and bridgeability to process-based modelling. Environmental Modelling and Software, 2021, 144, 105159.	4.5	63
534	Reinforcement learning of rare diffusive dynamics. Journal of Chemical Physics, 2021, 155, 134105.	3.0	17
535	Two-pulse switching scheme and reinforcement learning for energy efficient SOT-MRAM simulations. Solid-State Electronics, 2021, 185, 108075.	1.4	0
536	AlphaBuilding ResCommunity: A multi-agent virtual testbed for community-level load coordination. Advances in Applied Energy, 2021, 4, 100061.	13.2	20
537	Applying reinforcement learning and tree search to the unit commitment problem. Applied Energy, 2021, 302, 117519.	10.1	17

	Сіта	tion Report	
#	Article	IF	CITATIONS
538	Preserving the legacy – Why do professional soccer clubs (not) adopt innovative process technologies? A grounded theory study. Journal of Business Research, 2021, 136, 237-250.	10.2	4
539	A multi-agent simulator for generating novelty in monopoly. Simulation Modelling Practice and Theory, 2021, 112, 102364.	3.8	4
540	Scalable sub-game solving for imperfect-information games. Knowledge-Based Systems, 2021, 231, 107434.	7.1	1
541	Deep reinforcement learning for the optimal placement of cryptocurrency limit orders. European Journal of Operational Research, 2022, 296, 993-1006.	5.7	27
542	Insightful artificial intelligence. Mind and Language, 2021, 36, 315-329.	2.3	15
543	A Preliminary Study on the Application of Reinforcement Learning for Predictive Process Monitoring. Lecture Notes in Business Information Processing, 2021, , 124-135.	1.0	4
544	Revisiting "Recurrent World Models Facilitate Policy Evolution― Lecture Notes in Computer Science 2021, , 325-337.	^{e,} 1.3	0
545	Fast Trajectory Generation and Asteroid Sequence Selection in Multispacecraft for Multiasteroid Exploration. IEEE Transactions on Cybernetics, 2022, 52, 6071-6082.	9.5	3
546	The artificial intelligence revolution: Achievements and prospects. , 2021, , .		1
547	Differences Between Natural and Artificial Cognitive Systems. , 2021, , 17-27.		5
548	Designing Robots for the Battlefield: State of the Art. , 2021, , 131-146.		4
549	Challenges and Countermeasures for Adversarial Attacks on Deep Reinforcement Learning. IEEE Transactions on Artificial Intelligence, 2022, 3, 90-109.	4.7	37
550	Rapid Play Digital Games for Emergency Management Instruction. Advances in Educational Technologies and Instructional Design Book Series, 2021, , 63-95.	0.2	0
551	Effects of Sampling and Prediction Horizon in Reinforcement Learning. IEEE Access, 2021, 9, 127611-127618.	4.2	4
552	Multi-Agent Reinforcement Learning: A Selective Overview of Theories and Algorithms. Studies in Systems, Decision and Control, 2021, , 321-384.	1.0	243
553	On the Redundancy in the Rank of Neural Network Parameters and Its Controllability. Applied Sciences (Switzerland), 2021, 11, 725.	2.5	3
554	A Study of Neural Training with Iterative Non-Gradient Methods. SSRN Electronic Journal, O, , .	0.4	0
555	Forecasting Hamiltonian dynamics without canonical coordinates. Nonlinear Dynamics, 2021, 103, 1553-1562.	5.2	21

# 557	ARTICLE A biological perspective on evolutionary computation. Nature Machine Intelligence, 2021, 3, 9-15.	IF 16.0	Citations
558	<i>DeepRepair:</i> Style-Guided Repairing for Deep Neural Networks in the Real-World Operational Environment. IEEE Transactions on Reliability, 2022, 71, 1401-1416.	4.6	16
559	Reward Shaping to Improve the Performance of Deep Reinforcement Learning in Inventory Management. SSRN Electronic Journal, 0, , .	0.4	4
560	Reinforcement Learning for Layout Planning – Modelling the Layout Problem as MDP. IFIP Advances in Information and Communication Technology, 2021, , 471-479.	0.7	6
561	An Evolutionary Approach to Combinatorial Gameplaying Using Extended Classifier Systems. Lecture Notes in Electrical Engineering, 2021, , 723-738.	0.4	0
562	No Free Lunch: Overcoming Reward Gaming in Al Safety Gridworlds. Lecture Notes in Computer Science, 2021, , 226-238.	1.3	1
563	DSMC Evaluation Stages: Fostering Robust and Safe Behavior in Deep Reinforcement Learning. Lecture Notes in Computer Science, 2021, , 197-216.	1.3	6
564	A continual learning survey: Defying forgetting in classification tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, PP, 1-1.	13.9	367
565	What the Near Future of Artificial Intelligence Could Be. Digital Ethics Lab Yearbook, 2020, , 127-142.	0.4	10
566	Automation of Synthesized Optimal Control Problem Solution for Mobile Robot by Genetic Programming. Advances in Intelligent Systems and Computing, 2020, , 1054-1072.	0.6	10
567	Optimizing Blockchain Networks with Artificial Intelligence: Towards Efficient and Reliable IoT Applications. Internet of Things, 2020, , 299-321.	1.7	10
568	From Reinforcement Learning Towards Artificial General Intelligence. Advances in Intelligent Systems and Computing, 2020, , 401-413.	0.6	1
569	Deep Statistical Model Checking. Lecture Notes in Computer Science, 2020, , 96-114.	1.3	24
570	Exploring the Impact of Simple Explanations and Agency on Batch Deep Reinforcement Learning Induced Pedagogical Policies. Lecture Notes in Computer Science, 2020, , 472-485.	1.3	11
571	Tracking the Race Between Deep Reinforcement Learning and Imitation Learning. Lecture Notes in Computer Science, 2020, , 11-17.	1.3	8
572	Taxonomy of Reinforcement Learning Algorithms. , 2020, , 125-133.		16
573	Big Data Analytics for Understanding and Fighting COVID-19. Studies in Computational Intelligence, 2021, , 333-348.	0.9	5
574	Fine-tuning Deep RL with Gradient-Free Optimization. IFAC-PapersOnLine, 2020, 53, 8049-8056.	0.9	2

#	Article	IF	CITATIONS
575	Computer-inspired quantum experiments. Nature Reviews Physics, 2020, 2, 649-661.	26.6	48
576	Deep learning and generative methods in cheminformatics and chemical biology: navigating small molecule space intelligently. Biochemical Journal, 2020, 477, 4559-4580.	3.7	29
577	The unreasonable effectiveness of deep learning in artificial intelligence. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30033-30038.	7.1	220
578	Structure prediction of surface reconstructions by deep reinforcement learning. Journal of Physics Condensed Matter, 2020, 32, 404005.	1.8	16
579	Deep reinforcement learning for optical systems: A case study of mode-locked lasers. Machine Learning: Science and Technology, 2020, 1, 045013.	5.0	15
587	Deep Q-learning decoder for depolarizing noise on the toric code. Physical Review Research, 2020, 2, .	3.6	16
588	Machine Learning for Long-Distance Quantum Communication. PRX Quantum, 2020, 1, .	9.2	55
589	Tactical Decision-Making in Autonomous Driving by Reinforcement Learning with Uncertainty Estimation. , 2020, , .		29
590	Agent Coordination in Air Combat Simulation using Multi-Agent Deep Reinforcement Learning. , 2020, ,		10
591	Learning Optimal Controllers for Linear Systems With Multiplicative Noise via Policy Gradient. IEEE Transactions on Automatic Control, 2021, 66, 5283-5298.	5.7	29
592	A Decade Survey of Transfer Learning (2010–2020). IEEE Transactions on Artificial Intelligence, 2020, 1, 151-166.	4.7	229
593	Online Minimax Q Network Learning for Two-Player Zero-Sum Markov Games. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 1228-1241.	11.3	29
594	A Deep Reinforcement Learning Approach for Global Routing. Journal of Mechanical Design, Transactions of the ASME, 2020, 142, .	2.9	46
595	A domain-specific supercomputer for training deep neural networks. Communications of the ACM, 2020, 63, 67-78.	4.5	122
596	Five Challenges in Cloud-enabled Intelligence and Control. ACM Transactions on Internet Technology, 2020, 20, 1-19.	4.4	22
597	Keeping it "organized and logical". , 2020, , .		9
598	Catch & Carry. ACM Transactions on Graphics, 2020, 39, .	7.2	54
599	Self-Play Reinforcement Learning for Fast Image Retargeting. , 2020, , .		12

CITATION REPORT IF ARTICLE CITATIONS Aligning Superhuman AI with Human Behavior., 2020,,. 31 Human-Al Collaboration in a Cooperative Game Setting. Proceedings of the ACM on Human-Computer 3.3 Interaction, 2020, 4, 1-20. High-accuracy optical convolution unit architecture for convolutional neural networks by cascaded 3.4 45 acousto-optical modulator arrays. Optics Express, 2019, 27, 19778. Digital twin-enabled self-evolved optical transceiver using deep reinforcement learning. Optics Letters, 2020, 45, 4654. Multitask deep-learning-based design of chiral plasmonic metamaterials. Photonics Research, 2020, 8, 7.0 61 1213. Assessing Autonomous Algorithmic Collusion: Q-Learning Under Sequential Pricing. SSRN Electronic 0.4 Journal, Ö, , . The Explanation Game: A Formal Framework for Interpretable Machine Learning. SSRN Electronic 0.4 6 Journal, 0, , . The Applicability of Self-Play Algorithms to Trading and Forecasting Financial Markets: A Feasibility 0.4 Study. SSRN Electronic Journal, 0, , . The Impact of Artificial Intelligence on the Chess World. JMIR Serious Games, 2020, 8, e24049. 3.1 5 El factor estético en la automatizaciÃ³n de tareas lÃ³gicas: el caso del ajedrez. Artnodes, 2020, , . 0.1 Redirection Controller Using Reinforcement Learning. IEEE Access, 2021, 9, 145083-145097. 4.2 11 Hierarchies of Planning and Reinforcement Learning for Robot Navigation., 2021,,. Continuous Transition: Improving Sample Efficiency for Continuous Control Problems via MixUp., 2 2021,,. Reward Machines for Vision-Based Robotic Manipulation., 2021,,. Sample Efficient Reinforcement Learning via Model-Ensemble Exploration and Exploitation., 2021, , . 5 LBGP: Learning Based Goal Planning for Autonomous Following in Front., 2021, , .

617 Sample-efficient Reinforcement Learning in Robotic Table Tennis. , 2021, , .

618 Quantification of Joint Redundancy considering Dynamic Feasibility using Deep Reinforcement Learning. , 2021, , . 9

#

600

603

604

605

607

608

609

611

613

614

#	Article	IF	CITATIONS
619	Blind Source Separation in Polyphonic Music Recordings Using Deep Neural Networks Trained via Policy Gradients. Signals, 2021, 2, 637-661.	1.9	3
620	Targeted Upskilling Framework based on Player Mistake Context in Online Skill Gaming Platforms. , 2021, , .		1
621	Curriculum learning with Hindsight Experience Replay for sequential object manipulation tasks. Neural Networks, 2022, 145, 260-270.	5.9	10
622	Descent wins five gold medals at the Computer Olympiad. ICGA Journal, 2021, 43, 132-134.	0.3	0
623	Improving failure rates in pulsed SOT-MRAM switching by reinforcement learning. Microelectronics Reliability, 2021, 126, 114231.	1.7	0
624	AI (Artificial Intelligent) - A Perspective from Visualizer. SSRN Electronic Journal, 0, , .	0.4	0
625	Are Talkative Al Agents More Likely to Win the Werewolf Game?. , 2019, , .		0
627	Multi-task Learning by Pareto Optimality. Lecture Notes in Computer Science, 2019, , 605-618.	1.3	2
628	Learning How to Play Bomberman with Deep Reinforcement and Imitation Learning. Lecture Notes in Computer Science, 2019, , 121-133.	1.3	2
633	Evaluation-Function Modeling with Neural Networks for RoboCup Soccer. IEEJ Transactions on Electronics, Information and Systems, 2019, 139, 1128-1133.	0.2	0
634	Improve the performance of neural network training with accurate information. , 2019, , .		0
635	Thoughts Raised by 3 Alpha. , 2019, , .		1
637	The Law of Armed Conflict Issues Created by Programming Automatic Target Recognition Systems Using Deep Learning Methods. Yearbook of International Humanitarian Law, 2020, , 99-135.	0.2	3
638	Accelerating Inference on Binary Neural Networks with Digital RRAM Processing. IFIP Advances in Information and Communication Technology, 2020, , 257-278.	0.7	1
639	Evolutionary Strategies with Analogy Partitions in P-Guessing Games. SSRN Electronic Journal, 0, , .	0.4	0
641	Challenges of Reinforcement Learning. , 2020, , 249-272.		17
642	Latent Weights Generating for Few Shot Learning Using Information Theory. Lecture Notes in Computer Science, 2020, , 1003-1016.	1.3	0
643	Improving Human Players' T-Spin Skills in Tetris with Procedural Problem Generation. Lecture Notes in Computer Science, 2020, , 41-52.	1.3	3

#	Article	IF	CITATIONS
644	Humans of the Future. , 2020, , 133-160.		0
645	Bayes-Adaptive Monte-Carlo Planning and Learning for Goal-Oriented Dialogues. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34, 7994-8001.	4.9	4
647	Intelligente EindÄ m mungsstrategien gegen Covid-19: Die Rolle von Künstlicher Intelligenz und Big Data. Perspektiven Der Wirtschaftspolitik, 2020, 21, 311-322.	0.4	2
648	Evolving ab initio trading strategies in heterogeneous environments. , 2020, , .		0
649	Deep Multi-Critic Network for accelerating Policy Learning in multi-agent environments. Neural Networks, 2020, 128, 97-106.	5.9	4
650	PMA-DRL: A parallel model-augmented framework for deep reinforcement learning algorithms. Neurocomputing, 2020, 403, 109-120.	5.9	1
651	Neural Embeddings of Financial Time-Series Data. The Journal of Financial Data Science, 2020, 2, 33-43.	1.3	1
652	Learning and Cognition in Financial Markets: A Paradigm Shift for Agent-Based Models. Advances in Intelligent Systems and Computing, 2021, , 241-255.	0.6	1
653	Seeking Nonhuman Advice: Ancient and Modern. , 2020, , .		0
654	Tackling Morpion Solitaire with AlphaZero-like Ranked Reward Reinforcement Learning. , 2020, , .		6
655	Extending the Capabilities of Reinforcement Learning Through Curriculum: A Review of Methods and Applications. SN Computer Science, 2022, 3, 1.	3.6	3
656	Artificial IntelligenceÂBased Body Sensor Network Framework—Narrative Review: Proposing an End-to-End Framework using Wearable Sensors, Real-Time Location Systems and Artificial Intelligence/Machine Learning Algorithms for Data Collection, Data Mining and Knowledge Discovery in Sports and Healthcare. Sports Medicine - Open. 2021, 7, 79.	3.1	19
657	A New Trajectory Tracking Algorithm for Autonomous Vehicles Based on Model Predictive Control. Sensors, 2021, 21, 7165.	3.8	13
658	Reward shaping to improve the performance of deep reinforcement learning in perishable inventory management. European Journal of Operational Research, 2022, 301, 535-545.	5.7	34
659	Achieving Safe Deep Reinforcement Learning via Environment Comprehension Mechanism. Chinese Journal of Electronics, 2021, 30, 1049-1058.	1.5	5
660	Deep Stackelberg heuristic dynamic programming for frequency regulation of interconnected power systems considering flexible energy sources. Engineering Applications of Artificial Intelligence, 2021, 106, 104508.	8.1	9
661	Learning to Plan with Uncertain Topological Maps. Lecture Notes in Computer Science, 2020, , 473-490.	1.3	12
662	Indexed Metrics for Link Prediction in Graph Analytics. International Journal of Advanced Computer Science and Applications, 2020, 11, .	0.7	1
#	Article	IF	CITATIONS
-----	--	-----	-----------
663	A Partially Observable Markov-Decision-Process-Based Blackboard Architecture for Cognitive Agents in Partially Observable Environments. IEEE Transactions on Cognitive and Developmental Systems, 2022, 14, 189-204.	3.8	0
664	AlphaZero. , 2020, , 391-415.		7
666	Real-Time Decision Making for a Car Manufacturing Process Using Deep Reinforcement Learning. , 2020, , ,		7
667	Research Programs Based on Machine Intelligence Games. Philosophy of Engineering and Technology, 2021, , 163-179.	0.3	0
668	Evaluation of Loss Function for Stable Policy Learning in Dobutsu Shogi. , 2020, , .		0
669	Royale Heroes: A Unique RTS Game Using Deep Reinforcement Learning-based Autonomous Movement. , 2020, , .		0
670	Analyses of Tabular AlphaZero on NoGo. , 2020, , .		2
671	Learn to Place: FPGA Placement Using Reinforcement Learning and Directed Moves. , 2020, , .		9
672	Multi-UCAV Air Combat in Short-Range Maneuver Strategy Generation using Reinforcement Learning and Curriculum Learning. , 2020, , .		6
673	A Modified Q-Learning Algorithm for Control of Two-Qubit Systems. , 2020, , .		1
674	A Tutorial Introduction to Monte Carlo Tree Search. , 2020, , .		3
675	Multi-Agent Reinforcement Learning using the Deep Distributed Distributional Deterministic Policy Gradients Algorithm. , 2020, , .		3
676	Review on deep learning applications in frequency analysis and control of modern power system. International Journal of Electrical Power and Energy Systems, 2022, 136, 107744.	5.5	136
677	A Modified I2A Agent for Learning in a Stochastic Environment. Lecture Notes in Computer Science, 2020, , 388-399.	1.3	1
679	The Explanation Game: A Formal Framework for Interpretable Machine Learning. Digital Ethics Lab Yearbook, 2021, , 109-143.	0.4	0
680	The Explanation Game: A Formal Framework for Interpretable Machine Learning. Philosophical Studies Series, 2021, , 185-219.	1.9	6
682	Practical Open-Loop Optimistic Planning. Lecture Notes in Computer Science, 2020, , 69-85.	1.3	2
685	A Structured Approach to Risk Assessment of Machine Learning Applications. Smart Innovation, Systems and Technologies, 2020 389-397.	0.6	0

#	Article	IF	CITATIONS
686	Learning Summarised Messaging Through Mediated Differentiable Inter-Agent Learning. Lecture Notes in Computer Science, 2020, , 546-557.	1.3	1
687	Pareto Multi-task Deep Learning. Lecture Notes in Computer Science, 2020, , 132-141.	1.3	1
688	Mobile Networks for Computer <i>Go</i> . IEEE Transactions on Games, 2022, 14, 76-84.	1.4	5
689	Advice is Useful for Game Al: Experiments with Alpha-Beta Search Players in Shogi. Lecture Notes in Computer Science, 2020, , 1-10.	1.3	0
690	On Strongly Solving Chinese Checkers. Lecture Notes in Computer Science, 2020, , 155-166.	1.3	2
691	The Rhetoric and Reality of Anthropomorphism in Artificial Intelligence. Digital Ethics Lab Yearbook, 2020, , 45-65.	0.4	1
692	Computer Vision and Hybrid Reality for Construction Safety Risks: A Pilot Study. Advances in Intelligent Systems and Computing, 2020, , 17-22.	0.6	3
693	Machine Learning Basics. , 2020, , 11-23.		3
694	Automatic Exploration Process Adjustment for Safe Reinforcement Learning with Joint Chance Constraint Satisfaction. IFAC-PapersOnLine, 2020, 53, 1588-1595.	0.9	1
695	Warm-Start AlphaZero Self-play Search Enhancements. Lecture Notes in Computer Science, 2020, , 528-542.	1.3	6
696	Towards Digital Engineering The Advent of Digital Systems Engineering. International Journal of System of Systems Engineering, 2020, 10, 1.	0.5	2
699	Machine Learning Techniques for Wireless-Powered Ambient Backscatter Communications: Enabling Intelligent IoT Networks in 6G Era. Internet of Things, 2020, , 187-211.	1.7	6
700	Conceptual Challenges for Interpretable Machine Learning. SSRN Electronic Journal, 0, , .	0.4	1
701	Fault-Tolerant Control of Degrading Systems with On-Policy Reinforcement Learning. IFAC-PapersOnLine, 2020, 53, 13733-13738.	0.9	8
702	A Promising Path Towards Autoformalization and General Artificial Intelligence. Lecture Notes in Computer Science, 2020, , 3-20.	1.3	6
703	Designing Policy Network with Deep Learning in Turn-Based Strategy Games. Lecture Notes in Computer Science, 2020, , 143-154.	1.3	0
704	The Guiding Role of Reward Based on Phased Goal in Reinforcement Learning. , 2020, , .		0
705	Monte Carlo Scene Search for 3D Scene Understanding. , 2021, , .		13

#	Article	IF	CITATIONS
706	3.触媒ç"ç©¶ã«ãŠã'ã,‹æ©Ÿæ¢°å¦ç¿'ãïæœ€é©å®Ÿé‴'è∽ç"». Denki Kagaku, 2020, 88, 14-20.	0.0	0
707	Road Detection for Reinforcement Learning Based Autonomous Car. , 2020, , .		6
709	Competitive Deep Reinforcement Learning over a Pok $ ilde{A}$ ©mon Battling Simulator. , 2020, , .		1
710	Knowledge Transfer between Similar Atari Games Using Deep Q-Networks to Improve Performance. , 2021, , .		1
711	Enzymeless DNA Base Identification by Chemical Stepping in a Nanopore. Journal of the American Chemical Society, 2021, 143, 18181-18187.	13.7	17
712	Artificial Intelligence Methodologies for Data Management. Symmetry, 2021, 13, 2040.	2.2	10
713	Nonlinear Control of a Gas Turbine Engine with Reinforcement Learning. Lecture Notes in Networks and Systems, 2022, , 105-120.	0.7	3
714	Deep Learning and Computational Chemistry. Methods in Molecular Biology, 2022, 2390, 125-151.	0.9	3
715	PrefixRL: Optimization of Parallel Prefix Circuits using Deep Reinforcement Learning. , 2021, , .		19
716	Rethinking Intelligent Behavior as Competitive Games for Handling Adversarial Challenges to Machine Learning. , 2021, , 3-16.		1
717	Foundations of Artificial Intelligence and Effective Universal Induction. , 2021, , 29-42.		0
718	Game Action Modeling for Fine Grained Analyses of Player Behavior in Multi-player Card Games (Rummy) Tj ETQq	1 1 0.7843	314 rgBT /0
719	Vision-Based Autonomous Driving: A Model Learning Approach. , 2020, , .		3
720	Can an Al learn political theory?. Al Perspectives, 2020, 2, .	3.9	1
721	Dialogical Guidelines Aided by Knowledge Acquisition: Enhancing the Design of Explainable Interfaces and Algorithmic Accuracy. Advances in Intelligent Systems and Computing, 2021, , 243-257.	0.6	3
722	Do Game Bots Dream of Electric Rewards?. , 2020, , .		1
723	Enhancing the interoperability between deep learning frameworks by model conversion. , 2020, , .		15
726	A Deep Reinforcement Learning scheme for Battery Energy Management. , 2020, , .		1

# 727	ARTICLE The 1970 United States computer chess championship: TheÂstart of the longest-running experiment in computer science history. ICGA Journal, 2020, 42, 72-85.	lF 0.3	CITATIONS
728	Variational Dynamic for Self-Supervised Exploration in Deep Reinforcement Learning. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 4776-4790.	11.3	4
729	Amazon Chess Based on UCT-PVS Hybrid Algorithm. , 2021, , .		1
730	Reinforcement Learning to Reduce Failures in SOT-MRAM Switching. , 2021, , .		0
731	An Efficient System to Collect Data for Al Training on Multi-Category Object Counting Task. , 2021, , .		0
732	Cross-Game Generalization Approaches for General Video Game Playing using Deep Reinforcement Learning. , 2021, , .		0
733	Integrating Media Selection and Media Effects Using Decision Theory. Journal of Media Psychology, 2021, 33, 215-225.	1.0	7
734	Deep reinforcement learning with credit assignment for combinatorial optimization. Pattern Recognition, 2022, 124, 108466.	8.1	10
735	Brain-like Intelligent Decision-making Based on Basal Ganglia and Its Application in Automatic Car-following. Journal of Bionic Engineering, 2021, 18, 1439-1451.	5.0	2
736	Avoiding collaborative paradox in multiâ€agent reinforcement learning. ETRI Journal, 2021, 43, 1004-1012.	2.0	4
737	Physics-informed Dyna-style model-based deep reinforcement learning for dynamic control. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, .	2.1	10
738	Self-controlling photonic-on-chip networks with deep reinforcement learning. Scientific Reports, 2021, 11, 23151.	3.3	3
739	Scheduling and Power Control for Wireless Multicast Systems via Deep Reinforcement Learning. Entropy, 2021, 23, 1555.	2.2	1
740	Connected autonomous vehicles for improving mixed traffic efficiency in unsignalized intersections with deep reinforcement learning. Communications in Transportation Research, 2021, 1, 100017.	10.7	62
741	The Era of Immersive Health Technology. European Medical Journal Innovations, 0, , 40-47.	2.0	4
742	Adaptive Warm-Start MCTS inÂAlphaZero-Like Deep ReinforcementÂLearning. Lecture Notes in Computer Science, 2021, , 60-71.	1.3	4
743	Free-Space Optical Neural Network Based on Optical Nonlinearity and Pooling Operations. IEEE Access, 2021, 9, 146533-146549.	4.2	4
745	Reinforcement-Learning-Based Task Planning for Self-Reconfiguration of Cellular Satellites. IEEE Aerospace and Electronic Systems Magazine, 2022, 37, 38-47.	1.3	3

#	Article	IF	CITATIONS
746	An Adaptive Threshold for the Canny Algorithm With Deep Reinforcement Learning. IEEE Access, 2021, 9, 156846-156856.	4.2	3
747	On the Impact of MDP Design for Reinforcement Learning Agents in Resource Management. Lecture Notes in Computer Science, 2021, , 79-93.	1.3	0
748	A Nonisolated Single-Inductor Multiport DC–DC Topology Deduction Method Based on Reinforcement Learning. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 6572-6585.	5.4	5
749	The \$\$alpha mu \$\$ Search Algorithm for the Game of Bridge. Communications in Computer and Information Science, 2021, , 1-16.	0.5	1
750	Learning to Guide a Saturation-Based Theorem Prover. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45, 738-751.	13.9	2
753	Task offloading method of edge computing in internet of vehicles based on deep reinforcement learning. Cluster Computing, 2022, 25, 1175-1187.	5.0	47
754	Hierarchical deep reinforcement learning reveals a modular mechanism of cell movement. Nature Machine Intelligence, 2022, 4, 73-83.	16.0	7
755	Time recursive control of stochastic dynamical systems using forward dynamics and applications. International Journal of Mechanical Sciences, 2022, 216, 106969.	6.7	1
756	Deep Learning in Construction: Review of Applications and Potential Avenues. Journal of Computing in Civil Engineering, 2022, 36, .	4.7	12
757	Reinforcement learning for active distribution network planning based on Monte Carlo tree search. International Journal of Electrical Power and Energy Systems, 2022, 138, 107885.	5.5	8
758	Le potentiel danger des intelligences surhumaines. Pourlascience Fr, 2019, N° 498 - avril, 80-85.	0.0	0
759	Towards a Distributed Framework for Multi-Agent Reinforcement Learning Research. , 2020, , .		0
760	Game AI Competitions: Motivation for the Imitation Game-Playing Competition. , 0, , .		5
761	Validation of Image-Based Neural Network Controllers through Adaptive Stress Testing. , 2020, , .		15
762	Towards a Smart Opponent for Board Games: Learning beyond Simulations. , 2020, , .		1
763	A Reinforcement Learning based Path Guidance Scheme for Long-range Autonomous Valet Parking in Smart Cities. , 2020, , .		2
764	WD3: Taming the Estimation Bias in Deep Reinforcement Learning. , 2020, , .		11
765	Research and Development of an Intelligent System For Rapid Train Schedule Adjustment Based on Step-by-Step Neural Control. , 2020, , .		2

#	Article	IF	CITATIONS
766	Preferential Experience Collection with Frequency based Intrinsic Reward for Deep Reinforcement Learning. , 2020, , .		1
767	Deep Reinforcement Learning for DER Cyber-Attack Mitigation. , 2020, , .		11
768	Towards a common environment for learning scheduling algorithms. , 2020, , .		3
769	EdgeSlice: Slicing Wireless Edge Computing Network with Decentralized Deep Reinforcement Learning. , 2020, , .		32
770	Paradox of AlphaZero: Strategic vs. Optimal Plays. , 2020, , .		0
772	International Classification of Functioning, Disability, and Health augmented by telemedicine and artificial intelligence for assessment of functional disability. Journal of Family Medicine and Primary Care, 2021, 10, 3535.	0.9	1
773	Monte Carlo Game Solver. Communications in Computer and Information Science, 2021, , 56-70.	0.5	2
774	Dependent Task Offloading for Edge Computing based on Deep Reinforcement Learning. IEEE Transactions on Computers, 2022, 71, 2449-2461.	3.4	51
775	PrzyszÅ,ość przeszÅ,oÅ›ci. Retrotopia w narracjach sztucznej inteligencji StanisÅ,awa Lema i Åukasza Zawady. Przeglad Kulturoznawczy, 2021, , 539-553.	0.1	0
776	Towards precision agriculture in Morocco: A machine learning approach for recommending crops and forecasting weather. , 2021, , .		10
777	Improving Model and Search for Computer Go. , 2021, , .		7
778	Training a Reinforcement Learning Agent based on XCS in a Competitive Snake Environment. , 2021, , .		2
779	Playing Geister by Estimating Hidden Information with Deep Reinforcement Learning. , 2021, , .		0
780	Carle's Game: An Open-Ended Challenge in Exploratory Machine Creativity. , 2021, , .		0
781	Al in (and for) Games. Learning and Analytics in Intelligent Systems, 2022, , 27-43.	0.6	1
782	ComokuNet: A Novel UNet-style Network for Gomoku Zero Learning via Exploiting Positional Information and Multiscale Features. , 2021, , .		5
783	Al solutions for drafting in Magic: the Gathering. , 2021, , .		0
784	Chess fortresses, a causal test for state of the art Symbolic [Neuro] architectures. , 2021, , .		0

#	Article	IF	CITATIONS
785	General Board Game Concepts. , 2021, , .		7
786	Distance-Based Mapping for General Game Playing. , 2021, , .		1
787	Behavior Self-Organization Supports Task Inference for Continual Robot Learning. , 2021, , .		1
788	Learning to Play Pursuit-Evasion with Visibility Constraints. , 2021, , .		0
789	Spatial Action Maps Augmented with Visit Frequency Maps for Exploration Tasks. , 2021, , .		4
790	KB-Tree: Learnable and Continuous Monte-Carlo Tree Search for Autonomous Driving Planning. , 2021, , .		3
791	Al can turn the clock back before we know it. , 2021, , .		2
792	Hyperparameter Choice as Search Bias in AlphaZero. , 2021, , .		Ο
793	Maximum-Entropy Progressive State Aggregation for Reinforcement Learning. , 2021, , .		6
794	Energy Requirements Undermine Substrate Independence and Mind-Body Functionalism. Philosophy of Science, 2022, 89, 70-88.	1.0	3
795	Simultaneously constraining cosmology and baryonic physics via deep learning from weak lensing. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1518-1528.	4.4	16
796	Learning in continuous action space for developing high dimensional potential energy models. Nature Communications, 2022, 13, 368.	12.8	21
797	A Clinician's Guide to Artificial Intelligence (AI): Why and How Primary Care Should Lead the Health Care Al Revolution. Journal of the American Board of Family Medicine, 2022, 35, 175-184.	1.5	21
798	Learning Beam Search: Utilizing Machine Learning toÂGuide Beam Search forÂSolving Combinatorial Optimization Problems. Lecture Notes in Computer Science, 2022, , 283-298.	1.3	4
799	Fifty years of P vs. NP and the possibility of the impossible. Communications of the ACM, 2022, 65, 76-85.	4.5	8
800	Deep Reinforcement Learning for FlipIt Security Game. Studies in Computational Intelligence, 2022, , 831-843.	0.9	3
802	Learn Quasi-Stationary Distributions of Finite State Markov Chain. Entropy, 2022, 24, 133.	2.2	1
803	Predicting the Future With a Scale-Invariant Temporal Memory for the Past. Neural Computation, 2022, 34, 642-685.	2.2	3

#	Article	IF	CITATIONS
804	Deep-Neural-Network Discrimination of Multiplexed Superconducting-Qubit States. Physical Review Applied, 2022, 17, .	3.8	14
805	Four New Horsemen of an Apocalypse? Solar Flares, Super-volcanoes, Pandemics, and Artificial Intelligence. Economics of Disasters and Climate Change, 2022, 6, 393-416.	2.2	4
806	Planning in the brain. Neuron, 2022, 110, 914-934.	8.1	37
808	A Survey on 5G Radio Access Network Energy Efficiency: Massive MIMO, Lean Carrier Design, Sleep Modes, and Machine Learning. IEEE Communications Surveys and Tutorials, 2022, 24, 653-697.	39.4	61
809	Advances in modeling emerging magnetoresistive random access memories: from finite element methods to machine learning approaches. , 2022, , .		1
810	Modular Networks Prevent Catastrophic Interference in Model-Based Multi-task Reinforcement Learning. Lecture Notes in Computer Science, 2022, , 299-313.	1.3	3
812	Supply Chain Synchronization Through Deep Reinforcement Learning. Lecture Notes in Intelligent Transportation and Infrastructure, 2022, , 490-498.	0.5	1
813	Finding nash equilibrium for imperfect information games via fictitious play based on local regret minimization. International Journal of Intelligent Systems, 2022, 37, 6152-6167.	5.7	6
814	Learning Camera Control in Dynamic Scenes from Limited Demonstrations. Computer Graphics Forum, 2022, 41, 427-437.	3.0	0
815	Fabrication of a tactile sensor for artificial skin based on electrical impedance tomography. Biosensors and Bioelectronics: X, 2022, 10, 100116.	1.7	3
816	Reimagining chess with AlphaZero. Communications of the ACM, 2022, 65, 60-66.	4.5	3
817	Accurate and effective framework for identifying track defects. Measurement: Journal of the International Measurement Confederation, 2022, 190, 110625.	5.0	2
818	Learning manipulation skills with demonstrations for the swing process control of dredgers. Ocean Engineering, 2022, 246, 110545.	4.3	2
819	Time-Optimized Online Planning For Parallel Parking With Nonlinear Optimization and Improved Monte Carlo Tree Search. IEEE Robotics and Automation Letters, 2022, 7, 2226-2233.	5.1	6
820	On Multi-Agent Cognitive Cooperation: Can virtual agents behave like humans?. Neurocomputing, 2022, 480, 27-38.	5.9	2
821	Artificial intelligence and the changing sources of competitive advantage. Strategic Management Journal, 2023, 44, 1425-1452.	7.3	41
822	Autonomous Learning in a Pseudo-Episodic Physical Environment. Journal of Intelligent and Robotic Systems: Theory and Applications, 2022, 104, 1.	3.4	4
823	Construction of symmetric orthogonal designs with deep Q-network and orthogonal complementary design. Computational Statistics and Data Analysis, 2022, 171, 107448.	1.2	4

#	Article	IF	CITATIONS
824	Robot arm navigation using deep deterministic policy gradient algorithms. Journal of Experimental and Theoretical Artificial Intelligence, 2023, 35, 617-627.	2.8	0
825	On reliability of reinforcement learning based production scheduling systems: a comparative survey. Journal of Intelligent Manufacturing, 2022, 33, 911-927.	7.3	13
826	Learning from chess engines: how reinforcement learning could redefine clinical decision-making in rheumatology. Annals of the Rheumatic Diseases, 2022, 81, 1072-1075.	0.9	3
827	A Cognitive FMCW Radar to Minimize a Sequence of Range-Doppler Measurements. , 2021, , .		0
830	Proton gated oxide neuromorphic transistors with bionic vision enhancement and information decoding. Journal of Materials Chemistry C, 2022, 10, 7241-7250.	5.5	11
831	On Creativity, Music's Al Completeness, and Four Challenges for Artificial Musical Creativity. Transactions of the International Society for Music Information Retrieval, 2022, 5, 50-66.	1.5	2
832	Machine Learning the Gravity Equation for International Trade. SSRN Electronic Journal, 0, , .	0.4	2
833	Path-Analysis-Based Reinforcement Learning Algorithm for Imitation Filming. IEEE Transactions on Multimedia, 2023, 25, 2812-2824.	7.2	2
834	Applying the language acquisition model to the solution small language processing tasks. Informatika, 2022, 19, 96-110.	0.3	0
835	Automatic Design of PM Motor Using Monte Carlo Tree Search in Conjunction With Topology Optimization. IEEE Transactions on Magnetics, 2022, 58, 1-4.	2.1	8
836	The Future Around Journalism. Advances in Media, Entertainment and the Arts, 2022, , 1-11.	0.1	0
837	A Survey on Deep Reinforcement Learning for Data Processing and Analytics. IEEE Transactions on Knowledge and Data Engineering, 2022, , 1-1.	5.7	6
838	Evolving Evaluation Functions for Collectible Card Game AI. , 2022, , .		1
839	Understanding Machine Learning Through Data-Oriented and Human Learning Approaches. Educational Communications and Technology: Issues and Innovations, 2022, , 3-29.	0.2	1
840	Generating High Coherence Monophonic Music Using Monte-Carlo Tree Search. IEEE Transactions on Multimedia, 2023, 25, 3763-3772.	7.2	1
843	How Does AI Play Football? An Analysis of RL and Real-world Football Strategies. , 2022, , .		4
844	Building Energy Management With Reinforcement Learning and Model Predictive Control: A Survey. IEEE Access, 2022, 10, 27853-27862.	4.2	30
846	Multiple Suboptimal Policies Integrated Reinforcement Learning Algorithm for Path Planning. , 2022, ,		1

#	Article	IF	CITATIONS
847	Olivaw: Mastering <i>Othello</i> Without Human Knowledge, nor a Fortune. IEEE Transactions on Games, 2023, 15, 285-291.	1.4	4
848	Omnidirectional-Wheel Conveyor Path Planning and Sorting Using Reinforcement Learning Algorithms. IEEE Access, 2022, 10, 27945-27959.	4.2	11
849	On the Future of Artificial Intelligence - An Article in Honour of Susan Haack, for Her Festschrift. SSRN Electronic Journal, 0, , .	0.4	0
850	Conversational Co-creativity with Deep Reinforcement Learning Agent in Kitchen Layout. , 2022, , 399-409.		1
851	Attitude Control for Fixed-Wing Aircraft Using Q-Learning. Lecture Notes in Computer Science, 2022, , 647-658.	1.3	2
852	Knowledge Transfer forÂDeep Reinforcement Agents inÂGeneral Game Playing. Lecture Notes in Computer Science, 2022, , 53-66.	1.3	1
853	Designing an Automatic Agent for Repeated Language–based Persuasion Games. Transactions of the Association for Computational Linguistics, 2022, 10, 307-324.	4.8	0
854	Integrated Multi-task Agent Architecture with Affect-Like Guided Behavior. Studies in Computational Intelligence, 2022, , 602-612.	0.9	0
855	From shallow to deep: some lessons learned from application of machine learning for recognition of functional genomic elements in human genome. Human Genomics, 2022, 16, 7.	2.9	3
856	The Free Energy Principle for Perception and Action: A Deep Learning Perspective. Entropy, 2022, 24, 301.	2.2	15
857	Neuralâ€augmented twoâ€stage Monte Carlo tree search with overâ€sampling for protein folding in HP Model. IEEJ Transactions on Electrical and Electronic Engineering, 2022, 17, 685-694.	1.4	2
858	Deep learning for general game playing with Ludii and Polygames. ICGA Journal, 2022, 43, 146-161.	0.3	5
860	Facilitating the migration to the microservice architecture via model-driven reverse engineering and reinforcement learning. Software and Systems Modeling, 2022, 21, 1115-1133.	2.7	4
861	Human in the Loop Fuzzy Pattern Tree Evolution. SN Computer Science, 2022, 3, 1.	3.6	3
862	Neuromorphic Engineering Needs Closed-Loop Benchmarks. Frontiers in Neuroscience, 2022, 16, 813555.	2.8	2
863	The Implications of Diverse Human Moral Foundations for Assessing the Ethicality of Artificial Intelligence. Journal of Business Ethics, 2022, 178, 961-976.	6.0	13
864	Conceptual challenges for interpretable machine learning. SynthÃ^se, 2022, 200, 1.	1.1	23
865	The Sharing of Similar Knowledge on Monte Carlo Algorithm applies to Cryptocurrency Trading Problem. , 2022, , .		1

#	Article	IF	CITATIONS
866	The Democratic Inclusion of Artificial Intelligence? Exploring the Patiency, Agency and Relational Conditions for Demos Membership. Philosophy and Technology, 2022, 35, 1.	4.3	0
867	Automating reinforcement learning architecture design for code optimization. , 2022, , .		5
868	Machine learning in scanning transmission electron microscopy. Nature Reviews Methods Primers, 2022, 2, .	21.2	59
870	Advancing Human Understanding with Deep Learning Go Al Engines. , 2022, 81, .		2
871	Optimizing quantum annealing schedules with Monte Carlo tree search enhanced with neural networks. Nature Machine Intelligence, 2022, 4, 269-278.	16.0	12
872	Al agents envisioning the future: Forecast-based operation of renewable energy storage systems using hydrogen with Deep Reinforcement Learning. Energy Conversion and Management, 2022, 258, 115401.	9.2	24
873	Stock Trading Strategies Based on Deep Reinforcement Learning. Scientific Programming, 2022, 2022, 1-15.	0.7	4
874	Planning for potential: efficient safe reinforcement learning. Machine Learning, 2022, 111, 2255-2274.	5.4	1
875	Application of Artificial Intelligence in Lung Cancer. Cancers, 2022, 14, 1370.	3.7	38
876	Underwater Target Detection Based on Reinforcement Learning and Ant Colony Optimization. Journal of Ocean University of China, 2022, 21, 323-330.	1.2	8
877	Model-Free Quantum Control with Reinforcement Learning. Physical Review X, 2022, 12, .	8.9	27
878	Machine Learning May Sometimes Simply Capture Literature Popularity Trends: A Case Study of Heterocyclic Suzuki–Miyaura Coupling. Journal of the American Chemical Society, 2022, 144, 4819-4827.	13.7	64
879	Quantum imaginary time evolution steered by reinforcement learning. Communications Physics, 2022, 5, .	5.3	12
880	Sources of Risk of Al Systems. International Journal of Environmental Research and Public Health, 2022, 19, 3641.	2.6	10
881	Jacques Pitrat, l'Intelligence Artificielle et les Jeux. , 2022, 3, 113-126.		0
882	The Future of Collaborative Human-Artificial Intelligence Decision-Making for Mission Planning. Frontiers in Psychology, 2022, 13, 850628.	2.1	8
883	The Cost of Reinforcement Learning for Game Engines. , 2022, , .		1
884	Structural Models for Roseolovirus U20 And U21: Non-Classical MHC-I Like Proteins From HHV-6A, HHV-6B, and HHV-7. Frontiers in Immunology, 2022, 13, 864898.	4.8	6

ARTICLE IF CITATIONS # Provable training of a ReLU gate with an iterative non-gradient algorithm. Neural Networks, 2022, 151, 885 5.9 4 264-275. Solving PBQP-Based Register Allocation using Deep Reinforcement Learning., 2022, , . SEM: Safe exploration mask for q-learning. Engineering Applications of Artificial Intelligence, 2022, 111, 887 8.1 1 104765. Hierarchical reinforcement learning with dynamic recurrent mechanism for course recommendation. 888 Knowledge-Based Systems, 2022, 244, 108546. All by Myself: Learning individualized competitive behavior with a contrastive reinforcement learning 889 5.9 3 optimization. Neural Networks, 2022, 150, 364-376. Control with adaptive Q-learning: A comparison for two classical control problems. Engineering Applications of Artificial Intelligence, 2022, 112, 104797. 8.1 A survey of deep reinforcement learning application in 5G and beyond network slicing and 891 4.0 20 virtualization. Array, 2022, 14, 100142. 892 Risk-sensitive policies for portfolio management. Expert Systems With Applications, 2022, 198, 116807. 7.6 Deep reinforcement learning with the confusion-matrix-based dynamic reward function for customer 893 28 7.6 credit scoring. Expert Systems With Applications, 2022, 200, 117013. 894 GridToPix: Training Embodied Agents with Minimal Supervision., 2021, , . Rehearsal revealed: The limits and merits of revisiting samples in continual learning., 2021,,. 895 25 MonteFloor: Extending MCTS for Reconstructing Accurate Large-Scale Floor Plans., 2021,,. 896 Power Chess., 2021, , . 897 4 DeepPursuit: Uniting Classical Wisdom and Deep RL for Sparse Recovery., 2021, , . 898 Rearchitecting in-memory object stores for low latency. Proceedings of the VLDB Endowment, 2021, 15, 899 3.8 1 555-568. Intelligent Module for System Trading of Financial Markets Assets Based on an Ensemble of Deep Neural Networks and the DQN Learning Algorithm. , 2021, , . 901 Learning Intra-group Cooperation in Multi-agent Systems., 2021, , . 0 Estimation Error Correction in Deep Reinforcement Learning for Deterministic Actor-Critic Methods. ,2021,,.

#	Article	IF	CITATIONS
903	Emotions as Abstract Evaluation Criteria in Biological and Artificial Intelligences. Frontiers in Computational Neuroscience, 2021, 15, 726247.	2.1	0
904	Multi-UAV Cooperative Task Assignment Based on Half Random Q-Learning. Symmetry, 2021, 13, 2417.	2.2	8
905	Reinforcement Learning Policies With Local LQR Guarantees For Nonlinear Discrete-Time Systems. , 2021, , .		4
906	Deployment of Differential Privacy for Application in Artificial Intelligence. , 2021, , .		0
908	Predicting Victories in Video Games - IEEE BigData 2021 Cup Report. , 2021, , .		11
909	Multi-agent reinforcement learning for character control. Visual Computer, 2021, 37, 3115-3123.	3.5	1
910	Planning Rational Behavior of Cognitive Semiotic Agents in a Dynamic Environment. Scientific and Technical Information Processing, 2021, 48, 502-516.	0.6	2
911	Artificial virtuous agents: from theory to machine implementation. Al and Society, 2023, 38, 1301-1320.	4.6	7
912	InferNet for Delayed Reinforcement Tasks: Addressing the Temporal Credit Assignment Problem. , 2021, , ,		3
913	Forecasting with trees. International Journal of Forecasting, 2022, 38, 1473-1481.	6.5	39
914	Maximum Entropy Reinforcement Learning in Two-Player Perfect Information Games. , 2021, , .		0
915	Mimicking the Human Approach in the Game of Hive. , 2021, , .		0
916	Analysis of Resource Management Methods Based on Reinforcement Learning. , 2021, , .		0
917	FIN-PRINT a fully-automated multi-stage deep-learning-based framework for the individual recognition of killer whales. Scientific Reports, 2021, 11, 23480.	3.3	6
918	Notes on the Architecture, League Training and PFSP in AlphaStar. , 2021, , .		0
919	Hybrid Reinforcement Learning for Optimal Control of Non-Linear Switching System. IEEE Transactions on Neural Networks and Learning Systems, 2022, PP, 1-10.	11.3	3
920	Artificial intelligence in food science and nutrition: a narrative review. Nutrition Reviews, 2022, 80, 2288-2300.	5.8	22
921	Use of Artificial Intelligence to Identify New Mechanisms and Approaches to Therapy of Bone Disorders Associated With Chronic Kidney Disease. Frontiers in Medicine, 2022, 9, 807994.	2.6	0

ARTICLE IF CITATIONS # Positive Unlabeled Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 2022, 922 0.8 1 16, 2-152. Chess AI: Competing Paradigms for Machine Intelligence. Entropy, 2022, 24, 550. 2.2 Molecular dynamics simulation of nanofilament breakage in neuromorphic nanoparticle networks. 924 2.6 5 Nanotechnology, 2022, 33, 275602. A Leap among Quantum Computing and Quantum Neural Networks: A Survey. ACM Computing Surveys, 2023, 55, 1-37. Stock Price Formation: Precepts from a Multi-Agent Reinforcement Learning Model. Computational 926 2.6 1 Economics, 2023, 61, 1523-1544. How to compete with robots by assessing job automation risks and resilient alternatives. Science Robotics, 2022, 7, eabg5561. 928 Deep learning, reinforcement learning, and world models. Neural Networks, 2022, 152, 267-275. 5.9 110 Artificial Intelligence and Public Health., 2022, , 3-12. A MADDPG-based multi-agent antagonistic algorithm for sea battlefield confrontation. Multimedia 931 4.7 1 Systems, 2023, 29, 2991-3000. Deep reinforcement learning and reward shaping based eco-driving control for automated HEVs 8.8 among signalized intersections. Energy, 2022, 251, 123924. The best of both worlds: Dual systems of reasoning in animals and Al. Cognition, 2022, 225, 105118. 933 2.2 6 Adversarial Machine Learning in Image Classification: A Survey Toward the Defender's Perspective. 23.0 ACM Computing Surveys, 2023, 55, 1-38. Dataâ€Driven Materials Innovation and Applications. Advanced Materials, 2022, 34, e2104113. 938 21.0 51 Rinascimento: Playing <i>Splendor</i>-Like Games With Event-Value Functions. IEEE Transactions on 1.4 Games, 2023, 15, 16-25. Visual Explanation on Deep Reinforcement Learning. Journal of the Robotics Society of Japan, 2022, 40, 940 0.1 0 212-217. A reinforcement learning approach to the stochastic cutting stock problem. EURO Journal on 941 2.4 Computational Optimization, 2022, 10, 100027. Efficient dendritic learning as an alternative to synaptic plasticity hypothesis. Scientific Reports, 2022, 942 3.3 20 12,6571. Unlocking the Flexibility of District Heating Pipeline Energy Storage with Reinforcement Learning. 943 3.1 Energies, 2022, 15, 3290.

#	Article	IF	CITATIONS
944	Avoiding Catastrophe: Active Dendrites Enable Multi-Task Learning in Dynamic Environments. Frontiers in Neurorobotics, 2022, 16, 846219.	2.8	8
945	A Comparison of Dynamical Perceptual-Motor Primitives and Deep Reinforcement Learning for Human-Artificial Agent Training Systems. Journal of Cognitive Engineering and Decision Making, 0, , 155534342210929.	2.3	2
946	Resonance for Analog Recurrent Neural Network. ACS Photonics, 2022, 9, 1647-1654.	6.6	5
947	Curriculum learning for safe mapless navigation. , 2022, , .		3
948	Continual Learning for Real-World Autonomous Systems: Algorithms, Challenges and Frameworks. Journal of Intelligent and Robotic Systems: Theory and Applications, 2022, 105, 1.	3.4	15
949	Specialty Grand Challenge: What it Will Take to Cross the Valley of Death: Translational Systems Biology, "True―Precision Medicine, Medical Digital Twins, Artificial Intelligence and In Silico Clinical Trials. Frontiers in Systems Biology, 2022, 2, .	0.7	5
950	The application of reinforcement learning to NATM tunnel design. Underground Space (China), 2022, 7, 990-1002.	7.5	9
951	Multi-type data fusion framework based on deep reinforcement learning for algorithmic trading. Applied Intelligence, 2023, 53, 1683-1706.	5.3	9
952	Adaptive random quantum eigensolver. Physical Review A, 2022, 105, .	2.5	0
953	From Analog to Digital Computing: Is Homo sapiens' Brain on Its Way to Become a Turing Machine?.	9.9	3
	Frontiers in Ecology and Evolution, 2022, 10, .	2.2	
954	Cooperative and Competitive Multi-Agent Systems: From Optimization to Games. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 763-783.	13.1	40
954 955	 Cooperative and Competitive Multi-Agent Systems: From Optimization to Games. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 763-783. POPO: Pessimistic Offline Policy Optimization. , 2022, , . 	13.1	40 0
954 955 956	 Profitters in Ecology and Evolution, 2022, 10, . Cooperative and Competitive Multi-Agent Systems: From Optimization to Games. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 763-783. POPO: Pessimistic Offline Policy Optimization. , 2022, , . How variability shapes learning and generalization. Trends in Cognitive Sciences, 2022, 26, 462-483. 	2.2 13.1 7.8	40 0 60
954 955 956 957	 Frontiers in Ecology and Evolution, 2022, 10, . Cooperative and Competitive Multi-Agent Systems: From Optimization to Games. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 763-783. POPO: Pessimistic Offline Policy Optimization. , 2022, , . How variability shapes learning and generalization. Trends in Cognitive Sciences, 2022, 26, 462-483. Solving uncapacitated P-Median problem with reinforcement learning assisted by graph attention networks. Applied Intelligence, 2023, 53, 2010-2025. 	2.2 13.1 7.8 5.3	40 0 60 2
954 955 956 957	 Prontiers in Ecology and Evolution, 2022, 10, . Cooperative and Competitive Multi-Agent Systems: From Optimization to Games. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 763-783. POPO: Pessimistic Offline Policy Optimization. , 2022, , . How variability shapes learning and generalization. Trends in Cognitive Sciences, 2022, 26, 462-483. Solving uncapacitated P-Median problem with reinforcement learning assisted by graph attention networks. Applied Intelligence, 2023, 53, 2010-2025. Incremental learning of phase transition in Ising model: Preprocessing, finite-size scaling and critical exponents. Physica A: Statistical Mechanics and Its Applications, 2022, 600, 127538. 	2.2 13.1 7.8 5.3 2.6	40 0 60 2 2
954 955 956 957 958	Promiters in Ecology and Evolution, 2022, 10, . Cooperative and Competitive Multi-Agent Systems: From Optimization to Games. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 763-783. POPO: Pessimistic Offline Policy Optimization. , 2022, , . How variability shapes learning and generalization. Trends in Cognitive Sciences, 2022, 26, 462-483. Solving uncapacitated P-Median problem with reinforcement learning assisted by graph attention networks. Applied Intelligence, 2023, 53, 2010-2025. Incremental learning of phase transition in Ising model: Preprocessing, finite-size scaling and critical exponents. Physica A: Statistical Mechanics and Its Applications, 2022, 600, 127538. A digital twins enabled underwater intelligent internet vehicle path planning system via reinforcement learning and edge computing. Digital Communications and Networks, 2022, , .	2.2 13.1 7.8 5.3 2.6 5.0	40 0 60 2 2 2
 954 955 956 958 959 960 	Honders in Ecology and	2.2 13.1 7.8 5.3 2.6 5.0 2.6	 40 0 60 2 2 15 20

		CITATION REPORT		
#	Article		IF	CITATIONS
962	Modular Reinforcement Learning for Playing the Game of Tron. IEEE Access, 2022, 10, 6	3394-63402.	4.2	0
965	Intelligent career planning via stochastic subsampling reinforcement learning. Scientific 2022, 12, 8332.	Reports,	3.3	7
966	Masked Contrastive Representation Learning for Reinforcement Learning. IEEE Transact Pattern Analysis and Machine Intelligence, 2022, PP, 1-1.	ions on	13.9	9
967	Scalability investigation of Double Deep Q Learning for factory layout planning. Procedia 107, 161-166.	a CIRP, 2022,	1.9	9
968	Deep Learning for Time Series Forecasting: Tutorial and Literature Survey. ACM Comput 2023, 55, 1-36.	ing Surveys,	23.0	42
969	Innate heuristics and fast learning support escape route selection in mice. Current Biolo 2980-2987.e5.	gy, 2022, 32,	3.9	2
970	How to Make AlphaGo's Children Explainable. Philosophies, 2022, 7, 55.		0.7	1
971	Threat Matrix: A Fast Algorithm for Human–Machine Chinese Ludo Gaming. Electronic 2022, 11, 1699.	s (Switzerland),	3.1	1
972	Blockchain-Enabled Joint Resource Allocation for Virtualized Video Service Functions. Se Communication Networks, 2022, 2022, 1-16.	curity and	1.5	0
973	Review of Deep Reinforcement Learning Approaches for Conflict Resolution in Air Traffic Aerospace, 2022, 9, 294.	: Control.	2.2	15
974	(A)I Will Teach You to Play Gomoku: Exploring the Use of Game AI to Teach People. , 20	22, , .		2
975	Reinforcement learning to reduce failures in SOT-MRAM switching. Microelectronics Rel 135, 114570.	iability, 2022,	1.7	0
976	Massively Digitized Power Grid: Opportunities and Challenges of Use-Inspired AI. Procee IEEE, 2023, 111, 762-787.	dings of the	21.3	4
977	A Multiagent Reinforcement Learning Approach for Wind Farm Frequency Control. IEEE on Industrial Informatics, 2023, 19, 1725-1734.	Transactions	11.3	4
978	Deep Reinforcement Learning-Based Long-Range Autonomous Valet Parking for Smart C Electronic Journal, 0, , .	Cities. SSRN	0.4	0
979	Prioritized Experience-Based Reinforcement Learning With Human Guidance for Autono IEEE Transactions on Neural Networks and Learning Systems, 2024, 35, 855-869.	mous Driving.	11.3	24
980	Deep Policy Dynamic Programming forÂVehicle Routing Problems. Lecture Notes in Con 2022, , 190-213.	iputer Science,	1.3	26
981	Inventory Control of Large Scale Multi-Item System with Minimum Order Quantity Cons Non-Stationary Demand. SSRN Electronic Journal, 0, , .	traint and	0.4	0

	С	CITATION REPORT	
#	Article	IF	CITATION
984	Model-Based Reinforcement Learning. , 2022, , 135-167.		1
985	In-process quality improvement: Concepts, methodologies, and applications. IISE Transactions, 2023, 2-21.	55, 2. ⁴	4 15
987	What will drive global economic growth in the digital age?. Studies in Nonlinear Dynamics and Econometrics, 2023, 27, 335-354.	0.3	3 7
988	World-class interpretable poker. Machine Learning, 0, , .	5.4	4 1
990	Regulating Artificial General Intelligence (AGI). Information Technology & Law Series, 2022, , 521-540	. 1.2	2 4
991	Towards Tackling QSAT Problems withÂDeep Learning andÂMonte Carlo Tree Search. Lecture Notes in Networks and Systems, 2022, , 45-58.	n O.	7 1
992	Real-Time Operation Management for Battery Swapping-Charging System via Multi-Agent Deep Reinforcement Learning. IEEE Transactions on Smart Grid, 2023, 14, 559-571.	9.(0 26
993	Exploiting Abstract Symmetries in Reinforcement Learning for Complex Environments. , 2022, , .		2
994	Adaptive Informative Path Planning Using Deep Reinforcement Learning for UAV-based Active Sensing 2022, , .	ŗ.,	14
995	Exact solving scheduling problems accelerated by graph neural networks. , 2022, , .		1
996	Symphony: Learning Realistic and Diverse Agents for Autonomous Driving Simulation. , 2022, , .		11
997	Interleaving Monte Carlo Tree Search and Self-Supervised Learning for Object Retrieval in Clutter. , 2022, , .		8
998	A Systematic Review of Wi-Fi and Machine Learning Integration with Topic Modeling Techniques. Sensors, 2022, 22, 4925.	3.8	3 7
999	Heuristics: Human and Nonhuman. Vestnik Rossijskogo Universiteta Družby Narodov: Seriâ Psiho Pedagogika, 2022, 19, 195-208.	logiâ l 0.	5 0
1000	Deep Reinforcement Learning in Smart Grid: Progress and Prospects. , 2022, , .		0
1001	Eye of the Beholder: Improved Relation Generalization for Text-Based Reinforcement Learning Agents. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36, 11094-11102.	4.9	9 0
1002	Deep learning approaches for <italic>de novo</italic> drug design: an overview. Scientia Sinica Chimica, 2023, 53, 95-106.	0.4	4 2
1003	The signature-testing approach to mapping biological and artificial intelligences. Trends in Cognitive Sciences, 2022, 26, 738-750.	7.8	8 7

#	Article	IF	CITATIONS
1004	A Unifying Framework for Reinforcement Learning and Planning. Frontiers in Artificial Intelligence, 0, 5, .	3.4	5
1005	The Science of the Deal: Optimal Bargaining on eBay Using Deep Reinforcement Learning. , 2022, , .		2
1006	Metamorphic relations via relaxations: an approach to obtain oracles for action-policy testing. , 2022,		1
1007	Infusing common-sensical prior knowledge into topological representations of learning robots. Artificial Life and Robotics, 2022, 27, 576-585.	1.2	1
1008	Subcutaneous insulin administration by deep reinforcement learning for blood glucose level control of type-2 diabetic patients. Computers in Biology and Medicine, 2022, 148, 105860.	7.0	6
1009	The Accidental Philosopher and One of the Hardest Problems in the World. Philosophies, 2022, 7, 76.	0.7	0
1010	A novel Long-term degradation trends predicting method for Multi-Formulation Li-ion batteries based on deep reinforcement learning. Advanced Engineering Informatics, 2022, 53, 101665.	8.0	6
1011	Towards robust, interpretable neural networks via Hebbian/anti-Hebbian learning: A software framework for training with feature-based costs. Software Impacts, 2022, 13, 100347.	1.4	3
1012	Reinforcement learning and A* search for the unit commitment problem. Energy and AI, 2022, 9, 100179.	10.6	8
1013	A Reinforcement Learning approach to the location of the non-circular critical slip surface of slopes. Computers and Geosciences, 2022, 166, 105182.	4.2	10
1014	Potentialities and limitations of machine learning to solve cut-and-shuffle mixing problems: A case study. Chemical Engineering Science, 2022, 260, 117840.	3.8	0
1015	How are reinforcement learning and deep learning algorithms used for big data based decision making in financial industries–A review and research agenda. International Journal of Information Management Data Insights, 2022, 2, 100094.	9.7	41
1016	On Transitions Functions Model for Decision-Making in Offshore Operations. , 2022, , .		2
1017	Mimetic Models. , 2022, , .		2
1018	Artificial Intelligence and Deep Learning for Rheumatologists. Arthritis and Rheumatology, 2022, 74, 1893-1905.	5.6	27
1019	Monte Carlo Tree Search: a review of recent modifications and applications. Artificial Intelligence Review, 2023, 56, 2497-2562.	15.7	44
1020	Accurate prediction of ice nucleation from room temperature water. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	14
1021	Robust Searching-Based Gradient Collaborative Management in Intelligent Transportation System. ACM Transactions on Multimedia Computing, Communications and Applications, 2024, 20, 1-23.	4.3	5

#	Article	IF	CITATIONS
1022	Toward Human-in-the-Loop Al: Enhancing Deep Reinforcement Learning via Real-Time Human Guidance for Autonomous Driving. Engineering, 2023, 21, 75-91.	6.7	32
1023	Deep reinforcement learning with a critic-value-based branch tree for the inverse design of two-dimensional optical devices. Applied Soft Computing Journal, 2022, 127, 109386.	7.2	8
1024	A Meta-Analysis of the Utility of Explainable Artificial Intelligence in Human-AI Decision-Making. , 2022, , .		13
1025	A behavior fusion method based on inverse reinforcement learning. Information Sciences, 2022, 609, 429-444.	6.9	1
1026	MoGym: Using Formal Models for Training and Verifying Decision-making Agents. Lecture Notes in Computer Science, 2022, , 430-443.	1.3	3
1027	Efficient Reinforcement Learning from Demonstration Using Local Ensemble and Reparameterization with Split and Merge of Expert Policies. , 2022, , .		0
1028	Tackling Real-World Autonomous Driving using Deep Reinforcement Learning. , 2022, , .		3
1029	Intersubjectivity as an antidote to stress: Using dyadic active inference model of intersubjectivity to predict the efficacy of parenting interventions in reducing stress—through the lens of dependent origination in Buddhist Madhyamaka philosophy. Frontiers in Psychology, 0, 13, .	2.1	3
1030	Beyond addressing multicollinearity: Robust quantitative analysis and machine learning in international business research. Journal of International Business Studies, 2022, 53, 1307-1314.	7.3	22
1032	Scalable evolutionary hierarchical reinforcement learning. , 2022, , .		1
1033	Reinforcement learning: A brief guide for philosophers of mind. Philosophy Compass, 2022, 17, .	1.3	1
1034	Scaffolding Human Champions: AI as a More Competent Other. Human Arenas, 0, , .	1.4	2
1035	Using Q-learning to Automatically Tune Quadcopter PID Controller Online for Fast Altitude Stabilization. , 2022, , .		1
1036	Multi-objective goal-directed optimization of de novo stable organic radicals for aqueous redox flow batteries. Nature Machine Intelligence, 2022, 4, 720-730.	16.0	25
1037	Well Construction Action Planning and Automation through Finite-Horizon Sequential Decision-Making. Energies, 2022, 15, 5776.	3.1	2
1038	Strategic maneuver and disruption with reinforcement learning approaches for multi-agent coordination. Journal of Defense Modeling and Simulation, 2023, 20, 509-526.	1.7	0
1039	On the Use of Quantum Reinforcement Learning in Energy-Efficiency Scenarios. Energies, 2022, 15, 6034.	3.1	5
1040	Decoding Artificial Intelligence to Achieve Diagnostic Excellence. JAMA - Journal of the American Medical Association, 2022, 328, 709.	7.4	17

#	Article	IF	CITATIONS
1041	Multipolar Security Cooperation Planning: A Multiobjective, Adversarial-Risk-Analysis Approach. Decision Analysis, 0, , .	2.1	0
1042	An Exoatmospheric Homing Guidance Law Based on Deep Q Network. International Journal of Aerospace Engineering, 2022, 2022, 1-13.	0.9	1
1043	Intelligent Action Planning for Well Construction Operations Demonstrated for Hole Cleaning Optimization and Automation. Energies, 2022, 15, 5749.	3.1	3
1045	<scp>Conformerâ€RL</scp> : A deep reinforcement learning library for conformer generation. Journal of Computational Chemistry, 2022, 43, 1880-1886.	3.3	2
1046	Higher Cognition: A Mechanical Perspective. Encyclopedia, 2022, 2, 1503-1516.	4.5	1
1047	Analysis of Hyper-Parameters for AlphaZero-Like Deep Reinforcement Learning. International Journal of Information Technology and Decision Making, 2023, 22, 829-853.	3.9	2
1048	Techniques and Paradigms in Modern Game Al Systems. Algorithms, 2022, 15, 282.	2.1	4
1049	Pathfinding in stochastic environments: learning <i>vs</i> planning. PeerJ Computer Science, 0, 8, e1056.	4.5	4
1050	Operational optimization for off-grid renewable building energy system using deep reinforcement learning. Applied Energy, 2022, 325, 119783.	10.1	28
1052	Multilevel development of cognitive abilities in an artificial neural network. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	9
1053	Physics aware analytics for accurate state prediction of dynamical systems. Chaos, Solitons and Fractals, 2022, 164, 112670.	5.1	3
1054	Hindsight and Sequential Rationality of Correlated Play. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35, 5584-5594.	4.9	1
1055	Chess Endgame Compression viaÂLogic Minimization. Lecture Notes in Computer Science, 2022, , 153-162.	1.3	0
1056	On theÂRoad toÂPerfection? Evaluating Leela Chess Zero Against Endgame Tablebases. Lecture Notes in Computer Science, 2022, , 142-152.	1.3	3
1057	Deep Reinforcement Learning forÂMorpion Solitaire. Lecture Notes in Computer Science, 2022, , 14-26.	1.3	1
1058	Expert Iteration forÂRisk. Lecture Notes in Computer Science, 2022, , 27-37.	1.3	1
1059	Optimised Playout Implementations forÂtheÂLudii General Game System. Lecture Notes in Computer Science, 2022, , 223-234.	1.3	0
1060	A Training Model ofÂWargaming Based onÂlmitation Learning andÂDeep Reinforcement Learning. Lecture Notes in Electrical Engineering, 2022, , 786-795.	0.4	1

		CITATION REPORT		
#	Article		IF	Citations
1061	Reinforcement learning with guarantees: a review. IFAC-PapersOnLine, 2022, 55, 123-12	8.	0.9	8
1062	Human-Level Control Through Directly Trained Deep Spiking <i>Q</i> -Networks. IEEE Tra Cybernetics, 2023, 53, 7187-7198.	insactions on	9.5	7
1063	Specification Aware Multi-Agent Reinforcement Learning. Lecture Notes in Computer Sc 3-21.	ence, 2022, ,	1.3	2
1064	Improved QMIXs forÂMulti-entity Asynchronous Cooperative Learning inÂTactical Warga Notes in Electrical Engineering, 2022, , 551-562.	ime. Lecture	0.4	0
1065	Bracing forÂArtificial General Intelligence. Frontiers in Economic History, 2022, , 155-179).	0.4	0
1066	The Force Unleashed. Frontiers in Economic History, 2022, , 31-41.		0.4	0
1067	Assessing Policy, Loss andÂPlanning Combinations inÂReinforcement Learning Using aÂ Architecture. Lecture Notes in Computer Science, 2022, , 427-439.	New Modular	1.3	0
1068	Optimal Control ofÂTraffic Flow Based onÂReinforcement Learning. Communications in Information Science, 2022, , 313-329.	Computer and	0.5	0
1069	The Optimal Strategy Against the Opponent Adopting Fictitious Play Algorithm in Infinite 2 Games. SSRN Electronic Journal, 0, , .	ely Repeated 2 ×	0.4	1
1070	Using Reinforcement Learning in a Game-like Setup for Automated Process Synthesis wit Process Knowledge. Computer Aided Chemical Engineering, 2022, , 1555-1560.	hout Prior	0.5	3
1071	Cosine Annealing, Mixnet andÂSwish Activation forÂComputer Go. Lecture Notes in Con 2022, , 53-60.	nputer Science,	1.3	5
1072	Routing inÂReinforcement Learning Markov Chains. , 2022, , 409-414.			0
1073	Unsupervised Hebbian Learning on Point Sets in StarCraft II. , 2022, , .			1
1074	Q-Value Weighted Regression: Reinforcement Learning with Limited Data. , 2022, , .			0
1075	Logic-based AI for Interpretable Board Game Winner Prediction with Tsetlin Machine. , 20)22, , .		1
1076	Storehouse: a Reinforcement Learning Environment for Optimizing Warehouse Manager	nent. , 2022, , .		3
1077	Towards Run-time Efficient Hierarchical Reinforcement Learning. , 2022, , .			0
1078	Distributional Actor-Critic Ensemble for Uncertainty-Aware Continuous Control. , 2022, ,			1

#	Article	IF	CITATIONS
1079	Stateless ARE: Action Recommendation Engine without Network State Measurement. , 2022, , .		0
1080	Deep Reinforcement Learning with Parametric Episodic Memory. , 2022, , .		0
1081	Planning and Learning using Adaptive Entropy Tree Search. , 2022, , .		0
1082	Hierarchical Architecture for Multi-Agent Reinforcement Learning in Intelligent Game. , 2022, , .		0
1083	A Robust Offline Reinforcement Learning Algorithm Based on Behavior Regularization Methods. , 2022, , .		0
1085	Playing Good-Quality Games with Weak Players by Combining Programs with Different Roles. , 2022, , .		1
1086	Multi-goal Reinforcement Learning via Exploring Successor Matching. , 2022, , .		1
1087	Mjx: A framework for Mahjong Al research. , 2022, , .		0
1088	DouZero+: Improving DouDizhu AI by Opponent Modeling and Coach-guided Learning. , 2022, , .		3
1089	LevDoom: A Benchmark for Generalization on Level Difficulty in Reinforcement Learning. , 2022, , .		1
1090	Strategies for Scaleable Communication and Coordination in Multi-Agent (UAV) Systems. Aerospace, 2022, 9, 488.	2.2	1
1091	AlphaBluff: An Al-Powered Heads-Up No-Limit Texas Hold'em Poker Video Game. , 2022, , .		0
1092	Speedup Training Artificial Intelligence for Mahjong via Reward Variance Reduction. , 2022, , .		1
1093	Towards Modern Card Games with Large-Scale Action Spaces Through Action Representation. , 2022, , .		1
1094	Combining Monte-Carlo Tree Search with Proof-Number Search. , 2022, , .		0
1095	Bayesian Opponent Exploitation by Inferring the Opponentâ \in ^M s Policy Selection Pattern. , 2022, , .		0
1096	Deep reinforcement learning for conservation decisions. Methods in Ecology and Evolution, 2022, 13, 2649-2662.	5.2	5
1097	How to incorporate biological insights into network models and why it matters. Journal of Physiology, 2023, 601, 3037-3053.	2.9	3

#	Article	IF	CITATIONS
1098	Reinforcement learningâ€based control to suppress the transient vibration of semiâ€active structures subjected to unknown harmonic excitation. Computer-Aided Civil and Infrastructure Engineering, 2023, 38, 1605-1621.	9.8	3
1099	Machine learning accelerated carbon neutrality research using big data—from predictive models to interatomic potentials. Science China Technological Sciences, 2022, 65, 2274-2296.	4.0	1
1100	A Coupled Spintronics Neuromorphic Approach for Highâ€Performance Reservoir Computing. Advanced Intelligent Systems, 2022, 4, .	6.1	12
1101	Beyond deep learning. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	0
1102	Machine Learning in Nutrition Research. Advances in Nutrition, 2022, 13, 2573-2589.	6.4	24
1103	Mediating Agent Reliability with Human Trust, Situation Awareness, and Performance in Autonomously-Collaborative Human-Agent Teams. Journal of Cognitive Engineering and Decision Making, 0, , 155534342211291.	2.3	2
1104	A Survey on Noncooperative Games and Distributed Nash Equilibrium Seeking over Multi-Agent Networks. , 2022, 1, 8-27.		1
1105	Unveiling the Relationship between Economic Growth and Equality for Developing Countries. China and World Economy, 2022, 30, 1-28.	2.1	2
1106	Meta-Optics-Empowered Switchable Integrated Mode Converter Based on the Adjoint Method. Nanomaterials, 2022, 12, 3395.	4.1	6
1109	The Theoretical Model of Decision-Making Behaviour Geospatial Analysis Using Data Obtained from the Games of Chess. International Journal of Environmental Research and Public Health, 2022, 19, 12353.	2.6	0
1110	A simulation-deep reinforcement learning (SiRL) approach for epidemic control optimization. Annals of Operations Research, 2023, 328, 245-277.	4.1	11
1112	Optimizing measurement-based cooling by reinforcement learning. Physical Review A, 2022, 106, .	2.5	1
1113	An SMDP approach for Reinforcement Learning in HPC cluster schedulers. Future Generation Computer Systems, 2023, 139, 239-252.	7.5	1
1114	Joint computation offloading and parallel scheduling to maximize delay-guarantee in cooperative MEC systems. Digital Communications and Networks, 2022, , .	5.0	2
1115	A Study onÂEfficient Reinforcement Learning Through Knowledge Transfer. Adaptation, Learning, and Optimization, 2023, , 329-356.	0.6	0
1116	Artificial intelligence finds faster algorithms for multiplying matrices. Nature, 0, , .	27.8	1
1117	Efficient graph neural architecture search using Monte Carlo Tree search and prediction network. Expert Systems With Applications, 2023, 213, 118916.	7.6	3
1118	AlphaDDA: strategies for adjusting the playing strength of a fully trained AlphaZero system to a suitable human training partner. PeerJ Computer Science, 0, 8, e1123.	4.5	1

#	Article	IF	CITATIONS
1120	Reusability report: Comparing gradient descent and Monte Carlo tree search optimization of quantum annealing schedules. Nature Machine Intelligence, 0, , .	16.0	0
1121	Explainable artificial intelligence for assault sentence prediction in New Zealand. Journal of the Royal Society of New Zealand, 0, , 1-15.	1.9	1
1122	A Comparative Tutorial of Bayesian Sequential Design and Reinforcement Learning. American Statistician, 2023, 77, 223-233.	1.6	0
1123	Discovering faster matrix multiplication algorithms with reinforcement learning. Nature, 2022, 610, 47-53.	27.8	143
1124	A reinforcement learning approach to long-horizon operations, health, and maintenance supervisory control of advanced energy systems. Engineering Applications of Artificial Intelligence, 2022, 116, 105454.	8.1	4
1125	Learning Task-Distribution Reward Shaping with Meta-Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35, 11210-11218.	4.9	2
1126	RePReL: Integrating Relational Planning and Reinforcement Learning for Effective Abstraction. , 0, 31, 533-541.		5
1127	Programmatic Strategies for Real-Time Strategy Games. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35, 381-389.	4.9	1
1128	Dynamic Automaton-Guided Reward Shaping for Monte Carlo Tree Search. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35, 12015-12023.	4.9	0
1129	Inference-Based Deterministic Messaging For Multi-Agent Communication. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35, 11228-11236.	4.9	3
1130	Exact Reduction of Huge Action Spaces in General Reinforcement Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35, 8874-8883.	4.9	2
1131	Applying Monte-Carlo Tree Search in HTN Planning. , 2020, 11, 82-90.		1
1132	The Modest State ofÂLearning, Sampling, andÂVerifying Strategies. Lecture Notes in Computer Science, 2022, , 406-432.	1.3	2
1133	Human Language Explanation for a Decision Making Agent via Automated Rationale Generation. IEEE Access, 2022, 10, 110727-110741.	4.2	0
1134	Rethinking Closed-Loop Training forÂAutonomous Driving. Lecture Notes in Computer Science, 2022, , 264-282.	1.3	1
1135	An experimental study of two predictive reinforcement learning methods and comparison with model-predictive control. IFAC-PapersOnLine, 2022, 55, 1545-1550.	0.9	1
1136	Engineering Laboratory Experiments â \in " a Typology. Engineering Studies, 2022, 14, 158-182.	1.3	1
1137	The optimal strategy against Fictitious Play in infinitely repeated games. , 2022, , .		1

#	Article	IF	CITATIONS
1138	A New Vibration Controller Design Method Using Reinforcement Learning and FIR Filters: A Numerical and Experimental Study. Applied Sciences (Switzerland), 2022, 12, 9869.	2.5	3
1140	Mastering construction heuristics with self-play deep reinforcement learning. Neural Computing and Applications, 2023, 35, 4723-4738.	5.6	3
1141	Report on the 2nd Digital Ludeme Project Workshop. ICGA Journal, 2022, 44, 56-66.	0.3	0
1142	Neuro-Inspired Deep Neural Networks with Sparse, Strong Activations. , 2022, , .		2
1143	Cooperative multi-target hunting by unmanned surface vehicles based on multi-agent reinforcement learning. Defence Technology, 2022, , .	4.2	6
1145	A statistical approach for detecting Al-assisted cheating in the game of Go. Journal of the Korean Physical Society, 0, , .	0.7	0
1146	A Survey ofÂReinforcement Learning Toolkits forÂGaming: Applications, Challenges andÂTrends. Lecture Notes in Networks and Systems, 2023, , 165-184.	0.7	3
1147	Flowsheet generation through hierarchical reinforcement learning and graph neural networks. AICHE Journal, 2023, 69, .	3.6	5
1148	Building Machine Learning Bot with ML-Agents in Tank Battle. Lecture Notes in Networks and Systems, 2023, , 113-121.	0.7	0
1149	Artificial intelligence can improve patients' experience in decentralized clinical trials. Nature Medicine, 2022, 28, 2462-2463.	30.7	6
1150	Continual learning-based trajectory prediction with memory augmented networks. Knowledge-Based Systems, 2022, 258, 110022.	7.1	11
1151	A Policy-Reuse Algorithm Based on Destination Position Prediction for Aircraft Guidance Using Deep Reinforcement Learning. Aerospace, 2022, 9, 632.	2.2	1
1152	Enabling deep reinforcement learning autonomous driving by 3D-LiDAR point clouds. , 2022, , .		3
1154	Predicting the structure of large protein complexes using AlphaFold and Monte Carlo tree search. Nature Communications, 2022, 13, .	12.8	75
1155	Intelligent Robotic Arm Path Planning (IRAP2) Framework to Improve Work Safety in Human-Robot Collaboration (HRC) Workspace Using Deep Deterministic Policy Gradient (DDPG) Algorithm. Lecture Notes in Mechanical Engineering, 2023, , 179-187.	0.4	1
1156	Smoothing policies and safe policy gradients. Machine Learning, 0, , .	5.4	2
1157	Power System Fault Diagnosis Method Based on Deep Reinforcement Learning. Energies, 2022, 15, 7639.	3.1	2
1158	Improved Monte Carlo Tree Search-based approach to low-thrust multiple gravity-assist trajectory design. Aerospace Science and Technology, 2022, 130, 107946.	4.8	4

#	Article	IF	CITATIONS
1159	Understanding in synthetic chemistry: the case of periplanone B. SynthÃ^se, 2022, 200, .	1.1	0
1160	Data-efficient deep reinforcement learning with expert demonstration for active flow control. Physics of Fluids, 2022, 34, .	4.0	8
1161	Deep reinforcement learning achieves multifunctional morphing airfoil control. Journal of Composite Materials, 2023, 57, 721-736.	2.4	4
1162	A deep learning guided memetic framework for graph coloring problems. Knowledge-Based Systems, 2022, 258, 109986.	7.1	9
1163	Photonic Bayesian Neural Network Using Programmed Optical Noises. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-6.	2.9	2
1164	Hidden Information General Game Playing withÂDeep Learning andÂSearch. Lecture Notes in Computer Science, 2022, , 161-172.	1.3	0
1165	Load Balancing in Compute Clusters With Delayed Feedback. IEEE Transactions on Computers, 2023, 72, 1610-1622.	3.4	0
1166	Dynamic Self-Supervised Teacher-Student Network Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, , 1-19.	13.9	2
1167	Reinforcement Learning for Multiaircraft Autonomous Air Combat in Multisensor UCAV Platform. IEEE Sensors Journal, 2023, 23, 20596-20606.	4.7	3
1168	Artificial General Intelligence and the Common Sense Argument. Studies in Applied Philosophy, Epistemology and Rational Ethics, 2022, , 155-160.	0.3	0
1169	基于ç»éªŒå¢žå¼ºçš"自主场æ™⁻探索. Scientia Sinica Informationis, 2022, , .	0.4	0
1170	Hybrid Q-learning for data-based optimal control of non-linear switching system. Journal of Systems Engineering and Electronics, 2022, 33, 1186-1194.	2.2	0
1171	Bolus Insulin calculation without meal information. A reinforcement learning approach. Artificial Intelligence in Medicine, 2022, 134, 102436.	6.5	3
1172	A Q-based policy gradient optimization approach for Doudizhu. Applied Intelligence, 2023, 53, 15372-15389.	5.3	2
1173	Human and artificial cognition. Computers and Education Artificial Intelligence, 2022, 3, 100107.	10.8	10
1174	Toward autonomous laboratories: Convergence of artificial intelligence and experimental automation. Progress in Materials Science, 2023, 132, 101043.	32.8	19
1175	Data-driven control of spatiotemporal chaos with reduced-order neural ODE-based models and reinforcement learning. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, .	2.1	6
1176	Acquisition of chess knowledge in AlphaZero. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	25

		CITATION REPORT		
#	Article		IF	CITATIONS
1177	Mapping Citizen Science through the Lens of Human-Centered Al. Human Computation, 2022	2, 9, 66-95.	1.4	8
1178	GMOM: An Offloading Method of Dependent Tasks Based on Deep Reinforcement Learning. N Information Systems, 2022, 2022, 1-13.	Mobile	0.6	0
1179	Artificial Intelligence, Sensors and Vital Health Signs: A Review. Applied Sciences (Switzerland 12, 11475.), 2022,	2.5	4
1180	Intelligent Control of Groundwater in Slopes with Deep Reinforcement Learning. Sensors, 202 8503.	22, 22,	3.8	1
1181	Artificial intelligence development in Islamic System of Governance: a literature review. Contemporary Islam, 2022, 16, 321-334.		0.9	2
1182	A Deep Reinforcement Learning Based Framework for Power System Load Frequency Control.	, 2022, , .		2
1183	Embedded 3D Printing of Multimaterial Polymer Lattices via Graphâ€Based Print Path Plannin Materials, 2023, 35, .	g. Advanced	21.0	20
1184	Algorithm, Human, or the Centaur: How to Enhance Clinical Care?. SSRN Electronic Journal, 0,	, .	0.4	1
1185	Semi-model-Based Reinforcement Learning inÂOrganic Computing Systems. Lecture Notes in Science, 2022, , 241-255.	Computer	1.3	2
1186	A Reinforcement Learning based Path Planning Approach in 3D Environment. Procedia Compu Science, 2022, 212, 152-160.	ıter	2.0	6
1187	Graph Neural Networks for Voltage Stability Margins With Topology Flexibilities. IEEE Open Ad Journal of Power and Energy, 2023, 10, 73-85.	ccess	3.4	3
1188	Data-Driven Wind Farm Control via Multiplayer Deep Reinforcement Learning. IEEE Transactio Control Systems Technology, 2023, 31, 1468-1475.	ns on	5.2	6
1189	Exploring the first-move balance point of Go-Moku based on reinforcement learning and Mon tree search. Knowledge-Based Systems, 2023, 261, 110207.	te Carlo	7.1	2
1190	Development and validation of an Al-Driven model for the La Rance tidal barrage: A generalisa study. Applied Energy, 2023, 332, 120506.	ble case	10.1	Ο
1191	Deep reinforcement learning-based long-range autonomous valet parking for smart cities. Sus Cities and Society, 2023, 89, 104311.	stainable	10.4	3
1192	A swarm based double Q-learning for optimal PV array reconfiguration with a coordinated cor of hydrogen energy storage system. Energy, 2023, 266, 126483.	itrol	8.8	8
1193	TreEnhance: A tree search method for low-light image enhancement. Pattern Recognition, 202 109249.	23, 136,	8.1	11
1194	Offline reinforcement learning control for electricity and heat coordination in a supercritical C unit. Energy, 2023, 266, 126485.	:HP	8.8	8

#	Article	IF	CITATIONS
1105	An environment emulator for training a neural network model to solve the "Following the leader―	2.0	1
1193	task. Procedia Computer Science, 2022, 213, 209-216.	2.0	1
1196	WagerWin: An Efficient Reinforcement Learning Framework for Gambling Games. IEEE Transactions on Games, 2023, 15, 483-491.	1.4	1
1197	OSTTD: Offloading of Splittable Tasks With Topological Dependence in Multi-Tier Computing Networks. IEEE Journal on Selected Areas in Communications, 2023, 41, 555-568.	14.0	4
1198	Monte Carlo Tree Search: A Survey of Theories and Applications. , 2022, , .		0
1199	Guided Policy Search Based Control of a High Dimensional Advanced Manufacturing Process. , 2022, , .		0
1200	Information Entropy of Uncertainty Control: An Uncertainty Management Method in Imperfect Information Games. , 2022, , .		0
1201	Introduction to Optimal Control and Reinforcement Learning. Control Engineering, 2023, , 1-25.	0.3	0
1202	Over-the-Horizon Air Combat Environment Modeling and Deep Reinforcement Learning Application. , 2022, , .		1
1203	Advanced Mechanisms of Perception in the Digital Hide and Seek Game Based on Deep Learning. , 2022, , .		0
1204	A novel control strategy of automatic parallel parking system based on Q-learning. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2024, 238, 661-673.	1.9	0
1205	The Impact of Batch Deep Reinforcement Learning on Student Performance: A Simple Act of Explanation Can Go A Long Way. International Journal of Artificial Intelligence in Education, 0, , .	5.5	0
1206	Optimizing communication in deep reinforcement learning with <i>XingTian</i> ., 2022, , .		1
1207	Receding-Horizon Control of Constrained Switched Systems with Neural Networks as Parametric Function Approximators. SN Computer Science, 2023, 4, .	3.6	0
1208	Preparing for the next pandemic: Simulation-based deep reinforcement learning to discover and test multimodal control of systemic inflammation using repurposed immunomodulatory agents. Frontiers in Immunology, 0, 13, .	4.8	2
1210	The paradoxical transparency of opaque machine learning. AI and Society, 0, , .	4.6	0
1211	Mastering the game of Stratego with model-free multiagent reinforcement learning. Science, 2022, 378, 990-996.	12.6	36
1212	Sleep-like unsupervised replay reduces catastrophic forgetting in artificial neural networks. Nature Communications, 2022, 13, .	12.8	6
1213	Adaptive Cooperative Exploration for Reinforcement Learning from Imperfect Demonstrations. Pattern Recognition Letters, 2022, , .	4.2	0

#	Article	IF	CITATIONS
1214	Modeling opponent learning in multiagent repeated games. Applied Intelligence, 0, , .	5.3	0
1215	Fast Analysis of Multi-Asteroid Exploration Mission Using Multiple Electric Sails. Journal of Guidance, Control, and Dynamics, 2023, 46, 1015-1022.	2.8	4
1216	Hierarchical multiâ€agent reinforcement learning for multiâ€aircraft closeâ€range air combat. IET Control Theory and Applications, 2023, 17, 1840-1862.	2.1	2
1217	Upshot and Disparity of AI Allied Approaches Over Customary Techniques of Assessment on Chess—An Observation. Lecture Notes in Electrical Engineering, 2023, , 127-135.	0.4	1
1218	Applications of contemporary artificial intelligence technology in forensic odontology as primary forensic identifier: A scoping review. Frontiers in Artificial Intelligence, 0, 5, .	3.4	6
1219	Policy decision of curling in real competition scenes. Complex & Intelligent Systems, 0, , .	6.5	0
1220	Digital engineering transformation with trustworthy AI towards industry 4.0: emerging paradigm shifts. Journal of Integrated Design and Process Science, 2022, , 1-22.	0.5	0
1221	A New Deep Reinforcement Learning Algorithm for the Online Stochastic Profitable Tour Problem. , 2022, , .		1
1222	Human-level play in the game of <i>Diplomacy</i> by combining language models with strategic reasoning. Science, 2022, 378, 1067-1074.	12.6	42
1223	Importance of prefrontal meta control in human-like reinforcement learning. Frontiers in Computational Neuroscience, 0, 16, .	2.1	0
1224	Deep learning and computer vision techniques for microcirculation analysis: A review. Patterns, 2023, 4, 100641.	5.9	3
1225	Towards Continual Reinforcement Learning: A Review and Perspectives. Journal of Artificial Intelligence Research, 0, 75, 1401-1476.	7.0	29
1226	A Data-Efficient Training Method for Deep Reinforcement Learning. Electronics (Switzerland), 2022, 11, 4205.	3.1	0
1227	An Analysis of Body Language of Patients Using Artificial Intelligence. Healthcare (Switzerland), 2022, 10, 2504.	2.0	6
1228	RePReL: a unified framework for integrating relational planning and reinforcement learning for effective abstraction in discrete and continuous domains. Neural Computing and Applications, 0, , .	5.6	1
1229	Analyzing neural network behavior through deep statistical model checking. International Journal on Software Tools for Technology Transfer, 2023, 25, 407-426.	1.9	3
1230	Towards time-evolving analytics: Online learning for time-dependent evolving data streams. Data Science, 2022, , 1-16.	0.9	1
1231	Metaverse: A Solution to the Multi-Agent Value Alignment Problem. Journal of Artificial Intelligence and Consciousness, 2022, 09, 297-307.	1.2	2

#	Article	IF	CITATIONS
1232	MASAC-based confrontation game method of UAV clusters. Scientia Sinica Informationis, 2022, 52, 2254.	0.4	2
1233	Search and learning for unsupervised text generation. Al Magazine, 2022, 43, 344-352.	1.6	0
1234	The arrow of time of brain signals in cognition: Potential intriguing role of parts of the default mode network. Network Neuroscience, 2023, 7, 966-998.	2.6	7
1235	Risk of Stochastic Systems for Temporal Logic Specifications. Transactions on Embedded Computing Systems, 2023, 22, 1-31.	2.9	2
1236	Planning spatial networks with Monte Carlo tree search. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2023, 479, .	2.1	1
1237	Deep Instance Segmentation and Visual Servoing to Play Jenga with a Cost-Effective Robotic System. Sensors, 2023, 23, 752.	3.8	1
1239	Comparative Study of Cooperative Platoon Merging Control Based on Reinforcement Learning. Sensors, 2023, 23, 990.	3.8	2
1240	Design synthesis of structural systems as a Markov decision process solved with deep reinforcement learning. Journal of Mechanical Design, Transactions of the ASME, 0, , 1-19.	2.9	2
1241	Standing on the Shoulders of Al Giants. Computer, 2023, 56, 97-101.	1.1	2
1242	Machine Learning and Health Care. Journal of Ambulatory Care Management, 0, Publish Ahead of Print,	1.1	1
1243	An AlphaZero-Inspired Approach toÂSolving Search Problems. Studies in Systems, Decision and Control, 2023, , 129-138.	1.0	0
1244	Model-based Reinforcement Learning: A Survey. Foundations and Trends in Machine Learning, 2023, 16, 1-118.	69.0	76
1245	Al in Human-computer Gaming: Techniques, Challenges and Opportunities. , 2023, 20, 299-317.		4
1246	Prediction of bone metastasis in non-small cell lung cancer based on machine learning. Frontiers in Oncology, 0, 12, .	2.8	8
1247	Reinforcement learning based optimization algorithm for maintenance tasks scheduling in coalbed methane gas field. Computers and Chemical Engineering, 2023, 170, 108131.	3.8	3
1248	lmitation of piping warm-up operation and estimation of operational intention by inverse reinforcement learning. Journal of Process Control, 2023, 122, 41-48.	3.3	0
1249	Extracting tactics learned from self-play in general games. Information Sciences, 2023, 624, 277-298.	6.9	1
1250	A review on reinforcement learning for contact-rich robotic manipulation tasks. Robotics and Computer-Integrated Manufacturing, 2023, 81, 102517.	9.9	16

ARTICLE IF CITATIONS # Towards Learning to Play Piano with Dexterous Hands and Touch., 2022,,. 1251 1 Using Simulation Optimization to Improve Zero-shot Policy Transfer of Quadrotors., 2022,,. Parallel Monte Carlo Tree Search with Batched Rigid-body Simulations for Speeding up Long-Horizon 1253 5 Episodic Robot Planning., 2022,,. Online 3D Bin Packing Reinforcement Learning Solution with Buffer., 2022,,. 1254 Scalable Model-based Policy Optimization for Decentralized Networked Systems., 2022,,. 1255 1 Adversarial Search Algorithms Performance in the Yote Game., 2022, , . Continuous Control of Autonomous Vehicles using Plan-assisted Deep Reinforcement Learning., 2022, 1257 2 ,. Efficient Hierarchical Exploration with An Active Subgoal Generation Strategy., 2022,,. 1258 1259 Multiple Subgoals-guided Hierarchical Learning in Robot Navigation., 2022, , . 0 A Novel Ping-pong Task Strategy Based on Model-free Multi-dimensional Q-function Deep Reinforcement Learning., 2022, , . A Homotopic Approach to Policy Gradients for Linear Quadratic Regulators with Nonlinear Controls. 1262 1 ,2022,,. Chordal Sparsity for Lipschitz Constant Estimation of Deep Neural Networks., 2022, , . 1263 Enhancing Differential-Neural Cryptanalysis. Lecture Notes in Computer Science, 2022, , 318-347. 1265 1.3 5 Advanced Reinforcement Learning and Its Connections with Brain Neuroscience. Research, 2023, 6, 5.7 0064. Learning to Play <i>Koi-Koi</i> Hanafuda Card Games With Transformers. IEEE Transactions on 1267 0 4.7 Artificial Intelligence, 2023, 4, 1449-1460. Reward Delay Attacks onÂDeep Reinforcement Learning. Lecture Notes in Computer Science, 2023, , 1268 212-230. Scalable Planning and Learning Framework Development for Swarm-to-Swarm Engagement Problems. , 1270 0 2023,,. Deep Reinforcement Learning for Preparation of Thermal and Prethermal Quantum States. Physical 1272 3.8 Review Applied, 2023, 19, .

#	Article	IF	Citations
1273	Tensor Implementation of Monte-Carlo Tree Search for Model-Based Reinforcement Learning. Applied Sciences (Switzerland), 2023, 13, 1406.	2.5	2
1274	Knowledge-integrated machine learning for materials: lessons from gameplaying and robotics. Nature Reviews Materials, 2023, 8, 241-260.	48.7	33
1275	Foundations of human spatial problem solving. Scientific Reports, 2023, 13, .	3.3	5
1276	Introducing and Integrating Machine Learning in an Operations Research Curriculum: An Application-Driven Course. INFORMS Transactions on Education, 2023, 23, 64-83.	0.5	4
1277	Research on the intelligent countermeasure based on the multi-aircraft cooperative combat behavior tree. , 2022, , .		1
1278	Comparison of Search Behaviors in Chess, Shogi, and the game of Go. , 2022, , .		1
1279	Gumbel MuZero for the Game of 2048. , 2022, , .		1
1280	Score vs. Winrate in Score-Based Games: which Reward for Reinforcement Learning?. , 2022, , .		0
1281	Fast Human-in-the-Loop Control for HVAC Systems via Meta-Learning and Model-Based Offline Reinforcement Learning. IEEE Transactions on Sustainable Computing, 2023, 8, 504-521.	3.1	3
1282	Outperformance of Mall-Receptionist Android as Inverse Reinforcement Learning is Transitioned to Reinforcement Learning. IEEE Robotics and Automation Letters, 2023, 8, 3350-3357.	5.1	1
1283	How Well Do Reinforcement Learning Approaches Cope With Disruptions? The Case of Traffic Signal Control. IEEE Access, 2023, 11, 36504-36515.	4.2	3
1284	A Policy-Based Learning Beam Search forÂCombinatorial Optimization. Lecture Notes in Computer Science, 2023, , 130-145.	1.3	1
1285	Gapoera: Application programming interface for Al environment of Indonesian board game. AIP Conference Proceedings, 2023, , .	0.4	0
1286	The graph structure of two-player games. Scientific Reports, 2023, 13, .	3.3	1
1287	The neural architecture of theory-based reinforcement learning. Neuron, 2023, 111, 1331-1344.e8.	8.1	6
1288	Probe microscopy is all you need [*] . Machine Learning: Science and Technology, 2023, 4, 023001.	5.0	4
1289	A new intelligent fault diagnosis framework for rotating machinery based on deep transfer reinforcement learning. Control Engineering Practice, 2023, 134, 105475.	5.5	9
1290	An interpretable machine-learned model for international oil trade network. Resources Policy, 2023, 82, 103513.	9.6	3

#	Article	IF	CITATIONS
1291	Look-ahead based reinforcement learning for robotic flow shop scheduling. Journal of Manufacturing Systems, 2023, 68, 160-175.	13.9	5
1292	How good are learning-based control v.s. model-based control for load shifting? Investigations on a single zone building energy system. Energy, 2023, 273, 127073.	8.8	7
1293	A maintenance planning framework using online and offline deep reinforcement learning. Neural Computing and Applications, 0, , .	5.6	1
1294	Low-phase quantization error Mach–Zehnder interferometers for high-precision optical neural network training. APL Photonics, 2023, 8, 040801.	5.7	2
1295	Chess Position Evaluation Using Radial Basis Function Neural Networks. Complexity, 2023, 2023, 1-16.	1.6	0
1296	Maintaining flexibility in smart grid consumption through deep learning and deep reinforcement learning. Energy and Al, 2023, 13, 100241.	10.6	6
1297	Reinforcement Learning Toolkits for Gaming: A Comparative Qualitative Analysis. Journal of Software Engineering and Applications, 2022, 15, 417-435.	1.1	3
1298	Clyph-Based Visual Analysis of Q-Leaning Based Action Policy Ensembles on Racetrack. , 2022, , .		1
1299	Adversarial Sybil attacks against Deep RL based drone trajectory planning. , 2022, , .		4
1300	Critic-over-Actor-Critic Modeling: Finding Optimal Strategy in ICU Environments. , 2022, , .		0
1301	Automatic Design of Electric Machines Using Tree Structure and Reinforcement Learning by Utilizing Design Data. Nihon AEM Gakkaishi, 2022, 30, 379-383.	0.1	0
1302	Experimental evaluation of algorithm-assisted human decision-making: application to pretrial public safety assessment*. Journal of the Royal Statistical Society Series A: Statistics in Society, 2023, 186, 167-189.	1.1	2
1303	Synthesizing explainable counterfactual policies for algorithmic recourse with program synthesis. Machine Learning, 2023, 112, 1389-1409.	5.4	1
1304	A Systematic Study on Reinforcement Learning Based Applications. Energies, 2023, 16, 1512.	3.1	15
1305	High-accuracy model-based reinforcement learning, a survey. Artificial Intelligence Review, 2023, 56, 9541-9573.	15.7	6
1306	Role of reinforcement learning for riskâ€based robust control of cyberâ€physical energy systems. Risk Analysis, 0, , .	2.7	0
1307	PBQ-Enhanced QUIC: QUIC with Deep Reinforcement Learning Congestion Control Mechanism. Entropy, 2023, 25, 294.	2.2	0
1308	Large Language Models and the Reverse Turing Test. Neural Computation, 2023, 35, 309-342.	2.2	31

#	Article	IF	CITATIONS
1309	The cost of passing – using deep learning Als to expand our understanding of the ancient game of Go. , 2022, , .		0
1310	A Relative Value Function Based Learning Beam Search forÂtheÂLongest Common Subsequence Problem. Lecture Notes in Computer Science, 2022, , 87-95.	1.3	1
1311	Certificates of quantum many-body properties assisted by machine learning. Physical Review Research, 2023, 5, .	3.6	0
1312	Seismic profile denoising based on common-reflection-point gathers using convolution neural networks. Journal of Geophysics and Engineering, 2023, 20, 240-254.	1.4	0
1313	Information Compression and Performance Evaluation of Tic-Tac-Toe's Evaluation Function Using Singular Value Decomposition. Journal of the Physical Society of Japan, 2023, 92, .	1.6	0
1314	On the Complexity of Dark Chinese Chess. , 2022, , .		0
1315	Application of Deep Reinforcement Learning in Guandan Game. , 2022, , .		0
1316	Reinforcement Learning in Game Industry—Review, Prospects and Challenges. Applied Sciences (Switzerland), 2023, 13, 2443.	2.5	3
1317	Expression unleashed in artificial intelligence. Behavioral and Brain Sciences, 2023, 46, .	0.7	0
1318	Analyses of Tabular AlphaZero on Strongly-Solved Stochastic Games. IEEE Access, 2023, 11, 18157-18182.	4.2	1
1319	Mastering "Gongzhu―with Self-play Deep Reinforcement Learning. Communications in Computer and Information Science, 2023, , 148-158.	0.5	0
1320	Continuous improvement of self-driving cars using dynamic confidence-aware reinforcement learning. Nature Machine Intelligence, 2023, 5, 145-158.	16.0	10
1322	FedDdrl: Federated Double Deep Reinforcement Learning for Heterogeneous IoT with Adaptive Early Client Termination and Local Epoch Adjustment. Sensors, 2023, 23, 2494.	3.8	1
1323	Toward a Superintelligent Action Recommender for Network Operation Centers Using Reinforcement Learning. IEEE Access, 2023, 11, 20216-20229.	4.2	0
1324	A Generalized Stacked Reinforcement Learning Method for Sampled Systems. IEEE Transactions on Automatic Control, 2023, 68, 7006-7013.	5.7	2
1325	The phenomenon of decision oscillation: A new consequence of pathology in game trees. Computational Intelligence, 2023, 39, 402-414.	3.2	0
1326	Adversarial agent-learning for cybersecurity: a comparison of algorithms. Knowledge Engineering Review, 2023, 38, .	2.6	3
1327	Reinforcement learning applied to wastewater treatment process control optimization: Approaches, challenges, and path forward. Critical Reviews in Environmental Science and Technology, 2023, 53, 1775-1794.	12.8	9

#	Article	IF	CITATIONS
1328	Enhancement of CNN-based 2048 Player with Monte-Carlo Tree Search. , 2022, , .		0
1329	Three Player Otrio will be Strongly Solved. , 2022, , .		0
1330	Optimal active particle navigation meets machine learning ^(a) . Europhysics Letters, 2023, 142, 17001.	2.0	8
1331	Deep Reinforcement Learning: A New Beacon for Intelligent Active Flow Control. , 0, 1, .		1
1332	Comparative analysis of machine learning methods for active flow control. Journal of Fluid Mechanics, 2023, 958, .	3.4	20
1333	State of the Art of Adaptive Dynamic Programming and Reinforcement Learning. , 2022, 1, 93-110.		2
1334	The Role of a Reward in Shaping Multiple Football Agents' Behavior: An Empirical Study. Applied Sciences (Switzerland), 2023, 13, 3622.	2.5	0
1335	pH stablizing control of a neutral leaching process based on proximal policy optimization. , 2022, , .		0
1336	Reinforcement Learning for the Face Support Pressure of Tunnel Boring Machines. Geosciences (Switzerland), 2023, 13, 82.	2.2	3
1337	Learning new attack vectors from misuse cases with deep reinforcement learning. Frontiers in Energy Research, 0, 11, .	2.3	1
1338	Learning key steps to attack deep reinforcement learning agents. Machine Learning, 2023, 112, 1499-1522.	5.4	1
1339	Modern Artificial Neural Networks: Is Evolution Cleverer?. Neural Computation, 2023, 35, 763-806.	2.2	7
1340	<scp>Polymerâ€based</scp> neuromorphic devices: resistive switches and organic electrochemical transistors. Polymer International, 2023, 72, 609-618.	3.1	3
1341	Drone Elevation Control Based on Python-Unity Integrated Framework for Reinforcement Learning Applications. Drones, 2023, 7, 225.	4.9	6
1342	The Morphospace of Consciousness: Three Kinds of Complexity for Minds and Machines. NeuroSci, 2023, 4, 79-102.	1.2	2
1343	Surface segregation machine-learned with inexpensive numerical fingerprint for the design of alloy catalysts. Molecular Catalysis, 2023, 541, 113096.	2.0	2
1344	Leveraging deep learning to improve vaccine design. Trends in Immunology, 2023, 44, 333-344.	6.8	3
1345	Evolving Neuromorphic Systems on the Ethereum Smart Contract Platform. , 2022, , .		0

#	Article	IF	Citations
1346	Adaptive Design of Alloys for CO ₂ Activation and Methanation via Reinforcement Learning Monte Carlo Tree Search Algorithm. Journal of Physical Chemistry Letters, 2023, 14, 3594-3601.	4.6	1
1347	Learning Audio and Video Bitrate Selection Strategies via Explicit Requirements. IEEE Transactions on Mobile Computing, 2024, 23, 2849-2863.	5.8	2
1349	Deep Reinforcement Learning forÂ\$\$5 imes 5\$\$ Multiplayer Go. Lecture Notes in Computer Science, 2023, , 753-764.	1.3	0
1350	ERRA: An Embodied Representation and Reasoning Architecture for Long-Horizon Language-Conditioned Manipulation Tasks. IEEE Robotics and Automation Letters, 2023, 8, 3230-3237.	5.1	2
1351	Artificial intelligence for decentralized water systems: A smart planning agent based on reinforcement learning for off-grid camp water infrastructures. Journal of Hydroinformatics, 2023, 25, 912-926.	2.4	3
1352	Emerging Trends in Soft Electronics: Integrating Machine Intelligence with Soft Acoustic/Vibration Sensors. Advanced Materials, 2023, 35, .	21.0	8
1353	A Proof that Artificial Neural Networks Overcome the Curse of Dimensionality in the Numerical Approximation of Black–Scholes Partial Differential Equations. Memoirs of the American Mathematical Society, 2023, 284, .	0.9	14
1354	Deep Reinforcement Learning for Mineral Prospectivity Mapping. Mathematical Geosciences, 2023, 55, 773-797.	2.4	5
1355	GOPS: A general optimal control problem solver for autonomous driving and industrial control applications. Communications in Transportation Research, 2023, 3, 100096.	10.7	6
1356	Turbulence control in plane Couette flow using low-dimensional neural ODE-based models and deep reinforcement learning. International Journal of Heat and Fluid Flow, 2023, 101, 109139.	2.4	5
1357	A reinforcement learning approach for process parameter optimization in additive manufacturing. Additive Manufacturing, 2023, 71, 103556.	3.0	5
1358	Sample Efficient Reinforcement Learning Using Graph-Based Memory Reconstruction. IEEE Transactions on Artificial Intelligence, 2024, 5, 751-762.	4.7	0
1361	What medicine can learn from game-playing artificial intelligence: The 1 in 10,000 move. American Journal of the Medical Sciences, 2023, 366, 82-83.	1.1	1
1362	Bringing the Promise of Artificial Intelligence to Critical Care: What the Experience With Sepsis Analytics Can Teach Us. Critical Care Medicine, 2023, 51, 985-991.	0.9	3
1363	Curriculum based Reinforcement Learning for traffic simulations. Computers and Graphics, 2023, 113, 32-42.	2.5	2
1364	Log-law recovery through reinforcement-learning wall model for large eddy simulation. Physics of Fluids, 2023, 35, .	4.0	9
1365	Autonomous x-ray scattering. Nanotechnology, 2023, 34, 322001.	2.6	6
1366	Artificial Intelligence in Microbiology. , 2023, , 93-109.		0
	CITATION	Report	
------	---	--------	-----------
#	ARTICLE	IF	Citations
1367	BacterAl maps microbial metabolism without prior Rhowledge. Nature Microbiology, 2023, 8, 1018-1025.	13.3	4
1368	Spatial state-action features for general games. Artificial Intelligence, 2023, 321, 103937.	5.8	0
1370	Reinforcement learning and artificial agency. Mind and Language, 2024, 39, 22-38.	2.3	1
1371	AlphaZeâ^—â^—: AlphaZero-like baselines for imperfect information games are surprisingly strong. Frontiers in Artificial Intelligence, 0, 6, .	3.4	1
1372	A Minimal "Functionally Sentient―Organism Trained With Backpropagation Through Time. Adaptive Behavior, 2023, 31, 531-544.	1.9	1
1373	Al in the Automotive Industry. , 2023, , 257-265.		0
1374	The Survey of Self-play Method in Computer Games. Communications in Computer and Information Science, 2023, , 129-138.	0.5	0
1375	Batch Monte Carlo Tree Search. Lecture Notes in Computer Science, 2023, , 146-162.	1.3	1
1376	Reinforcement learning algorithms: A brief survey. Expert Systems With Applications, 2023, 231, 120495.	7.6	15
1377	Promoting human-Al interaction makes a better adoption of deep reinforcement learning: a real-world application in game industry. Multimedia Tools and Applications, 2024, 83, 6161-6182.	3.9	0
1378	A Deep Reinforcement Learning Solution for the Low Level Motion Control of a Robot Manipulator System. , 2023, , .		0
1379	Multi-scene Scheduling of Power System With Renewable Energy Based on DDPG. , 2023, , .		1
1380	Expertise increases planning depth in human gameplay. Nature, 2023, 618, 1000-1005.	27.8	8
1381	A Reinforcement Learning Based Slope Limiter for Secondâ€Order Finite Volume Schemes. Proceedings in Applied Mathematics and Mechanics, 2023, 23, .	0.2	1
1382	Gaming bacterial metabolism. Nature Microbiology, 2023, 8, 1004-1005.	13.3	0
1383	Peano: learning formal mathematical reasoning. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2023, 381, .	3.4	2
1384	A comparison between process control strategies: reinforcement learning with RBFs and NMPC coupled with EKF. Brazilian Journal of Chemical Engineering, 0, , .	1.3	0
1385	A 2023 socio-ecological imagination: What if a self-learning, wisdom-generating AI machine became a reality?. Socio-Ecological Practice Research, 2023, 5, 125-133.	1.9	2

#	Article	IF	CITATIONS
1386	WILDetect: An intelligent platform to perform airborne wildlife census automatically in the marine ecosystem using an ensemble of learning techniques and computer vision. Expert Systems With Applications, 2023, 231, 120574.	7.6	5
1387	Automated design of quantum-optical experiments for device-independent quantum key distribution. Physical Review A, 2023, 107, .	2.5	4
1388	Faster sorting algorithms discovered using deep reinforcement learning. Nature, 2023, 618, 257-263.	27.8	18
1389	DeepMind AI creates algorithms that sort data faster than those built by people. Nature, 2023, 618, 443-444.	27.8	0
1390	Pigouvian algorithmic platform design. Journal of Economic Behavior and Organization, 2023, 212, 322-332.	2.0	0
1391	Why Deep Learning's Performance Data Are Misleading. , 2023, , .		2
1392	Reinforcement Learning Methods for Computation Offloading: A Systematic Review. ACM Computing Surveys, 2024, 56, 1-41.	23.0	9
1393	Retrosynthetic planning with experience-guided Monte Carlo tree search. Communications Chemistry, 2023, 6, .	4.5	3
1394	A Deep Reinforcement Learning Technique for PNPSC Net Player Strategies. , 2023, , .		0
1395	Reconfigurable nonlinear optical element using tunable couplers and inverse-designed structure. Nanophotonics, 2023, 12, 3019-3027.	6.0	3
1396	Homing Guidance Law Design against Maneuvering Targets Based on DDPG. International Journal of Aerospace Engineering, 2023, 2023, 1-12.	0.9	0
1397	Graph neural networks-based scheduler for production planning problems using reinforcement learning. Journal of Manufacturing Systems, 2023, 69, 91-102.	13.9	3
1398	Reinforcement Learning Agents Playing Ticket to Ride–A Complex Imperfect Information Board Game With Delayed Rewards. IEEE Access, 2023, 11, 60737-60757.	4.2	0
1399	MapZero: Mapping for Coarse-grained Reconfigurable Architectures with Reinforcement Learning and Monte-Carlo Tree Search. , 2023, , .		2
1400	Control of Uncertain Systems. Springer Handbooks, 2023, , 189-204.	0.6	0
1401	Quantum Algorithms Applied to Satellite Mission Planning for Earth Observation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 7062-7075.	4.9	7
1402	Growing Robot Navigation Based on Deep Reinforcement Learning. , 2023, , .		2
1403	Planning on the Verge of AI, or AI on the Verge of Planning. Urban Science, 2023, 7, 70.	2.3	1

#	Article	IF	CITATIONS
1404	Dataset Related Experimental Investigation ofÂChess Position Evaluation Using aÂDeep Neural Network. Lecture Notes in Computer Science, 2023, , 429-440.	1.3	0
1405	Investigating Action-Space Generalization in Reinforcement Learning for Recommendation Systems. , 2023, , .		0
1406	Improving Strategic Decisions in Sequential Games by Exploiting Positional Similarity. Games, 2023, 14, 36.	0.6	0
1408	Mastering the Complex Assembly Task With a Dual-Arm Robot: A Novel Reinforcement Learning Method. IEEE Robotics and Automation Magazine, 2023, 30, 57-66.	2.0	2
1409	A Brief Overview of ChatGPT: The History, Status Quo and Potential Future Development. IEEE/CAA Journal of Automatica Sinica, 2023, 10, 1122-1136.	13.1	95
1410	Official International Mahjong: A New Playground for Al Research. Algorithms, 2023, 16, 235.	2.1	2
1411	A Survey on Population-Based Deep Reinforcement Learning. Mathematics, 2023, 11, 2234.	2.2	1
1412	Solving the train dispatching problem via deep reinforcement learning. Journal of Rail Transport Planning and Management, 2023, 26, 100394.	1.4	1
1413	SpaceGym: Discrete and Differential Games in Non-Cooperative Space Operations. , 2023, , .		0
1415	Optimizing Heterogeneous Platform Allocation Using Reinforcement Learning. , 2023, , .		1
1416	C2RL: Convolutional-Contrastive Learning for Reinforcement Learning Based on Self-Pretraining for Strong Augmentation. Sensors, 2023, 23, 4946.	3.8	2
1417	A case study for unlocking the potential of deep learning in asset-liability-management. Frontiers in Artificial Intelligence, 0, 6, .	3.4	3
1418	"Gongzhu―Strategy Based on Convolutional Neural Network. Communications in Computer and Information Science, 2023, , 117-128.	0.5	0
1419	Rethinking the Physical Symbol Systems Hypothesis. Lecture Notes in Computer Science, 2023, , 207-216.	1.3	0
1420	A Reinforcement Learning Based Online Coverage Path Planning Algorithm. , 2023, , .		0
1421	One Class of Cubic Regularized Newton Methods for Min-Max Optimization Problems. Pure Mathematics, 2023, 13, 1255-1266.	0.0	0
1422	Intelligence at any price? A criterion for defining Al. Al and Society, 0, , .	4.6	0
1423	Playing Fight the Landlord with Tree Search and Hidden Information Evaluation. , 2022, , .		0

#	Article	IF	CITATIONS
1424	Policy ensemble gradient for continuous control problems in deep reinforcement learning. Neurocomputing, 2023, 548, 126381.	5.9	0
1425	Performance comparison of reinforcement learning and metaheuristics for factory layout planning. CIRP Journal of Manufacturing Science and Technology, 2023, 45, 10-25.	4.5	4
1426	A superconducting synapse exhibiting spike-timing dependent plasticity. Applied Physics Letters, 2023, 122, .	3.3	3
1427	Map-based experience replay: a memory-efficient solution to catastrophic forgetting in reinforcement learning. Frontiers in Neurorobotics, 0, 17, .	2.8	0
1428	Strengthening Network Slicing for Industrial Internet with Deep Reinforcement Learning. Digital Communications and Networks, 2023, , .	5.0	0
1429	Chromothripsis detection with multiple myeloma patients based on deep graph learning. Bioinformatics, 2023, 39, .	4.1	0
1430	Reinforcement Learning Applied to Al Bots in First-Person Shooters: A Systematic Review. Algorithms, 2023, 16, 323.	2.1	2
1431	Effective control of two-dimensional Rayleigh–Bénard convection: Invariant multi-agent reinforcement learning is all you need. Physics of Fluids, 2023, 35, .	4.0	5
1432	Deep Learning Augmented Risk-Based Auditing. SSRN Electronic Journal, 0, , .	0.4	0
1433	A New Deep Reinforcement Learning Based Robot Path Planning Algorithm without Target Network. , 2023, , .		0
1434	An Adaptive Threshold for the Canny Edge With Actor-Critic Algorithm. IEEE Access, 2023, 11, 67058-67069.	4.2	1
1435	Pekiştirmeli ×ğrenme ile Tenis Oyunu Simülasyonu Gerçekleştirimi. , 0, , .		0
1436	Tailored Output Layers of Neural Networks for Satisfaction of State Constraints in Nonlinear Control Systems. , 2023, , .		0
1437	PPLC: Data-driven offline learning approach for excavating control of cutter suction dredgers. Engineering Applications of Artificial Intelligence, 2023, 125, 106708.	8.1	0
1438	Real World Offline Reinforcement Learning with Realistic Data Source. , 2023, , .		1
1439	Ex(plainable) Machina: how social-implicit XAI affects complex human-robot teaming tasks. , 2023, , .		1
1440	Deep-reinforcement-learning-based water diversion strategy. Environmental Science and Ecotechnology, 2024, 17, 100298.	13.5	0
1441	Systematic Performance Evaluation of Reinforcement Learning Algorithms Applied to Wastewater Treatment Control Optimization. Environmental Science & Technology, 0, , .	10.0	0

#	Article	IF	CITATIONS
1442	Muddling-Through and Deep Learning for Bureaucratic Decision-Making. Profiles in Operations Research, 2023, , 251-272.	0.4	0
1443	Mixture of personality improved spiking actor network for efficient multi-agent cooperation. Frontiers in Neuroscience, 0, 17, .	2.8	0
1444	Integrating short-term stochastic production planning updating with mining fleet management in industrial mining complexes: an actor-critic reinforcement learning approach. Applied Intelligence, 2023, 53, 23179-23202.	5.3	2
1445	The cost of passing - using deep learning Als to expand our understanding of the ancient game of Go. International Journal of Networking and Computing, 2023, 13, 258-272.	0.4	0
1446	Evaluating Explainable AI (XAI) in Terms of User Gender and Educational Background. Lecture Notes in Computer Science, 2023, , 286-304.	1.3	1
1447	A Holistic Framework for Factory Planning Using Reinforcement Learning. , 2023, , 129-148.		0
1448	Causal reinforcement learning based on Bayesian networks applied to industrial settings. Engineering Applications of Artificial Intelligence, 2023, 125, 106657.	8.1	2
1449	Bandit Approach to Conflict-Free Parallel Q-Learning in View of Photonic Implementation. , 2023, 2, .		0
1450	Transferable learning on analog hardware. Science Advances, 2023, 9, .	10.3	2
1451	Recent Advances in Generative Adversarial Networks for Gene Expression Data: A Comprehensive Review. Mathematics, 2023, 11, 3055.	2.2	3
1452	Reinforcement Learning-based approach for dynamic vehicle routing problem with stochastic demand. Computers and Industrial Engineering, 2023, 182, 109443.	6.3	1
1453	Toward the Next Generation of Neural Iontronic Interfaces. Advanced Healthcare Materials, 2023, 12, .	7.6	1
1454	DSMC Evaluation Stages: Fostering Robust and Safe Behavior in Deep Reinforcement Learning – Extended Version. ACM Transactions on Modeling and Computer Simulation, 2023, 33, 1-28.	0.8	1
1455	Creating a large language model of a philosopher. Mind and Language, 0, , .	2.3	6
1456	Bioinspired nanofluidic iontronics for brain-like computing. Nano Research, 2024, 17, 503-514.	10.4	6
1457	Artificial Intelligence and Democracy: A Conceptual Framework. Social Media and Society, 2023, 9, .	3.0	6
1458	Gaps and future of human-centered artificial intelligence in ophthalmology: Future Vision Forum consensus statement. Current Opinion in Ophthalmology, 0, , .	2.9	0
1459	Lightweight and Elegant Data Reduction Strategies for Training Acceleration of Convolutional Neural Networks. Mathematics, 2023, 11, 3120.	2.2	0

#	Article	IF	CITATIONS
1460	A deep reinforcement learning method to control chaos synchronization between two identical chaotic systems. Chaos, Solitons and Fractals, 2023, 174, 113809.	5.1	3
1461	Monte Carlo Tree Search and Machine Learning Techniques on Block Go Programs. , 2023, , .		Ο
1462	Augmentative Topology Agents For Open-Ended Learning. , 2023, , .		0
1463	Artificial and Human Intelligence in Mental Health. Al Magazine, 2021, 42, 39-46.	1.6	Ο
1464	A systematic review on intracranial aneurysm and hemorrhage detection using machine learning and deep learning techniques. Progress in Biophysics and Molecular Biology, 2023, , .	2.9	0
1465	ScanBot: Autonomous Reconstruction via Deep Reinforcement Learning. ACM Transactions on Graphics, 2023, 42, 1-16.	7.2	0
1466	Discovering Editing Rules by Deep Reinforcement Learning. , 2023, , .		0
1467	Human achievement and artificial intelligence. Ethics and Information Technology, 2023, 25, .	3.8	0
1468	Searching for answers: expert pattern recognition and planning. Trends in Cognitive Sciences, 2023, , .	7.8	0
1470	Quantum circuit compilation for nearest-neighbor architecture based on reinforcement learning. Quantum Information Processing, 2023, 22, .	2.2	1
1471	Online 3D Packing Problem Based on Bi-Value Guidance. Journal of Computer and Communications, 2023, 11, 156-173.	0.9	0
1472	Modelling and Predictive Monitoring of Business Processes under Uncertainty with Reinforcement Learning. Sensors, 2023, 23, 6931.	3.8	0
1473	Neural-network-based parameter tuning for multi-agent simulation using deep reinforcement learning. World Wide Web, 0, , .	4.0	0
1474	Renewable Energy Maximization for Pelagic Islands Network of Microgrids Through Battery Swapping Using Deep Reinforcement Learning. IEEE Access, 2023, 11, 86196-86213.	4.2	6
1475	When Do Humans Heed AI Agentsâ \in Mdvice? When Should They?. Human Factors, 0, , .	3.5	1
1476	How to control hydrodynamic force on fluidic pinball via deep reinforcement learning. Physics of Fluids, 2023, 35, .	4.0	1
1477	Ab initio quantum chemistry with neural-network wavefunctions. Nature Reviews Chemistry, 2023, 7, 692-709.	30.2	8
1478	Deep reinforcement learning applied to Monte Carlo power system reliability analysis. , 2023, , .		0

#	Article	IF	CITATIONS
1479	Risk-aware shielding of Partially Observable Monte Carlo Planning policies. Artificial Intelligence, 2023, 324, 103987.	5.8	0
1480	HASM quantum machine learning. Science China Earth Sciences, 2023, 66, 1937-1945.	5.2	3
1481	Routing optimization with Monte Carlo Tree Search-based multi-agent reinforcement learning. Applied Intelligence, 2023, 53, 25881-25896.	5.3	2
1482	Recent Applications and Future Research. , 2023, , 79-85.		0
1483	Calibrating machine behavior: a challenge for AI alignment. Ethics and Information Technology, 2023, 25, .	3.8	1
1484	Multi-Label Continual Learning Using Augmented Graph Convolutional Network. IEEE Transactions on Multimedia, 2024, 26, 2978-2992.	7.2	0
1485	Reinforcement Learning for Data Science. , 2023, , 537-557.		0
1486	An Actor-Critic Framework for Online Control With Environment Stability Guarantee. IEEE Access, 2023, 11, 89188-89204.	4.2	0
1487	Simultaneous shovel allocation and grade control decisions for short-term production planning of industrial mining complexes – an actor-critic approach. International Journal of Mining, Reclamation and Environment, 0, , 1-26.	2.8	0
1488	Transformer Decoder-Based Enhanced Exploration Method to Alleviate Initial Exploration Problems in Reinforcement Learning. Sensors, 2023, 23, 7411.	3.8	1
1489	Deep Reinforcement Learning in Financial Markets Context: Review and Open Challenges. Studies in Computational Intelligence, 2023, , 49-66.	0.9	0
1490	Automatic mechanistic inference from large families of Boolean models generated by Monte Carlo tree search. Frontiers in Cell and Developmental Biology, 0, 11, .	3.7	0
1491	A Phaseâ€Change Memristive Reinforcement Learning for Rapidly Outperforming Champion Streetâ€Fighter Players. Advanced Intelligent Systems, 2023, 5, .	6.1	2
1492	Champion-level drone racing using deep reinforcement learning. Nature, 2023, 620, 982-987.	27.8	24
1493	Hierarchical growth in neural networks structure: Organizing inputs by Order of Hierarchical Complexity. PLoS ONE, 2023, 18, e0290743.	2.5	1
1494	Hyperparameter Selection in Reinforcement Learning Using the "Design of Experiments―Method. Procedia Computer Science, 2023, 222, 11-24.	2.0	0
1495	ADQE: Obtain Better Deep Learning Models by Evaluating the Augmented Data Quality Using Information Entropy. Electronics (Switzerland), 2023, 12, 4077.	3.1	0
1496	From Brain Models to Robotic Embodied Cognition: How Does Biological Plausibility Inform Neuromorphic Systems?. Brain Sciences, 2023, 13, 1316.	2.3	2

#	Article	IF	CITATIONS
1497	The transformative potential of machine learning for experiments in fluid mechanics. Nature Reviews Physics, 2023, 5, 536-545.	26.6	7
1498	Self-play reinforcement learning guides protein engineering. Nature Machine Intelligence, 2023, 5, 845-860.	16.0	4
1499	Method on generating massive virtual driving curves for high-speed trains of the Cross-Taiwan Strait Railway and its statistical analysis. Journal of Supercomputing, 0, , .	3.6	0
1500	A test of memory for stimulus sequences in great apes. PLoS ONE, 2023, 18, e0290546.	2.5	3
1501	Deep reinforcement learning for approximate policy iteration: convergence analysis and a post-earthquake disaster response case study. Optimization Letters, 0, , .	1.6	0
1502	SC2ECSet: StarCraft II Esport Replay and Game-state Dataset. Scientific Data, 2023, 10, .	5.3	1
1503	A Continuous Action Space Tree search for INverse desiGn (CASTING) framework for materials discovery. Npj Computational Materials, 2023, 9, .	8.7	2
1504	A GPU-based computational framework that bridges neuron simulation and artificial intelligence. Nature Communications, 2023, 14, .	12.8	0
1505	Recent advances in deep learning for retrosynthesis. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2024, 14, .	14.6	1
1506	Chess Game to Improve the Mental Ability of Alzheimer's Patients using A3C. , 2023, , .		0
1507	Reinforcement Learning for Weighted p-median Problem. , 2023, , .		0
1508	Heterogeneous-graph Attention Reinforcement Learning for Football Matches. , 2023, , .		0
1509	Classifying ambiguous identities in hidden-role Stochastic games with multi-agent reinforcement learning. Autonomous Agents and Multi-Agent Systems, 2023, 37, .	2.1	0
1510	Scheduling Real-time Wireless Traffic: A Network-aided Offline Reinforcement Learning Approach. IEEE Internet of Things Journal, 2023, , 1-1.	8.7	0
1511	A Paradigm Shift in Cognitive Sciences?. Neuroscience and Behavioral Physiology, 2023, 53, 892-906.	0.4	0
1512	Frustratingly Easy Regularization on Representation Can Boost Deep Reinforcement Learning. , 2023, , .		1
1514	Dynamic operations and maintenance of an unmanned aerial vehicle swarm for continuous emergency communication. Computers and Industrial Engineering, 2023, 184, 109564.	6.3	1
1515	Reinforcement Learning with Neural Network-based Deterministic Game Tree Approximation. , 2023, , .		0

\sim		<u> </u>	
			ЪΤ
\sim	ITAL	KLPU	IN I

#	Article	IF	CITATIONS
1516	Predictive reinforcement learning: map-less navigation method for mobile robot. Journal of Intelligent Manufacturing, 0, , .	7.3	0
1517	Reconstruction of decays to merged photons using end-to-end deep learning with domain continuation in the CMS detector. Physical Review D, 2023, 108, .	4.7	2
1518	AI and atoms: How artificial intelligence is revolutionizing nuclear material production. Bulletin of the Atomic Scientists, 2023, 79, 316-328.	0.6	0
1519	Load Frequency Control with Deep Reinforcement Learning under Adversarial Attacks. , 2023, , .		0
1520	Forward–forward training of an optical neural network. Optics Letters, 2023, 48, 5249.	3.3	2
1521	Emergence of cooperation in two-agent repeated games with reinforcement learning. Chaos, Solitons and Fractals, 2023, 175, 114032.	5.1	0
1522	Human-Like Decision-Making of Autonomous Vehicles in Dynamic Traffic Scenarios. IEEE/CAA Journal of Automatica Sinica, 2023, 10, 1905-1917.	13.1	0
1523	Artificial Intelligence in Surgery, Surgical Subspecialties, and Related Disciplines. Artificial Intelligence, 0, , .	2.3	0
1524	RBNets: A Reinforcement Learning Approach forÂLearning Bayesian Network Structure. Lecture Notes in Computer Science, 2023, , 193-208.	1.3	0
1525	Eigensubspace ofÂTemporal-Difference Dynamics andÂHow It Improves Value Approximation inÂReinforcement Learning. Lecture Notes in Computer Science, 2023, , 573-589.	1.3	0
1526	Optimisation ofÂMatrix Production System Reconfiguration withÂReinforcement Learning. Lecture Notes in Computer Science, 2023, , 15-22.	1.3	0
1527	Matter and Mind Matter. Springer Series on Bio- and Neurosystems, 2024, , 1-42.	0.2	0
1528	Human Intelligence (HI) Versus Artificial Intelligence (AI) and Intelligence Augmentation (IA). Palgrave Advances in the Economics of Innovation and Technology, 2023, , 3-29.	0.0	0
1529	Developing an artificial neural network controller for accelerating the hot deformation of the titanium aluminide TNM-B1 using reinforcement learning and finite element simulations. Journal of Intelligent Manufacturing, 0, , .	7.3	1
1530	Toward Autonomous Cyber Defense for Protected Core Networking. , 2023, , .		1
1531	Reinforcement Learning with Goal Relabeling and Dynamic Model for Robotic Tasks. , 2023, , .		0
1532	Improving Generalization ofÂMulti-agent Reinforcement Learning Through Domain-Invariant Feature Extraction. Lecture Notes in Computer Science, 2023, , 49-62.	1.3	0
1533	Discrete Denoising Diffusion Approach toÂlnteger Factorization. Lecture Notes in Computer Science, 2023, , 123-134.	1.3	0

#	Article	IF	CITATIONS
1534	New Hybrid Graph Convolution Neural Network with Applications in Game Strategy. Electronics (Switzerland), 2023, 12, 4020.	3.1	0
1535	Synchromodal freight transport re-planning under service time uncertainty: An online model-assisted reinforcement learning. Transportation Research Part C: Emerging Technologies, 2023, 156, 104355.	7.6	0
1536	Fully analog photonic deep reservoir computer based on frequency multiplexing. Optica, 0, , .	9.3	1
1537	Toward Artificial General Intelligence: Deep Reinforcement Learning Method to AI in Medicine. Journal of Computer and Communications, 2023, 11, 84-120.	0.9	0
1539	Al-Assisted Learning with ChatGPT and Large Language Models: Implications for Higher Education. , 2023, , .		3
1540	Developments in Image Processing Using Deep Learning and Reinforcement Learning. Journal of Imaging, 2023, 9, 207.	3.0	2
1541	An Introduction to Machine Learning in Molecular Sciences. Challenges and Advances in Computational Chemistry and Physics, 2023, , 1-19.	0.6	0
1542	Photonic Reservoir Computing for Spectrum Awareness Applications. , 2023, , .		0
1543	Opportunities and challenges of supervised machine learning for the classification of motor evoked potentials according to muscles. BMC Medical Informatics and Decision Making, 2023, 23, .	3.0	0
1544	Offline reinforcement learning in high-dimensional stochastic environments. Neural Computing and Applications, 0, , .	5.6	0
1545	Al-powered interpretable imaging phenotypes noninvasively characterize tumor microenvironment associated with diverse molecular signatures and survival in breast cancer. Computer Methods and Programs in Biomedicine, 2024, 243, 107857.	4.7	0
1546	A Reinforcement Learning Based Slope Limiter forÂTwo-Dimensional Finite Volume Schemes. Springer Proceedings in Mathematics and Statistics, 2023, , 209-217.	0.2	0
1547	Simulation Optimization in the New Era of Al. , 2023, , 82-108.		0
1548	Robust and efficient task scheduling for robotics applications with reinforcement learning. Engineering Applications of Artificial Intelligence, 2024, 127, 107300.	8.1	0
1549	GPU forÂMonte Carlo Search. Lecture Notes in Computer Science, 2023, , 179-193.	1.3	0
1550	Adopting artificial intelligence in cardiovascular medicine: a scoping review. Hypertension Research, 2024, 47, 685-699.	2.7	5
1551	Recent advancements in implantable neural links based on organic synaptic transistors. Exploration, 0, , .	11.0	0
1552	Light-Stimulated IGZO Transistors with Tunable Synaptic Plasticity Based on Casein Electrolyte Electric Double Layer for Neuromorphic Systems. Biomimetics, 2023, 8, 532.	3.3	0

#	Article	IF	Citations
1553	Generative Model-Based Testing on Decision-Making Policies. , 2023, , .		0
1554	Hierarchical framework for interpretable and specialized deep reinforcement learning-based predictive maintenance. Data and Knowledge Engineering, 2024, 149, 102240.	3.4	2
1555	Parameter Identification forÂFictitious Play Algorithm inÂRepeated Games. Communications in Computer and Information Science, 2024, , 270-282.	0.5	0
1556	Reinforcement learning for humanitarian relief distribution with trucks and UAVs under travel time uncertainty. Transportation Research Part C: Emerging Technologies, 2023, 157, 104401.	7.6	0
1557	A human-centered safe robot reinforcement learning framework with interactive behaviors. Frontiers in Neurorobotics, 0, 17, .	2.8	0
1558	Machine Learning Empowering Personalized Medicine: A Comprehensive Review of Medical Image Analysis Methods. Electronics (Switzerland), 2023, 12, 4411.	3.1	3
1559	A new age in protein design empowered by deep learning. Cell Systems, 2023, 14, 925-939.	6.2	6
1560	Research onÂStrategies forÂTripeaks Variant withÂVarious Layouts. Lecture Notes in Computer Science, 2023, , 84-98.	1.3	0
1561	IxDRL: A Novel Explainable Deep Reinforcement Learning Toolkit Based onÂAnalyses ofÂInterestingness. Communications in Computer and Information Science, 2023, , 373-396.	0.5	1
1562	Improving Inertial-Based UAV Localization using Data-Efficient Deep Reinforcement Learning. , 2023, , .		0
1563	Explainability in Deep Reinforcement Learning: A Review into Current Methods and Applications. ACM Computing Surveys, 2024, 56, 1-35.	23.0	0
1564	Mastering theÂCard Game ofÂJaipur Through Zero-Knowledge Self-Play Reinforcement Learning andÂAction Masks. Lecture Notes in Computer Science, 2023, , 231-244.	1.3	0
1565	Deep reinforcement learning for continuous wood drying production line control. Computers in Industry, 2024, 154, 104036.	9.9	1
1566	Enhancing Stockfish: A Chess Engine Tailored forÂTraining Human Players. Lecture Notes in Computer Science, 2023, , 275-289.	1.3	0
1567	Natural Born Explainees: how users' personality traits shape the human-robot interaction with explainable robots. , 2023, , .		0
1568	Airfoils optimization based on deep reinforcement learning to improve the aerodynamic performance of rotors. Aerospace Science and Technology, 2023, 143, 108737.	4.8	2
1569	Model-based optimal action selection for Dyna-Q reverberation suppression cognitive sonar. Eurasip Journal on Advances in Signal Processing, 2023, 2023, .	1.7	0
1570	Mirage: Towards Low-interruption Services on Batch GPU Clusters with Reinforcement Learning. , 2023, , .		1

#	Article	IF	CITATIONS
1571	Student of Games: A unified learning algorithm for both perfect and imperfect information games. Science Advances, 2023, 9, .	10.3	0
1572	Leveraging Deep Reinforcement Learning for Water Distribution Systems with Large Action Spaces and Uncertainties: DRL-EPANET for Pressure Control. Journal of Water Resources Planning and Management - ASCE, 2024, 150, .	2.6	0
1573	A novel method for intersecting machining feature segmentation via deep reinforcement learning. Advanced Engineering Informatics, 2024, 59, 102256.	8.0	0
1574	Canaries and Whistles: Resilient Drone Communication Networks with (or without) Deep Reinforcement Learning. , 2023, , .		1
1575	Reinforcement Learning in an Adaptable Chess Environment for Detecting Human-understandable Concepts. IFAC-PapersOnLine, 2023, 56, 9050-9055.	0.9	0
1576	Multiagent Rollout with Reshuffling for Warehouse Robots Path Planning. IFAC-PapersOnLine, 2023, 56, 3027-3032.	0.9	0
1577	Deep Reinforcement Learning. , 2023, , .		0
1578	Multi-sensor based strategy learning with deep reinforcement learning for unmanned ground vehicle. International Journal of Intelligent Networks, 2023, 4, 325-336.	7.8	0
1579	Epistemology of synthetic biology: a new theoretical framework based on its potential objects and objectives. Frontiers in Bioengineering and Biotechnology, 0, 11, .	4.1	1
1580	SAGE: Generating Symbolic Goals forÂMyopic Models inÂDeep Reinforcement Learning. Lecture Notes in Computer Science, 2024, , 274-285.	1.3	1
1581	Chess and Antirealism. , 2023, 2, .		0
1582	A learning-based approach for video streaming over fluctuating networks with limited playback buffers. Computer Communications, 2024, 214, 113-122.	5.1	1
1583	Progress and summary of reinforcement learning on energy management of MPS-EV. Heliyon, 2024, 10, e23014.	3.2	0
1584	Artificial Intelligence and Inequality. , 2023, , 1-24.		0
1585	Enhanced method for reinforcement learning based dynamic obstacle avoidance by assessment of collision risk. Neurocomputing, 2024, 568, 127097.	5.9	0
1586	Interpretation Using Classified Gradient-Based Saliency Maps for Two-Player Board Games. , 2023, , .		0
1587	Weighting Information Sets with Siamese Neural Networks in Reconnaissance Blind Chess. , 2023, , .		0
1588	DanZero: Mastering GuanDan Game with Reinforcement Learning. , 2023, , .		Ο

#	Article	IF	CITATIONS
1589	Mixture of Public and Private Distributions in Imperfect Information Games. , 2023, , .		0
1590	Balancing of competitive two-player Game Levels with Reinforcement Learning. , 2023, , .		0
1591	Self-Attention for Visual Reinforcement Learning. , 2023, , .		0
1592	HiveMind: Learning to Play the Cooperative Chess Variant Bughouse with DNNs and MCTS. , 2023, , .		0
1593	Predicting Chess Player Rating Based on a Single Game. , 2023, , .		0
1594	Towards More Human-like Al Communication: A Review of Emergent Communication Research. IEEE Access, 2023, , 1-1.	4.2	0
1595	Scalable imaginary time evolution with neural network quantum states. SciPost Physics, 2023, 15, .	4.9	0
1596	Deep Learning Misconduct and How Conscious Learning Avoids it. Artificial Intelligence, 0, , .	2.3	0
1597	Leveraging Machine Learning for Generating and Utilizing Motion Primitives in Adversarial Environments. Journal of Aerospace Computing, Information, and Communication, 2024, 21, 127-139.	0.8	0
1598	Reinforcement Learning consisting of Two Agents to Control Refrigeration System with Power Consumption Reduction. , 2023, , .		0
1599	The Probabilistic Liveness Decision Method of Unbounded Petri Nets Based on Machine Learning. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, , 1-12.	9.3	0
1600	A framework for safe decision making: A convex duality approach. Intelligenza Artificiale, 2023, 17, 195-205.	1.6	Ο
1601	Pessimistic value iteration for multi-task data sharing in Offline Reinforcement Learning. Artificial Intelligence, 2024, 326, 104048.	5.8	0
1602	Mecanum-Wheeled Robot Control Based on Deep Reinforcement Learning. , 2023, , .		0
1603	Offensive and Defensive Attention Reward in Reinforcement Learning for Football Game. , 2023, , .		0
1604	An Open-Source Robotic Chinese Chess Player. , 2023, , .		0
1606	Comparing Quadrotor Control Policies for Zero-Shot Reinforcement Learning under Uncertainty and Partial Observability. , 2023, , .		0
1607	Approximating Nash Equilibria for Uruguayan Truco: A Comparison of Monte Carlo and Machine Learning Approaches. , 2023, , .		0

#	Article	IF	CITATIONS
1608	Al for Designers. , 2024, , 19-41.		0
1610	End-to-End Path Planning for Homogeneous Temperature Fields in Additive Manufacturing. SSRN Electronic Journal, 0, , .	0.4	0
1611	Improved Generalization Performance of Image-based Reinforcement Learning through Strong Data Augmentation and Contrastive Learning. Transactions of the Korean Society of Automotive Engineers, 2023, 31, 949-957.	0.3	0
1612	Automated algorithm selection using meta-learning and pre-trained deep convolution neural networks. Information Fusion, 2024, 105, 102210.	19.1	0
1613	A Short Introduction to Artificial Intelligence: Methods, Success Stories, and Current Limitations. , 2024, , 135-149.		0
1614	PathletRL: Trajectory Pathlet Dictionary Construction using Reinforcement Learning. , 2023, , .		0
1615	ChessEye: An Integrated Framework for Accurate and Efficient Chessboard Reconstruction. , 2023, , .		0
1616	Management von Daten. , 2023, , 39-66.		0
1617	Of Flesh and Steel: Computational Creativity in Music and the Body Issue. Insam, 2020, , 24-42.	0.4	0
1618	Exploring the constraints on artificial general intelligence: a game-theoretic perspective. SSRN Electronic Journal, 0, , .	0.4	0
1620	Beyond games: a systematic review of neural Monte Carlo tree search applications. Applied Intelligence, 2024, 54, 1020-1046.	5.3	1
1621	Overview on reinforcement learning of multi-agent game. Journal of Physics: Conference Series, 2023, 2646, 012021.	0.4	0
1622	Ship Path Planning Based on AlphaZero Algorithm. , 2023, , .		0
1623	Adaptive instance similarity embedding for online continual learning. Pattern Recognition, 2024, 149, 110238.	8.1	0
1626	Functional neuronal circuits emerge in the absence of developmental activity. Nature Communications, 2024, 15, .	12.8	0
1627	Autonomous navigation of marine surface vessel in extreme encounter situation. Journal of Marine Science and Technology, 2024, 29, 167-180.	2.9	0
1628	Optimizing Strategy Games: Ant Colony Optimization vs. Minimax Algorithm. , 2023, , .		0
1629	The Social Machine: Artificial Intelligence (AI) Approaches to Theory of Mind. Logic, Argumentation & Reasoning, 2023, , 681-722.	0.2	0

#	Article	IF	CITATIONS
1630	The 2023 Computer Olympiad. ICGA Journal, 2024, 45, 61-78.	0.3	0
1631	Athénan wins sixteen gold medals at the Computer Olympiad. ICGA Journal, 2024, 45, 79-80.	0.3	1
1632	RLOP: A Framework Design for Offset Prefetching Combined with Reinforcement Learning. Lecture Notes in Electrical Engineering, 2024, , 90-99.	0.4	1
1633	Developing Driving Strategies Efficiently: A Skill-Based Hierarchical Reinforcement Learning Approach. , 2024, 8, 121-126.		0
1634	Artificial Intelligence in Neuroscience. , 2024, , 158-166.		0
1635	Data-Driven Reinforcement Learning forÂMission Engineering andÂCombat Simulation. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2024, , 347-360.	0.2	0
1636	Distributed Deep Reinforcement Learning: A Survey and a Multi-player Multi-agent Learning Toolbox. , 2024, 21, 411-430.		0
1637	Microbial interactions from a new perspective: reinforcement learning reveals new insights into microbiome evolution. Bioinformatics, 2024, 40, .	4.1	1
1638	Improvement of move naturalness for playing good-quality games with middle-level players. Applied Intelligence, 2024, 54, 1637-1655.	5.3	0
1639	Audio-Visual Deception Detection: DOLOS Dataset and Parameter-Efficient Crossmodal Learning. , 2023,		0
1640	Seeing Beyond the Patch: Scale-Adaptive Semantic Segmentation of High-resolution Remote Sensing Imagery based on Reinforcement Learning. , 2023, , .		0
1641	Mastering Spatial Graph Prediction of Road Networks. , 2023, , .		0
1642	Collaborative robots can augment human cognition in regret-sensitive tasks. , 2024, 3, .		0
1643	Autonomous imaging scheduling networks of small celestial bodies flyby based on deep reinforcement learning. Complex & Intelligent Systems, 0, , .	6.5	Ο
1644	Reinforcement learning based agents for improving layouts of automotive crash structures. Applied Intelligence, 2024, 54, 1751-1769.	5.3	0
1645	A Comprehensive Survey: Evaluating the Efficiency of Artificial Intelligence and Machine Learning Techniques on Cyber Security Solutions. IEEE Access, 2024, 12, 12229-12256.	4.2	0
1646	Toward Understanding State Representation Learning in MuZero: A Case Study in Linear Quadratic Gaussian Control. , 2023, , .		0
1647	Assessing the value of deep reinforcement learning for irrigation scheduling. Smart Agricultural Technology, 2024, 7, 100403.	5.4	0

#	Article	IF	CITATIONS
1648	Deep reinforcement learning applied to statistical arbitrage investment strategy on cryptomarket. Applied Soft Computing Journal, 2024, 153, 111255.	7.2	0
1649	Generation of probabilistic synthetic data for serious games: A case study on cyberbullying. Knowledge-Based Systems, 2024, 286, 111440.	7.1	0
1650	Overview of Game Decision Intelligence. , 2023, , .		0
1651	Cross-Modal Interaction via Reinforcement Feedback for Audio-Lyrics Retrieval. IEEE/ACM Transactions on Audio Speech and Language Processing, 2024, 32, 1248-1260.	5.8	0
1653	Generalized Multiagent Reinforcement Learning for Coverage Path Planning in Unknown, Dynamic, and Hazardous Environments. , 2024, , .		0
1654	Brain-inspired chaotic spiking backpropagation. National Science Review, 2024, 11, .	9.5	0
1655	Respect the Difference: Reinforcement Learning for Heterogeneous FPGA Placement. , 2023, , .		0
1656	Deep reinforcement learningâ€based active mass driver decoupled control framework considering control–structure interaction effects. Computer-Aided Civil and Infrastructure Engineering, 0, , .	9.8	0
1657	Enhancing parcel singulation efficiency through transformer-based position attention and state space augmentation. Expert Systems With Applications, 2024, 248, 123393.	7.6	0
1658	Almost surely safe exploration and exploitation for deep reinforcement learning with state safety estimation. Information Sciences, 2024, 662, 120261.	6.9	0
1659	High-efficiency reinforcement learning with hybrid architecture photonic integrated circuit. Nature Communications, 2024, 15, .	12.8	0
1660	Quantum neural networks successfully calibrate language models. Quantum Machine Intelligence, 2024, 6, .	4.8	0
1661	JP-DouZero: an enhanced DouDiZhu AI based on reinforcement learning with peasant collaboration and intrinsic rewards. , 2023, , .		0
1662	Dynamic Scene Path Planning of UAVs Based on Deep Reinforcement Learning. Drones, 2024, 8, 60.	4.9	0
1663	Reinforcement learning tutor better supported lower performers in a math task. Machine Learning, 2024, 113, 3023-3048.	5.4	0
1664	Al Tool forÂExploring How Economic Activities Impact Local Ecosystems. Lecture Notes in Networks and Systems, 2024, , 690-709.	0.7	0
1665	A World Model Reinforcement Learning Method That Is Not Distracted by Background Information by Using Representation Learning via Invariant Causal Mechanisms for Non-Contrastive Learning. Journal of Japan Society for Fuzzy Theory and Intelligent Informatics, 2024, 36, 571-581.	0.0	0
1666	A K-means Supported Reinforcement Learning Framework to Multi-dimensional Knapsack. Journal of Global Optimization, 0, , .	1.8	0

#	Article	IF	CITATIONS
1667	Organic synaptic transistors: Biocompatible neuromorphic devices for in-vivo applications. Organic Electronics, 2024, 127, 107014.	2.6	0
1668	Scale-aware deep reinforcement learning for high resolution remote sensing imagery classification. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 209, 296-311.	11.1	0
1669	A survey on multi-agent reinforcement learning and its application. , 2024, , .		0
1670	Artificial Intelligence for Climate Smart Forestry: A Forward Looking Vision. , 2023, , .		0
1671	Efficient training for energy management in fuel cell hybrid electric vehicles: An imitation learning-embedded deep reinforcement learning framework. Journal of Cleaner Production, 2024, 447, 141360.	9.3	0
1672	A survey of decision making in adversarial games. Science China Information Sciences, 2024, 67, .	4.3	0
1673	Machine learning enhanced evaluation of semiconductor quantum dots. Scientific Reports, 2024, 14, .	3.3	0
1674	Quantifying Feature Importance ofÂGames andÂStrategies viaÂShapley Values. Lecture Notes in Computer Science, 2024, , 88-98.	1.3	0
1675	Making Superhuman Al More Human inÂChess. Lecture Notes in Computer Science, 2024, , 3-14.	1.3	0
1676	Merging Neural Networks withÂTraditional Evaluations inÂCrazyhouse. Lecture Notes in Computer Science, 2024, , 15-25.	1.3	0
1677	Stockfish orÂLeela Chess Zero? AÂComparison Against Endgame Tablebases. Lecture Notes in Computer Science, 2024, , 26-35.	1.3	0
1678	The Mathematical Game. Lecture Notes in Computer Science, 2024, , 146-157.	1.3	0
1679	An Introduction to Reinforcement Learning and Its Application in Various Domains. Advances in Computational Intelligence and Robotics Book Series, 2024, , 1-25.	0.4	0
1680	A Reinforcement-Learning Approach to Control Robotic Manipulator Based on Improved DDPG. , 2023, ,		0
1681	Surrogate-assisted Monte Carlo Tree Search for real-time video games. Engineering Applications of Artificial Intelligence, 2024, 133, 108152.	8.1	0
1682	Reinforcement Learning as an Approach to Train Multiplayer First-Person Shooter Game Agents. Technologies, 2024, 12, 34.	5.1	0
1683	A Recursively Recurrent Neural Network (R2N2) Architecture for Learning Iterative Algorithms. SIAM Journal of Scientific Computing, 2024, 46, A719-A743.	2.8	0
1684	End-to-end path planning for homogeneous temperature fields in additive manufacturing. Journal of Materials Processing Technology, 2024, 327, 118364	6.3	0

#	Article	IF	CITATIONS
1685	Is Artificial Intelligence for Retinopathy of Prematurity Ready to Go?. JAMA Ophthalmology, 2024, 142, 335.	2.5	0
1686	Data analysis of tactical wargaming based on data mining. Journal of Computational Methods in Sciences and Engineering, 2024, 24, 343-356.	0.2	0
1687	On-the-fly Raman microscopy guaranteeing the accuracy of discrimination. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	0
1691	Trojan playground: a reinforcement learning framework for hardware Trojan insertion and detection. Journal of Supercomputing, 0, , .	3.6	0
1692	Deep reinforcement learning based on balanced stratified prioritized experience replay for customer credit scoring in peer-to-peer lending. Artificial Intelligence Review, 2024, 57, .	15.7	0
1693	Vision Transformers forÂComputer Go. Lecture Notes in Computer Science, 2024, , 376-388.	1.3	0
1694	Enhancing Hex Strategy: Al Based Two-Distance Pruning Approach with Pattern-Enhanced Alpha-Beta Search. Communications in Computer and Information Science, 2024, , 452-465.	0.5	0
1695	Artificial Intelligence in the 21st Century. , 2023, 2, 52-59.		0
1696	A review on machine learning in flexible surgical and interventional robots: Where we are and where we are and control, 2024, 93, 106179.	5.7	0
1697	A universal ANN-to-SNN framework for achieving high accuracy and low latency deep Spiking Neural Networks. Neural Networks, 2024, 174, 106244.	5.9	0
1698	Using machine learning to find exact analytic solutions to analytically posed physics problems. Heliyon, 2024, 10, e28124.	3.2	0
1699	Interpretability of rectangle packing solutions with Monte Carlo tree search. Journal of Heuristics, 0,	1.4	0
1701	Human divergent exploration capacity for material design: A comparison with artificial intelligence. , 2024, 2, 100064.		0
1702	The Potential of Neural Network Potentials. ACS Physical Chemistry Au, 0, , .	4.0	0
1703	Exploring the constraints on artificial general intelligence: A game-theoretic model of human vs machine interaction. Mathematical Social Sciences, 2024, 129, 70-76.	0.5	0
1704	Deep reinforcement learning for process design: Review and perspective. Current Opinion in Chemical Engineering, 2024, 44, 101012.	7.8	0