Suspending of solid particles in liquid by agitators

Chemical Engineering Science 8, 244-253 DOI: 10.1016/0009-2509(58)85031-9

Citation Report

#		IE	CITATIONS
#	ARTICLE	IF	CHATIONS
1	Mass transfer coefficients for solids suspended in agitated liquids. AICHE Journal, 1960, 6, 289-295.	1.8	87
2	Suspension of slurries by mechanical mixers. AICHE Journal, 1960, 6, 419-426.	1.8	53
3	The continuous phase heat and mass-transfer properties of dispersions. Chemical Engineering Science, 1961, 16, 39-54.	1.9	830
4	Mixing and Agitation. Advances in Chemical Engineering, 1962, , 119-202.	0.5	12
5	Mass transfer to particles: Part II. Suspended in a pipeline. AICHE Journal, 1962, 8, 101-102.	1.8	19
6	Interfacial areas in agitated gas-liquid contactors. Chemical Engineering Science, 1963, 18, 157-176.	1.9	182
8	Zur Kenntnis der Perlpolymerisation, Die Perlpolymerisation als Modell für RührvorgÃ ¤ ge in zweiphasigen Systemen. Chemie-Ingenieur-Technik, 1964, 36, 1085-1089.	0.4	16
9	Aktuelle Probleme des Rührens. Bericht über ein Symposium "Rühren―in Utrecht. Chemie-Ingenieur-Technik, 1964, 36, 1137-1139.	0.4	0
10	Suspension of solids in a bubbling liquid. Chemical Engineering Science, 1964, 19, 215-225.	1.9	48
11	A novel technique for determining mass transfer coefficients in agitated solid-liquid systems. AICHE Journal, 1964, 10, 415-430.	1.8	54
12	Simultaneous axial dispersion and adsorption in a packed bed. AICHE Journal, 1966, 12, 271-278.	1.8	46
13	Mass Transfer. , 1967, , 1-114.		11
14	Suspension of Solids. , 1967, , 225-261.		3
15	The theory of contact time distributions in gas fluidized beds. Chemical Engineering Science, 1968, 23, 1309-1316.	1.9	25
16	Suspension of solid particles in turbine agitated baffled vessels. Chemical Engineering Science, 1968, 23, 1453-1459.	1.9	248
17	Dissolution mass transfer in a turbine agitated baffled vessel. Canadian Journal of Chemical Engineering, 1969, 47, 248-258.	0.9	66
18	Suspension of solids by mechanical agitation. Chemical Engineering Science, 1969, 24, 223-230.	1.9	51
19	Dynamic Methods for Characterization of Adsorptive Properties of Solid Catalysts. Advances in Catalysis, 1969, , 241-291.	0.1	7

TATION REDO

ARTICLE IF CITATIONS # A characterization of hydrodynamics in a 700-cu-ft Maxwell flotation cell. Canadian Metallurgical 20 0.4 7 Quarterly, 1972, 11, 507-513. Secondary nucleation in a stirred vessel cooling crystallizer. Journal of Crystal Growth, 1972, 13-14, 48 500-505. The attainment of homogeneous suspension in a continuous stirred tank. The Chemical Engineering 22 0.4 35 Journal, 1972, 4, 234-242. Hydrodynamics and mass transfer for suspended solid particles in a turbulent liquid. AICHE Journal, 1.8 1974, 20, 202-204. Importance of slip velocity in determining growth and nucleation kinetics in continuous 24 1.8 10 crystallization. AlCHE Journal, 1974, 20, 388-390. A Model for Secondary Nucleation in a Stirred Vessel Cooling Crystallizer. Crystal Research and Technology: Journal of Experimental and Industrial Crystallography, 1974, 9, 873-886. 0.3 Mixing, Agitation, Disperson of Solid-Liquid Systems, and Transportation of Highly Viscous Materials. 0.0 26 0 Journal of the Japan Society of Colour Material, 1974, 47, 344-351. Suspension of Solid Particles in Solid-Liquid Spouted Vessel. Kagaku Kogaku Ronbunshu, 1975, 1, 363-369. 0.1 Auslegung und Maßstabsvergrößerung von Rührapparaten. Chemie-Ingenieur-Technik, 1975, 47, 953-964. 28 0.4 63 Agitated vessel particle-liquid mass transfer: A comparison between theories and data. The Chemical 0.4 Engineering Journal, 1975, 9, 153-160. Suspension Studies on Granular Starch Slurries. Starch/Staerke, 1975, 27, 405-409. 30 1.1 0 Integral Design of Crystallizers as Illustrated by the Design of a Continuous Stirred — Tank Cooling Crystallizer. , 1976, , 319-334. Nonporous magnetic materials as enzyme supports: Studies with immobilized chymotrypsin. 32 1.7 58 Biotechnology and Bioengineering, 1977, 19, 101-124. Influence of drag reducing additives on mixing and dispersing in agitated vessels. AICHE Journal, 1977, 1.8 24 23, 487-492. Suspendieren von Feststoffpartikeln in axialen Strahlmischern. Chemie-Ingenieur-Technik, 1977, 49, 34 0.4 1 841-841. The effect of impeller/tank, configurations on fluid-particle mass transfer. The Chemical Engineering Journal, 1978, 15, 13-24. Suspending solid particles in an agitated conical-bottom tank. Chemical Engineering Science, 1978, 33, 36 1.9 38 1123-1131. Complete suspension of particles in mechanically agitated vessels. Chemical Engineering Science, 1978, 33, 21-25.

#	Article	IF	CITATIONS
38	Mass transfer from suspended solids to a liquid in agitated vessels. Chemical Engineering Science, 1978, 33, 813-819.	1.9	65
39	Chemical Engineering on Dispersion. Taiichi TSURITANI. Journal of the Japan Society of Colour Material, 1978, 51, 235-247.	0.0	0
40	Fluiddynamik des Suspendierens. Chemie-Ingenieur-Technik, 1979, 51, 697-704.	0.4	11
41	The sorption of propane in slurries of active carbon in water. The Chemical Engineering Journal, 1979, 17, 201-210.	0.4	80
42	The sorption of propane in slurries of active carbon in water. The Chemical Engineering Journal, 1979, 17, 201-210.	0.4	68
43	Suspension for the solid particles. Chemical Engineering Science, 1980, 35, 763-764.	1.9	2
44	Three phase slurry reactors. AICHE Journal, 1980, 26, 177-201.	1.8	134
45	EXPERIMENTAL INVESTIGATIONS OF SUSPENSION, DISPERSION, POWER, GAS HOLD UP AND FLOODING CHARACTERISTICS IN STIRRED GAS-SOLID-LIQUID SYSTEMS (SLURRY REACTORS). Chemical Engineering Communications, 1980, 6, 245-256.	1.5	14
46	INVITED REVIEW SECONDARY CONTACT NUCLEATION: KINETICS, GROWTH AND SCALE-UP. Chemical Engineering Communications, 1980, 4, 393-424.	1.5	182
47	PRODUCTION OF CELL-DERIVED PRODUCTS: VIRUS AND INTERFERON. Annals of the New York Academy of Sciences, 1981, 369, 47-59.	1.8	91
48	Effect of the stirrer clearance on particle suspension in agitated vessels. The Chemical Engineering Journal, 1981, 22, 247-249.	0.4	33
49	MASS TRANSFER FROM FREELY-SUSPENDED PARTICLES IN STIRRED TANKSâ€. Chemical Engineering Communications, 1982, 14, 91-98.	1.5	24
50	Mechanically agitated gas-liquid reactors. Chemical Engineering Science, 1982, 37, 813-844.	1.9	236
51	A stirred tank for continuous crystallization studies. The Chemical Engineering Journal, 1982, 23, 111-113.	0.4	17
52	Mass transfer in the mechanical mixing of heterogeneous systems. Journal of Engineering Physics, 1982, 42, 533-537.	0.0	0
53	Mass transfer in multiphase agitated contactors. The Chemical Engineering Journal, 1983, 27, 61-80.	0.4	116
54	Zur Maßstabsübertragung beim Suspendieren im RührgefÃß. Chemie-Ingenieur-Technik, 1983, 55, 275-28	1.0.4	9
55	Effects of process variables on the residence time distribution of a solid in a continuously operated flotation cell. International Journal of Mineral Processing, 1983, 10, 255-277.	2.6	14

#	Article	IF	CITATIONS
56	PROCESSING FUNDAMENTALS FOR SUSPENSIONS/EMULSIONS. Journal of Dispersion Science and Technology, 1983, 4, 47-104.	1.3	5
57	EFFECT OF SUSPENSION VISCOSITY ON POWER CONSUMPTION IN THE AGITATION OF SOLID-LIQUID SYSTEMS. Chemical Engineering Communications, 1983, 22, 371-375.	1.5	5
58	THE DRAWDOWN OF FLOATING SOLIDS INTO MECHANICALLY AGITATED VESSELS. , 1984, , 1-13.		10
59	SUSPENSION OF SOLIDS WITH AERATED PITCHED BLADE TURBINES. , 1984, , 49-58.		5
60	POWER CONSUMPTION EFFECT IN THREE PHASE MIXING. , 1984, , 69-96.		5
61	MINIMUM CONDITIONS FOR THE PRODUCTION OF LIQUID-LIQUID DISPERSIONS IN AGITATED TANKS. , 1984, , 107-126.		2
62	SUSPENSION CHARACTERISTICS OF LARGE CYLINDERS IN AGITATED TANKS. Chemical Engineering Communications, 1984, 29, 89-99.	1.5	11
63	Hydration of propylene oxide using ion-exchange resin catalyst in a slurry reactor. AICHE Journal, 1984, 30, 1-7.	1.8	3
64	Agitation Effect on Size Distribution in the Crystallization of Phenoxy Acetic Acid Compounds. Kagaku Kogaku Ronbunshu, 1984, 10, 192-197.	0.1	6
65	Solids suspension behaviour in profiled bottom and flat bottom mixing tanks. Chemical Engineering Science, 1985, 40, 385-392.	1.9	49
66	Kinetics of Dissolution of Limestone Slurries in Sulfuric Acid. Chemie-Ingenieur-Technik, 1985, 57, 882-883.	0.4	1
67	Industrial crystallization from solution. Chemical Engineering Science, 1985, 40, 3-26.	1.9	240
68	Hydrogenation of butynediol to cis-butenediol catalyzed by Pd-Zn-CaCO3: Reaction kinetics and modeling of a batch slurry reactor. AICHE Journal, 1985, 31, 1891-1903.	1.8	35
69	EXPERIMENTAL STUDY ON MIXING: POWER CONSUMPTION AND DEGREE OF SUSPENSION. Chemical Engineering Communications, 1986, 44, 331-346.	1.5	3
70	Calculating the minimum power required for complete suspension of solids in a mixer. Powder Technology, 1986, 46, 239-243.	2.1	4
71	Concentration profiles of solids suspended in a stirred tank. Powder Technology, 1986, 48, 205-216.	2.1	56
72	Comparison of mechanically agitated and bubble column slurry reactors. Applied Catalysis, 1986, 22, 21-53.	1.1	9
73	Agitation of Particulate Solid–Liquid Mixtures. , 1986, , 1-61.		3

#	Article	IF	Citations
74	Scaling-up rules for solids suspension in stirred vessels. Chemical Engineering Science, 1986, 41, 2865-2871.	1.9	79
75	Mixing in continuous crystallizers. AICHE Journal, 1986, 32, 705-732.	1.8	70
76	Particle size improvement by a countercurrent tower crystallizer. AICHE Journal, 1986, 32, 1099-1107.	1.8	3
77	Particle suspension and mass transfer rates in agitated vessels. Chemical Engineering and Processing: Process Intensification, 1986, 20, 175-181.	1.8	47
78	Slurry Reactors, Fundamentals and Applications. , 1986, , 463-538.		10
79	IMPELLER CLEARANCE EFFECT ON OFF BOTTOM PARTICLE SUSPENSION IN AGITATED VESSELS. Chemical Engineering Communications, 1987, 61, 151-158.	1.5	17
80	BATCH CRYSTALLIZERS: A REVIEW. Chemical Engineering Communications, 1987, 61, 259-318.	1.5	59
81	Suspension of solid particles in agitated vessels—I. Archimedes numbers ≲ 40. Chemical Engineering Science, 1987, 42, 1423-1430.	1.9	44
82	The dependency on scale of power numbers of Rushton disc turbines. Chemical Engineering Science, 1987, 42, 317-326.	1.9	151
83	Solid dispersion in an agitated vessel. Chemical Engineering Science, 1987, 42, 2949-2956.	1.9	138
84	Hydrodynamic effects on animal cells grown in microcarrier cultures. Biotechnology and Bioengineering, 1987, 29, 130-141.	1.7	330
85	Effect of solids on oxygen transfer in agitated three-phase systems. AICHE Journal, 1987, 33, 1542-1549.	1.8	41
86	Investigations of fluid dynamics in mechanically stirred aerated slurry reactors. Canadian Journal of Chemical Engineering, 1987, 65, 412-419.	0.9	35
87	Critical impeller speed for solid suspension in mechanically agitated contactors. AICHE Journal, 1988, 34, 1332-1340.	1.8	127
88	Suspendieren im Rührbehäer - Vergleich unterschiedlicher Berechnungsgleichungen. Chemie-Ingenieur-Technik, 1988, 60, 822-829.	0.4	19
89	Conditions for suspension of solids in agitated vessels. Chemical Engineering Science, 1988, 43, 467-471.	1.9	31
90	Liquid-phase mixing and power consumption in mechanically agitated solid—liquid contactors. The Chemical Engineering Journal, 1988, 39, 111-124.	0.4	31
91	Critical rotating speed for suspending solid particles in a three-phase stirred vessel at low gas sparging rate Kagaku Kogaku Ronbunshu, 1988, 14, 354-360.	0.1	0

# 92	ARTICLE Bioreactor for mammalian cell culture. , 1989, 39, 29-71.	IF	CITATIONS
93	Mixing and solid suspension by up-down agitators in a slab tank. AICHE Journal, 1989, 35, 1219-1223.	1.8	3
95	Solids suspension and distribution in liquids under turbulent agitation. Chemical Engineering Science, 1989, 44, 529-542.	1.9	57
96	The convex bladed mixed flow impeller and the marine propeller: A multipurpose agitator. Chemical Engineering Science, 1989, 44, 2463-2474.	1.9	17
97	Optimum aeration rates for the suspension of larval feeds. Aquacultural Engineering, 1989, 8, 217-221.	1.4	9
98	Distribution of Cd(II) between (K,H)-montmorillonite and an aqueous solution of 0.10 M KNO3 at pH 4.5 and 298 K — comparison between potentiometric and miscible displacement experiments. Geoderma, 1989, 44, 189-202.	2.3	1
99	The use of upward pumping 45° pitched blade turbine impellers in three-phase reactors. Chemical Engineering Science, 1990, 45, 415-421.	1.9	35
100	Suspension of solid particles with gassed impellers. Chemical Engineering Science, 1990, 45, 1703-1718.	1.9	60
101	Slurry mixing with impellers: Part 1, theory and previous research. Biosystems Engineering, 1990, 45, 157-173.	0.4	11
102	Design and testing of a stirrer for microautoclaves, the swinging capillary. Measurement Science and Technology, 1990, 1, 815-817.	1.4	10
103	CONTINUOUS COUNTERCURRENT SOLID-LIQUID CONTACTING IN ROTARY DISC CONTACTORS. Chemical Engineering Communications, 1990, 88, 127-151.	1.5	0
104	The chemistry and free energy of formation of silver nitride. Industrial & Engineering Chemistry Research, 1991, 30, 2503-2506.	1.8	36
105	Continuous treatment of heavy metal contaminated clay soils by extraction in stirred tanks and in a countercurrent column. Environmental Technology (United Kingdom), 1991, 12, 179-190.	1.2	15
106	Effect of power consumption on solids concentration profiles in a slurry mixing tank. Powder Technology, 1991, 64, 199-206.	2.1	13
107	Design Parameters for Mechanically Agitated Reactors. Advances in Chemical Engineering, 1991, 17, 1-206.	0.5	23
108	Particle-liquid mass transfer in mechanically agitated contactors. Industrial & Engineering Chemistry Research, 1991, 30, 2496-2503.	1.8	38
109	Mixing processes for agricultural and food materials: 3. Powders and particulates. Biosystems Engineering, 1991, 49, 1-19.	0.4	26
110	Mixing processes for agricultural and food materials: 1. Fundamentals of mixing. Biosystems Engineering, 1991, 48, 153-170.	0.4	23

ARTICLE

IF CITATIONS

The suspension of solid particles., 1992, , 364-393. 49 111 Mixing and Hydrodynamics in Flotation Cells., 1992, , 211-234. Reactive crystallization of methyl .ALPHA.-methoxyimino acetoacetate.. Journal of Chemical 113 0.3 6 Engineering of Japan, 1992, 25, 237-242. Particle-impeller impact in an agitated vessel equipped with a rushton turbine.. Journal of Chemical 114 0.3 Engineering of Japan, 1992, 25, 73-77. Effect of addition of alcohol on the design parameters of mechanically agitated three-phase reactors. 115 0.4 4 The Chemical Engineering Journal, 1992, 49, 107-117. The influence of baffle offâ€bottom clearance on the solids suspension performance of pitchedâ€blade and highâ€efficiency impellers. Canadian Journal of Chemical Engineering, 1992, 70, 596-599. Determination of the minimum agitation speed to attain the just dispersed state in solid-liquid and 117 liquid-liquid reactors provided with multiple impellers. Chemical Engineering Science, 1992, 47, 1.9 34 2865-2870. Sample withdrawal from a slurry mixing tank. Chemical Engineering Science, 1993, 48, 921-931. 1.9 Scale-up of the necessary power input in stirred vessels with suspensions. The Chemical Engineering 119 0.4 24 Journal, 1993, 51, 29-39. Kinetics of the reduction of MnO2 with Fe2+ ions in acidic solutions. Hydrometallurgy, 1993, 32, 9-20. 1.8 An electrochemical model for reduction of MnO2 with Fe2+ ions. Journal of Applied 121 7 1.5 Electrochemistry, 1993, 23, 1273. Minimum Power Requirements for Complete Suspension of Solid Particles in an Agitator. Separation 1.3 Science and Technology, 1993, 28, 2247-2254. POWER CONSUMPTION AND SOLID SUSPENSION IN COMPLETELY FILLED VESSELS. Chemical Engineering 123 1.5 6 Communications, 1993, 124, 1-14. Slurry-handling problems in the process industries., 1993, , 310-322. 124 Effect of scale on particle-impeller impact in an agitated vessel equipped with a Rushton turbine.. 125 0.3 8 Journal of Chemical Engineering of Japan, 1993, 26, 100-103. Effect of size of spherical particle on complete suspension speed in agitated vessels of different scale.. Journal of Chemical Engineering of Japan, 1993, 26, 98-100. Power of Impeller Required for Complete Off-Bottom Suspension of Solid Particles under Gassing 127 0.12 Conditions.. Kagaku Kogaku Ronbunshu, 1993, 19, 557-560. Suspension of particles in liquids in stirred vessels., 1993, , 273-286.

#	Article	IF	CITATIONS
129	Fluid Dynamic Studies on Plant Root Cultures for Application to Bioreactor Design. , 1994, , 281-305.		22
130	Modelling slurry mixing tanks. Advanced Powder Technology, 1994, 5, 1-14.	2.0	6
131	A new approach to measuring solids concentration in mixing tanks. Advanced Powder Technology, 1994, 5, 15-24.	2.0	3
132	On the suspension of particles in an agitated vessel. Chemical Engineering Science, 1994, 49, 3522-3526.	1.9	4
133	Suspension of solid particles. Chemical Engineering Science, 1994, 49, 2219-2227.	1.9	55
134	Critical suspension conditions in stirred crystallizers. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1994, 55, 45-51.	0.1	1
135	Solid-liquid mass transfer in the presence of micro-particles during dissolution of iron in a mechanically agitated contactor. Hydrometallurgy, 1994, 36, 231-246.	1.8	8
136	Particle suspension hydrodynamics in a tapered gas agitated reactor. Canadian Journal of Chemical Engineering, 1994, 72, 392-404.	0.9	4
137	The influence of solid properties on the justâ€suspended agitation requirements of pitchedâ€blade and highâ€efficiency impellers. Canadian Journal of Chemical Engineering, 1994, 72, 745-748.	0.9	30
138	Flow characteristics of hyperboloid stirrers. Canadian Journal of Chemical Engineering, 1994, 72, 782-791.	0.9	11
139	Particle-Liquid Mass Transfer in Three-Phase Mechanically Agitated Contactors. Industrial & Engineering Chemistry Research, 1994, 33, 1817-1820.	1.8	12
140	Determination of gas-liquid mass-transfer and solids-suspension parameters in mechanically-agitated three-phase slurry reactors. Minerals Engineering, 1994, 7, 389-403.	1.8	17
141	A study of the agitation speed to just cause complete suspension for non-spherical particles Journal of Chemical Engineering of Japan, 1995, 28, 237-240.	0.3	6
142	Minimum Power of Impeller Required for Complete Suspension of Solid Particles in Rectangular Stirred Vessels. Effects of configuration of vessel and number of impellers Kagaku Kogaku Ronbunshu, 1995, 21, 632-635.	0.1	1
143	Complete Suspension of Solid Particles in a Shaking Vessel Kagaku Kogaku Ronbunshu, 1995, 21, 948-952.	0.1	11
144	Recovery and Reuse of Manganese Dioxide Catalyst Using Ferrosoferric Oxide as Magnetic Substance for Hydrogen Peroxide Treatment Journal of Japan Society on Water Environment, 1995, 18, 561-568.	0.1	0
145	The continuous phase heat and mass transfer properties of dispersions. Chemical Engineering Science, 1995, 50, 3921-3934.	1.9	16
146	Interfacial areas in agitated gas-liquid contactors. Chemical Engineering Science, 1995, 50, 3961-3977.	1.9	7

			_
#	ARTICLE	IF	CITATIONS
147	Hydrodynamic behaviour of animal cell microcarrier suspensions in split-cylinder airlift bioreactors. Bioprocess and Biosystems Engineering, 1995, 12, 239-247.	0.5	28
148	Development of solid—liquid mixing models using tomographic techniques. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1995, 56, 101-107.	0.1	21
149	Effect of off-bottom clearance of a turbine type impeller on crystal size distribution of aluminum potassium sulfate in a batch crystallizer. Journal of Crystal Growth, 1995, 154, 113-117.	0.7	13
150	Critical impeller speed for solid suspension in multiâ€impeller three phase agitated contactors. Canadian Journal of Chemical Engineering, 1995, 73, 273-283.	0.9	48
151	Fluid Flow and Mixing. , 1995, , 129-163.		10
152	MIXING IN CLOSED VESSELS - SUSPENSION OF SOLID PARTICLES AND POWER DEMAND. Chemical Engineering Communications, 1995, 132, 169-186.	1.5	2
153	KINETICS OF ALKALINE LEACHING OF PURE ZINC OXIDE. Chemical Engineering Communications, 1995, 138, 127-143.	1.5	10
154	CRITICAL IMPELLER SPEED FOR SOLID SUSPENSION IN MULTI-IMPELLER AGITATED CONTACTORS: SOLID-LIQUID SYSTEM. Chemical Engineering Communications, 1995, 137, 135-146.	1.5	16
155	Transfer of O2 from air to mineral slurries in a rushton turbine agitated tank. Minerals Engineering, 1995, 8, 1109-1124.	1.8	10
156	PARTICLE-LIQUID MASS TRANSFER IN MULTI-IMPELLER AGITATED THREE PHASE REACTORS. Chemical Engineering Communications, 1996, 146, 65-84.	1.5	12
157	Bench-scale optimization of mixing variables during anionic conditioning of Florida phosphates. Mining, Metallurgy and Exploration, 1996, 13, 27-30.	0.4	0
158	The effect of flow reversal on solids suspension in agitated vessels. Canadian Journal of Chemical Engineering, 1996, 74, 1028-1033.	0.9	16
159	Development of slurry mixing models using resistance tomography. Powder Technology, 1996, 87, 21-27.	2.1	60
160	Modellvorstellung zur Entstehung der vollstÄ ¤ digen Suspension im Rührbehäer. Forschung Im Ingenieurwesen/Engineering Research, 1996, 62, 239-246.	1.0	3
161	Importance of macromixing in batch cooling crystallization. AICHE Journal, 1996, 42, 691-699.	1.8	12
162	Local solids concentration measurement in a slurry mixing tank. Chemical Engineering Science, 1996, 51, 1209-1220.	1.9	45
163	Turbulent flow in a baffled vessel stirred by a 60° pitched blade impeller. Chemical Engineering Science, 1996, 51, 4405-4421.	1.9	67
164	Critical impeller speed for solid suspension in turbine agitated contactors. Bioprocess and Biosystems Engineering, 1996, 14, 97-99.	0.5	5

ARTICLE IF CITATIONS # Suspension of solid particles in turbine agitated contactors. Bioprocess and Biosystems Engineering, 0.5 4 165 1996, 15, 205-208. Studies on transfer processes in mixing vessels: suspending of solid particles in liquid by modified Rushton turbine agitators. Bioprocess and Biosystems Engineering, 1996, 15, 221-229. Comparison of two-phase and three-phase methanol synthesis processes. Chemical Engineering and 167 1.8 31 Processing: Process Intensification, 1996, 35, 413-427. CLOUD HEIGHT IN SOLIDS SUSPENSION AGITATION. Chemical Engineering Communications, 1997, 160, 168 137-155. Agitation., 1997, , 107-138. 169 1 Determination of Optimum Leaching Condition for Roasted Zinc Concentrate in Alkaline Solution.. Journal of Chemical Engineering of Japan, 1997, 30, 59-63. 0.3 Computation Transport Phenomena in Chemical Engineering. Studies of Refining Crystallization on 171 0.1 0 Octotiamine.. Kagaku Kogaku Ronbunshu, 1997, 23, 906-913. Hydrodynamics in Three-Phase Stirred Tank Reactors with Non-Newtonian Fluids. Industrial & amp; 1.8 Engineering Chemistry Research, 1997, 36, 270-276. 174 Mixing in food processing. Food Engineering Series, 1997, , 383-433. 0.3 2 Application of Three-Dimensional Phase-Doppler Anemometry to Mechanically Agitated Crystallizers. 2.7 Chemical Engineering Research and Design, 1997, 75, 132-141. Solids Separation at the Exit of a Continuous-Flow Slurry Reactor Stirred with Multiple Axial 176 4 2.7 Impellers. Chemical Engineering Research and Design, 1997, 75, 284-287. Studies on transfer processes in mixing vessels: effect of gas on solid-liquid hydrodynamics using modified Rushton turbine agitators. Bioprocess and Biosystems Engineering, 1997, 17, 55. Critical impeller speed for solid suspension in gas inducing type mechanically agitated contactors. Canadian Journal of Chemical Engineering, 1997, 75, 664-676. 178 0.9 23 Experimental investigation of interaction between turbulent liquid flow and solid particles and its 179 effects on fast reactions. Chemical Engineering Science, 1997, 52, 807-814. Effect of low off-bottom impeller clearance on the minimum agitation speed for complete suspension 180 1.9 114 of solids in stirred tanks. Chemical Engineering Science, 1998, 53, 1757-1775. Problems in the application of dimensional analysis and scale-up of mixing operations. Chemical Engineering Science, 1998, 53, 3023-3030. Modelling for suspension of coal in multiphase reactor system. A statistical approach. Fuel, 1998, 77, 182 3.4 0 1683-1689. Theoretical prediction of the minimum stirrer speed in mechanically agitated suspensions. Chemical 1.8 Engineering and Processing: Process Intensification, 1998, 37, 503-510.

~			~	
(11	ГАТ	10N	RED	NUBL
\sim	17.51			

#	Article	IF	CITATIONS
184	Determination of correlations to predict the minimum agitation speed for complete solid suspension in agitated vessels. Canadian Journal of Chemical Engineering, 1998, 76, 413-419.	0.9	68
185	Unsuspended mass of solid particles in stirred tanks. Canadian Journal of Chemical Engineering, 1998, 76, 420-427.	0.9	22
186	Solids suspension with upâ€pumping pitchedâ€blade and highâ€efficiency impellers. Canadian Journal of Chemical Engineering, 1998, 76, 433-440.	0.9	23
187	Solid—liquid mass transfer in a shaking vessel for a bioreactor with "current pole― Canadian Journal of Chemical Engineering, 1998, 76, 441-445.	0.9	15
188	Hydrodynamics of suspensions agitated by pitched-blade turbine. AICHE Journal, 1998, 44, 513-527.	1.8	15
189	Trailing vortices around a 45° pitched-blade impeller. AICHE Journal, 1998, 44, 1233-1246.	1.8	118
190	Screening procedure for synthesizing isothermal multiphase reactors. AICHE Journal, 1998, 44, 1563-1578.	1.8	16
191	Complete Suspension of Microcapsules in Baffled and Unbaffled Stirred Tanks. Chemical Engineering and Technology, 1998, 21, 735-744.	0.9	10
192	KINETICS OF ALKALINE LEACHING OF ROASTED ZINC CONCENTRATE. Chemical Engineering Communications, 1998, 164, 1-12.	1.5	2
193	Kinetics of Hydrogenation of o-Nitrophenol to o-Aminophenol on Pd/Carbon Catalysts in a Stirred Three-Phase Slurry Reactor. Industrial & Engineering Chemistry Research, 1998, 37, 3879-3887.	1.8	39
194	Characteristics of Solid-liquid Mass Transfer for EGSTAR Agitator Kagaku Kogaku Ronbunshu, 1998, 24, 392-396.	0.1	3
195	The design of bioreactors. Process Metallurgy, 1999, 9, 61-80.	0.1	3
196	MIXING CHARACTERISTICS IN SLURRY STIRRED TANK REACTORS WITH MULTIPLE IMPELLERS. Chemical Engineering Communications, 1999, 171, 211-229.	1.5	25
197	QUANTIFICATION OF SOLID-LIQUID MIXING USING ELECTRICAL RESISTANCE AND POSITRON EMISSION TOMOGRAPHY. Chemical Engineering Communications, 1999, 175, 71-97.	1.5	23
198	Effect of some design parameters on the suspension characteristics of a mechanically agitated sand–water slurry system. Materials & Design, 1999, 20, 253-265.	5.1	17
199	Design of Mixing Systems for Plant Cell Suspensions in Stirred Reactors. Biotechnology Progress, 1999, 15, 319-335.	1.3	80
200	Suspended solids distribution in agitated, baffled vessels containing three concentric cooling coils. Chemical Engineering Science, 1999, 54, 4273-4284.	1.9	1
201	Solid Particles Concentration Profiles in an Agitated Vessel. Chemical Engineering Research and Design, 1999, 77, 741-746.	2.7	15

ARTICLE IF CITATIONS # Solid-Liquid Mass Transfer During Leaching of Calcium from Dilute Slurries of Flyash. Chemical 202 2.7 11 Engineering Research and Design, 1999, 77, 764-768. Comparing Impeller Performance for Solid-Suspension in the Transitional Flow Regime with 2.7 Newtonian Fluids. Chemical Engineering Research and Design, 1999, 77, 721-727. Oxygen transfer characteristics of multiple-phase dispersions simulating water-in-oil xanthan 204 0.5 23 fermentations. Bioprocess and Biosystems Engineering, 1999, 20, 313. An experimental study of doubleâ€toâ€singleâ€loop transition in stirred vessels. Canadian Journal of 0.9 Chemical Engineering, 1999, 77, 649-659. Agitator design for solids suspension under gassed conditions. Canadian Journal of Chemical 206 0.9 15 Engineering, 1999, 77, 1065-1071. Design of Gas-Inducing Reactors. Industrial & amp; Engineering Chemistry Research, 1999, 38, 49-80. 1.8 64 Suspension and Liquid Homogenization in High Solids Concentration Stirred Chemical Reactors. 208 2.7 94 Chemical Engineering Research and Design, 1999, 77, 241-247. Complete Drawdown and Dispersion of Floating Solids in Agitated Vessel Equipped with Ordinary 209 0.3 Impellers.. Journal of Chemical Engineering of Japan, 1999, 32, 40-44. 210 The use of reactors in biomining processes. Electronic Journal of Biotechnology, 2000, 3, 0-0. 1.2 59 Hydrodynamic effects on animal cells grown in microcarrier cultures. , 2000, 67, 841-852. Performance analysis of axial-flow mixing impellers. AICHE Journal, 2000, 46, 489-498. 213 1.8 34 Solids suspension with axial-flow impellers. AICHE Journal, 2000, 46, 647-650. 214 1.8 Suspension of solid particles in spherical stirred vessels. Chemical Engineering Science, 2000, 55, 215 1.9 11 2989-2993. Effect of particle content on agitator speed for off-bottom suspension. Chemical Engineering Journal, 6.6 2000, 79, 171-175. Multiple-impeller systems with a special emphasis on bioreactors: a critical review. Biochemical 217 1.8 156 Engineering Journal, 2000, 6, 109-144. Experimental and modelling studies on the aeration leaching process for metallic iron removal in the 1.8 manufacture of synthetic rutile. Hydrometallurgy, 2000, 56, 41-62. Solids Suspension in Three-Phase Stirred Tanks. Chemical Engineering Research and Design, 2000, 78, 219 2.7 20 319-326. INDUSTRIAL CRYSTALLIZATION AND PRECIPITATION FROM SOLUTIONS: STATE OF THE TECHNIQUE. Brazilian Journal of Chemical Engineering, 2001, 18, 423-440.

#	Article	IF	CITATIONS
222	Mass-Transfer Resistances in the Catalytic Hydrodechlorination of Polychlorobiphenyls. Experimental Results of 2-Chlorobiphenyl Hydrodechlorination in a Slurry Reactor and in a Rotating Basket Reactor. Industrial & Engineering Chemistry Research, 2001, 40, 2011-2016.	1.8	16
223	Prediction of Flow Pattern in Stirred Tanks:Â New Constitutive Equation for Eddy Viscosity. Industrial & Engineering Chemistry Research, 2001, 40, 1755-1772.	1.8	11
224	Design of Crystallizers. , 2001, , 159.		0
225	Mixing of Three-Phase Systems at High Solids Content (up to 40% w/w) Using Radial and Mixed Flow Impellers Journal of Chemical Engineering of Japan, 2001, 34, 606-612.	0.3	9
227	Solid-Liquid Mass Transfer in Gas-Liquid-Solid Agitated Vessel Journal of Chemical Engineering of Japan, 2001, 34, 1532-1537.	0.3	5
228	Critical Impeller Speed for Solid Suspension in Mechanically Agitated Contactors Journal of Chemical Engineering of Japan, 2001, 34, 423-429.	0.3	9
229	Eulerian Simulation of Dense Solid-Liquid Suspension in Multi-Stage Stirred Vessel Journal of Chemical Engineering of Japan, 2001, 34, 585-594.	0.3	27
230	The design of bioreactors. Hydrometallurgy, 2001, 59, 217-231.	1.8	46
231	Suspension of floating solids with up-pumping pitched blade impellers; mixing time and power characteristics. Chemical Engineering Journal, 2001, 84, 325-333.	6.6	46
232	The role of the diffuse double layer in leaching of calcium from the surface of flyash particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 177, 69-74.	2.3	6
233	The effect of impeller pumping and fluid rheology on solids suspension in a stirred vessel. Canadian Journal of Chemical Engineering, 2001, 79, 177-186.	0.9	30
234	Product-oriented process synthesis and development: Creams and pastes. AICHE Journal, 2001, 47, 2746-2767.	1.8	128
235	A particle's eye view of crystallizer fluid mechanics. Chemical Engineering Science, 2001, 56, 2475-2493.	1.9	53
236	Influence of stirrer speed on the precipitation of anatase particles from titanyl sulphate solution. Journal of Crystal Growth, 2001, 223, 225-234.	0.7	28
237	Numerical Simulation of the Two-Phase Flow in an Axially Stirred Vessel. Chemical Engineering Research and Design, 2001, 79, 533-546.	2.7	127
238	Experience with Experimental Standards for Measurements of Various Parameters in Stirred Tanks. Chemical Engineering Research and Design, 2001, 79, 811-818.	2.7	49
239	The Effect of Size, Location and Pumping Direction of Pitched Blade Turbine Impellers on Flow Patterns: LDA Measurements and CFD Predictions. Chemical Engineering Research and Design, 2001, 79, 887-894.	2.7	70
240	Impeller Geometry Effect on Velocity and Solids Suspension. Chemical Engineering Research and Design, 2001, 79, 989-997.	2.7	53

#	Article	IF	CITATIONS
241	Characterization of slurry systems by ultrasonic techniques. Chemical Engineering Journal, 2001, 84, 215-222.	6.6	50
242	Fluid Mixing in Reactors. , 2001, , 552-662.		2
243	Augmented-reality visualization of fluid mixing in stirred chemical reactors using electrical resistance tomography. Journal of Electronic Imaging, 2001, 10, 620.	0.5	39
244	Particleâ^'Liquid Mass Transfer Coefficient in Two-/Three-Phase Stirred Tank Reactors. Industrial & Engineering Chemistry Research, 2002, 41, 4141-4167.	1.8	85
245	3,4,5-Tri-Dodecyloxybenzoic Acid:Â Combining Reaction Engineering and Chemistry in the Development of an Attractive Tool To Assist Scaling Up Solidâ^'Liquid Reactions. Organic Process Research and Development, 2002, 6, 645-651.	1.3	12
246	Application of a hydrodynamic model to microencapsulation by coacervation. Journal of Microencapsulation, 2002, 19, 139-151.	1.2	27
247	Residence Time Optimization in Continuous Crystallizers. Crystal Growth and Design, 2002, 2, 375-379.	1.4	7
248	A Langrangian Study of Solids Suspension in a Stirred Vessel by Positron Emission Particle Tracking(PEPT). Chemical Engineering and Technology, 2002, 25, 521-528.	0.9	29
249	Suspension of high concentration slurry. AICHE Journal, 2002, 48, 1349-1352.	1.8	36
250	Gas holdâ€up in stirred tank reactors. Canadian Journal of Chemical Engineering, 2002, 80, 158-166.	0.9	33
251	An experimental investigation into vapor dispersion and solid suspension in boiling stirred tank reactors. Chemical Engineering and Processing: Process Intensification, 2002, 41, 267-279.	1.8	15
252	Effect of particle content on agitator speed for off-bottom suspension. Chemical Engineering and Processing: Process Intensification, 2002, 41, 381-384.	1.8	4
253	Recent Studies on Agitated Three-Phase (Gas–Solid–Liquid) Systems in the Turbulent Regime. Chemical Engineering Research and Design, 2002, 80, 832-838.	2.7	42
254	Gas–Liquid–Solid Operation of a Vortex-Ingesting Stirred Tank Reactor. Chemical Engineering Research and Design, 2002, 80, 839-845.	2.7	31
255	Assessment of Particle Suspension Conditions in Stirred Vessels by Means of Pressure Gauge Technique. Chemical Engineering Research and Design, 2002, 80, 893-902.	2.7	51
256	Prediction of Cloud Height for Solid Suspensions in Stirred Tanks. Chemical Engineering Research and Design, 2003, 81, 568-577.	2.7	65
257	Numerical simulation of solids suspension in a stirred tank. AICHE Journal, 2003, 49, 2700-2714.	1.8	175
258	Dynamic Compartmental Models of Uniformly-Mixed and Inhomogeneously-Mixed Gibbsite Crystallizers, Chemical Engineering and Technology, 2003, 26, 369-376	0.9	2

щ	Apticie	IF	CITATIONS
#	Solids suspension in stirred tanks with pitched blade turbines. Chemical Engineering Science, 2003, 58.	IF	CHATIONS
259	2123-2140.	1.9	76
260	Relating the attrition behaviour of crystals in a stirred vessel to their mechanical properties. Chemical Engineering Journal, 2003, 94, 223-229.	6.6	20
261	Particle Concentration and Mixing Characteristics of Moderate-to-Dense Solidâ^'Liquid Suspensions. Industrial & Engineering Chemistry Research, 2003, 42, 6236-6249.	1.8	81
262	Process Design and Scale-Up of the Synthesis of 2,2â€~:5â€~,2â€~Ââ€~-Terthienyl. Organic Process Research and Development, 2003, 7, 10-16.	1.3	11
263	Dynamics of precipitation of casein with carbon dioxide. International Dairy Journal, 2003, 13, 685-697.	1.5	18
265	Immiscible Liquid–Liquid Systems. , 0, , 639-753.		27
266	Turbulence in Mixing Applications. , 0, , 19-87.		19
268	Optimisation of the solids suspension conditions in a continuous stirred tank reactor for the biooxidation of refractory gold concentrates. Electronic Journal of Biotechnology, 2003, 6, 0-0.	1.2	0
269	GROWTH AND NUCLEATION KINETICS IN BATCH CRYSTALLIZATION OF TRICLOSAN. Chemical Engineering Communications, 2004, 191, 749-766.	1.5	5
270	The Versatility of Up-Pumping Hydrofoil Agitators. Chemical Engineering Research and Design, 2004, 82, 1073-1081.	2.7	31
271	Suspension of Microcarriers for Cell Culture with Axial Flow Impellers. Chemical Engineering Research and Design, 2004, 82, 1082-1088.	2.7	52
272	Measurement of Particle Impact Frequencies and Velocities on Impeller Blades in a Mixing Tank. Chemical Engineering Research and Design, 2004, 82, 1237-1249.	2.7	18
273	An Impedance Probe for the Measurements of Flow Characteristics and Mixing Properties in Stirred Slurry Reactors. Chemical Engineering Research and Design, 2004, 82, 1250-1257.	2.7	17
274	Particle Tracking in Opaque Mixing Systems: An Overview of the Capabilities of PET and PEPT. Chemical Engineering Research and Design, 2004, 82, 1258-1267.	2.7	79
275	Effects of ultrasound on the electrochemical cementation of cadmium by zinc powder. Ultrasonics Sonochemistry, 2004, 11, 23-26.	3.8	16
276	Power consumption and solid suspension performance of large-scale impellers in gas–liquid–solid three-phase stirred tank reactors. Chemical Engineering Journal, 2004, 97, 103-114.	6.6	80
277	Kinetics of fluid–solid reaction with an insoluble product: zinc borate by the reaction of boric acid and zinc oxide. Journal of Chemical Technology and Biotechnology, 2004, 79, 526-532.	1.6	28
278	Design of Horizontal Vessels Operated as CSTR– Basic Mixing Tasks, RTD, Productivity. Chemical Engineering and Technology, 2004, 27, 282-286.	0.9	1

#	Article	IF	CITATIONS
279	Coaxial Mixer Hydrodynamics with Newtonian and non-Newtonian Fluids. Chemical Engineering and Technology, 2004, 27, 324-329.	0.9	51
280	Kinetics of oxidation of hydroquinone by polymer-supported hypervalent iodine oxidant, iodoxybenzoic acid. Chemical Engineering Journal, 2004, 105, 1-10.	6.6	2
281	Choice of laboratory scale reactors for HDT kinetic studies or catalyst tests. Catalysis Today, 2004, 98, 31-42.	2.2	22
282	Diffusional kinetics in the catalytic hydrodechlorination of chlorobenzene in multiphase aqueous mixtures. Applied Catalysis A: General, 2004, 271, 145-151.	2.2	10
283	Kinetics of the Aqueous-Phase Hydrogenation ofl-Alanine tol-Alaninol. Industrial & Engineering Chemistry Research, 2004, 43, 3297-3303.	1.8	26
284	Application of Process Modelling Tools in the Scale-Up of Pharmaceutical Crystallisation Processes. Organic Process Research and Development, 2004, 8, 998-1008.	1.3	31
285	Mixing Time for Different Diameters of Impeller at a High Solid Concentration in an Agitated Vessel. Journal of Chemical Engineering of Japan, 2005, 38, 309-315.	0.3	12
286	Chapter 5 Industrial suspensions. Studies in Interface Science, 2005, , 245-289.	0.0	1
288	Suspension of buoyant particles in a three phase stirred tank. Chemical Engineering Science, 2005, 60, 2283-2292.	1.9	31
289	Advantages of the hollow (concave) turbine for multi-phase agitation under intense operating conditions. Chemical Engineering Science, 2005, 60, 5529-5543.	1.9	28
290	Monitoring of Multiphase Pharmaceutical Processes Using Electrical Resistance Tomography. Chemical Engineering Research and Design, 2005, 83, 794-805.	2.7	63
291	Solid particle distribution of moderately concentrated suspensions in a pilot plant stirred vessel. Chemical Engineering Journal, 2005, 113, 73-82.	6.6	35
292	A New Method to Investigate the Suspension of Solid Particles in Rectangular Tanks Agitated by a Source-Line Bubble Plumes. Energy Sources Part A Recovery, Utilization, and Environmental Effects, 2005, 27, 73-86.	0.5	1
293	Comparing the Concentration of Calcium Hydroxide in the Diffuse Double Layer by Modeling and Experiment. Particulate Science and Technology, 2005, 23, 179-187.	1.1	0
294	Mixing and Agitation. , 2005, , 277-328.		0
295	Effects of Equipment and Process Variables on the Suspension of Buoyant Particles in Gas-Sparged Vessels. Industrial & Engineering Chemistry Research, 2005, 44, 7899-7906.	1.8	10
296	Critical Impeller Speed (NSG) for Solid Suspension in Sparged Stirred Vessels Fitted with Helical Coils. Industrial & Engineering Chemistry Research, 2005, 44, 4400-4405.	1.8	7
297	A Scalable Synthesis ofl-Leucine-N-carboxyanhydride. Organic Process Research and Development, 2005, 9, 757-763.	1.3	37

ARTICLE IF CITATIONS # Dispersion of Floating Solid Particles in Aerated Stirred Tank Reactors: Â Minimum Impeller Speeds for Off-Surface and Ultimately Homogeneous Solid Suspension and Solids Concentration Profiles. 298 22 1.8 Industrial & amp; Engineering Chemistry Research, 2006, 45, 818-829. Computational Fluid Dynamics Simulation of the Solid Suspension in a Stirred Slurry Reactor. 299 1.8 Industrial & amp; Engineering Chemistry Research, 2006, 45, 4416-4428. 301 Large Eddy Simulations of a Brine-Mixing Tank., 2006, , 521. 0 An Experimental Investigation into the Complete Drawdown of Floating Solids in Dual-Impeller 0.3 Stirred Vessels. Journal of Chemical Engineering of Japan, 2006, 39, 932-939. Correlation Equation of Particle Collision Frequency with Impeller in a Stirred Tank. Kagaku Kogaku 303 0.1 8 Ronbunshu, 2006, 32, 315-326. CFD simulation of solids off-bottom suspension and cloud height. Hydrometallurgy, 2006, 82, 1-12. 1.8 Examination of swirling flow using electrical resistance tomography. Powder Technology, 2006, 162, 305 2.1 26 157-165. Numerical simulation of a dissolution process in a stirred tank reactor. Chemical Engineering 306 1.9 Science, 2006, 61, 3025-3032. Experimental investigations of stirred solid/liquid systems in three different scales: Particle 307 1.9 47 distribution and power consumption. Chemical Engineering Science, 2006, 61, 2864-2870. Influence of substrate concentration on the stability and yield of continuous biohydrogen 1.7 production. Biotechnology and Bioengineering, 2006, 93, 971-979. Hydrodynamic effects on animal cells grown in microcarrier cultures. Biotechnology and 309 19 1.7 Bioengineering, 2006, 95, 295-305. Sorption characteristics and performance of an acid dye on a gel-type weak anion exchanger in a finite bath. Journal of the Science of Food and Agriculture, 2006, 86, 2318-2326. The Details of Turbulent Mixing Process and their Simulation. Advances in Chemical Engineering, 2006, 311 0.5 30 31, 151-229. GAS DISPERSION AND SOLID SUSPENSION IN A THREE-PHASE STIRRED TANK WITH MULTIPLE IMPELLERS. 1.5 Chemical Engineering Communications, 2006, 193, 801-825. Determination of Minimum Agitation Speed for Complete Solid Suspension Using Four Electrode 313 0.3 5 Conductivity Method. AIP Conference Proceedings, 2007, , . Large Eddy Simulations of a Brine-Mixing Tank. Journal of Offshore Mechanics and Arctic Engineering, 314 2007, 129, 176-187. The Influence of the Bottom Shape of an Agitated Vessel Stirred by Dual Impellers on the Distribution 315 0.3 12 of Solid Concentration. Journal of Chemical Engineering of Japan, 2007, 40, 617-621. SOLID-LIQUID FLOW AT DILUTE CONCENTRATIONS IN AN AXIALLY STIRRED VESSEL INVESTIGATED USING 1.5 PARTICLE IMAGE VELOCIMETRY. Chemical Engineering Communications, 2007, 195, 18-34.

#	Article	IF	CITATIONS
318	Theorem of Corresponding Hydrodynamic States for Estimation of Transport Properties:Â Case Study of Mass Transfer Coefficient in Stirred Tank Fitted with Helical Coil. Industrial & Engineering Chemistry Research, 2007, 46, 3095-3100.	1.8	11
319	Kinetics of Aqueous-Phase Hydrogenation of Organic Acids and Their Mixtures over Carbon Supported Ruthenium Catalyst. Industrial & Engineering Chemistry Research, 2007, 46, 3334-3340.	1.8	48
321	A Digital Imaging Technique for the Analysis of Local Inhomogeneities from Agitated Vessels. Chemical Engineering and Technology, 2007, 30, 1692-1699.	0.9	10
322	Performance characteristics of a two-stage dark fermentative system producing hydrogen and methane continuously. Biotechnology and Bioengineering, 2007, 97, 759-770.	1.7	78
323	An Eulerian/Lagrangian study of solid suspension in stirred tanks. AICHE Journal, 2007, 53, 2461-2469.	1.8	22
324	Agitation requirements for complete solid suspension in an unbaffled agitated vessel with an unsteadily forward–reverse rotating impeller. Journal of Chemical Technology and Biotechnology, 2007, 82, 672-680.	1.6	18
325	Bottom-mounted ATR probes: Pitfalls that arise from gravitational effects. Catalysis Today, 2007, 126, 184-190.	2.2	7
326	Predicting rates of dissolution of polydisperse solids in reactive media. Chemical Engineering and Processing: Process Intensification, 2007, 46, 573-583.	1.8	7
327	Flow field of suspended solids in a stirred tank reactor by Lagrangian tracking. Chemical Engineering Science, 2007, 62, 6143-6154.	1.9	60
328	Convective–dispersive gangue transport in flotation froth. Chemical Engineering Science, 2007, 62, 5736-5744.	1.9	25
329	Primary recovery of acid food colorant. International Journal of Food Science and Technology, 2007, 42, 1315-1326.	1.3	11
330	Evaluation of solids suspension in a pilot-scale mechanical flotation cell: The critical impeller speed. Minerals Engineering, 2007, 20, 233-240.	1.8	29
331	The Effect of Bottom Roughness on the Minimum Agitator Speed Required to Just Fully Suspend Particles in a Stirred Vessel. Chemical Engineering Research and Design, 2007, 85, 685-690.	2.7	16
332	Flow and Mixing Characteristics of a Retreat Curve Impeller in a Conical-Based Vessel. Chemical Engineering Research and Design, 2007, 85, 953-962.	2.7	21
333	A general model for analyzing data on the rate of reactive dissolution of poly-disperse particulate solids. Chemical Engineering Journal, 2008, 137, 347-360.	6.6	3
334	Solid–liquid mass transfer characteristics of an unbaffled agitated vessel with an unsteadily forward–reverse rotating impeller. Journal of Chemical Technology and Biotechnology, 2008, 83, 763-767.	1.6	5
335	Solids suspension agitation in square tanks. Canadian Journal of Chemical Engineering, 2008, 86, 110-116.	0.9	6
336	Determination of minimum speed required for solids suspension in stirred vessels using pressure measurements. Canadian Journal of Chemical Engineering, 2008, 86, 661-666.	0.9	19

#	Article	IF	CITATIONS
337	Mechanisms of solids drawdown in stirred tanks. Canadian Journal of Chemical Engineering, 2008, 86, 622-634.	0.9	58
338	CFD Simulation of Solids Suspension in Mixing Vessels. Canadian Journal of Chemical Engineering, 2002, 80, 1-6.	0.9	16
339	Concept for Scaleâ€up of Solids Suspension in Stirred Tanks. Canadian Journal of Chemical Engineering, 2002, 80, 1-8.	0.9	6
340	Critical Impeller Speed for Suspending Solids in Aerated Agitation Tanks. Canadian Journal of Chemical Engineering, 2002, 80, 1-6.	0.9	32
341	Suspension of Particles from the Bottom of Pipes and Stirred Tanks by Gassed and Ungassed Flows. Canadian Journal of Chemical Engineering, 2003, 81, 351-359.	0.9	8
342	Solidâ€Liquid Mass Transfer and Hydrodynamics in the Hydrogenation of 4â€Nitrobenzoic Acid. Canadian Journal of Chemical Engineering, 2003, 81, 588-596.	0.9	6
343	Review on Mixing Characteristics in Solidâ€Liquid and Solidâ€Liquidâ€Gas Reactor Vessels. Canadian Journal of Chemical Engineering, 2005, 83, 618-643.	0.9	66
344	Solid Suspension in Jet Mixers. Canadian Journal of Chemical Engineering, 2008, 83, 816-828.	0.9	1
345	Evaluation of large Eddy simulation and Eulerâ€Euler CFD models for solids flow dynamics in a stirred tank reactor. AICHE Journal, 2008, 54, 766-778.	1.8	55
346	Effect of precipitation conditions on the morphology of strontium molybdate agglomerates. Journal of Crystal Growth, 2008, 310, 4152-4162.	0.7	22
347	Computer simulations of sodium formate solution in a mixing tank. Communications in Nonlinear Science and Numerical Simulation, 2008, 13, 380-399.	1.7	7
348	Hollow self-inducing impellers for gas–liquid–solid dispersion: Experimental and computational study. Chemical Engineering Journal, 2008, 141, 332-345.	6.6	40
349	CFD simulation of liquid-phase mixing in solid–liquid stirred reactor. Chemical Engineering Science, 2008, 63, 3877-3885.	1.9	186
350	CFD modeling of gas–liquid–solid mechanically agitated contactor. Chemical Engineering Research and Design, 2008, 86, 1331-1344.	2.7	65
351	The effect of solids on the dense phase gas fraction and gas–liquid mass transfer at conditions close to the heterogeneous regime in a mechanically agitated vessel. Chemical Engineering Research and Design, 2008, 86, 869-882.	2.7	13
352	Kinetic studies for the esterification of acetic acid with epichlorohydrin over an anion exchange resin catalyst. Open Chemistry, 2008, 6, 419-428.	1.0	4
353	Solids suspension in a pilot-scale mechanical flotation cell: A critical impeller speed correlation. Minerals Engineering, 2008, 21, 621-629.	1.8	20
355	Determination of Critical Speed for Complete Solid Suspension Using Acoustic Emission Method Based on Multiscale Analysis in Stirred Tank. Industrial & Engineering Chemistry Research, 2008, 47, 5323-5327.	1.8	30

#	Apticie	IE	CITATIONS
#	Hydrogenation of Amino Acid Mixtures to Amino Alcohols Industrial & Amino Fingineering Chemistry	IF	CHAHONS
356	Research, 2008, 47, 7648-7653.	1.8	17
357	Numerical Simulation of Liquidâ^'Solid Flow in an Unbaffled Stirred Tank with a Pitched-Blade Turbine Downflow. Industrial & Engineering Chemistry Research, 2008, 47, 2926-2940.	1.8	49
358	Movement of Solid Particles on and off Bottom of an Unbaffled Vessel Agitated by Unsteadily Forward-Reverse Rotating Impeller. Journal of Fluid Science and Technology, 2008, 3, 282-291.	0.2	13
360	Chemical Reaction Engineering. , 2008, , 737-968.		11
361	Industrial Mixing Technology. , 2008, , 615-707.		2
362	Pumping Characteristics of a Helical Screw Agitator with a Draught Tube. Journal of Fluid Science and Technology, 2008, 3, 713-721.	0.2	0
363	Suspension Property of Highly Concentrated Solid Particles Settling in a Draft-Tube Stirred Vessel. Journal of Chemical Engineering of Japan, 2008, 41, 939-946.	0.3	5
364	Distribution of Solid Particles Lighter than Liquid in an Agitated Vessel Stirred by Dual Impellers. Journal of Chemical Engineering of Japan, 2008, 41, 155-160.	0.3	9
366	Suspension of apatite particles in a self-aerated Denver laboratory flotation cell. Mining, Metallurgy and Exploration, 2009, 26, 74-78.	0.4	1
368	Suspension Mixing Tank - Design Heuristic. Chemical Product and Process Modeling, 2009, 4, .	0.5	3
369	Numerical simulation of solid suspension via mechanical agitation: effect of the modelling approach, turbulence model and hindered settling drag law. International Journal of Computational Fluid Dynamics, 2009, 23, 173-187.	0.5	37
370	A comparison of the critical impeller speed for solids suspension in a bench-scale and a pilot-scale mechanical flotation cell. Minerals Engineering, 2009, 22, 1147-1153.	1.8	9
372	Bioreactors. , 0, , 97-132.		0
373	Design of a highâ€efficiency hydrofoil through the use of computational fluid dynamics and multiobjective optimization. AICHE Journal, 2009, 55, 1723-1735.	1.8	13
374	Resolution of structure characteristics of AE signals in multiphase flow system—From data to information. AICHE Journal, 2009, 55, 2563-2577.	1.8	35
375	Saltingâ€out crystallisation using NH ₃ in a laboratoryâ€scale gas lift reactor. Canadian Journal of Chemical Engineering, 2009, 87, 869-878.	0.9	2
376	Positron emission particle tracking (PEPT) compared to particle image velocimetry (PIV) for studying the flow generated by a pitched-blade turbine in single phase and multi-phase systems. Chemical Engineering Science, 2009, 64, 4955-4968.	1.9	66
377	Application of fluorescent PIV and digital image analysis to measure turbulence properties of solid–liquid stirred suspensions. Chemical Engineering Research and Design, 2009, 87, 573-586.	2.7	55

#	Article	IF	CITATIONS
378	Dense solid–liquid off-bottom suspension dynamics: Simulation and experiment. Chemical Engineering Research and Design, 2009, 87, 587-597.	2.7	66
379	Effects of vessel baffling on the drawdown of floating solids. Chemical Papers, 2009, 63, .	1.0	22
380	Influence of suspended solid particles on gas-liquid mass transfer coefficient in a system stirred by double impellers. Chemical Papers, 2009, 63, .	1.0	7
381	Solid Particle Mobility in Agitated Bingham Liquids. Industrial & Engineering Chemistry Research, 2009, 48, 2266-2274.	1.8	13
382	A Scraped Surface Bioreactor for Enzymatic Saccharification of Pretreated Corn Stover Slurries. Energy & Fuels, 2009, 23, 492-497.	2.5	69
383	Computational Fluid Dynamics Simulation of Solid Suspension in a Gasâ^'Liquidâ^'Solid Mechanically Agitated Contactor. Industrial & Engineering Chemistry Research, 2009, 48, 1608-1620.	1.8	20
384	Mixing and Dissolution Times for a Cowles Disk Agitator in Large-Scale Emulsion Preparation. Industrial & Engineering Chemistry Research, 2009, 48, 6859-6868.	1.8	14
385	Introduction to Crystallization of Fine Chemicals and Pharmaceuticals. , 2009, , 145-172.		4
386	Solid Suspension and Liquid Phase Mixing in Solidâ^'Liquid Stirred Tanks. Industrial & Engineering Chemistry Research, 2009, 48, 9713-9722.	1.8	49
387	THE EFFECT OF VISCOSITY ON PARTICLE SUSPENSION IN AN AERATED STIRRED VESSEL WITH DIFFERENT IMPELLERS AND BASES. Chemical Engineering Communications, 2009, 197, 434-454.	1.5	25
388	Solid–Liquid Mixing. , 0, , 199-229.		0
390	Effect of Circulating Flow on Particle Dispersion in a Stirred Vessel with Dual Paddle Impellers. Journal of the Society of Powder Technology, Japan, 2010, 47, 317-326.	0.0	0
391	Solid suspension and gas dispersion in gas-solid-liquid agitated systems. Chemical Papers, 2010, 64, .	1.0	7
392	The influence of stirring speed, temperature and solid concentration on the rehydration time of micellar casein powder. Dairy Science and Technology, 2010, 90, 225-236.	2.2	47
393	Study of solid–liquid mixing in agitated tanks through electrical resistance tomography. Chemical Engineering Science, 2010, 65, 1374-1384.	1.9	123
394	PEPT measurements of solid–liquid flow field and spatial phase distribution in concentrated monodisperse stirred suspensions. Chemical Engineering Science, 2010, 65, 1905-1914.	1.9	62
395	Particle suspension in top-covered unbaffled tanks. Chemical Engineering Science, 2010, 65, 3001-3008.	1.9	65
396	Axial impeller selection for anchorage dependent animal cell culture in stirred bioreactors: Methodology based on the impeller comparison at just-suspended speed of rotation. Chemical Engineering Science, 2010, 65, 5929-5941.	1.9	53

#	Article	IF	CITATIONS
397	Reactor scale up for biological conversion of cellulosic biomass to ethanol. Bioprocess and Biosystems Engineering, 2010, 33, 485-493.	1.7	12
398	Energy efficient slurry holding and transport. Minerals Engineering, 2010, 23, 705-712.	1.8	28
399	Simultaneous production and co-mixing of microparticles of nevirapine with excipients by supercritical antisolvent method for dissolution enhancement. European Journal of Pharmaceutical Sciences, 2010, 39, 164-174.	1.9	32
400	Energy efficient high solids loading agitation for the mineral industry. Canadian Journal of Chemical Engineering, 2010, 88, 287-294.	0.9	9
401	Particle size monitoring in dense suspension using ultrasound with an improved model accounting for lowâ€angle scattering. AICHE Journal, 2010, 56, 2825-2837.	1.8	17
402	Enhanced Mass Transfer in Stirred Tanks. Chemical Engineering and Technology, 2010, 33, 508-522.	0.9	8
403	Characterization of changes in viscosity and insoluble solids content during enzymatic saccharification of pretreated corn stover slurries. Bioresource Technology, 2010, 101, 3575-3582.	4.8	44
404	Practical screening of purified cellobiohydrolases and endoglucanases with α-cellulose and specification of hydrodynamics. Biotechnology for Biofuels, 2010, 3, 18.	6.2	50
405	Computational Flow Modeling of Multiphase Mechanically Agitated Reactors. , 0, , .		2
407	Importância da hidrodinâmica na cinética de flotação de partÃculas grossas. Revista Escola De Minas, 2010, 63, 615-620.	0.1	2
408	A new aproach to characterize suspensions in stirred vessels based on computational fluid dynamics. Brazilian Journal of Chemical Engineering, 2010, 27, 265-273.	0.7	4
409	CFD simulation of solids suspension in stirred tanks: Review. Hemijska Industrija, 2010, 64, 365-374.	0.3	22
412	Study of Solidâ^'Liquid Mixing in Agitated Tanks through Computational Fluid Dynamics Modeling. Industrial & Engineering Chemistry Research, 2010, 49, 4426-4435.	1.8	117
413	Analysis of partial suspension in stirred mixing cells using both MRI and ERT. Chemical Engineering Science, 2010, 65, 1385-1393.	1.9	28
414	MIXING AND AGITATION., 2010,, 273-324.		0
415	Computational Fluid Dynamics Analysis of the Suspension of Nonspherical Particles in a Stirred Tank. Industrial & Engineering Chemistry Research, 2011, 50, 2331-2342.	1.8	18
416	Prediction of Agglomerate Type during Scale-Up of a Batch Crystallization Using Computational Fluid Dynamics Models. Organic Process Research and Development, 2011, 15, 1297-1304.	1.3	6
419	Flow Instabilities in Mechanically Agitated Stirred Vessels. , 2011, , .		1

#	Article	IF	CITATIONS
420	Abrasion of Particles by a Small Impeller in an Agitated Vessel. Journal of Chemical Engineering of Japan, 2011, 44, 882-887.	0.3	1
421	Mass Transfer in Multiphase Mechanically Agitated Systems. , 0, , .		1
422	Highly Efficient Evaporative Crystallization of a High Suspension Density Sodium Chloride Slurry in a Draft-Tube Stirred Vessel in Continuous Operation. Journal of Chemical Engineering of Japan, 2011, 44, 240-246.	0.3	4
423	CFD simulations of dense solid–liquid suspensions in baffled stirred tanks: Prediction of suspension curves. Chemical Engineering Journal, 2011, 178, 324-341.	6.6	98
424	Use of PIV to measure turbulence modulation in a high throughput stirred vessel with the addition of high Stokes number particles for both up- and down-pumping configurations. Chemical Engineering Science, 2011, 66, 5862-5874.	1.9	39
425	Design rules for suspending concentrated mixtures of solids in stirred tanks. Chemical Engineering Research and Design, 2011, 89, 1961-1971.	2.7	52
426	Jet mixing in tall tanks: Comparison of methods for predicting blend times. Chemical Engineering Research and Design, 2011, 89, 2501-2506.	2.7	16
427	The effect of the physical properties of the liquid phase on the gas-liquid mass transfer coefficient in two- and three-phase agitated systems. Chemical Papers, 2011, 65, .	1.0	6
428	Mixing of dense binary suspensions: Multiâ€component hydrodynamics and spatial phase distribution by PEPT. AICHE Journal, 2011, 57, 2302-2315.	1.8	15
429	High solids concentration agitation for minerals process intensification. AICHE Journal, 2011, 57, 2316-2324.	1.8	24
430	Comparison and validation of CFD models in liquid–solid suspensions. Canadian Journal of Chemical Engineering, 2011, 89, 696-706.	0.9	9
431	Solids suspension with angle-mounted agitators in unbaffled vessels. Canadian Journal of Chemical Engineering, 2011, 89, 940-947.	0.9	11
432	Solids distribution in tall tanks. Canadian Journal of Chemical Engineering, 2011, 89, 1104-1111.	0.9	1
433	Validation of Solids Suspension Viscosity Measurements Using Computational Fluid Dynamics. Chemical Engineering and Technology, 2011, 34, 289-295.	0.9	2
434	Using electrical resistance tomography images to characterize the mixing of micron-sized polymeric particles in a slurry reactor. Chemical Engineering Journal, 2011, 172, 517-525.	6.6	51
435	Reply to "Comments on Collignon et al. (Chem. Eng. Sci. 65 (2010) 5929–5941)― Chemical Engineering Science, 2011, 66, 1324-1325.	1.9	0
436	Large size agitators with precession impeller for ore slurries—Study, design, tests. Chemical Engineering Science, 2011, 66, 2277-2284.	1.9	8
437	A CFD Study of an up- and a down-Pumping PBT Impeller in Solid-Liquid Stirred Tank. Advanced Materials Research, 2011, 354-355, 696-700.	0.3	0

#	Article	IF	CITATIONS
438	PIV Investigation of Liquid Flow Field in Off-Centered Shaft Stirred Tanks with Floating Particles. International Journal of Chemical Reactor Engineering, 2011, 9, .	0.6	2
439	Effect of Impeller Agitation on Preparation of Tetra-n-Butyl Ammonium Bromide Semiclathrate Hydrate Slurries. International Journal of Chemical Engineering, 2012, 2012, 1-8.	1.4	0
440	Zwietering's Equation for the Suspension of Porous Particles and the Use of Curved Blade Impellers. International Journal of Chemical Engineering, 2012, 2012, 1-13.	1.4	7
441	CFD Modeling of Solid Suspension in a Stirred Tank: Effect of Drag Models and Turbulent Dispersion on Cloud Height. International Journal of Chemical Engineering, 2012, 2012, 1-9.	1.4	25
442	Characterization of Minimum Impeller Speed for Suspension of Solids in Liquid at High Solid Concentration, Using Gamma-Ray Densitometry. International Journal of Chemical Engineering, 2012, 2012, 1-15.	1.4	27
443	THEORY AND EXPERIMENTS FOR DISSOLVING SOLIDS IN WATER. Chemical Engineering Communications, 2012, 199, 335-353.	1.5	3
444	DETERMINING COMPLETE SUSPENSION OF IMMOBILIZED ENZYMES BY ANALYSIS OF DIGITAL CAMERA IMAGES. Chemical Engineering Communications, 2012, 199, 720-736.	1.5	3
445	CFD Predictions of Sufficient Suspension Conditions in Solid-Liquid Agitated Tanks. International Journal of Nonlinear Sciences and Numerical Simulation, 2012, 13, 427-443.	0.4	21
447	Comments on Flow characteristics of axial high speed impellers (Chem. Process Eng., 2010, 31, 661). Chemical and Process Engineering - Inzynieria Chemiczna I Procesowa, 2012, 33, 311-315.	0.7	0
448	Influence of solids on macro-instabilities in a stirred tank. Chemical Engineering Research and Design, 2012, 90, 1052-1062.	2.7	4
449	Analysis of dilute solid–liquid suspensions in turbulent stirred tanks. Chemical Engineering Research and Design, 2012, 90, 1448-1456.	2.7	38
450	Modeling of a Liquid–Liquid–Solid Heterogeneous Reaction System: Model System and Peroxyvaleric Acid. Industrial & Engineering Chemistry Research, 2012, 51, 189-201.	1.8	15
451	Mechanisms Influencing Crystal Breakage Experiments in Stirred Vessels. Crystal Growth and Design, 2012, 12, 2748-2758.	1.4	13
452	Swirl flow agitation for scale suppression. International Journal of Mineral Processing, 2012, 112-113, 19-29.	2.6	14
453	Fluid-dynamics scale-up problems in the DTM crystallizer. Chemical Engineering Science, 2012, 77, 78-84.	1.9	9
454	Effect of geometry on the mechanisms for off-bottom solids suspension in a stirred tank. Chemical Engineering Science, 2012, 79, 163-176.	1.9	63
455	Observations of solid–liquid systems in anchor agitated vessels. Chemical Engineering Research and Design, 2012, 90, 750-756.	2.7	2
456	A Comprehensive Review of Just Suspended Speed in Liquid-Solid and Gas-Liquid-Solid Stirred Tank Reactors. International Journal of Chemical Reactor Engineering, 2012, 10, .	0.6	10

ARTICLE IF CITATIONS Mixing and Agitation., 2012, , 277-327. 4 457 Suspension of ultrahigh concentration solids in an agitated vessel. AICHE Journal, 2012, 58, 1291-1298. 1.8 Impeller characterization and selection: Balancing efficient hydrodynamics with process mixing 459 1.8 44 requirements. AICHE Journal, 2012, 58, 2573-2588. Highly resolved simulations of solids suspension in a small mixing tank. AICHE Journal, 2012, 58, 460 1.8 39 3266-3278. Design and operation of unbaffled vessels agitated with an unsteadily forward–reverse rotating 461 impeller handling solid–liquid dispersions. Asia-Pacific Journal of Chemical Engineering, 2012, 7, 0.8 16 572-580. Process Intensification in Stirred Tanks. Chemical Engineering and Technology, 2012, 35, 1125-1132. CFD simulations of dense solid–liquid suspensions in baffled stirred tanks: Prediction of the minimum 463 6.6 78 impeller speed for complete suspension. Chemical Engineering Journal, 2012, 193-194, 234-255. Assessing solids concentration homogeneity in Rushton-agitated slurry reactors using electrical 464 1.9 resistance tomography (ERT). Chemical Engineering Science, 2012, 71, 392-399. Energy efficient solids suspension in an agitated vessel–water slurry. Chemical Engineering Science, 465 1.9 39 2012, 74, 233-243. Agitation of a gas-solid-liquid system in a vessel with high-speed impeller and vertical tubular coil. 1.0 466 Chemical Papers, 2012, 66, . Experimental analysis of the hydrodynamics of a three-phase system in a vessel with two impellers. 467 2 1.0 Chemical Papers, 2012, 66, . Influence of Mixing System Design and Operating Parameters on Dissolution Process. Chemical Engineering and Technology, 2012, 35, 247-254. 468 Lagrangian tools for the analysis of mixing in singleâ€phase and multiphase flow systems. AICHE Journal, 469 1.8 18 2012, 58, 31-45. Research on the characteristic of power consumption in a novel rotating drum bioleaching reactor 1.8 of different sizes. Minerals Engineering, 2013, 53, 16-23. Effect of solids loading on agitator justâ€suspended speed. Canadian Journal of Chemical Engineering, 471 0.9 13 2013, 91, 1508-1512. Justâ€suspended agitation of solid mixtures. Canadian Journal of Chemical Engineering, 2013, 91, 1632-1640. An empirical model for the prediction of the viscosity of slurries of coal fly ash with varying 473 3.4 20 concentration and shear rate at room temperature. Fuel, 2013, 111, 555-563. CFD simulations of dense solidâ€"liquid suspensions in baffled stirred tanks: Prediction of solid 474 6.6 particle distribution. Chemical Engineering Journal, 2013, 223, 875-890.

#	Article	IF	CITATIONS
475	Prediction of just suspended speed for mixed slurries at high solids loadings. Chemical Engineering Research and Design, 2013, 91, 227-233.	2.7	12
476	Scaleâ€down of the inactivated polio vaccine production process. Biotechnology and Bioengineering, 2013, 110, 1354-1365.	1.7	32
479	Ultrasonic-Assisted Extraction of Aloin from Aloe Vera Gel. Procedia Engineering, 2013, 51, 487-493.	1.2	28
480	Effect of impeller type and position in a batch cooling crystallizer on the growth of borax decahydrate crystals. Chemical Engineering Research and Design, 2013, 91, 274-285.	2.7	17
481	Limestone dissolution study for Wet Flue Gas Desulfurization under turbulent regimes above critical suspension speed. Computer Aided Chemical Engineering, 2013, 32, 301-306.	0.3	2
482	Solids Suspension Study in a Side-Entering Stirred Tank Through CFD Modeling. International Journal of Chemical Reactor Engineering, 2013, 11, 331-346.	0.6	10
483	Micromixing of Solidâ€liquid Systems in a Stirred Tank with Double Impellers. Chemical Engineering and Technology, 2013, 36, 443-449.	0.9	15
484	Experiments and Simulations on Bidisperse Solids Suspension in a Mixing Tank. Chemical Engineering and Technology, 2013, 36, 1957-1967.	0.9	13
485	Effect of Impeller Shape on Solid Particle Suspension. Chemical and Process Engineering - Inzynieria Chemiczna I Procesowa, 2013, 34, 139-152.	0.7	6
486	Solid Suspension in Stirred Tank Equipped with Multi-Side-Entering Agitators. Engineering Applications of Computational Fluid Mechanics, 2013, 7, 282-294.	1.5	3
488	Effect of Temperature and Salts on Phenol Bio-Availability in Polluted-Sandy-Soils: A Practical Biotechnological Approach before Microbial Bioremediation. Journal of Bioremediation & Biodegradation, 2014, 05, .	0.5	0
489	Solid-liquid Mixing in a Stirred Vessel. Japanese Journal of Multiphase Flow, 2014, 28, 437-443.	0.1	1
490	Modification and qualification of a stirred single-use bioreactor for the improved expansion of human mesenchymal stem cells at benchtop scale. Pharmaceutical Bioprocessing, 2014, 2, 311-322.	0.8	25
492	Die Entwicklung der Rührtechnik von einer empirischen Kunst zur Wissenschaft. Chemie-Ingenieur-Technik, 2014, 86, 2051-2062.	0.4	3
493	Application of KHX Impeller in a Low-shear Stirred Bioreactor. Chinese Journal of Chemical Engineering, 2014, 22, 1072-1077.	1.7	7
494	Modelling of a solid dissolution in liquid with chemical reaction: Application to the attack reaction of phosphate by sulphuric acid. Canadian Journal of Chemical Engineering, 2014, 92, 1829-1838.	0.9	7
495	Mass Production of Mesenchymal Stem Cells — Impact of Bioreactor Design and Flow Conditions on Proliferation and Differentiation. , 0, , .		22
496	Influence of drag and turbulence modelling on CFD predictions of solid liquid suspensions in stirred vessels. Chemical Engineering Research and Design, 2014, 92, 1045-1063.	2.7	48

#	Article	IF	CITATIONS
497	Comparison of solids suspension criteria based on electrical impedance tomography and visual measurements. Chemical Engineering Science, 2014, 116, 128-135.	1.9	12
498	Experimentally Validated Computational Fluid Dynamics Simulations of Multicomponent Hydrodynamics and Phase Distribution in Agitated High Solid Fraction Binary Suspensions. Industrial & Engineering Chemistry Research, 2014, 53, 895-908.	1.8	10
499	Stirring and Stirredâ€Tank Reactors. Chemie-Ingenieur-Technik, 2014, 86, 2063-2074.	0.4	42
500	Breakage of transgenic tobacco roots for monoclonal antibody release in an ultraâ€scale down shearing device. Biotechnology and Bioengineering, 2014, 111, 196-201.	1.7	28
501	Enhancing the Crystal Production Rate and Reducing Polydispersity in Continuous Protein Crystallization. Industrial & Engineering Chemistry Research, 2014, 53, 15538-15548.	1.8	32
502	Solid–Liquid Suspensions in Top-Covered Unbaffled Vessels: Influence of Particle Size, Liquid Viscosity, Impeller Size, and Clearance. Industrial & Engineering Chemistry Research, 2014, 53, 9587-9599.	1.8	48
503	Analysis of solid concentration distribution in dense solid–liquid stirred tanks by electrical resistance tomography. Chemical Engineering Science, 2014, 119, 53-64.	1.9	65
504	Minimum rotation speed to prevent coning phenomena in compendium paddle dissolution apparatus. European Journal of Pharmaceutical Sciences, 2014, 65, 74-78.	1.9	14
505	Solid Particle Distribution in Centrifugal Impeller Contactors. Journal of Dispersion Science and Technology, 2014, 35, 1097-1105.	1.3	5
506	Mixing analysis of PCS slurries in a horizontal scraped surface bioreactor. Bioprocess and Biosystems Engineering, 2014, 37, 2113-2119.	1.7	9
507	Optimum Solids Concentration in an Agitated Vessel. Industrial & Engineering Chemistry Research, 2014, 53, 3959-3973.	1.8	20
508	Critical analysis of Zwietering correlation for solids suspension in stirred tanks. Chemical Engineering Research and Design, 2014, 92, 413-422.	2.7	50
509	Application of Continuous Crystallization in an Integrated Continuous Pharmaceutical Pilot Plant. Crystal Growth and Design, 2014, 14, 2148-2157.	1.4	64
510	Assessment of air entrainment in stirred tanks using capacitive sensors. Sensors and Actuators A: Physical, 2014, 216, 92-101.	2.0	11
511	Review of Visualization of Flow and Dispersion States of Slurry System Fluids in Stirred Vessels. Journal of Chemical Engineering of Japan, 2014, 47, 109-114.	0.3	5
517	A Numerical Study on Particle Suspension in a Stirred Vessel with Rushton Turbine Impeller. Journal of Chemical Engineering of Japan, 2015, 48, 367-373.	0.3	0
518	Mesoscale Flow Structures and Fluid–Particle Interactions. Advances in Chemical Engineering, 2015, , 281-354.	0.5	7
519	High throughput screening of particle conditioning operations: II. Evaluation of scaleâ€up heuristics with prokaryotically expressed polysaccharide vaccines. Biotechnology and Bioengineering, 2015, 112, 1568-1582	1.7	2

#	Article	IF	CITATIONS
520	Predicting Power for a Scaledâ€up Nonâ€Newtonian Biomass Slurry. Chemical Engineering and Technology, 2015, 38, 53-60.	0.9	18
521	High throughput screening of particle conditioning operations: I. System design and method development. Biotechnology and Bioengineering, 2015, 112, 1554-1567.	1.7	4
522	CFD simulation of complete drawdown of floating solids in a stirred tank. Canadian Journal of Chemical Engineering, 2015, 93, 141-149.	0.9	9
523	The Development of Stirring Technology from an Empirical Art to Science. ChemBioEng Reviews, 2015, 2, 279-289.	2.6	3
524	Correlation between milling time, particle size for stabilizing rheological parameters of clay suspensions in ceramic tiles manufacture. International Journal of Physical Sciences, 2015, 10, 46-53.	0.1	1
525	Effect of Impeller-To-Tank Geometry on Particles Distribution and Just-Suspension Speeds for a Range of Solids Loadings. Journal of Chemical Engineering of Japan, 2015, 48, 374-380.	0.3	4
526	Study on Solubility of Hydrophobically Associating Polymers Using Double Agitators. Journal of Chemical Engineering of Japan, 2015, 48, 381-386.	0.3	1
527	CFD Modelling of Flow and Solids Distribution in Carbon-in-Leach Tanks. Metals, 2015, 5, 1997-2020.	1.0	2
528	Prediction of coning phenomena for irregular particles in paddle dissolution test. European Journal of Pharmaceutical Sciences, 2015, 76, 213-216.	1.9	13
530	Maximizing Impeller Power Efficiency in Gas–Solid–Liquid Stirred Vessels through Process Intensification. Industrial & Engineering Chemistry Research, 2015, 54, 11915-11928.	1.8	6
531	Suspending a solid sphere in laminar inertial liquid flow—experiments and simulations. AICHE Journal, 2015, 61, 1455-1469.	1.8	13
532	Large Eddy Simulation of the influence of solids on macro instability frequency in a stirred tank. Chemical Engineering Journal, 2015, 259, 900-910.	6.6	21
533	Evaluation of the ASTERTM process in the presence of suspended solids. Minerals Engineering, 2015, 76, 72-80.	1.8	12
534	Influence of geometry and slurry properties on fine particles suspension at high loadings in a stirred vessel. Chemical Engineering Research and Design, 2015, 94, 324-336.	2.7	17
535	Optimum solids concentration for solids suspension and solid–liquid mass transfer in agitated vessels. Chemical Engineering Research and Design, 2015, 100, 148-156.	2.7	27
536	Solid–Liquid Suspension in Pilot Plants: Using Engineering Tools to Understand At-Scale Capabilities. Organic Process Research and Development, 2015, 19, 1128-1137.	1.3	2
537	Models and Applications for Simulating Turbulent Solid–Liquid Suspensions in Stirred Tanks. Journal of Chemical Engineering of Japan, 2015, 48, 329-336.	0.3	9
538	Solid-liquid mixing analysis in stirred vessels. Reviews in Chemical Engineering, 2015, 31, .	2.3	6

	CITATION	Report	
#	Article	IF	Citations
539	Lagrangian particle tracking in mechanically agitated polydisperse suspensions: Multi-component hydrodynamics and spatial distribution. International Journal of Multiphase Flow, 2015, 73, 80-89.	1.6	8
540	Optimization of a Wet Flue Gas Desulfurization Scrubber through Mathematical Modeling of Limestone Dissolution Experiments. Industrial & Engineering Chemistry Research, 2015, 54, 9783-9797.	1.8	15
541	Effects of baffle configuration and tank size on spherical agglomerates of dimethyl fumarate in a common stirred tank. International Journal of Pharmaceutics, 2015, 495, 886-894.	2.6	10
542	Effect of impeller type and density difference on the draw down of low density microspheres. Chemical Engineering Research and Design, 2015, 104, 571-578.	2.7	4
543	Suspension of solid particles in vessels agitated by axial flow impellers. Chemical Engineering Research and Design, 2015, 100, 282-291.	2.7	54
544	Coning phenomena under laminar flow. European Journal of Pharmaceutical Sciences, 2015, 80, 53-55.	1.9	5
545	Fluid dynamics characterization of a stirred model bio-methanation digester. Chemical Engineering Research and Design, 2015, 93, 38-47.	2.7	13
546	Critical agitation for microcarrier suspension in orbital shaken bioreactors: Experimental study and dimensional analysis. Chemical Engineering Science, 2015, 122, 545-554.	1.9	25
547	Sediment Evacuation from Reservoirs through Intakes by Jet-Induced Flow. Journal of Hydraulic Engineering, 2015, 141, .	0.7	20
548	Crystallization of Pharmaceutical Crystals. , 2015, , 915-949.		6
549	Case Studies in the Applicability of Drug Substance Design Spaces Developed on the Laboratory Scale to Commercial Manufacturing. Organic Process Research and Development, 2015, 19, 925-934.	1.3	9
550	A New Model for Estimation of Just-Suspension Speed Based on Lift Force for Solid–Liquid Suspension in a Stirred Tank. Journal of Chemical Engineering of Japan, 2016, 49, 737-746.	0.3	5
551	Theoretical and Practical Issues That Are Relevant When Scaling Up hMSC Microcarrier Production Processes. Stem Cells International, 2016, 2016, 1-15.	1.2	50
552	Revisiting the dissolution kinetics of limestone - experimental analysis and modeling. Journal of Chemical Technology and Biotechnology, 2016, 91, 1517-1531.	1.6	11
553	Using tomograms to assess the local solid concentrations in a slurry reactor equipped with a Maxblend impeller. Powder Technology, 2016, 301, 701-712.	2.1	41
554	Improved Mixing in a Magnetite Iron Ore Tank via Swirl Flow: Labâ€5cale and Fullâ€5cale Studies. Chemical Engineering and Technology, 2016, 39, 505-514.	0.9	7
556	Analysis of particle cloud height dynamics in a stirred tank. AICHE Journal, 2016, 62, 338-348.	1.8	3
557	Suspension of solid particles in vessels agitated by Rushton turbine imperllers. Chemical Engineering Research and Design, 2016, 109, 730-733.	2.7	28

#	Article	IF	CITATIONS
558	CFD simulation of solid–liquid stirred tanks for low to dense solid loading systems. Particuology, 2016, 29, 16-33.	2.0	58
559	Agitation energy efficiency in gas–solid–liquid stirred vessels operating at ultra-high solids concentrations. Chemical Engineering Research and Design, 2016, 111, 34-48.	2.7	13
560	Development of an unresolved CFD–DEM model for the flow of viscous suspensions and its application to solid–liquid mixing. Journal of Computational Physics, 2016, 318, 201-221.	1.9	113
561	Bioreactor Engineering Fundamentals for Stem Cell Manufacturing. , 2016, , 43-75.		16
562	Computationally determined just suspended speed using multiphase mean age theory. Chemical Engineering Research and Design, 2016, 114, 13-17.	2.7	4
563	Principles and Challenges Involved in the Enzymatic Hydrolysis of Cellulosic Materials at High Total Solids. Green Energy and Technology, 2016, , 147-173.	0.4	8
564	Determination of oil–water volume fraction by using a pencil-beam collimated gamma-ray emitting source in a homogenized flow regime condition. Flow Measurement and Instrumentation, 2016, 52, 17-24.	1.0	4
565	Particle Suspension in Vortexing Unbaffled Stirred Tanks. Industrial & Engineering Chemistry Research, 2016, 55, 7535-7547.	1.8	21
566	Catalytic Reaction Engineering. , 2016, , 263-314.		3
567	SIMULATION OF SOLID–LIQUID SUSPENSION AND SCALE-UP OF AGAROSE GEL ACTIVATION REACTOR. Journal of Mechanics in Medicine and Biology, 2016, 16, 1650087.	0.3	1
568	Release of suspension particles from a prismatic tank by multiple jet arrangements. Chemical Engineering Science, 2016, 144, 153-164.	1.9	2
569	Study of sparger location on solid suspension in a tripleâ€impeller stirred vessel. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 229-236.	0.8	2
570	Optimized Stirred Reactor for Enhanced Particle Dispersion. Chemical Engineering and Technology, 2016, 39, 680-688.	0.9	11
571	Parametric optimization and modeling of batch extraction process for extraction of betulinic acid from leaves of <i>Vitex Negundo Linn </i> . Separation Science and Technology, 2016, 51, 641-652.	1.3	5
572	Large-Eddy Simulations of microcarrier exposure to potentially damaging eddies inside mini-bioreactors. Biochemical Engineering Journal, 2016, 108, 30-43.	1.8	27
573	Experimental investigation of the mixing of viscous liquids and non-dilute concentrations of particles in a stirred tank. Chemical Engineering Research and Design, 2016, 108, 55-68.	2.7	31
574	Computational Fluid Dynamics Simulation and Experimental Measurement of Gas and Solid Holdup Distributions in a Gas–Liquid–Solid Stirred Reactor. Industrial & Engineering Chemistry Research, 2016, 55, 3276-3286.	1.8	21
575	Maximizing gas–liquid interfacial area in a three-phase stirred vessel operating at high solids concentrations. Chemical Engineering and Processing: Process Intensification, 2016, 104, 133-147.	1.8	12

#	Article	IF	CITATIONS
576	Quantitative cross-sectional measurement of solid concentration distribution in slurries using a wire-mesh sensor. Measurement Science and Technology, 2016, 27, 015301.	1.4	12
577	In-line mixing states monitoring of suspensions using ultrasonic reflection technique. Ultrasonics, 2016, 65, 43-50.	2.1	4
578	Bioprocessing of human mesenchymal stem/stromal cells for therapeutic use: Current technologies and challenges. Biochemical Engineering Journal, 2016, 108, 3-13.	1.8	83
579	CFD-DEM investigation of viscous solid–liquid mixing: Impact of particle properties and mixer characteristics. Chemical Engineering Research and Design, 2017, 118, 270-285.	2.7	52
580	CFD simulation of floating particles suspension in a stirred tank. Chemical Papers, 2017, 71, 1377-1387.	1.0	11
581	Using computational fluid dynamics to analyze the performance of the Maxblend impeller in solid-liquid mixing operations. International Journal of Multiphase Flow, 2017, 91, 194-207.	1.6	56
582	Application of mass transfer theory to biomarker capture by surface functionalized magnetic beads in microcentrifuge tubes. Advances in Colloid and Interface Science, 2017, 246, 275-288.	7.0	4
583	Power consumption and mass transfer in a gas-liquid-solid stirred tank reactor with various triple-impeller combinations. Chemical Engineering Science, 2017, 170, 464-475.	1.9	36
584	Quantitative assessment of energy and resource recovery in wastewater treatment plants based on plant-wide simulations. Water Research, 2017, 118, 272-288.	5.3	70
585	Microscale Detection of Hydrate Blockage Onset in High-Pressure Gas–Water Systems. Energy & Fuels, 2017, 31, 4875-4885.	2.5	24
586	Experimental Study on Scale-Up of Solid–Liquid Stirred Tank with an Intermig Impeller. Jom, 2017, 69, 301-306.	0.9	3
587	Enhancing Impeller Power Efficiency and Solid–Liquid Mass Transfer in an Agitated Vessel with Dual Impellers through Process Intensification. Industrial & Engineering Chemistry Research, 2017, 56, 7021-7036.	1.8	13
588	Two-phase flow component fraction measurement using gamma-ray attenuation technique. Nuclear Science and Techniques/Hewuli, 2017, 28, 1.	1.3	1
589	CFD-DEM simulations of early turbulent solid–liquid mixing: Prediction of suspension curve and just-suspended speed. Chemical Engineering Research and Design, 2017, 123, 388-406.	2.7	55
590	Process modeling in the biopharmaceutical industry. , 2017, , 383-425.		2
591	Process development for expansion of human mesenchymal stromal cells in a 50L single-use stirred tank bioreactor. Biochemical Engineering Journal, 2017, 120, 49-62.	1.8	103
592	A stir casting system for drawdown of light particles in manufacturing of metal matrix composites. Journal of Materials Processing Technology, 2018, 257, 123-131.	3.1	12
593	Experimental study on the solid suspension characteristics of coaxial mixers. Chemical Engineering Research and Design, 2018, 133, 335-346.	2.7	31

#	Article	IF	CITATIONS
594	Concentrated slurry formation via drawdown and incorporation of wettable solids in a mechanically agitated vessel. AICHE Journal, 2018, 64, 1885-1895.	1.8	7
595	An experimental evaluation of the effect of homogenization quality as a preconditioning on oil-water two-phase volume fraction measurement accuracy using gamma-ray attenuation technique. Journal of Instrumentation, 2018, 13, P02012-P02012.	0.5	0
596	Eulerianâ€Lagrangian simulations of settling and agitated dense solidâ€liquid suspensions – achieving grid convergence. AICHE Journal, 2018, 64, 1147-1158.	1.8	19
597	Solid-liquid suspension of microcarriers in stirred tank bioreactor – Experimental and numerical analysis. Chemical Engineering Science, 2018, 180, 52-63.	1.9	21
598	Borax Crystallization Kinetics in a Pitchedâ€Blade Turbine/Straightâ€Blade Turbine Dualâ€Impeller Crystallizer. Chemical Engineering and Technology, 2018, 41, 1342-1349.	0.9	5
599	Comparison of hydrodynamics in standard stainless steel and single-use bioreactors by means of an Euler-Lagrange approach. Chemical Engineering Science, 2018, 188, 52-64.	1.9	4
600	Optimisation of stirred vessel geometry for the drawdown and incorporation of floating solids to prepare concentrated slurries. Chemical Engineering Research and Design, 2018, 133, 70-78.	2.7	5
601	Flotation study of fine grained carbonaceous sedimentary apatite ore – Challenges in process mineralogy and impact of hydrodynamics. Minerals Engineering, 2018, 121, 196-204.	1.8	52
602	Multi-particle suspension in a laminar flow agitated by a Rushton turbine. Chemical Engineering Research and Design, 2018, 132, 831-842.	2.7	7
603	Clinical-scale expansion of adipose-derived stromal cells starting from stromal vascular fraction in a single-use bioreactor: proof of concept for autologous applications. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 129-141.	1.3	13
604	Towards the development of a supercritical carbon dioxide spray process to coat solid protein particles. Journal of Supercritical Fluids, 2018, 141, 49-59.	1.6	2
605	Development of a Safe and Scalable Process for the Preparation of Allyl Glyoxalate. Organic Process Research and Development, 2018, 22, 82-90.	1.3	4
606	Intensification of sonochemical reactions in solid-liquid systems under fully suspended condition. Chemical Engineering and Processing: Process Intensification, 2018, 123, 34-44.	1.8	8
607	Modeling and simulation of the influences of particle-particle interactions on dense solid–liquid suspensions in stirred vessels. Chemical Engineering Science, 2018, 176, 439-453.	1.9	44
608	Particleâ€resolved PIV experiments of solidâ€liquid mixing in a turbulent stirred tank. AICHE Journal, 2018, 64, 389-402.	1.8	35
609	Scale-Up of Solid-Liquid Mixing Based on Constant Power/Volume and Equal Blend Time Using VisiMix Simulation. MATEC Web of Conferences, 2018, 187, 04002.	0.1	2
610	Using Experimental Fluid Dynamics and Computational Fluid Dynamics for Evaluating Periodic Mixing. , 2018, , .		0
611	Numerical simulation of solid-liquid suspension characteristics induced by three-bent-bladed turbine in stirred tank. IOP Conference Series: Materials Science and Engineering, 2018, 382, 042028.	0.3	1

#	Article	IF	CITATIONS
612	Solid Suspension Characteristics in a Dished Base Tank for a Range of Geometric and Solids Properties. Journal of Chemical Engineering of Japan, 2018, 51, 152-158.	0.3	0
613	Growth Behavior of Human Adipose Tissue-Derived Stromal/Stem Cells at Small Scale: Numerical and Experimental Investigations. Bioengineering, 2018, 5, 106.	1.6	14
614	Evaluation of Just-Suspended Speed Correlations in Lab-Scale Tanks with Varying Baffle Configurations. Organic Process Research and Development, 2018, 22, 1481-1488.	1.3	4
615	Enhanced Product Quality Control through Separation of Crystallization Phenomena in a Four-Stage MSMPR Cascade. Crystal Growth and Design, 2018, 18, 7323-7334.	1.4	20
616	Particle Scattering Photography Approach for Poorly Illuminated Multiphase Reactors. II: Experimental Validation and Optimization. Industrial & Engineering Chemistry Research, 2018, 57, 8405-8412.	1.8	6
617	Critical impeller speeds for a gas-inducing stirring tank loaded with solid particles. Chinese Journal of Chemical Engineering, 2018, 26, 1423-1429.	1.7	3
618	Complementary methods for the determination of the just-suspended speed and suspension state in a viscous solid–liquid mixing system. Chemical Engineering Research and Design, 2018, 136, 32-40.	2.7	8
619	Particle image velocimetry experiments and direct numerical simulations of solids suspension in transitional stirred tank flow. Chemical Engineering Science, 2018, 191, 288-299.	1.9	29
620	Applicability of the power model to mixed slurries with non-spherical particles and networking effect. Chemical Engineering Research and Design, 2018, 138, 314-330.	2.7	0
621	Kinetics of Catalytic Wet Peroxide Oxidation of Phenolics in Olive Oil Mill Wastewaters over Copper Catalysts. ACS Omega, 2018, 3, 7247-7260.	1.6	13
622	A combined CFD-experimental method for abrasive erosion testing of concrete. Journal of Hydrology and Hydromechanics, 2018, 66, 121-128.	0.7	11
624	Gas-liquid oxygen transfer in aerated and agitated slurry systems with high solid volume fractions. Chemical Engineering Journal, 2018, 350, 1073-1083.	6.6	19
625	A computational fluid dynamics study on the solid mineral particles-laden flow in a novel offshore agitated vessel. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2019, 233, 622-631.	0.3	1
626	Experimental study and simulation of a three-phase flow stirred bioreactor. Chinese Journal of Chemical Engineering, 2019, 27, 649-659.	1.7	7
627	Experimental investigation on solid suspension performance of coaxial mixer in viscous and high solid loading systems. Chemical Engineering Science, 2019, 208, 115144.	1.9	13
628	Power consumption and gas–liquid mass transfer in a hot-sparged three-phase stirred reactor. Powder Technology, 2019, 354, 314-323	2.1	4
629	Crystallizer Mixing. , 2019, , 290-312.		5
630	Experimental Investigation on Drawdown of Floating Particles in Viscous Systems Driven by Coaxial Mixers. Industrial & Mixers, Engineering Chemistry Research, 2019, 58, 11060-11071.	1.8	7

#	Article	IF	CITATIONS
631	Determination of the just suspended speed for solid particle in torus reactor. Water Science and Technology, 2019, 80, 48-58.	1.2	3
632	Numerical study on solid suspension characteristics of a coaxial mixer in viscous systems. Chinese Journal of Chemical Engineering, 2019, 27, 2325-2336.	1.7	6
633	Mixing of highly concentrated slurries of large particles: Applications of electrical resistance tomography (ERT) and response surface methodology (RSM). Chemical Engineering Research and Design, 2019, 143, 226-240.	2.7	32
634	Adsorbents. , 2019, , 7-21.		2
635	Effect of Suspension Pattern of Sedimentary Particles on Solid/Liquid Mass Transfer in a Mechanically Stirred Vessel. Industrial & Engineering Chemistry Research, 2019, 58, 10172-10178.	1.8	10
636	Establishing the scalable manufacture of primary human Tâ€cells in an automated stirredâ€ŧank bioreactor. Biotechnology and Bioengineering, 2019, 116, 2488-2502.	1.7	20
637	Appropriate mixing speeds of Rushton turbine for biohydrogen production from palm oil mill effluent in a continuous stirred tank reactor. Energy, 2019, 179, 823-830.	4.5	12
638	Optimization of the Impeller Design for Mesenchymal Stem Cell Culture on Microcarriers in Bioreactors. Chemical Engineering and Technology, 2019, 42, 1702-1708.	0.9	7
643	Quantitative Measurements of the Critical Impeller Speed for Solidâ€Liquid Suspensions. Chemical Engineering and Technology, 2019, 42, 1643-1653.	0.9	5
644	Measuring gas holdâ€up in gas–liquid/gas–solid–liquid stirred tanks with an electrical resistance tomography linear probe. AICHE Journal, 2019, 65, e16586.	1.8	26
645	Dimensional analysis and CFD simulations of microcarrier â€̃just-suspended' state in mesenchymal stromal cells bioreactors. Chemical Engineering Science, 2019, 203, 464-474.	1.9	11
646	Effect of ethanolic extraction, thermal vacuum concentration, ultrafiltration, and spray drying on polyphenolic compounds of tropical highland blackberry (Rubus adenotrichos Schltdl.) byâ€product. Journal of Food Process Engineering, 2019, 42, e13051.	1.5	6
648	A comparative study of continuous operation between a dynamic baffle crystallizer and a stirred tank crystallizer. Chemical Engineering Journal, 2019, 367, 278-294.	6.6	27
649	Sensitivity analysis of artificial neural networks for just-suspension speed prediction in solid-liquid mixing systems: Performance comparison of MLPNN and RBFNN. Advanced Engineering Informatics, 2019, 39, 278-291.	4.0	21
650	Effect of the Radial Measurement Position on the Determination of Just-Suspended Speed Using Pressure Gauge Technology. Industrial & Engineering Chemistry Research, 2019, 58, 23490-23497.	1.8	1
652	Scale-up in froth flotation: A state-of-the-art review. Separation and Purification Technology, 2019, 210, 950-962.	3.9	87
653	Solid-liquid mass transfer in sonicated agitated vessels with high concentration slurries. Heat and Mass Transfer, 2019, 55, 1327-1335.	1.2	2
654	The Role of Residence Time Distribution in the Continuous Steady-State Mixed Suspension Mixed Product Removal Crystallization of Glycine. Crystal Growth and Design, 2019, 19, 66-80.	1.4	10

#	Article	IF	CITATIONS
655	Application of pressure gauge measurement method beyond its limits. Chemical Engineering Research and Design, 2019, 141, 170-180.	2.7	8
656	Critical review of different aspects of liquid-solid mixing operations. Reviews in Chemical Engineering, 2020, 36, 555-592.	2.3	23
657	Effect of impeller type on mixing of highly concentrated slurries of large particles. Particuology, 2020, 50, 88-99.	2.0	17
658	Effects of surface vortex on the drawdown and dispersion of floating particles in stirred tanks. Particuology, 2020, 49, 159-168.	2.0	9
659	Hydrodynamics of solid and liquid phases in a mixing tank containing high solid loading slurry of large particles via tomography and computational fluid dynamics. Powder Technology, 2020, 360, 635-648.	2.1	34
660	Gas dispersion and solid suspension in a three-phase stirred tank with triple impellers. Chinese Journal of Chemical Engineering, 2020, 28, 1195-1202.	1.7	3
661	Mixing indices allow scale-up of stirred tank slurry reactor conditions for equivalent homogeneity. Chemical Engineering Research and Design, 2020, 153, 865-874.	2.7	15
662	Positron Emission Particle Tracking for Liquidâ€Solid Mixing in Stirred Tanks. Chemical Engineering and Technology, 2020, 43, 1939-1950.	0.9	5
663	Numerical investigation on mixing characteristics of floating and sinking particles in a stirred tank with fractal impellers. Journal of the Taiwan Institute of Chemical Engineers, 2020, 116, 51-61.	2.7	16
664	Application of Theoretical and Experimental Findings for Optimization of Mixing Processes and Equipment. Processes, 2020, 8, 955.	1.3	7
665	Advances in human mesenchymal stromal cell-based therapies – Towards an integrated biological and engineering approach. Stem Cell Research, 2020, 47, 101888.	0.3	10
666	Flow, suspension and mixing dynamics in <scp>DASGIP</scp> bioreactors, Part 2. AICHE Journal, 2020, 66, e16999.	1.8	3
667	CFD numerical simulation of particle suspension and hydromechanical stress in various designs of multi-stage bioleaching reactors. Hydrometallurgy, 2020, 197, 105490.	1.8	4
668	Scale-Up of Mixing Equipment for Suspensions. Processes, 2020, 8, 909.	1.3	2
669	Development and Execution of an Ni(II)-Catalyzed Reductive Cross-Coupling of Substituted 2-Chloropyridine and Ethyl 3-Chloropropanoate. Organic Process Research and Development, 2020, 24, 1141-1148.	1.3	26
670	Time Scales and Turbulent Spectra above the Base of Stirred Vessels from Large Eddy Simulations. Flow, Turbulence and Combustion, 2020, 105, 31-62.	1.4	5
671	Classification of regimes determining ultrasonic cavitation erosion in solid particle suspensions. Ultrasonics Sonochemistry, 2020, 68, 105214.	3.8	22
672	Study of Secondary Nucleation by Attrition of Potassium Alum Crystals Suspended in Different Solvents. Crystal Growth and Design, 2020, 20, 2570-2577.	1.4	11

#	Article	IF	CITATIONS
673	CFD Research on the Influence of 45° Disk Turbine Agitator Blade Diameter on the Solid–Liquid Mixing Characteristics of the Cone-Bottom Stirred Tank. Arabian Journal for Science and Engineering, 2020, 45, 5741-5749.	1.7	5
674	Design and Hydrodynamic Characterization of a Draft Tube Baffle Tank for Labâ€Scale. Chemie-Ingenieur-Technik, 2020, 92, 288-294.	0.4	4
675	Dimensional-analysis and similitude for scale-up of solid-liquid extraction of Eurycoma longifolia roots. Chemical Engineering Science, 2020, 217, 115490.	1.9	6
676	Artificial Neural Network (ANN) model development for predicting just suspension speed in solid-liquid mixing system. Flow Measurement and Instrumentation, 2020, 71, 101689.	1.0	20
677	On the Reduction of Power Consumption in Vortexing Unbaffled Bioslurry Reactors. Industrial & Engineering Chemistry Research, 2020, 59, 8037-8045.	1.8	5
678	Study on transient kinetics and parameter optimization of degradation of oily sludge by bioreactor. Biochemical Engineering Journal, 2020, 159, 107581.	1.8	5
679	Suspension pattern and rising height of sedimentary particles with low concentration in a mechanically stirred vessel. Canadian Journal of Chemical Engineering, 2021, 99, 410-420.	0.9	2
680	CFD-DEM simulations of solid-liquid flow in stirred tanks using a non-inertial frame of reference. Chemical Engineering Science, 2021, 230, 116137.	1.9	19
681	A spectral approach of suspending solid particles in a turbulent stirred vessel. AICHE Journal, 2021, 67, e17097.	1.8	2
682	Hydrodynamics and mass transfer in spinner flasks: Implications for large scale cultured meat production. Biochemical Engineering Journal, 2021, 167, 107864.	1.8	10
683	Imaging method for the determination of the minimum agitation speed, N, for solids suspension in stirred vessels and reactors. Chemical Engineering Science, 2021, 231, 116263.	1.9	13
684	Detection of the pulp-froth interface using the ultrasound transit time technique. Minerals Engineering, 2021, 160, 106679.	1.8	1
685	Experimental investigation on solid particle distribution in dense solid–liquid stirred tank. Chemical Papers, 2021, 75, 1457-1468.	1.0	3
686	Microwave treatment combined with wetting agent for an efficient flotation separation of acrylonitrile butadiene styrene (ABS) from plastic mixtures. Journal of Material Cycles and Waste Management, 2021, 23, 96-106.	1.6	11
687	Repeated Biodiesel Production Using a Cartridge Containing Solid Catalysts Manufactured from Waste Scallop Shells for Simultaneous Lipid Extraction and Transesterification Process. Biotechnology and Bioprocess Engineering, 2021, 26, 145-155.	1.4	5
688	Study on the Numerical Model of Dense Solid Suspension Driven by a Coaxial Mixer. Industrial & Engineering Chemistry Research, 2021, 60, 1939-1951.	1.8	10
689	Solids suspension. , 2021, , 205-228.		0
690	Turbulence damping above the cloud height in suspensions of concentrated slurries in stirred tanks. AICHE Journal, 2021, 67, e17207.	1.8	6

#	Article	IF	CITATIONS
691	Design and development of a new ambr250 \hat{A}^{\otimes} bioreactor vessel for improved cell and gene therapy applications. Biotechnology Letters, 2021, 43, 1103-1116.	1.1	19
692	Using Statistical and Experimental Methods to Investigate the Mixing of Dense Slurries with Coaxial Mixers: Effects of Design Parameters and Novel Equations for Power and Reynolds Numbers. Industrial & Engineering Chemistry Research, 2021, 60, 6306-6326.	1.8	14
693	Dual role of microparticles in synergistic cavitation–particle erosion: Modeling and experiments. Wear, 2021, 470-471, 203633.	1.5	6
694	Microcarrier Screening and Evaluation for Dynamic Expansion of Human Periosteum-Derived Progenitor Cells in a Xenogeneic Free Medium. Frontiers in Bioengineering and Biotechnology, 2021, 9, 624890.	2.0	8
695	Study of critical suspension speed of impeller in two paddles stirred kettle. Journal of Physics: Conference Series, 2021, 1948, 012137.	0.3	0
696	The application of modern reactions in large-scale synthesis. Nature Reviews Chemistry, 2021, 5, 546-563.	13.8	40
697	Scaleâ€up of an intensified bioprocess for the expansion of bovine adiposeâ€derived stem cells (bASCs) in stirred tank bioreactors. Biotechnology and Bioengineering, 2021, 118, 3175-3186.	1.7	16
698	Determination of the <scp>justâ€suspended</scp> speed, <i>N</i> _{js} , in stirred tanks using electrical resistance tomography (ERT). AICHE Journal, 2021, 67, e17354.	1.8	7
699	Effects of Scale-Up and Impeller Types on Spherical Agglomeration of Dimethyl Fumarate. Industrial & Engineering Chemistry Research, 2021, 60, 11555-11567.	1.8	7
700	Which impeller should be chosen for efficient solid–liquid mixing in the laminar and transitional regime?. AICHE Journal, 2021, 67, e17360.	1.8	5
701	Increased agitation reliability for slurry suspension in mineral processing. Minerals Engineering, 2021, 170, 107008.	1.8	4
702	Microwave heating of slurries. Chemical Engineering Journal, 2021, 417, 127892.	6.6	14
703	Impact of Bioreactor Geometry on Mesenchymal Stem Cell Production in Stirredâ€Tank Bioreactors. Chemie-Ingenieur-Technik, 2021, 93, 1537-1554.	0.4	10
704	Pilot-Scale Lanthanide Precipitation from Sulfate-Based Spent Ni-MH Battery Leachates: Thermodynamic-Based Choice of Operating Conditions. Crystal Growth and Design, 2021, 21, 5943-5954.	1.4	8
705	Experimental Study on Micromixing Characteristics of Coaxial Mixer in Solid–Liquid Systems. Industrial & Engineering Chemistry Research, 0, , .	1.8	1
706	Using flow visualization and numerical methods to investigate the suspension of highly concentrated slurries with the coaxial mixers. Powder Technology, 2021, 390, 159-173.	2.1	14
707	Influence of solids motion on ultrasonic horn tip erosion in solid–liquid two-phase flows. Wear, 2021, 480-481, 203928.	1.5	2
708	Quantification and evaluation of operating parameters' effect on suspension behavior for slug flow crystallization. Chemical Engineering Science, 2021, 243, 116771.	1.9	10

	Сіта	tion Report	
#	Article	IF	CITATIONS
709	Intensification of suspension of solid particles in non-Newtonian fluids with coaxial mixers. Chemical Engineering and Processing: Process Intensification, 2021, 168, 108553.	1.8	11
710	Solid-liquid flow in stirred tanks: "CFD-grade―experimental investigation. Chemical Engineering Science, 2021, 245, 116743.	1.9	9
711	Investigation of dense slurry suspensions with coaxial mixers: Influences of design variables through tomography and mathematical modelling. Particuology, 2022, 65, 1-16.	2.0	8
712	Development of a Biodegradable Microcarrier for the Cultivation of Human Adipose Stem Cells (hASCs) with a Defined Xeno- and Serum-Free Medium. Applied Sciences (Switzerland), 2021, 11, 925.	1.3	5
713	Scale up. , 2021, , 399-442.		0
717	Continuous Crystallization: Equipment and Operation. AAPS Advances in the Pharmaceutical Sciences Series, 2020, , 129-192.	0.2	4
718	Hydrodynamics of Multiphase Reactors. , 1981, , 271-305.		8
719	Reaction Engineering Problems in Slurry Reactors. , 1983, , 844-870.		4
721	An Optimum Concentration for the Suspension of Solids in Stirred Vessels. , 2000, , 83-94.		6
722	ENGINEERING CHARACTERIZATION OF ANIMAL CELL AND VIRUS PRODUCTION USING CONTROLLED CH MICROCARRIERS. , 1981, , 141-146.	IARGE	2
723	THE MIXING OF PSEUDO-PLASTIC YIELD STRESS SLURRIES. , 1992, , 631-633.		2
724	An experimental method for obtaining particle impact frequencies and velocities on impeller blades. , 2000, , 231-238.		1
725	Suspension of buoyant particles in a three phase stirred tank. Chemical Engineering Science, 2005, 60, 2283-2292.	1.9	23
726	Continuous Protein Crystallization. , 2020, , 372-392.		4
727	Experimental Characterisation and Modelling of Homogeneous Solid Suspension in an Industrial Stirred Tank. Advances in Mechanical Engineering, 2013, 5, 329264.	0.8	2
728	Chemical Reaction Engineering. , 0, , .		7
729	Mixing-Emulsions. Contemporary Food Engineering, 2014, , 181-252.	0.2	3
730	Configuration Optimization and Mass Transfer in a Dual-Impeller Bioreactor. Journal of Chemical Engineering of Japan, 2015, 48, 360-366.	0.3	1

#	Article	IF	CITATIONS
731	Minimum Impeller Speeds for Complete Liquid-Liquid Dispersion in a Baffled Vessel Journal of Chemical Engineering of Japan, 1999, 32, 395-401.	0.3	7
732	Solid-Liquid Mass Transfer and Critical Frequency for Complete Suspension in a Reciprocally Shaking Vessel Journal of Chemical Engineering of Japan, 2003, 36, 1410-1414.	0.3	9
733	Instantaneous Successive Particle Collisions with an Impeller in a Stirred Tank. Journal of Chemical Engineering of Japan, 2007, 40, 12-16.	0.3	3
734	Mass Transfer of Solid-Liquid System in Turbulent Agitated Vessels. Kagaku Kogaku Ronbunshu, 2008, 34, 551-556.	0.1	5
735	General Estimation of Solid Distribution under Turbulent Agitation. Kagaku Kogaku Ronbunshu, 2016, 42, 96-99.	0.1	2
736	Estimation of Just-Suspension Speed with CFD. Kagaku Kogaku Ronbunshu, 2018, 44, 39-44.	0.1	1
737	Influence of different factors on momentum transfer in mechanically agitated multiphase systems. Chemical and Process Engineering - Inzynieria Chemiczna I Procesowa, 2016, 37, 41-53.	0.7	5
738	EFFECT OF DISC-BLADE INTERCEPTING ANGLE ON MIXING PERFORMANCE IN A MULTIPHASE STIRRED VESSEL. Brazilian Journal of Chemical Engineering, 2019, 36, 811-821.	0.7	2
741	Effect of Impeller Clearance and Liquid Level on Critical Impeller Speed in an Agitated Vessel using Different Axial and Radial Impellers. Journal of Applied Fluid Mechanics, 2016, 9, 2753-2761.	0.4	13
743	CO2Mineral Carbonation Reactor Analysis using Computational Fluid Dynamics: Internal Reactor Design Study for the Efficient Mixing of Solid Reactants in the Solution. Korean Chemical Engineering Research, 2016, 54, 612-620.	0.2	4
744	Study of Novel Punched-Bionic Impellers for High Efficiency and Homogeneity in PCM Mixing and Other Solid-Liquid Stirs. Applied Sciences (Switzerland), 2021, 11, 9883.	1.3	7
745	A phenomenological model for the quantitative interpretation of partial suspension conditions in stirred vessels. , 2000, , 439-446.		0
746	Solids suspension by the bottom shear stress approach. , 2000, , 431-437.		0
750	Particle Collision Frequencies with Impeller and Wall in a Stirred Tank. Kagaku Kogaku Ronbunshu, 2003, 29, 685-691.	0.1	3
752	Solid-Liquid Mass Transfer in a Mechanically Agitated Three-Phase Contactor with a Large Ring Sparger and a Downflow Pitched Blade Turbine. Kagaku Kogaku Ronbunshu, 2005, 31, 388-393.	0.1	0
753	Dispersion of Solid Particles in a Vessel Stirred with Dual Impellers. Kagaku Kogaku Ronbunshu, 2006, 32, 387-394.	0.1	2
757	Optimal Seeding Conditions for Semi-Batch Type Evaporative Crystallization of a High Suspension Density Sodium Chloride Slurry in a Draft-Tube Stirred Vessel. Journal of Chemical Engineering of Japan, 2011, 44, 233-239.	0.3	1
758	Micromixing of a Two Phase System in a Stirred Tank with Multiple Impellers. Advances in Materials Physics and Chemistry, 2012, 02, 150-153.	0.3	0

#	Article	IF	CITATIONS
759	Operation for Fine Particle Dispersion in Shear-Thinning Fluid in a Stirred Vessel. Journal of Chemical Engineering of Japan, 2012, 45, 258-264.	0.3	0
760	Estimation of Just-Suspension Speed in Solid–Liquid Stirred Vessels with Various Types of Impellers. Kagaku Kogaku Ronbunshu, 2012, 38, 353-357.	0.1	7
762	1958å¹´æμ®é,ā̃®å±•望. Nihon KÅgyÅkaishi, 1960, 76, 199-205.	0.0	0
763	The Importance of Classification in Well-Mixed Crystallizers. , 1976, , 403-412.		1
764	Residence Time Distribution of Solid and Liquid Phase in a Stirred Tank Reactor. Fluid Mechanics and Its Applications, 1992, , 247-251.	0.1	0
766	Influence of Tank Bottom Shear Stress on Complete Fluidization of Spherical Solid Particles in a Square Surface Agitation Tank Journal of Chemical Engineering of Japan, 1998, 31, 657-662.	0.3	0
768	Characteristic of flow pattern and Particle Suspension in a Bottom Baffled Agitated Vessel. Journal of the Korea Academia-Industrial Cooperation Society, 2015, 16, 1549-1554.	0.0	0
769	Mixer Design Optimization for High Solids Contents Media: Methodology and Application to the Pechiney's High Density Predesilication Process. , 2016, , 381-386.		Ο
770	Experimental Investigation and Optimization of Solid Suspension in Non-Newtonian Liquids at High Solid Concentration. Journal of Applied Fluid Mechanics, 2016, 9, 1907-1914.	0.4	1
771	Magnesium oxide modified with various iodine-containing compounds–Surface studies. Surface and Interface Analysis, 2017, 49, 945-952.	0.8	3
772	Generation Rate Measurement Method for Attrition Crystal Fragments and Abraded Volume of Potassium Alum in a Stirred Vessel Filled with Anti-Solvent. Kagaku Kogaku Ronbunshu, 2018, 44, 147-152.	0.1	0
773	Estimating Just Suspension Speed for Stirred Reactors Using Power Measurement. Journal of Modern Manufacturing Systems and Technology, 0, 2, 1-5.	0.2	0
774	Industrial Manufacturing of Aqueous Solutions of Sodium Sulfhydrate (NaHS 43%) in a Multi-Phase Reactor. Open Chemical Engineering Journal, 2019, 13, 46-67.	0.4	3
775	Identification of suspension state using Passive Acoustic Emission and Machine Learning in a solid-liquid mixing system. Chemical Engineering Research and Design, 2021, , .	2.7	4
776	Application of HE-3 and HE-3X Agitators in Suspension Production. , 2020, , 252-260.		0
777	Competitive Heavy Metal Removal from Binary Solution. Kemija U Industriji, 2020, 69, 465-471.	0.2	0
778	Effect of radial impeller size in the presence and absence of baffles on the copper exchange on zeolite NaX. Engineering Review, 2020, 41, 125-135.	0.2	3
779	Modeling total drag force exerted on particles in dense swarm from experimental measurements using an inline image-based method. Chemical Engineering Journal, 2022, 431, 133485.	6.6	3

#	Article	IF	CITATIONS
780	Suspended particles behavior in aqueous [Bmim]BF4 solution by novel on-line electrical sensing zone method. Chemical Engineering Science, 2022, 252, 117280.	1.9	5
781	Using tomography to examine the distribution of poly-disperse solid particles in Newtonian and non-Newtonian fluids with the coaxial impellers. Chemical Engineering Research and Design, 2022, 178, 38-49.	2.7	5
782	A Discussion of Minimum Rotational Speed for Complete Suspension in Turbulent Solid–Liquid Mixing. Kagaku Kogaku Ronbunshu, 2022, 48, 1-6.	0.1	2
783	Clarification of regimes determining sonochemical reactions in solid particle suspensions. Ultrasonics Sonochemistry, 2022, 82, 105910.	3.8	9
784	Analyzing the dispersion of solids in pseudoplastic fluids with coaxial stirrers via numerical modeling and tomography technique. Powder Technology, 2022, 398, 117127.	2.1	3
785	Synergistic resin anchoring technology of rebar bolts in coal mine roadways. International Journal of Rock Mechanics and Minings Sciences, 2022, 151, 105034.	2.6	10
786	Computational prediction of the just-suspended speed, N, in stirred vessels using the lattice Boltzmann method (LBM) coupled with a novel mathematical approach. Chemical Engineering Science, 2022, 251, 117411.	1.9	7
787	Process Design for Human Mesenchymal Stem Cell Products in Stirred-Tank Bioreactors. Cell Engineering, 2021, , 307-333.	0.4	2
788	Drawdown of Floating Solid in Mixing Vessel with Inside Baffle. Journal of Chemical Engineering of Japan, 2022, 55, 92-96.	0.3	0
789	Proof-of-Concept of Continuous Transfection for Adeno-Associated Virus Production in Microcarrier-Based Culture. Processes, 2022, 10, 515.	1.3	3
790	On the suspension of large and dense solid particles in turbulent stirred vessels. Chemical Engineering Research and Design, 2022, 180, 318-332.	2.7	1
791	Suspension and transformation performance of poly(2-hydroxyethyl methacrylate)-based anion exchange cryogel beads with immobilized Lactobacillus paracasei cells as biocatalysts towards biosynthesis of phenyllactic acid in stirred tank bioreactors. Chemical Engineering Research and Design, 2022, 181, 120-131.	2.7	6
792	Numerical Investigation of Particle Suspensions in a Liquid–Solid Stirred Tank with Baffles. Industrial & Engineering Chemistry Research, 2022, 61, 914-930.	1.8	2
793	Lagrangian Recurrence Tracking: A Novel Approach for Description of Mixing in Liquid and Particle–Liquid Flows. Industrial & Engineering Chemistry Research, 2021, 60, 18501-18512.	1.8	11
794	Scale-Up in Chemical Engineering. , 2007, , 171-202.		0
797	Evaluation on the Accuracy of an Inline Image-Based Method for Regular and Irregular Particles. Industrial & Engineering Chemistry Research, 2022, 61, 6733-6740.	1.8	4
798	Secondary Nucleation by Interparticle Energies. III. Nucleation Rate Model. Crystal Growth and Design, 2022, 22, 3625-3636.	1.4	5
799	Mesoscale Interaction between Liquid and the Particles in Lpe Process. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
800	Design and Validation of Sample Splitting Protocol for Comparison of SARS-CoV-2 Quantification in Wastewater. Journal of Environmental Engineering, ASCE, 2022, 148, .	0.7	0
801	Hydrodynamics of mixing of liquid-solid systems. Journal of Engineering Physics, 1983, 45, 840-844.	0.0	1
802	Suspension of High Concentration Solids in a Pilot Scale Jet-Flow High Shear Mixer. SSRN Electronic Journal, 0, , .	0.4	0
803	Eulerian-Lagrangian Modelling of Turbulent Two-Phase Particle-Liquid Flow in a Stirred Vessel: CFD and Experiments Compared. International Journal of Multiphase Flow, 2022, 155, 104191.	1.6	5
804	Impact of turbine impeller blade inclination on the batch sorption process. Results in Engineering, 2022, 16, 100554.	2.2	3
805	Suspension of high concentration solids in a pilot scale jet-flow high shear mixer. Chemical Engineering Journal, 2023, 451, 138567.	6.6	1
806	Impact of microcarrier concentration on mesenchymal stem cell growth and death: Experiments and modeling. Biotechnology and Bioengineering, 2022, 119, 3537-3548.	1.7	4
807	A data-driven stochastic model for velocity field and phase distribution in stirred particle-liquid suspensions. Powder Technology, 2022, 411, 117940.	2.1	8
808	Solid-liquid suspension in a stirred tank driven by an eccentric-shaft: Electrical resistance tomography measurement. Powder Technology, 2022, 411, 117943.	2.1	3
809	An integrated <scp>CFD</scp> methodology for tracking fluid interfaces and solid distributions in a vortexing stirred tank. Canadian Journal of Chemical Engineering, 0, , .	0.9	0
810	Effect of operating factors on liquid–liquid mass transfer and dispersion pattern of sedimentary liquid in a mechanically stirred vessel. Canadian Journal of Chemical Engineering, 2023, 101, 3479-3489.	0.9	0
811	Engineering Design and Process Requirements. , 2023, , 111-126.		0
812	Lagrangian wavelet analysis of turbulence modulation in particle–liquid mixing flows. Physics of Fluids, 2022, 34, .	1.6	11
813	Experimental studies on the flow pattern regimes of particles-liquid mixtures in an inner circulation vertical mill. Chemical Engineering Research and Design, 2023, 189, 87-97.	2.7	1
814	Scale Up and Scale Down of Equipment. ACS Symposium Series, 0, , 117-155.	0.5	2
815	Multi-objective optimization of stirring tank based on multiphase flow simulation. Chemical Engineering Research and Design, 2023, 189, 680-693.	2.7	2
816	Numerical simulation of solid-liquid suspension in a slurry electrolysis stirred tank. Chemical Engineering Research and Design, 2023, 189, 371-383.	2.7	2
817	Inert Gassing Crystallization for Improved Product Separation of Oleo-Chemicals toward an Efficient Circular Economy. Organic Process Research and Development, 0, , .	1.3	2

#	Article	IF	CITATIONS
818	Studying particle attrition in a solid-liquid agitated vessel using focused beam reflectance measurement (FBRM). Chemical Engineering and Processing: Process Intensification, 2023, 183, 109256.	1.8	2
819	Veiling Effects in the Measurement of Poly-disperse Particles with a Photographic Probe. Industrial & Engineering Chemistry Research, 2022, 61, 18906-18913.	1.8	1
820	Interplay of Particle Suspension and Residence Time Distribution in a Taylor–Couette Crystallizer. Crystals, 2022, 12, 1845.	1.0	2
821	Design and engineering characterization of a horizontal tubular bioreactor with spiral impeller for cell cultivation. Biochemical Engineering Journal, 2023, 191, 108794.	1.8	2
822	Bridging the gap between solids suspension theory and equipment design. Chemical Engineering Research and Design, 2023, 190, 793-813.	2.7	1
823	A data-driven machine learning framework for modeling of turbulent mixing flows. Physics of Fluids, 2023, 35, .	1.6	10
824	Zeolite NaX Mass and Propeller Agitator Speed Impact on Copper Ions Sorption. Processes, 2023, 11, 264.	1.3	2
825	Cloud height in stirred tanks: Identification of limitations and clarification of the definition. Chemical Engineering Research and Design, 2023, 190, 395-406.	2.7	2
826	Visualization experiments of a solid cylinder suspended by laminar flow. Chemical Engineering Research and Design, 2023, 191, 325-337.	2.7	0
827	Improved suspension quality and liquid level stability in stirred tanks with Rotor-Stator agitator based on CFD simulation. Particuology, 2023, 82, 64-75.	2.0	3
828	Preparation and fire extinguishing mechanism of core-shell solid-liquid composite powder containing ammonium dihydrogen phosphate. Powder Technology, 2023, 420, 118391.	2.1	2
829	Particle size distribution effects on cavitation erosion in sediment suspensions. Wear, 2023, 518-519, 204629.	1.5	2
830	Scale-up in Chemical Engineering. , 2016, , 175-206.		0
831	Just Suspended Speed Simulation in Torus Reactor Using Multiple Non-Linear Regression Model. Separations, 2023, 10, 117.	1.1	0
832	Intensification of Solid–Liquid Suspension Performance in an Elliptical Uncovered Unbaffled Stirred Tank. Industrial & Engineering Chemistry Research, 2023, 62, 5315-5325.	1.8	4
833	Simulation of Multi-Phase Flow in Autoclaves Using a Coupled CFD-DPM Approach. Processes, 2023, 11, 890.	1.3	4
834	Microscale spherical TiO2 powder prepared by hydrolysis of TiCl4 solution: Synthesis and kinetics. Particuology, 2024, 84, 60-71.	2.0	5
836	Prediction of Particle Suspension State for Various Particle Shapes Used in Slug Flow Crystallization. ChemEngineering, 2023, 7, 34.	1.0	2

#	Article	IF	CITATIONS
842	Multiphase Phenomena and Design of Gas-Solid-Liquid Stirred Tanks. , 2023, , 1-41.		0
844	Solid Suspension and Solid-Liquid Mass Transfer in Stirred Reactors. , 2023, , 1-63.		1
850	Solid Suspension and Solid-Liquid Mass Transfer in Stirred Reactors. , 2023, , 1491-1553.		0
855	Multiphase Phenomena and Design of Gas-Solid-Liquid Stirred Tanks. , 2023, , 1555-1595.		0
857	Solid-liquid extraction (leaching) in the food industry. , 2024, , 17-44.		0
865	Towards a Continuous Production of Human Mesenchymal Stromal Cells in a Chemically Defined Medium: Opportunities and Challenges for a Robust and Scalable Expansion Process. Cell Engineering, 2023, , 379-427.	0.4	0