Metal–Metal (MM) Bond Distances and Bond Orders i First Row Transition Metals Titanium Through Zinc

Chemical Reviews 118, 11626-11706

DOI: 10.1021/acs.chemrev.8b00297

Citation Report

#	ARTICLE	IF	CITATIONS
1	Identification of a uranium–rhodium triple bond in a heterometallic cluster. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17654-17658.	7.1	35
2	Prediction of high bond-order metalâ \in "metal multiple-bonds in heterobimetallic $3da\in$ " $4f/5f$ complexes [TMâ \in "M{N(o-[NCH2P(CH3)2]C6H4)3}] (TM = Cr, Mn, Fe; M = U, Np, Pu, and Nd). Dalton Transactions, 2019, 48, 12867-12879.	3.3	9
3	Dual transition metal doped germanium clusters for catalysis of CO oxidation. Journal of Alloys and Compounds, 2019, 806, 698-704.	5.5	13
4	Investigation of novel composites to be used as backfill materials in radioactive waste disposal facilities. Journal of Radioanalytical and Nuclear Chemistry, 2019, 322, 455-465.	1.5	1
5	Quadruple bonding between iron and boron in the BFe(CO)3â^' complex. Nature Communications, 2019, 10, 4713.	12.8	34
6	Double core hole valence-to-core x-ray emission spectroscopy: A theoretical exploration using time-dependent density functional theory. Journal of Chemical Physics, 2019, 151, 144114.	3.0	11
7	One Macrocyclic Ligand, Four Oxidation States: A 16-Atom Ringed Dianionic Tetra-NHC Macrocycle and Its Cr(II) through Cr(V) Complexes. Organometallics, 2019, 38, 3369-3376.	2.3	11
8	Beî€,Be triple bond in Be ₂ X ₄ Y ₂ clusters (X = Li, Na and Y = Li, Na, K) and a perfect classical Beî€,Be triple bond presented in Be ₂ Na ₄ K ₂ . Dalton Transactions, 2019, 48, 14590-14594.	3.3	18
9	Neutral nano-polygons with ultrashort Be–Be distances. Dalton Transactions, 2019, 48, 15802-15809.	3.3	7
10	Computational design of species with ultrashort Be–Be distances using planar hexacoordinate carbon structures as the templates. Dalton Transactions, 2019, 48, 6581-6587.	3.3	7
11	Trapping an unprecedented Ti ₃ C ₃ unit inside the icosahedral C ₈₀ fullerene: a crystallographic survey. Chemical Science, 2019, 10, 10925-10930.	7.4	33
12	Interdependent Metal–Metal Bonding and Ligand Redox-Activity in a Series of Dinuclear Macrocyclic Complexes of Iron, Cobalt, and Nickel. Inorganic Chemistry, 2020, 59, 4200-4214.	4.0	27
13	Allâ€Metallic Zn=Zn Double†Bonded Octahedral Zn 2 M 4 (M=Li, Na) Clusters with Negative Oxidation State of Zinc. ChemPhysChem, 2020, 21, 459-463.	2.1	11
14	Formation of Short Znâ^'Zn Bonds Stabilized by Simple Cyanide and Isocyanide Ligands. Angewandte Chemie - International Edition, 2020, 59, 2496-2504.	13.8	9
15	Formation of Short Znâ^'Zn Bonds Stabilized by Simple Cyanide and Isocyanide Ligands. Angewandte Chemie, 2020, 132, 2517-2525.	2.0	1
16	Coordination bonding in dicopper and dichromium tetrakis(Î⅓â€acetato)â€diaqua complexes: Nature, strength, length, and topology. Journal of Computational Chemistry, 2020, 41, 698-714.	3.3	7
17	Unsaturated binuclear homoleptic nickel carbonyl anions Ni ₂ (CO) _n ^{â^²} (<i>n</i> = 4–6) featuring double three-center two-electron Ni–C–Ni bonds. Physical Chemistry Chemical Physics, 2020, 22, 23773-23784.	2.8	4
18	Multiple d–d bonds between early transition metals in TM2Lin (TM = Sc, Ti) superatomic molecule clusters. Nanoscale, 2020, 12, 20506-20512.	5.6	5

#	Article	IF	Citations
19	Bimetallic cooperation across the periodic table. Nature Reviews Chemistry, 2020, 4, 696-702.	30.2	119
20	Metal–metal bond distances and bond orders in dimanganese complexes with bidentate ligands: scope for some very short Mn–Mn bonds. New Journal of Chemistry, 2020, 44, 12993-13006.	2.8	8
21	Implementation of Cooperative Designs in Polarized Transition Metal Systems—Significance for Bond Activation and Catalysis. ACS Catalysis, 2020, 10, 14024-14055.	11.2	57
22	Synthesis and Characterization of a Linear Triiron(II) Extended Metal Atom Chain Complex with Fe–Fe Bonds. Inorganic Chemistry, 2020, 59, 11238-11243.	4.0	15
23	Bridging cyclobutadiene ligands with agostic hydrogen atoms in binuclear chromium carbonyl derivatives. Journal of Organometallic Chemistry, 2020, 921, 121347.	1.8	2
24	Synthesis and catalytic activity of cationic dinuclear palladium (II) complexes supported by thioether ligands containing two di-(2-picolyl) amine arms. Polyhedron, 2020, 182, 114489.	2.2	3
25	Perfluoroolefin complexes <i>versus</i> perfluorometallacycles and perfluorocarbene complexes in cyclopentadienylcobalt chemistry. Physical Chemistry Chemical Physics, 2020, 22, 7616-7624.	2.8	2
26	Construction of heterometallic clusters with multiple uranium–metal bonds by using dianionic nitrogen–phosphorus ligands. Chemical Science, 2020, 11, 7585-7592.	7.4	27
27	Synthesis, Isomerization and Electrocatalytic Properties of Thiolate-Bridged Dicobalt Hydride Complexes with Different Substituents. European Journal of Inorganic Chemistry, 2020, 2020, 2757-2764.	2.0	4
28	Reactions of Alkynes with Quasi-Linear 3d Metal(I) Silylamides of Chromium to Cobalt: A Comparative Study. Inorganic Chemistry, 2020, 59, 9521-9537.	4.0	27
29	Theorems and rules connecting bond energy and bond order with electronegativity equalization and hardness maximization. Theoretical Chemistry Accounts, 2020, 139, 1.	1.4	12
30	Paramagnetic Metal–Metal Bonded Heterometallic Complexes. Chemical Reviews, 2020, 120, 2409-2447.	47.7	92
31	<i>N</i> , <i>N</i> 倲-Dipp- <i>o</i> -phenylene-diamido Dianion: A Versatile Ligand for Main Group Metal–Metal-Bonded Compounds. Organometallics, 2020, 39, 1440-1447.	2.3	15
32	An iron ketimide single-molecule magnet [Fe ₄ (Nî€CPh ₂) ₆] with suppressed through-barrier relaxation. Chemical Science, 2020, 11, 4753-4757.	7.4	10
33	Fluorine Migration from Carbon to Iron and Fluorine–Iron Dative Bonds in Octafluorocyclohexadiene Iron Carbonyl Chemistry. Organometallics, 2021, 40, 397-407.	2.3	2
34	Synthesis, Structure, and Oxidative Reactivity of a Class of Thiolateâ€Bridged Dichromium Complexes Featuring Antiferromagnetic Coupling Interactions. European Journal of Inorganic Chemistry, 2021, 2021, 923-928.	2.0	2
35	Metal–Metal Bonded Compounds of the Group IX Elements. , 2021, , 4-42.		3
36	Metal-catalyzed aziridination of alkenes by organic azides: a mechanistic DFT investigation. Structural Chemistry, 2021, 32, 1431-1449.	2.0	1

#	ARTICLE	IF	CITATIONS
37	Ironâ€Iron Bond Lengths and Bond Orders in Diiron Lanternâ€Type Complexes with High Spin Ground States. European Journal of Inorganic Chemistry, 2021, 2021, 848-860.	2.0	7
38	Infrared spectroscopy of neutral clusters based on a vacuum ultraviolet free electron laser. Chinese Journal of Chemical Physics, 2021, 34, 51-60.	1.3	14
39	Syntheses and solid-state structures of two cofacial (bis)dipyrrin dichromium complexes in different charge states. Acta Crystallographica Section C, Structural Chemistry, 2021, 77, 161-166.	0.5	2
40	Solvent-Effected Coordination Variation of Flexible Ligands to Cu(II) for the Formation of 1D and 2D Secondary Building Units for Metal–Organic Frameworks. Inorganic Chemistry, 2021, 60, 5376-5382.	4.0	12
41	Synthesis and Characterization of Bidentate Isonitrile Iron Complexes. Organometallics, 2021, 40, 1042-1052.	2.3	6
42	Structure and Methylene Transfer Reactivity of Thiolate-Bridged Dichromium Methylene Complexes Derived from Dihalomethane via Cleavage of Two Carbon–Halogen Bonds. Organometallics, 2021, 40, 1434-1442.	2.3	4
43	Unsupported Lanthanide–Transition Metal Bonds: Ionic vs Polar Covalent?. Inorganic Chemistry, 2021, 60, 9394-9401.	4.0	13
44	Pathways to Metal–Ligand Cooperation in Quinoline-Based Titanium(IV) Pincers: Nonelectrophilic N-methylation, Deprotonation, and Dihydropyridine Formation. Organometallics, 2021, 40, 1838-1847.	2.3	2
45	Transition Metal Chain Complexes Supported by Soft Donor Assembling Ligands. Chemical Reviews, 2021, 121, 7346-7397.	47.7	22
46	Asymmetric Solvation of the Zinc Dimer Cation Revealed by Infrared Multiple Photon Dissociation Spectroscopy of Zn2+(H2O)n (n = 1 â \in "20). International Journal of Molecular Sciences, 2021, 22, 6026.	4.1	3
47	CO activation by the heterobinuclear transition metal-iron clusters: A photoelectron spectroscopic and theoretical study. Journal of Energy Chemistry, 2021, 63, 344-350.	12.9	5
48	Dirhodium(II)/Xantphos-Catalyzed Relay Carbene Insertion and Allylic Alkylation Process: Reaction Development and Mechanistic Insights. Journal of the American Chemical Society, 2021, 143, 11799-11810.	13.7	34
49	Metalâ€ŧoâ€Metal Distance Modulation by Ligand Design: A Case Study of Structureâ€Property Correlation in Planar Chiral Cyclophanyl Metal Complexes. Chemistry - A European Journal, 2021, 27, 15021-15027.	3.3	9
50	Lanternâ€Type Divanadium Complexes with Bridging Ligands: Short Metalâ€Metal Bonds with High Multiple Bond Orders. ChemPhysChem, 2021, 22, 2014-2024.	2.1	4
51	Variational Energy Decomposition Analysis of Charge-Transfer Interactions between Metals and Ligands in Carbonyl Complexes. Inorganic Chemistry, 2021, 60, 14060-14071.	4.0	5
52	A naphthalene-chromophore-based luminescent Zn(II)-organic framework as efficient TNP sensor. Polyhedron, 2021, 205, 115313.	2.2	3
53	Structural and electronic analysis of bimetallic thiolate complexes of group-5 transition metal ions. Journal of Organometallic Chemistry, 2021, 949, 121943.	1.8	3
54	Photoinjection and carrier recombination kinetics in photoanode based on (TM)FeO3 adsorbed TiO2 quantum dots. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 273, 115423.	3.5	1

#	Article	IF	Citations
55	Guanidinate, Amidinate, and Formamidinate Ligands., 2021,, 366-405.		2
56	Binuclear Cobalt Paddlewheel-Type Complexes: Relating Metal–Metal Bond Lengths to Formal Bond Orders. Inorganic Chemistry, 2021, 60, 584-596.	4.0	4
57	Metalâ€ŧoâ€Metal Distance Modulated Au(I)/Ru(II) Cyclophanyl Complexes: Cooperative Effects in Photoredox Catalysis. Chemistry - A European Journal, 2021, 27, 15188-15201.	3.3	8
58	Bifunctional Effect of a Triple-Bond Heterobimetallic Zr/Co System for Hydrogen Activation. ACS Catalysis, 2021, 11, 13452-13462.	11.2	8
59	Comparing Isoelectronic, Quadruple-Bonded Metalloporphyrin and Metallocorrole Dimers: Scalar-Relativistic DFT Calculations Predict a $gt;1\ eV$ Range for Ionization Potential and Electron Affinity. ACS Physical Chemistry Au, 2022, 2, 70-78.	4.0	7
61	A Study of NbMo and NbMo– by Anion Photoelectron Spectroscopy. Journal of Physical Chemistry A, 2021, 125, 9658-9679.	2.5	0
62	Group VI Metal Complexes of Carbon Monoxide and Isocyanides. , 2022, , 352-448.		1
63	Synthesis and reactivity of heteroleptic zinc(i) complexes toward heteroallenes. Chemical Communications, 2021, 57, 13692-13695.	4.1	5
64	A supported Cr–Cr sextuple bond in an all-metal cluster. Dalton Transactions, 2022, 51, 2664-2668.	3.3	1
65	Theoretical study of hydrogen adsorption on the graphene quantum dots doped with various first row transition metals: Switch of spin state as a way to improve H2 adsorption. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 139, 115144.	2.7	8
66	Combining metal–metal cooperativity, metal–ligand cooperativity and chemical non-innocence in diiron carbonyl complexes. Chemical Science, 2022, 13, 2094-2104.	7.4	16
67	Characterization of metal $\hat{a} \in \mathbb{C}$ metal and metal $\hat{a} \in \mathbb{C}$ ligand interactions in binuclear MnPt vinylidene complexes by molecular orbital and charge density analyses. Journal of Organometallic Chemistry, 2022, 961, 122249.	1.8	1
68	Zinc, Cadmium and Mercury., 2022,, 89-121.		3
69	Cationic Cobalt–Thiolate Complexes for the Dehydrogenative Coupling of <i>n</i> Bu ₃ SnH. Organometallics, 2022, 41, 852-857.	2.3	1
70	A New Look at Molecular and Electronic Structure of Homoleptic Diiron(II,II) Complexes with $\langle i \rangle N, N \langle i \rangle $ definition European Journal, 2022, 28, .	3.3	4
71	Adiabatic Electron Detachment Energies, Reaction Barriers, Chemical Balance, and Ligand Effects on the Nucleophilicities of Metal Carbonyl Monoanions. Organometallics, 2022, 41, 1147-1157.	2.3	0
72	Lanternâ€type dinickel complexes: An exploration of possibilities for nickel–nickel bonding with bridging bidentate ligands. Journal of Computational Chemistry, 0, , .	3.3	1
74	Weak Zinc-Zinc Slipped Triple Bond in Zn2Li6 Cluster. Polyhedron, 2022, , 116032.	2.2	2

#	Article	IF	CITATIONS
75	Oligopyrrolic Cu(<scp>ii</scp>)-based tetragonal cage: synthesis, structure, and spectral and magnetic properties. Dalton Transactions, 2022, 51, 13596-13600.	3.3	2
76	Two if - and two $i\in$ -dative quadruple bonds between the s-block element and transition metal in [BeM(CO) ₄ ; M = Fe i Os]. Physical Chemistry Chemical Physics, 2022, 24, 20183-20188.	2.8	4
77	Direct observation of reversible bond homolysis by 2D EXSY NMR. Chemical Science, 2022, 13, 9202-9209.	7.4	0
78	Elucidation of divergent desaturation pathways in the formation of vinyl isonitrile and isocyanoacrylate. Nature Communications, 2022, 13, .	12.8	3
79	Mimicking the Cu Active Site of Lytic Polysaccharide Monooxygenase Using Monoanionic Tridentate N-Donor Ligands. ACS Omega, 2022, 7, 35217-35232.	3.5	4
80	Synthesis and reactivity of titanium â€~POCOP' pincer complexes. Dalton Transactions, 0, , .	3.3	2
81	Non-redox reactivity of $V(\langle scp \rangle ii \langle scp \rangle)$ and $Fe(\langle scp \rangle ii \langle scp \rangle)$ formamidinates towards $CO(\langle sub \rangle 2 \langle sub \rangle)$ resulting in the formation of novel $M(\langle scp \rangle ii \langle scp \rangle)$ carbamates. Dalton Transactions, O , , .	3.3	1
82	Molecular Capacitors: Accessible 6- and 8-Electron Redox Chemistry from Dimeric "Ti(l)―and "Ti(0)― Synthons Supported by Imidazolin-2-Iminato Ligands. Inorganic Chemistry, 2022, 61, 16856-16873.	4.0	4
83	Metal–metal bond in lanthanide single-molecule magnets. Chemical Society Reviews, 2022, 51, 9469-9481.	38.1	54
84	Copper and Zinc Complexes of 2,7-Bis(6-methyl-2-pyridyl)-1,8-naphthyridine─A Redox-Active, Dinucleating Bis(bipyridine) Ligand. Inorganic Chemistry, 2022, 61, 19333-19343.	4.0	3
85	Investigation on the molecular, electronic, biological and spectroscopic properties of a novel cobalt complex: An intuition from an experimental and computational perspective. Polyhedron, 2023, 235, 116369.	2.2	11
86	Emerging dâ^'d orbital coupling between non-d-block main-group elements Mg and I at high pressure. IScience, 2023, 26, 106113.	4.1	1
87	<pre><scp>ScY</scp>@<i>C</i>_{3<i>v</i>}(8)â€<scp>C₈₂</scp>:<scp>Metalâ€Metal</scp> in Mixed<scp>Rareâ€Earth</scp>Diâ€metallofullerenes^{â€}. Chinese Journal of Chemistry, 2023, 41, 1809-1814.</pre>	σ∢sup>2∢ 4.9	Bond
88	Electrocatalytic reduction of CO ₂ on size-selected nanoclusters of first-row transition metal nanoclusters: a comprehensive mechanistic investigation. Physical Chemistry Chemical Physics, 2023, 25, 11630-11652.	2.8	6

#	ARTICLE	IF	CITATIONS
93	Heterobinuclear Vanadium-Nickel Lantern-Type Complexes: Metal-Metal bonding and structure. Inorganica Chimica Acta, 2023, 555, 121563.	2.4	0
94	Cleavage of Carbon Dioxide C=O Bond Promoted by Nickelâ€Boron Cooperativity in a PBPâ€Ni Complex. Angewandte Chemie - International Edition, 2023, 62, .	13.8	1
95	Cleavage of Carbon Dioxide C=O Bond Promoted by Nickelâ€Boron Cooperativity in a PBPâ€Ni Complex. Angewandte Chemie, 2023, 135, .	2.0	0
96	Highly Selective Nickelâ€Catalyzed Isomerizationâ€Hydroboration of Alkenes Affords Terminal Functionalization at Remote Câ^'H Position. Chemistry - A European Journal, 2023, 29, .	3.3	0
97	Measuring Metal–Metal Communication in a Series of Ketimide-Bridged [Fe ₂] ⁶⁺ Complexes. Inorganic Chemistry, 2023, 62, 11829-11836.	4.0	0
98	Metal Deficiency Tailored by the 18-Electron Rule Stabilizes Metal-Based Inorganic Compounds. Chemistry of Materials, 2023, 35, 6050-6058.	6.7	0
99	Pd ₈ Nanocluster with Nonmetalâ€toâ€Metal―Ring Coordination and Promising Photothermal Conversion Efficiency. Angewandte Chemie - International Edition, 2024, 63, .	13.8	1
100	Pd ₈ Nanocluster with Nonmetalâ€toâ€Metall―Ring Coordination and Promising Photothermal Conversion Efficiency. Angewandte Chemie, 0, , .	2.0	0
101	CO ₂ and H ₂ Activation on Zincâ€Doped Copper Clusters. ChemPhysChem, 0, , .	2.1	0
102	Simple, near-universal relationships between bond lengths, strengths, and anharmonicities. AIP Advances, 2023, 13, .	1.3	0
103	On-Surface Synthesis of Multiple Cu Atom-Bridged Organometallic Oligomers. ACS Nano, 2023, 17, 24355-24362.	14.6	0
104	Geometric Analysis and DFT Study of 2,2′-Dipyridylamine-Stabilized First-Row Transition-Metal Complexes. Crystal Growth and Design, 0, , .	3.0	0
105	A one-pot reduction route to bimetallic manganese 1,8-naphthyridine complexes. Dalton Transactions, 0, , .	3.3	0
106	Cobalt-Functionalized Open-[60]Fullerenes. Organometallics, 2024, 43, 227-232.	2.3	0