The gut microbiota-derived metabolite trimethylamine disease

Alzheimer's Research and Therapy

10, 124

DOI: 10.1186/s13195-018-0451-2

Citation Report

#	Article	IF	CITATIONS
1	The Microbial Metabolite Trimethylamine N-Oxide Links Vascular Dysfunctions and the Autoimmune Disease Rheumatoid Arthritis. Nutrients, 2019, 11, 1821.	1.7	37
2	Citicoline: A Superior Form of Choline?. Nutrients, 2019, 11, 1569.	1.7	30
3	Effect of nutrition on neurodegenerative diseases. A systematic review. Nutritional Neuroscience, 2021, 24, 810-834.	1.5	104
4	Undigested Food and Gut Microbiota May Cooperate in the Pathogenesis of Neuroinflammatory Diseases: A Matter of Barriers and a Proposal on the Origin of Organ Specificity. Nutrients, 2019, 11, 2714.	1.7	30
5	The Presence of High Levels of Circulating Trimethylamine N-Oxide Exacerbates Central and Peripheral Inflammation and Inflammatory Hyperalgesia in Rats Following Carrageenan Injection. Inflammation, 2019, 42, 2257-2266.	1.7	9
6	Higher Circulating Trimethylamine N-oxide Sensitizes Sevoflurane-Induced Cognitive Dysfunction in Aged Rats Probably by Downregulating Hippocampal Methionine Sulfoxide Reductase A. Neurochemical Research, 2019, 44, 2506-2516.	1.6	28
7	Time to test antibacterial therapy in Alzheimer's disease. Brain, 2019, 142, 2905-2929.	3.7	89
8	Trimethylamine N-Oxide Binds and Activates PERK to Promote Metabolic Dysfunction. Cell Metabolism, 2019, 30, 1141-1151.e5.	7.2	215
9	Role of Neurofilament Light Chain as a Potential Biomarker for Alzheimer's Disease: A Correlative Meta-Analysis. Frontiers in Aging Neuroscience, 2019, 11, 254.	1.7	64
10	The path toward using microbial metabolites as therapies. EBioMedicine, 2019, 44, 747-754.	2.7	67
11	Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. Journal of Neuroinflammation, 2019, 16, 53.	3.1	446
12	<i>APOE</i> genotype influences the gut microbiome structure and function in humans and mice: relevance for Alzheimer's disease pathophysiology. FASEB Journal, 2019, 33, 8221-8231.	0.2	124
13	The presence of elevated circulating trimethylamine N-oxide exaggerates postoperative cognitive dysfunction in aged rats. Behavioural Brain Research, 2019, 368, 111902.	1.2	46
14	Enzymatically Produced Trimethylamine N-Oxide: Conserving It or Eliminating It. Catalysts, 2019, 9, 1028.	1.6	9
15	Microbiota impacts on chronic inflammation and metabolic syndrome - related cognitive dysfunction. Reviews in Endocrine and Metabolic Disorders, 2019, 20, 473-480.	2.6	45
16	Metabolic Framework for the Improvement of Autism Spectrum Disorders by a Modified Ketogenic Diet: A Pilot Study. Journal of Proteome Research, 2020, 19, 382-390.	1.8	23
17	The gut microbiome in neurological disorders. Lancet Neurology, The, 2020, 19, 179-194.	4.9	669
18	Gut Microbiota: From the Forgotten Organ to a Potential Key Player in the Pathology of Alzheimer's Disease. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1232-1241.	1.7	61

#	Article	IF	CITATIONS
19	Microglia, Lifestyle Stress, and Neurodegeneration. Immunity, 2020, 52, 222-240.	6.6	174
20	Stress-Induced Neurodegeneration: The Potential for Coping as Neuroprotective Therapy. American Journal of Alzheimer's Disease and Other Dementias, 2020, 35, 153331752096087.	0.9	15
21	DJ-1 (Park7) affects the gut microbiome, metabolites and the development of innate lymphoid cells (ILCs). Scientific Reports, 2020, 10, 16131.	1.6	16
22	You Talking to Me? Says the Enteric Nervous System (ENS) to the Microbe. How Intestinal Microbes Interact with the ENS. Journal of Clinical Medicine, 2020, 9, 3705.	1.0	42
23	Neurogranin and VILIP-1 as Molecular Indicators of Neurodegeneration in Alzheimer's Disease: A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences, 2020, 21, 8335.	1.8	15
24	High Salt Elicits Brain Inflammation and Cognitive Dysfunction, Accompanied by Alternations in the Gut Microbiota and Decreased SCFA Production. Journal of Alzheimer's Disease, 2020, 77, 629-640.	1.2	42
25	Carnitine. , 2020, , 551-559.		0
26	CoMNRank: An integrated approach to extract and prioritize human microbial metabolites from MEDLINE records. Journal of Biomedical Informatics, 2020, 109, 103524.	2.5	4
27	Metabolic Phenotyping Study of Mouse Brains Following Acute or Chronic Exposures to Ethanol. Journal of Proteome Research, 2020, 19, 4071-4081.	1.8	11
28	Implications of the Human Gut–Brain and Gut–Cancer Axes for Future Nanomedicine. ACS Nano, 2020, 14, 14391-14416.	7.3	30
29	Target Dysbiosis of Gut Microbes as a Future Therapeutic Manipulation in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2020, 12, 544235.	1.7	38
30	Gut Metabolite TMAO Induces Synaptic Plasticity Deficits by Promoting Endoplasmic Reticulum Stress. Frontiers in Molecular Neuroscience, 2020, 13, 138.	1.4	57
31	Do the Bugs in Your Gut Eat Your Memories? Relationship between Gut Microbiota and Alzheimer's Disease. Brain Sciences, 2020, 10, 814.	1.1	24
32	In older women, a high-protein diet including animal-sourced foods did not impact serum levels and urinary excretion of trimethylamine-N-oxide. Nutrition Research, 2020, 78, 72-81.	1.3	11
33	Automatic extraction, prioritization and analysis of gut microbial metabolites from biomedical literature. Scientific Reports, 2020, 10, 9996.	1.6	2
34	Gut microbiota in surgical and critically ill patients. Anaesthesia and Intensive Care, 2020, 48, 179-195.	0.2	13
35	Gut Microbiota: Implications in Alzheimer's Disease. Journal of Clinical Medicine, 2020, 9, 2042.	1.0	50
36	Effects of Probiotic Supplementation on Short Chain Fatty Acids in the AppNL-G-F Mouse Model of Alzheimer's Disease1. Journal of Alzheimer's Disease, 2020, 76, 1083-1102.	1.2	41

#	Article	IF	Citations
37	A Pilot Study on the Effects of l-Carnitine and Trimethylamine-N-Oxide on Platelet Mitochondrial DNA Methylation and CVD Biomarkers in Aged Women. International Journal of Molecular Sciences, 2020, 21, 1047.	1.8	34
38	Implications of the Gut Microbiome in Parkinson's Disease. Movement Disorders, 2020, 35, 921-933.	2.2	95
39	Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 149, 192-217.	2.0	69
40	The mutual interplay of gut microbiota, diet and human disease. FEBS Journal, 2020, 287, 833-855.	2.2	176
41	Neurogranin as a cognitive biomarker in cerebrospinal fluid and blood exosomes for Alzheimer's disease and mild cognitive impairment. Translational Psychiatry, 2020, 10, 125.	2.4	48
42	Diet, nutrients and the microbiome. Progress in Molecular Biology and Translational Science, 2020, 171, 237-263.	0.9	75
43	Extraction optimization for combined metabolomics, peptidomics, and proteomics analysis of gut microbiota samples. Journal of Mass Spectrometry, 2021, 56, e4625.	0.7	6
44	Gut microbiota-derived metabolite trimethylamine N-oxide as a biomarker in early Parkinson's disease. Nutrition, 2021, 83, 111090.	1.1	36
45	Metabolomics analysis of microbiota-gut-brain axis in neurodegenerative and psychiatric diseases. Journal of Pharmaceutical and Biomedical Analysis, 2021, 194, 113681.	1.4	56
46	Causal relationships between gut metabolites and Alzheimer's disease: a bidirectional Mendelian randomization study. Neurobiology of Aging, 2021, 100, 119.e15-119.e18.	1.5	30
47	Dysbiosis is one of the risk factor for stroke and cognitive impairment and potential target for treatment. Pharmacological Research, 2021, 164, 105277.	3.1	42
48	Increased dopamine transmission and adult neurogenesis in trace amine-associated receptor 5 (TAAR5) knockout mice. Neuropharmacology, 2021, 182, 108373.	2.0	28
49	Zakażenia przewodu pokarmowego w XXI wieku w Polsce i na świecie. Postepy Higieny I Medycyny Doswiadczalnej, 2021, 75, 48-57.	0.1	0
50	Importance of fiber in human diet: Contribution of microbiota in human health. , 2021, , 51-67.		1
51	Gut Microbiota in Brain diseases. , 2021, , 253-253.		0
53	Gut-Brain Axis Cross-Talk and Limbic Disorders as Biological Basis of Secondary TMAU. Journal of Personalized Medicine, 2021, 11, 87.	1.1	6
54	The Role of Gut Microbiota in an Ischemic Stroke. International Journal of Molecular Sciences, 2021, 22, 915.	1.8	74
55	Gut microbiota: Implications on human health and diseases. , 2021, , 1-27.		1

#	Article	IF	CITATIONS
57	Can diet modulate trimethylamine N-oxide (TMAO) production? What do we know so far?. European Journal of Nutrition, 2021, 60, 3567-3584.	1.8	51
59	The intervention of unique plant polysaccharides - Dietary fiber on depression from the gut-brain axis. International Journal of Biological Macromolecules, 2021, 170, 336-342.	3.6	24
60	The Role of Gut Bacterial Metabolites in Brain Development, Aging and Disease. Nutrients, 2021, 13, 732.	1.7	90
61	Fecal Microbiota Transplantation Is a Promising Method to Restore Gut Microbiota Dysbiosis and Relieve Neurological Deficits after Traumatic Brain Injury. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-21.	1.9	54
62	Choline Pathway Nutrients and Metabolites and Cognitive Impairment After Acute Ischemic Stroke. Stroke, 2021, 52, 887-895.	1.0	23
63	Role of the gut microbiome in Alzheimer's disease. Reviews in the Neurosciences, 2021, 32, 767-789.	1.4	6
64	The intestinal microbiota as a therapeutic target in the treatment of NAFLD and ALD. Biomedicine and Pharmacotherapy, 2021, 135, 111235.	2.5	15
65	Diet-Microbiota-Brain Axis in Alzheimer's Disease. Annals of Nutrition and Metabolism, 2021, 77, 21-27.	1.0	30
66	Dietary Strategies for Management of Metabolic Syndrome: Role of Gut Microbiota Metabolites. Nutrients, 2021, 13, 1389.	1.7	46
67	Microbial Pathogenesis and Pathophysiology of Alzheimer's Disease: A Systematic Assessment of Microorganisms' Implications in the Neurodegenerative Disease. Frontiers in Neuroscience, 2021, 15, 648484.	1.4	13
68	Trimethylamine modulates dauer formation, neurodegeneration, and lifespan through <i>tyraâ€3/dafâ€11</i> signaling in <i>Caenorhabditis elegans</i> . Aging Cell, 2021, 20, e13351.	3.0	3
69	Gut microbiota-derived vitamins – underrated powers of a multipotent ally in psychiatric health and disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 107, 110240.	2.5	47
70	A diet high in sugar and fat influences neurotransmitter metabolism and then affects brain function by altering the gut microbiota. Translational Psychiatry, 2021, 11, 328.	2.4	40
71	Alzheimer's disease and gut microbiota: does trimethylamine N-oxide (TMAO) play a role?. Nutrition Reviews, 2022, 80, 271-281.	2.6	24
72	Roles of Gut Microbial Metabolites in Diabetic Kidney Disease. Frontiers in Endocrinology, 2021, 12, 636175.	1.5	33
73	Roles and Mechanisms of Gut Microbiota in Patients With Alzheimer's Disease. Frontiers in Aging Neuroscience, 2021, 13, 650047.	1.7	70
74	"Dialogue―between the Human Microbiome and the Brain. Biochemistry, 0, , .	0.8	2
75	Trimethylamine N-Oxide Exacerbates Renal Inflammation and Fibrosis in Rats With Diabetic Kidney Disease. Frontiers in Physiology, 2021, 12, 682482.	1.3	46

#	Article	IF	CITATIONS
76	Exogenous microbiota-derived metabolite trimethylamine N-oxide treatment alters social behaviors: Involvement of hippocampal metabolic adaptation. Neuropharmacology, 2021, 191, 108563.	2.0	19
77	Repeated 3,3-Dimethyl-1-butanol exposure alters social dominance in adult mice. Neuroscience Letters, 2021, 758, 136006.	1.0	9
78	Targeting whole body metabolism and mitochondrial bioenergetics in the drug development for Alzheimer's disease. Acta Pharmaceutica Sinica B, 2022, 12, 511-531.	5.7	26
79	Bidirectional communication between mast cells and the gut-brain axis in neurodegenerative diseases: Avenues for therapeutic intervention. Brain Research Bulletin, 2021, 172, 61-78.	1.4	14
80	Getting on in Old Age: How the Gut Microbiota Interferes With Brain Innate Immunity. Frontiers in Cellular Neuroscience, 2021, 15, 698126.	1.8	12
81	Trimethyllysine predicts all-cause and cardiovascular mortality in community-dwelling adults and patients with coronary heart disease. European Heart Journal Open, 2021, 1, .	0.9	4
82	Genome-Scale Metabolic Modeling of the Human Microbiome in the Era of Personalized Medicine. Annual Review of Microbiology, 2021, 75, 199-222.	2.9	33
83	The Accumulation and Molecular Effects of Trimethylamine N-Oxide on Metabolic Tissues: It's Not All Bad. Nutrients, 2021, 13, 2873.	1.7	21
84	Modulation of Glial Function in Health, Aging, and Neurodegenerative Disease. Frontiers in Cellular Neuroscience, 2021, 15, 718324.	1.8	22
85	The Potential Role of Polyphenols in Oxidative Stress and Inflammation Induced by Gut Microbiota in Alzheimer's Disease. Antioxidants, 2021, 10, 1370.	2.2	27
86	Nutrition, Gut Microbiota, and Alzheimer's Disease. Frontiers in Psychiatry, 2021, 12, 712673.	1.3	26
87	Understanding Choline Bioavailability and Utilization: First Step Toward Personalizing Choline Nutrition. Journal of Agricultural and Food Chemistry, 2021, 69, 10774-10789.	2.4	18
88	Gut Microbiota and Alzheimer's Disease: Pathophysiology and Therapeutic Perspectives. Journal of Alzheimer's Disease, 2021, 83, 963-976.	1.2	4
89	Living with the enemy: from protein-misfolding pathologies we know, to those we want to know. Ageing Research Reviews, 2021, 70, 101391.	5.0	16
90	Potential therapeutic effects of boswellic acids/Boswellia serrata extract in the prevention and therapy of type 2 diabetes and Alzheimer's disease. Naunyn-Schmiedeberg's Archives of Pharmacology, 2021, 394, 2167-2185.	1.4	7
91	Phenylalanine Metabolism Is Dysregulated in Human Hippocampus with Alzheimer's Disease Related Pathological Changes. Journal of Alzheimer's Disease, 2021, 83, 609-622.	1.2	24
92	Trimethylamine-N-Oxide Pathway: A Potential Target for the Treatment of MAFLD. Frontiers in Molecular Biosciences, 2021, 8, 733507.	1.6	25
93	Unraveling the metabolic pathway of choline-TMA-TMAO: Effects of gypenosides and implications for the therapy of TMAO related diseases. Pharmacological Research, 2021, 173, 105884.	3.1	9

# 95	ARTICLE Gut microbiota and brain function and pathophysiology. , 2021, , 335-354.	IF	CITATIONS
96	Fluorescent assay for quantitative analysis of trimethylamine <i>N</i> -oxide. Analytical Methods, 2021, 13, 1527-1534.	1.3	4
97	CSF metabolites associate with CSF tau and improve prediction of Alzheimer's disease status. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2021, 13, e12167.	1.2	2
98	Gut Microbiota and Microbiota-Related Metabolites as Possible Biomarkers of Cognitive Aging. Advances in Experimental Medicine and Biology, 2019, 1178, 129-154.	0.8	29
99	The CITIMEM study: A pilot study. Optimizing pharmacological treatment in dementia. Archives of Gerontology and Geriatrics, 2020, 89, 104073.	1.4	10
100	Sex-Specific Associations of Trimethylamine-N-Oxide and Zonulin with Signs of Depression in Carbohydrate Malabsorbers and Nonmalabsorbers. Disease Markers, 2020, 2020, 1-6.	0.6	21
101	Gut Microbiota and Disorders of the Central Nervous System. Neuroscientist, 2020, 26, 487-502.	2.6	20
102	Assessment of trimethylamine-N-oxide at the blood-cerebrospinal fluid barrier: Results from 290 lumbar punctures. EXCLI Journal, 2020, 19, 1275-1281.	0.5	9
103	Decreased levels of circulating trimethylamine N-oxide alleviate cognitive and pathological deterioration in transgenic mice: a potential therapeutic approach for Alzheimer's disease. Aging, 2019, 11, 8642-8663.	1.4	62
104	Concomitant memantine and Lactobacillus plantarum treatment attenuates cognitive impairments in APP/PS1 mice. Aging, 2020, 12, 628-649.	1.4	75
105	<p>Trimethylamine N-Oxide, a Gut Microbiota-Dependent Metabolite, is Associated with Frailty in Older Adults with Cardiovascular Disease</p> . Clinical Interventions in Aging, 2020, Volume 15, 1809-1820.	1.3	28
106	Molecular Links Between Alzheimer's Disease and Gastrointestinal Microbiota: Emphasis on Helicobacter pylori Infection Involvement. Current Molecular Medicine, 2019, 20, 3-12.	0.6	10
107	Gut Microbiota and Ischemic Stroke: The Role of Trimethylamine N-Oxide. Journal of Stroke, 2019, 21, 151-159.	1.4	96
108	Gut-Brain Axis and its Neuro-Psychiatric Effects: A Narrative Review. Cureus, 2020, 12, e11131.	0.2	9
109	Needles in haystacks: reevaluating old paradigms for the discovery of bacterial secondary metabolites. Natural Product Reports, 2021, 38, 2083-2099.	5.2	14
110	Gut and Brain: Investigating Physiological and Pathological Interactions Between Microbiota and Brain to Gain New Therapeutic Avenues for Brain Diseases. Frontiers in Neuroscience, 2021, 15, 753915.	1.4	18
111	Gut-microbiota derived bioactive metabolites and their functions in host physiology. Biotechnology and Genetic Engineering Reviews, 2021, 37, 105-153.	2.4	18
112	Gut–microbiota–microglia–brain interactions in Alzheimer's disease: knowledge-based, multi-dimensional characterization. Alzheimer's Research and Therapy, 2021, 13, 177.	3.0	15

#	Article	IF	CITATIONS
113	Activation of Microbiota Sensing – Free Fatty Acid Receptor 2 Signaling Ameliorates Amyloid-β Induced Neurotoxicity by Modulating Proteolysis-Senescence Axis. Frontiers in Aging Neuroscience, 2021, 13, 735933.	1.7	11
116	GuanXinNing Tablet Attenuates Alzheimer's Disease via Improving Gut Microbiota, Host Metabolites, and Neuronal Apoptosis in Rabbits. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-20.	0.5	3
117	Next-generation microbial drugs developed from microbiome's natural products. Advances in Genetics, 2021, 108, 341-382.	0.8	2
118	Composition of intestinal flora affects the risk relationship between Alzheimer's disease/Parkinson's disease and cancer. Biomedicine and Pharmacotherapy, 2022, 145, 112343.	2.5	24
119	Regulation of blood–brain barrier integrity by microbiome-associated methylamines and cognition by trimethylamine N-oxide. Microbiome, 2021, 9, 235.	4.9	65
120	The role of trimethylamineâ€Nâ€Oxide in the development of Alzheimer's disease. Journal of Cellular Physiology, 2022, 237, 1661-1685.	2.0	20
121	Gut Microbiome Alterations in Patients With Carotid Atherosclerosis. Frontiers in Cardiovascular Medicine, 2021, 8, 739093.	1.1	15
122	A validated simple LC-MS/MS method for quantifying trimethylamine <i>N</i> -oxide (TMAO) using a surrogate matrix and its clinical application. Translational and Clinical Pharmacology, 2021, 29, 216.	0.3	3
123	A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. Clinical Microbiology Reviews, 2022, 35, e0033820.	5.7	138
124	Neurodegeneration and Glial Activation Related CSF Biomarker as the Diagnosis of Alzheimer's Disease: A Systematic Review and an Updated Meta- analysis. Current Alzheimer Research, 2022, 19, 32-46.	0.7	2
126	Alzheimer Disease: Recent Updates on Apolipoprotein E and Gut Microbiome Mediation of Oxidative Stress, and Prospective Interventional Agents. , 2022, 13, 87.		16
127	Can dietary patterns prevent cognitive impairment and reduce Alzheimer's disease risk: Exploring the underlying mechanisms of effects. Neuroscience and Biobehavioral Reviews, 2022, 135, 104556.	2.9	28
128	The Potential Role of Gut Microbiota in Alzheimer's Disease: From Diagnosis to Treatment. Nutrients, 2022, 14, 668.	1.7	79
129	Balancing the Equation: A Natural History of Trimethylamine and Trimethylamine- <i>N</i> -oxide. Journal of Proteome Research, 2022, 21, 560-589.	1.8	19
130	Stratification of the Gut Microbiota Composition Landscape across the Alzheimer's Disease Continuum in a Turkish Cohort. MSystems, 2022, 7, e0000422.	1.7	20
131	The gut metabolite, trimethylamine N-oxide inhibits protein folding by affecting cis–trans isomerization and induces cell cycle arrest. Cellular and Molecular Life Sciences, 2022, 79, 12.	2.4	4
132	Diet-Induced High Serum Levels of Trimethylamine-N-oxide Enhance the Cellular Inflammatory Response without Exacerbating Acute Intracerebral Hemorrhage Injury in Mice. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-16.	1.9	12
133	Targeted Metabolomic Analysis in Alzheimer's Disease Plasma and Brain Tissue in Non-Hispanic Whites. Journal of Alzheimer's Disease, 2022, 86, 1875-1895.	1.2	17

#	Article	IF	CITATIONS
134	Implications of Gut Microbiota in Neurodegenerative Diseases. Frontiers in Immunology, 2022, 13, 785644.	2.2	37
135	Relationship Between the Gut Microbiota and Alzheimer's Disease: A Systematic Review. Journal of Alzheimer's Disease, 2022, 87, 519-528.	1.2	12
136	Shedding light on biological sex differences and microbiota–gut–brain axis: a comprehensive review of its roles in neuropsychiatric disorders. Biology of Sex Differences, 2022, 13, 12.	1.8	34
137	Inhibition of Microbiota-dependent Trimethylamine N-Oxide Production Ameliorates High Salt Diet-Induced Sympathetic Excitation and Hypertension in Rats by Attenuating Central Neuroinflammation and Oxidative Stress. Frontiers in Pharmacology, 2022, 13, 856914.	1.6	12
138	Relationship Between Plasma Neurofilament Light Chain, Gut Microbiota, and Dementia: A Cross-Sectional Study. Journal of Alzheimer's Disease, 2022, 86, 1323-1335.	1.2	5
139	Linking circadian rhythms to microbiome-gut-brain axis in aging-associated neurodegenerative diseases. Ageing Research Reviews, 2022, 78, 101620.	5.0	23
140	Gut dysbiosis and age-related neurological diseases in females. Neurobiology of Disease, 2022, 168, 105695.	2.1	17
141	Rheum tanguticum Alleviates Cognitive Impairment in APP/PS1 Mice by Regulating Drug-Responsive Bacteria and Their Corresponding Microbial Metabolites. Frontiers in Pharmacology, 2021, 12, 766120.	1.6	1
142	Probiotics for Alzheimer's Disease: A Systematic Review. Nutrients, 2022, 14, 20.	1.7	57
143	Regulation of common neurological disorders by gut microbial metabolites. Experimental and Molecular Medicine, 2021, 53, 1821-1833.	3.2	35
144	Flavin-Containing Monooxygenase 3 (FMO3) Is Critical for Dioxin-Induced Reorganization of the Gut Microbiome and Host Insulin Sensitivity. Metabolites, 2022, 12, 364.	1.3	6
145	The Role of the Gut Microbiota and Microbial Metabolites in the Pathogenesis of Alzheimer's Disease. CNS and Neurological Disorders - Drug Targets, 2023, 22, 577-598.	0.8	4
146	Blood-Based Biomarkers for Alzheimer's Disease Diagnosis and Progression: An Overview. Cells, 2022, 11, 1367.	1.8	31
147	Gut Microbiota as a Hidden Player in the Pathogenesis of Alzheimer's Disease. Journal of Alzheimer's Disease, 2022, 86, 1501-1526.	1.2	9
148	Glucose Metabolism is a Better Marker for Predicting Clinical Alzheimer's Disease than Amyloid or Tau Journal of Cellular Immunology, 2022, 4, 15-18.	0.8	0
149	Principal components from untargeted cerebrospinal fluid metabolomics associated with Alzheimer's disease biomarkers. Neurobiology of Aging, 2022, 117, 12-23.	1.5	7
150	Diet, Trimethylamine Metabolism, and Mitochondrial DNA: An Observational Study. Molecular Nutrition and Food Research, 2022, , 2200003.	1.5	3
151	Antibiotic-induced microbiome depletion remodels daily metabolic cycles in the brain. Life Sciences, 2022, 303, 120601.	2.0	1

-			_		
CIT			I D	ED.	ODT
	AL	UN		EΡ	ORT

#	Article	IF	CITATIONS
152	The Potential of the Gut Microbiome to Reshape the Cancer Therapy Paradigm. JAMA Oncology, 2022, 8, 1059.	3.4	29
153	Diet Patterns, the Gut Microbiome, and Alzheimer's Disease. Journal of Alzheimer's Disease, 2022, 88, 933-941.	1.2	7
157	Gastrointestinal Changes and Alzheimer's Disease. Current Alzheimer Research, 2022, 19, 335-350.	0.7	3
158	Microbial-derived metabolites as a risk factor of age-related cognitive decline and dementia. Molecular Neurodegeneration, 2022, 17, .	4.4	59
159	The Gut Microbiome–Brain Crosstalk in Neurodegenerative Diseases. Biomedicines, 2022, 10, 1486.	1.4	20
160	Microbiota-Gut-Brain Axis in Neurological Disorders: From Leaky Barriers Microanatomical Changes to Biochemical Processes. Mini-Reviews in Medicinal Chemistry, 2022, 22, .	1.1	3
161	The Relationship Between Atrial Fibrillation and Intestinal Flora With Its Metabolites. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	9
162	Direct and Indirect Methods for Studying Human Gut Microbiota. Russian Journal of Gastroenterology Hepatology Coloproctology, 2022, 32, 19-34.	0.2	4
163	Microbiota-derived metabolites as drivers of gut–brain communication. Gut Microbes, 2022, 14, .	4.3	74
164	Metabolic control by the microbiome. Genome Medicine, 2022, 14, .	3.6	30
165	Transplantation of fecal microbiota from APP/PS1 mice and Alzheimer's disease patients enhanced endoplasmic reticulum stress in the cerebral cortex of wild-type mice. Frontiers in Aging Neuroscience, 0, 14, .	1.7	10
166	Therapeutic effects of total saikosaponins from Radix bupleuri against Alzheimer's disease. Frontiers in Pharmacology, 0, 13, .	1.6	1
168	Is dietary choline intake related to dementia and Alzheimer's disease risks? Results from the Framingham Heart Study. American Journal of Clinical Nutrition, 2022, 116, 1201-1207.	2.2	13
169	Dysbiosis: Gut feeling. F1000Research, 0, 11, 911.	0.8	0
170	Trimethylamine N-oxide promotes demyelination in spontaneous hypertension rats through enhancing pyroptosis of oligodendrocytes. Frontiers in Aging Neuroscience, 0, 14, .	1.7	7
171	Circulating trimethylamine <i>N</i> â€oxide levels do not predict 10â€year survival in patients with or without coronary heart disease. Journal of Internal Medicine, 2022, 292, 915-924.	2.7	3
172	The Role of a Gut Microbial-Derived Metabolite, Trimethylamine N-Oxide (TMAO), in Neurological Disorders. Molecular Neurobiology, 2022, 59, 6684-6700.	1.9	24
173	Relationship between Nutrition, Lifestyle, and Neurodegenerative Disease: Lessons from ADH1B, CYP1A2 and MTHFR. Genes, 2022, 13, 1498.	1.0	5

#	Article	IF	CITATIONS
174	Clinical significance and potential role of trimethylamine N-oxide in neurological and neuropsychiatric disorders. Drug Discovery Today, 2022, 27, 103334.	3.2	7
175	The gut microbiome and Alzheimer's disease: Complex and bidirectional interactions. Neuroscience and Biobehavioral Reviews, 2022, 141, 104814.	2.9	16
176	Trimethylamine N-Oxide (TMAO) and Indoxyl Sulfate Concentrations in Patients with Alcohol Use Disorder. Nutrients, 2022, 14, 3964.	1.7	2
177	Increased plasma trimethylamine- <i>N</i> -oxide levels are associated with mild cognitive impairment in high cardiovascular risk elderly population. Food and Function, 2022, 13, 10013-10022.	2.1	1
178	Trimethylamine-N-oxide is an important target for heart and brain diseases. Medical Review, 2022, 2, 321-323.	0.3	1
179	Longitudinal Associations of Plasma TMAO and Related Metabolites with Cognitive Impairment and Dementia in Older Adults: The Cardiovascular Health Study. Journal of Alzheimer's Disease, 2022, , 1-14.	1.2	0
180	Trimethylamine N-Oxide Reduces Neurite Density and Plaque Intensity in a Murine Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2022, 90, 585-597.	1.2	3
182	Age-related metabolic and neurodegenerative changes in SAMP8 mice. Aging, 2022, 14, 7300-7327.	1.4	9
183	Experimental Evidence of Buyang Huanwu Decoction and Related Modern Preparations (Naoxintong) Tj ETQq0 C Transcriptomics in Rats. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-15.	0 rgBT /C 0.5	verlock 10 Tf 2
185	Association of Trimethylamine N-Oxide with Normal Aging and Neurocognitive Disorders: A Narrative Review. Brain Sciences, 2022, 12, 1203.	1.1	2
186	Trimethylamine N-Oxide (TMAO) as a Biomarker. Biomarkers in Disease, 2022, , 27-45.	0.0	0
187	The emerging role of the microbiome in Alzheimer's disease. International Review of Neurobiology, 2022, , 101-139.	0.9	8
188	Implications of trimethylamine N-oxide (TMAO) and Betaine in Human Health: Beyond Being Osmoprotective Compounds. Frontiers in Molecular Biosciences, 0, 9, .	1.6	14
189	Anthraquinones from Rhubarb as Potential Inhibitors of Trimethylamine (TMA)-Lyase for Alzheimer's disease. Neurochemical Journal, 2022, 16, 295-301.	0.2	1
190	Dysbiosis of Gut Microbiota from the Perspective of the Gut–Brain Axis: Role in the Provocation of Neurological Disorders. Metabolites, 2022, 12, 1064.	1.3	21
191	Trimethylamine N-Oxide as a Potential Risk Factor for Non-communicable Diseases: A Systematic Review. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2023, 23, 617-632.	0.6	2
192	Exploration of the Gut–Brain Axis through Metabolomics Identifies Serum Propionic Acid Associated with Higher Cognitive Decline in Older Persons. Nutrients, 2022, 14, 4688.	1.7	15
193	Higher Circulating Trimethylamine N-Oxide Aggravates Cognitive Impairment Probably via Downregulating Hippocampal SIRT1 in Vascular Dementia Rats. Cells, 2022, 11, 3650.	1.8	7

#	Article	IF	CITATIONS
194	Gut microbiota-derived metabolites and their importance in neurological disorders. Molecular Biology Reports, 2023, 50, 1663-1675.	1.0	17
195	Trimethylamine N-oxide aggravated cognitive impairment from APP/PS1 mice and protective roles of voluntary exercise. Neurochemistry International, 2023, 162, 105459.	1.9	2
196	Gut microbiota: A new target for traditional Chinese medicine in the treatment of depression. Journal of Ethnopharmacology, 2023, 303, 116038.	2.0	7
197	Effect of a Vegan Diet on Alzheimer's Disease. International Journal of Molecular Sciences, 2022, 23, 14924.	1.8	6
198	Insulin resistance in Alzheimer's Disease: the genetics and metabolomics links. Clinica Chimica Acta, 2022, , .	0.5	1
199	Cognitive, Emotional, Behavioral and Physiological Evaluation of the Relationship Between Brain and Gut Microbiota. Current Approaches in Psychiatry, 2022, 14, 446-459.	0.2	0
200	The gut microbiotaâ€astrocyte axis: Implications for type 2 diabetic cognitive dysfunction. CNS Neuroscience and Therapeutics, 2023, 29, 59-73.	1.9	7
201	Age and APOE affect L-carnitine system metabolites in the brain in the APOE-TR model. Frontiers in Aging Neuroscience, 0, 14, .	1.7	0
202	New insights into the mechanisms of highâ€fat diet mediated gut microbiota in chronic diseases. , 2023, 2, .		16
203	Gut microbiome dysbiosis drives metabolic dysfunction in Familial dysautonomia. Nature Communications, 2023, 14, .	5.8	7
204	Gut Microbiota, Alzheimer and Psychiatric Diseases: Unveiling the Relationships and Treatment Options. Healthy Ageing and Longevity, 2023, , 279-333.	0.2	0
205	Extensive Summary of the Important Roles of Indole Propionic Acid, a Gut Microbial Metabolite in Host Health and Disease. Nutrients, 2023, 15, 151.	1.7	19
206	The therapeutic role of microbial metabolites in human health and diseases. , 2023, , 1-38.		1
207	Gut-brain axis through the lens of gut microbiota and their relationships with Alzheimer's disease pathology: Review and recommendations. Mechanisms of Ageing and Development, 2023, 211, 111787.	2.2	10
208	Relationship between Excreted Uremic Toxins and Degree of Disorder of Children with ASD. International Journal of Molecular Sciences, 2023, 24, 7078.	1.8	1
209	Role of microbial dysbiosis in the pathogenesis of Alzheimer's disease. Neuropharmacology, 2023, 229, 109478.	2.0	10
210	New insight into gut microbiota and their metabolites in ischemic stroke: A promising therapeutic target. Biomedicine and Pharmacotherapy, 2023, 162, 114559.	2.5	5
211	Contribution of Trimethylamine N-Oxide (TMAO) to Chronic Inflammatory and Degenerative Diseases. Biomedicines, 2023, 11, 431.	1.4	7

#	Article	IF	Citations
212	TMAO promotes dementia progression by mediating the PI3K/Akt/mTOR pathway. Tissue and Cell, 2023, 81, 102034.	1.0	1
213	Extending genetic risk for Alzheimer's disease from host to holobiont. Cell, 2023, 186, 690-692.	13.5	0
214	The effects of microbiome-targeted therapy on cognitive impairment and postoperative cognitive dysfunction—A systematic review. PLoS ONE, 2023, 18, e0281049.	1.1	3
215	Association between plasma trimethylamine-N-oxide and cognitive impairment in patients with transient ischemic attack. Neurological Research, 2023, 45, 634-645.	0.6	1
216	Gut Microbiota and Alzheimer's Disease: How to Study and Apply Their Relationship. International Journal of Molecular Sciences, 2023, 24, 4047.	1.8	7
217	The Prevention of Inflammation and the Maintenance of Iron and Hepcidin Homeostasis in the Gut, Liver, and Brain Pathologies. Journal of Alzheimer's Disease, 2023, 92, 769-789.	1.2	2
218	Stroke and Vascular Cognitive Impairment: The Role of Intestinal Microbiota Metabolite TMAO. CNS and Neurological Disorders - Drug Targets, 2024, 23, 102-121.	0.8	7
219	MiRNAs as epigenetic regulators for gut microbiome. , 2023, , 153-172.		0
220	Gut Microbiota, an Additional Hallmark of Human Aging and Neurodegeneration. Neuroscience, 2023, 518, 141-161.	1.1	17
221	Gut Microbiota is an Impact Factor based on the Brain-Gut Axis to Alzheimer's Disease: A Systematic Review. , 2023, 14, 964.		5
222	Gut–brain axis volatile organic compounds derived from breath distinguish between schizophrenia and major depressive disorder. Journal of Psychiatry and Neuroscience, 2023, 48, E117-E125.	1.4	3
223	Diet and physical activity influence the composition of gut microbiota, benefit on Alzheimer's Disease. , 2023, , 1-26.		0
224	The microbiome and cardiovascular disease: Implications in Precision Medicine. , 2024, , 145-168.		0
234	Microbial Technology for Neurological Disorders. , 2023, , 299-339.		0
264	Gut microbiota influence frailty syndrome in older adults: mechanisms and therapeutic strategies. Biogerontology, 0, , .	2.0	0
265	Current understanding of the Alzheimer's disease-associated microbiome and therapeutic strategies. Experimental and Molecular Medicine, 2024, 56, 86-94.	3.2	2
266	Gut–brain communication mediates the impact of dietary lipids on cognitive capacity. Food and Function, 2024, 15, 1803-1824.	2.1	0
271	The Gut Microbiota and NDC: What Is the Interplay. , 2024, , 1-34.		0

ARTICLE

IF CITATIONS