Deep-learning-based inverse design model for intelligen

Npj Computational Materials 4, DOI: 10.1038/s41524-018-0128-1

Citation Report

#	Article	IF	CITATIONS
1	Nanoinformatics, and the big challenges for the science of small things. Nanoscale, 2019, 11, 19190-19201.	2.8	59
2	Machine learning in materials science. InformaÄnÃ-Materiály, 2019, 1, 338-358.	8.5	427
3	Convolutional Neural Networks for the Design and Analysis of Non-Fullerene Acceptors. Journal of Chemical Information and Modeling, 2019, 59, 4993-5001.	2.5	29
4	Virtual Issue on Machine-Learning Discoveries in Materials Science. Chemistry of Materials, 2019, 31, 8243-8247.	3.2	23
5	A property-oriented design strategy for high performance copper alloys via machine learning. Npj Computational Materials, 2019, 5, .	3.5	104
6	Deep Learning to Generate <i>in Silico</i> Chemical Property Libraries and Candidate Molecules for Small Molecule Identification in Complex Samples. Analytical Chemistry, 2020, 92, 1720-1729.	3.2	62
7	Inverseâ€QSPR for <i>de novo</i> Design: A Review. Molecular Informatics, 2020, 39, e1900087.	1.4	27
8	Deep-Learning Architecture in QSPR Modeling for the Prediction of Energy Conversion Efficiency of Solar Cells. Industrial & Engineering Chemistry Research, 2020, 59, 18991-19000.	1.8	13
9	Dirty engineering data-driven inverse prediction machine learning model. Scientific Reports, 2020, 10, 20443.	1.6	9
10	Who Is Metabolizing What? Discovering Novel Biomolecules in the Microbiome and the Organisms Who Make Them. Frontiers in Cellular and Infection Microbiology, 2020, 10, 388.	1.8	6
11	EvoMol: a flexible and interpretable evolutionary algorithm for unbiased de novo molecular generation. Journal of Cheminformatics, 2020, 12, 55.	2.8	29
12	Smart Manufacturing for Smart Cities—Overview, Insights, and Future Directions. Advanced Intelligent Systems, 2020, 2, 2000043.	3.3	29
13	Machine-Learning-Assisted De Novo Design of Organic Molecules and Polymers: Opportunities and Challenges. Polymers, 2020, 12, 163.	2.0	95
14	Machine learning in experimental materials chemistry. Catalysis Today, 2021, 371, 77-84.	2.2	36
15	De novo generation of optically active small organic molecules using Monte Carlo tree search combined with recurrent neural network. Journal of Computational Chemistry, 2021, 42, 136-143.	1.5	8
16	Data-driven algorithms for inverse design of polymers. Soft Matter, 2021, 17, 7607-7622.	1.2	39
17	Deep learning-enabled prediction of 2D material breakdown. Nanotechnology, 2021, 32, 265203.	1.3	6
19	Predicting Infrared Spectra with Message Passing Neural Networks. Journal of Chemical Information and Modeling, 2021, 61, 2594-2609.	2.5	31

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
20	Quantum Chemistry Calculations for Metabolomics. Chemical Reviews, 2021, 121, 5633-5670.	23.0	47
22	Active-Learning-Based Generative Design for the Discovery of Wide-Band-Gap Materials. Journal of Physical Chemistry C, 2021, 125, 16118-16128.	1.5	12
23	Evolutionary design of molecules based on deep learning and a genetic algorithm. Scientific Reports, 2021, 11, 17304.	1.6	19
24	Deep learning framework for material design space exploration using active transfer learning and data augmentation. Npj Computational Materials, 2021, 7, .	3.5	70
25	Recent machine learning guided material research - A review. Computational Condensed Matter, 2021, 29, e00597.	0.9	4
26	Tackling the Challenge of a Huge Materials Science Search Space with Quantumâ€Inspired Annealing. Advanced Intelligent Systems, 2021, 3, 2000209.	3.3	15
27	High-throughput virtual screening for organic electronics: a comparative study of alternative strategies. Journal of Materials Chemistry C, 2021, 9, 13557-13583.	2.7	20
28	Discovery of Lead-Free Hybrid Organic/Inorganic Perovskites Using Metaheuristic-Driven DFT Calculations. Chemistry of Materials, 2021, 33, 782-798.	3.2	23
29	Generative Models for Automatic Chemical Design. Lecture Notes in Physics, 2020, , 445-467.	0.3	42
30	Deep learning and generative methods in cheminformatics and chemical biology: navigating small molecule space intelligently. Biochemical Journal, 2020, 477, 4559-4580.	1.7	29
31	Forward and inverse design of kirigami via supervised autoencoder. Physical Review Research, 2020, 2, .	1.3	39
32	Machine Learning in Materials Discovery: Confirmed Predictions and Their Underlying Approaches. Annual Review of Materials Research, 2020, 50, 49-69.	4.3	75
33	DeepReac+: deep active learning for quantitative modeling of organic chemical reactions. Chemical Science, 2021, 12, 14459-14472.	3.7	20
34	MolGPT: Molecular Generation Using a Transformer-Decoder Model. Journal of Chemical Information and Modeling, 2022, 62, 2064-2076.	2.5	105
35	Convolutional neural networks for the design and analysis of nonfullerene acceptors. , 2022, , 231-256.		25
36	Goal-directed generation of new molecules by AI methods. , 2022, , 39-67.		0
37	Bayesian optimization for chemical products and functional materials. Current Opinion in Chemical Engineering, 2022, 36, 100728.	3.8	43
38	De Novo Molecular Design with Chemical Language Models. Methods in Molecular Biology, 2022, 2390, 207-232.	0.4	3

#	Article	IF	CITATIONS
39	Deep learning approaches for de novo drug design: An overview. Current Opinion in Structural Biology, 2022, 72, 135-144.	2.6	54
40	Decoding hexanitrobenzene (HNB) and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) as two distinctive energetic nitrobenzene compounds by machine learning. Physical Chemistry Chemical Physics, 2022, 24, 9875-9884.	1.3	12
41	Inverse Design of Materials by Machine Learning. Materials, 2022, 15, 1811.	1.3	28
42	Effect of molecular representation on deep learning performance for prediction of molecular electronic properties. Bulletin of the Korean Chemical Society, 0, , .	1.0	1
43	Deep Generative Models for Materials Discovery and Machine Learning-Accelerated Innovation. Frontiers in Materials, 2022, 9, .	1.2	19
44	Artificial intelligence to bring nanomedicine to life. Advanced Drug Delivery Reviews, 2022, 184, 114194.	6.6	39
45	Two-dimensional finite element network analysis: Formulation and static analysis of structural assemblies. Computers and Structures, 2022, 266, 106784.	2.4	2
46	Artificial intelligence: machine learning for chemical sciences. Journal of Chemical Sciences, 2022, 134, 2.	0.7	32
47	Virtual Screening for Organic Solar Cells and Light Emitting Diodes. Advanced Science, 2022, 9, e2200825.	5.6	13
48	Accelerated Discovery of the Polymer Blends for Cartilage Repair through Data-Mining Tools and Machine-Learning Algorithm. Polymers, 2022, 14, 1802.	2.0	5
49	Evaluation of Deep Learning Architectures for Aqueous Solubility Prediction. ACS Omega, 2022, 7, 15695-15710.	1.6	20
50	Efficient Adversarial Generation of Thermally Activated Delayed Fluorescence Molecules. ACS Omega, 2022, 7, 18179-18188.	1.6	5
51	Deep learning approaches for <italic>de novo</italic> drug design: an overview. Scientia Sinica Chimica, 2023, 53, 95-106.	0.2	2
52	MACAW: An Accessible Tool for Molecular Embedding and Inverse Molecular Design. Journal of Chemical Information and Modeling, 2022, 62, 3551-3564.	2.5	4
53	UV–Visible Absorption Spectra of Solvated Molecules by Quantum Chemical Machine Learning. Journal of Chemical Theory and Computation, 2022, 18, 4891-4902.	2.3	6
54	Machine learning-assisted evaluation of potential biochars for pharmaceutical removal from water. Environmental Research, 2022, 214, 113953.	3.7	10
55	Inverse design of nanophotonic devices using generative adversarial networks. Engineering Applications of Artificial Intelligence, 2022, 115, 105259.	4.3	7
56	Bandgap prediction on small thermoelectric material dataset via instance-based transfer learning. Computational and Theoretical Chemistry, 2022, 1217, 113872.	1.1	3

CITATION REPORT

#	Article	IF	CITATIONS
57	Transformation rule-based molecular evolution for automatic gasoline molecule design. Chemical Engineering Science, 2022, 263, 118119.	1.9	1
58	OGGN: A Novel Generalized Oracle Guided Generative Architecture forÂModelling Inverse Function ofÂArtificial Neural Networks. Communications in Computer and Information Science, 2022, , 460-471.	0.4	0
59	Efficient enumeration-selection computational strategy for adaptive chemistry. Scientific Reports, 2022, 12, .	1.6	0
60	QCforever: A Quantum Chemistry Wrapper for Everyone to Use in Black-Box Optimization. Journal of Chemical Information and Modeling, 2022, 62, 4427-4434.	2.5	4
61	Methodology for the design of the emissive Ir complex with the ab-initio screening and the reinforcement learning. , 2022, , .		0
62	Data-driven materials discovery and synthesis using machine learning methods. , 2022, , .		0
63	Roles and opportunities for machine learning in organic molecular crystal structure prediction and its applications. MRS Bulletin, 2022, 47, 1054-1062.	1.7	3
64	Dynamic Modeling of Intrinsic Self-Healing Polymers Using Deep Learning. ACS Applied Materials & Interfaces, 2022, 14, 52486-52498.	4.0	2
65	Electronic, redox, and optical property prediction of organic π-conjugated molecules through a hierarchy of machine learning approaches. Chemical Science, 2022, 14, 203-213.	3.7	4
66	Computational Design and Manufacturing of Sustainable Materials through First-Principles and Materiomics. Chemical Reviews, 2023, 123, 2242-2275.	23.0	16
67	Physics-informed machine learning combining experiment and simulation for the design of neodymium-iron-boron permanent magnets with reduced critical-elements content. Frontiers in Materials, 0, 9, .	1.2	10
68	MatFlow: A System for Knowledge-based Novel Materials Design using Machine Learning. , 2022, , .		0
69	High-throughput transient photoluminescence spectrometer for deep learning of thermally activated delayed fluorescence materials. Journal of Materials Chemistry C, 2023, 11, 4357-4364.	2.7	2
70	Convoluted filtering for process cycle modeling. Engineering Reports, 2023, 5, .	0.9	2
71	Predicting power conversion efficiency of binary organic solar cells based on Y6 acceptor by machine learning. Journal of Energy Chemistry, 2023, 82, 139-147.	7.1	7
72	TEXplorer.org: Thermoelectric material properties data platform for experimental and first-principles calculation results. APL Materials, 2023, 11, .	2.2	4
73	Computational Approaches for Organic Semiconductors: From Chemical and Physical Understanding to Predicting New Materials. Chemical Reviews, 2023, 123, 7498-7547.	23.0	11