Origin of spatial variation in US East Coast sea-level tre

Nature 564, 400-404 DOI: 10.1038/s41586-018-0787-6

Citation Report

#	Article	IF	CITATIONS
1	The Relationship Between U.S. East Coast Sea Level and the Atlantic Meridional Overturning Circulation: A Review. Journal of Geophysical Research: Oceans, 2019, 124, 6435-6458.	2.6	54
2	Usable Science for Managing the Risks of Sea‣evel Rise. Earth's Future, 2019, 7, 1235-1269.	6.3	85
3	Use of Oceanic Reanalysis to Improve Estimates of Extreme Storm Surge. Journal of Atmospheric and Oceanic Technology, 2019, 36, 2205-2219.	1.3	8
4	Inception of a global atlas of sea levels since the Last Glacial Maximum. Quaternary Science Reviews, 2019, 220, 359-371.	3.0	90
5	Embracing dynamic design for climateâ€resilient living shorelines. Journal of Applied Ecology, 2019, 56, 1099-1105.	4.0	27
6	Stratigraphic analysis of a sediment pond within the New England Mud Patch: New constraints from high-resolution chirp acoustic reflection data. Marine Geology, 2019, 412, 81-94.	2.1	37
7	Multiple Representations of Topographic Pattern and Geographic Context Determine Barrier Dune Resistance, Resilience, and the Overlap of Coastal Biogeomorphic Models. Annals of the American Association of Geographers, 2020, 110, 640-660.	2.2	4
8	Global Trends of Sea Surface Gravity Wave, Wind, and Coastal Wave Setup. Journal of Climate, 2020, 33, 769-785.	3.2	10
9	The Global Water Cycle. , 2020, , 433-451.		1
10	Likely weakening of the Florida Current during the past century revealed by sea-level observations. Nature Communications, 2020, 11, 3973.	12.8	28
11	A Preindustrial Sea‣evel Rise Hotspot Along the Atlantic Coast of North America. Geophysical Research Letters, 2020, 47, e2019GL085814.	4.0	22
12	Common Era sea-level budgets along the U.S. Atlantic coast. Nature Communications, 2021, 12, 1841.	12.8	29
13	Status of Mean Sea Level Rise around the USA (2020). GeoHazards, 2021, 2, 80-100.	1.4	7
14	Challenges of the Blue Economy: evidence and research trends. Environmental Sciences Europe, 2021, 33, .	5.5	50
15	North American East Coast Sea Level Exhibits High Power and Spatiotemporal Complexity on Decadal Timescales. Geophysical Research Letters, 2021, 48, e2021GL093675.	4.0	11
16	Sea Level Rise and Municipal Bond Yields. SSRN Electronic Journal, 0, , .	0.4	15
17	The Science of Climate Change and Sea-Level Rise. Coastal Research Library, 2020, , 5-13.	0.4	5
19	Estimation of Return Levels for Extreme Skew Surge Coastal Flooding Events in the Delaware and Chesapeake Bays for 1980–2019. Frontiers in Climate, 2021, 3, .	2.8	1

#	Article	IF	CITATIONS
20	Ocean mass, sterodynamic effects, and vertical land motion largely explain US coast relative sea level rise. Communications Earth & Environment, 2021, 2, .	6.8	10
21	Comparison of Extreme Coastal Flooding Events Between Tropical and Mid-Latitude Weather Systems in the Delaware and Chesapeake Bays for 1980 – 2019. Journal of Applied Meteorology and Climatology, 2022, , .	1.5	0
22	Mesoscale and Submesoscale Shelfâ€Ocean Exchanges Initialize an Advective Marine Heatwave. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	6
24	The importance of non-tidal water-level variability for reconstructing Holocene relative sea level. Quaternary Science Reviews, 2022, 290, 107637.	3.0	3
25	A Hybrid Dynamical Approach for Seasonal Prediction of Sea‣evel Anomalies: A Pilot Study for Charleston, South Carolina. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	3
26	IMPLICATIONS OF SINGLE-STEP GRAPHITIZATION FOR RECONSTRUCTING LATE HOLOCENE RELATIVE SEA-LEVEL USING RADIOCARBON-DATED ORGANIC COASTAL SEDIMENT. Radiocarbon, 0, , 1-20.	1.8	1
27	Relative sea-level change in South Florida during the past ~5000Âyears. Global and Planetary Change, 2022, 216, 103902.	3.5	5
28	Hurricane Risk Management Strategies for Insurers in a Changing Climate. Hurricane Risk B, 2022, , 1-23.	0.5	1
29	Climate Change and Onsite Wastewater Treatment Systems in the Coastal Carolinas: Perspectives from Wastewater Managers. Weather, Climate, and Society, 2022, , .	1.1	0
31	Coastal Sea Level Observations Record the Twentieth-Century Enhancement of Decadal Climate Variability. Journal of Climate, 2023, 36, 243-260.	3.2	1
32	Within-region replication of late Holocene relative sea-level change: An example from southern New England, United States. Quaternary Science Reviews, 2023, 300, 107868.	3.0	0
33	What Can Hydrography Between the New England Slope, Bermuda and Africa Tell us About the Strength of the AMOC Over the Last 90Âyears?. Geophysical Research Letters, 2022, 49, .	4.0	3
34	River effects on sea-level rise in the RÃo de la Plata estuary during the past century. Ocean Science, 2023, 19, 57-75.	3.4	0
35	Statistical Downscaling of Seasonal Forecasts of Sea Level Anomalies for U.S. Coasts. Geophysical Research Letters, 2023, 50, .	4.0	2
36	Acceleration of U.S. Southeast and Gulf coast sea-level rise amplified by internal climate variability. Nature Communications, 2023, 14, .	12.8	21
37	The Weight of New York City: Possible Contributions to Subsidence From Anthropogenic Sources. Earth's Future, 2023, 11, .	6.3	5
38	Atlantic meridional overturning circulation increases flood risk along the United States southeast coast. Nature Communications, 2023, 14, .	12.8	7
40	A Framework for Transitions in the Built Environment: Insights from Compound Hazards in the COVID-19 Era. Journal of Infrastructure Systems, 2024, 30, .	1.8	0

#	Article	IF	CITATIONS
41	Causes of accelerated High-Tide Flooding in the U.S. since 1950. Npj Climate and Atmospheric Science, 2023, 6, .	6.8	0
42	Regional variations in relative sea-level changes influenced by nonlinear vertical land motion. Nature Geoscience, 2024, 17, 137-144.	12.9	1